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1 Introduction

In Micromagnetism theory (see [2]), the behaviour of a ferromagnet is represented by an
unitary vector field u called magnetic moment. The variations of u are gouverned by Landau-
Lifshitz equation





∂u

∂t
= u ∧ ∆u − u ∧ (u ∧ ∆u)

u(0, ·) = u0(·)
(1.1)

where we assume that |u0| = 1.
Existence and non uniqueness for weak solutions of (1.1) are proved by F. Alouges and A.

Soyeur in [1]. Furthermore, P.L. Sulem, C. Sulem and C. Bardos establish in [6] local existence
of regular solutions for the equation

∂u

∂t
= u ∧ ∆u. (1.2)

Concerning equation (1.1) we prove the following theorems.
Theorem 1. Assume that

|u0| = 1, ∇u0 ∈ IH1(IR3).

Then there exists T > 0, there exists an unique u such that

(i) u ∈ IL∞((0, T ) × IR3), |u| = 1,

(ii) ∇u ∈ L∞((0, T ); IH1(IR3)) ∩ L2((0, T ); IH2(IR3)),

(iii) u satisfies (1.1).

Theorem 2. There exists δ > 0 such that if |u0| = 1 and if ∇u0 ∈ IH1(IR3) with ‖∇u0‖IH1(IR3) <

δ, then the solution u given by Theorem 1 exists for T = +∞.

The term −u∧(u∧∆u) in (1.1) is in fact a dissipation term. For this reason, global existence
with small data is valid for (1.1) and not for (1.2) (see [6]).
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On the other hand, the propagation of electromagnetic waves in the ferromagnet is gouverned
by a system coupling Landau-Lifschitz and Maxwell equations.

∂u

∂t
= u ∧ (∆u + H) − u ∧ (u ∧ (∆u + H)),

∂B

∂t
+ curl E = 0,

∂E

∂t
− curl H = 0,

B = H + u,

u(0, ·) = u0(·), B(0, ·) = B0(·), E(0, ·) = E0(·),

where we assume that |u0| = 1 and div B0 = 0.

Instead of working with (u,H,E), we will write the system with the unknowns (u,B,E).

∂u

∂t
= u ∧ (∆u + B) − u ∧ (u ∧ (∆u + B)) (1.3)

∂B

∂t
= −curl E (1.4)

∂E

∂t
= curl B − curl u (1.5)

u(0, ·) = u0(·), B(0, ·) = B0(·), E(0, ·) = E0(·) (1.6)

and we still assume that
|u0| = 1 and div B0 = 0 in IR3. (1.7)

We will establish the following theorem.

Theorem 3. Let (u0, E0, B0) such that

E0 ∈ IH1(IR3), B0 ∈ IH1(IR3), div B0 = 0,

|u0| = 1, ∇u0 ∈ IH1(IR3).

Then there exists T > 0, there exists an unique (u,E,B) such that

(i) |u| = 1, ∇u ∈ L∞((0, T ); IH1(IR3)) ∩ L2((0, T ); IH2(IR3)),

(ii) E and B belong to L∞((0, T ); IH1(IR3)),

(iii) (u,E,B) satisfies (1.3)-(1.6).

The existence of weak solutions for the system (1.3)-(1.6) is proved in [7] and in [3] in the
case of a bounded domain.

In [4], J.L. Joly, G. Métivier and J. Rauch prove the existence of solutions for a system
similar to (1.3)-(1.6) but without ∆u in (1.3).

The asymptotic behaviour of weak solutions of (1.3)-(1.6) in a bounded domain is studied
in [3].

The proof of Theorems 1, 2 and 3 is based on a semi-discretization used in [1] and [6].
In Part 2, we describe the discretization process. Part 3 is devoted to the proof of Theorems

1 and 2. Theorem 3 is proved in the last part.
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2 Discretization space, notations

We fix h > 0 and we set xh
j = jh for j ∈ ZZ.

For α = (i, j, k) ∈ ZZ3, we note Xh
α = (xh

i , xh
j , xh

k) and

Ch
α =

{
(x, y, z), xh

i ≤ x < xh
i + h, xh

j ≤ y < xh
j + h, xh

k ≤ z < xh
k + h

}
.

We denote

Z3
h =

{
Xh

α ∈ IR3, α ∈ ZZ3
}

.

In the sequel of this part, in order to simplify the notations, we will omit the exponent h.

We consider the following operators defined for u : Z 3 → IR3 :

τ+
1 u(xi, xj , xk) = u(xi+1, xj, xk)

D+
1 u =

1

h
(τ+

1 u − u)

τ−
1 = (τ+

1 )−1, D−
1 = τ−

1 ◦ D+
1

In the same way, we denote τ+
2 , D+

2 , τ−
2 , D−

2 the same operations concerning the second
variable, and τ+

3 , D+
3 , τ−

3 , D−
3 for the third variable.

We set

∆̃ =
3∑

i=1

D−
i D+

i ,

d̃iv u =
3∑

i=1

D+
i ui

c̃url u = (D+
2 u3 − D+

3 u2, D+
3 u1 − D+

1 u3, D+
1 u2 − D+

2 u1).

We denote ∫

Z3

u =
∑

α∈ZZ3

h3u(Xα).

and we use the following classical notations

‖u‖lp =

(∫

Z3

|u|p
) 1

p

, ‖D+u‖lp =

(
3∑

i=1

‖D+
i u‖p

lp

) 1

p

,

‖u‖w1,p =
(
‖u‖p

lp + ‖D+u‖p
lp

) 1

p , ‖u‖h1 = ‖u‖w1,2 ,

‖u‖h2 =


‖u‖2

h1 +
∑

ij

‖D+
i D+

j u‖2
l2




1

2

, ‖u‖l∞ = sup
α∈ZZ3

|u(Xα)|.

We remark that ∫

Z3

D+
i u · v = −

∫

Z3

u · D−
i v,

furthermore,
D+

i (uv) = D+
i u τ+

i v + uD+
i v.
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We recall now the following discrete Sobolev inequalities.

Lemma 1. There exists a constant C independant of h such that for all u : Z 3 → IR3,

if ‖u‖h1 < +∞, then ‖u‖l6(Z3) ≤ C‖D+u‖l2(Z3), (2.1)

Discrete versions of Sobolev inequalities are established in [5] using interpolation procedures.
The same interpolation process is used in this paper (see 3.3 and 4.3) and is presented in

Section 3.3.

3 Proof of theorems 1 and 2

1. Discretization

For h > 0, let uh
0 defined on the mesh Z3

h such that

• |uh
0 | = 1 on Z3

h,

• rhuh
0 tends to u0 in L2

loc(IR
3)

• α‖D+uh
0‖h1(Z3

h
) ≤ ‖∇u0‖H1(IR3) ≤

1
α
‖D+uh

0‖h1(Z3

h
)

where rh is the interpolating operator defined in [5] and in Section 3.3 of this paper, and where
α does not depend on h.

Now we fix h > 0 and we solve





duh

dt
= uh ∧ ∆̃uh − uh ∧ (uh ∧ ∆̃uh)

uh(t = 0) = uh
0

(3.1)

The map u 7→ u∧ ∆̃u−u∧ (u∧ ∆̃u) is locally Lipschitz in l∞(Z3
h), so there exists an unique

solution of (3.1) with Cauchy-Lipschitz Theorem.
In order to simplify the notation, we will omit the exponent h in the computations of the

following subsection.

2. Estimates

We multiply (3.1) by u and we obtain that

d

dt
|u|2 = 0,

hence |u| = 1 on Z3, as it is the case for u0.

With the above remark we can modify the form of the equation. We first note that

u ∧ (u ∧ ∆̃u) = (u · ∆̃u)u − ∆̃u.

Furthermore, writting that ∆̃|u2| = 0 as |u| = 1, we obtain that

2u · ∆̃u + |D+u|2 + |D−u|2 = 0.
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Hence, Equation (3.1) takes the form

du

dt
= u ∧ ∆̃u + ∆̃u +

1

2
(|D+u|2 + |D−u|2)u (3.2)

First estimate. We multiply (3.2) by ∆̃u and after summation on Z3, we get

−
1

2

d

dt
‖D+u‖2

l2 = ‖∆̃u‖2
l2 +

1

2

∫

Z3

(
|D−u|2 + |D+u|2

)
u · ∆̃u,

so we obtain
d

dt
‖D+u‖2

l2 + 2‖∆̃u‖2
l2 ≤ 2‖D+u‖2

l4‖∆̃u‖l2 (3.3)

Second estimate. We multiply now (3.2) by ∆̃2u and after summation on Z3 we obtain

1

2

d

dt
‖∆̃u‖2

l2 =

∫

Z3

u ∧ ∆̃u · ∆̃2u − ‖D+∆̃u‖2
l2

+
1

2

∫

Z3

(
|D+u|2 + |D−u|2

)
u · ∆̃2u.

We remark now that
∣∣∣∣
∫

Z3

u ∧ ∆̃u · ∆̃2u

∣∣∣∣ =
∣∣∣∣∣
∑

i

∫

Z3

D+
i (u ∧ ∆̃u) · D+

i ∆̃u

∣∣∣∣∣

=

∣∣∣∣∣
∑

i

∫

Z3

D+
i u ∧ ∆̃u · D+

i ∆̃u

∣∣∣∣∣

≤ ‖D+∆̃u‖l2‖∆̃u‖l3‖D
+u‖l6 (3.4)

Furthermore,

∣∣∣∣
1

2

∫

Z3

(
|D−u|2 + |D+u|2

)
u · ∆̃2u

∣∣∣∣ =
∣∣∣∣∣
1

2

∑

i

∫

Z3

D+
i

(
(|D−u|2 + |D+u|2)u

)
· D+

i ∆̃u

∣∣∣∣∣

≤
1

2
‖D+

(
(|D−u|2 + |D+u|2)u

)
‖l2‖D

+∆̃u‖l2 .

Now we compute D+
i (|D+u|2) and we obtain that

‖D+
(
(|D−u|2 + |D+u|2)u

)
‖l2 ≤ C


∑

ij

‖D+
i D+

j u · D+
j u‖l2 + ‖|D+u|3‖l2




as |u| = 1.
Thus there exists a constant K independant of h such that

d

dt
‖∆̃u‖2

l2 + 2‖D+∆̃u‖2
l2 ≤ +K

(
‖∆̃u‖l3 ‖D+u‖l6 + ‖D+u‖3

l6

)
‖D+∆̃u‖l2 (3.5)

With Lemma 2.1 and by interpolation there exists a universal constant C such that

‖D+u‖l6 ≤ C‖∆̃u‖l2

‖∆̃u‖l3 ≤ C‖∆̃u‖
1

2

l2
‖D+∆̃u‖

1

2

l2

(3.6)
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From (3.5) and (3.6) we deduce

d

dt
‖∆̃u‖2

l2 + 2‖D+∆̃u‖2
l2 ≤ K

(
‖D+∆̃u‖

3

2

l2
‖∆̃u‖

3

2

l2
+ ‖D+∆̃u‖l2 ‖∆̃u‖3

l2

)
(3.7)

Estimate for Theorem 1.

We absorb ‖D+∆̃u‖l2 in (3.7) and we obtain

d

dt
‖∆̃u‖2

l2 + ‖D+∆̃u‖2
l2 ≤ K‖∆̃u‖6

l2 (3.8)

On the other hand, from (3.3), by interpolation in IL4, we derive

d

dt
‖D+u‖2

l2 + ‖∆̃u‖2
l2 ≤ K‖D+u‖l2 ‖D+u‖3

l6 ≤ K‖D+u‖l2 ‖∆̃u‖3
l2 (3.9)

Combining (3.8) and (3.9) we obtain

d

dt
‖D+u‖2

h1 + ‖∆̃u‖2
h1 ≤ K

(
1 + ‖D+u‖6

h1

)
(3.10)

We set now g(t) = ‖D+u‖2
h1 and we have

dg

dt
≤ K(1 + g3),

hence there exist T > 0 and K independant of h such that





‖D+u‖L∞(0,T ;h1) ≤ K,

‖∆̃u‖L2(0,T ;h1) ≤ K,

‖
du

dt
‖L∞(0,T ;l2) ≤ K.

(3.11)

The last estimate is obtained using (3.1) and the previous estimate concerning D+u.

Estimate for Theorem 2.

We absorb ‖D+∆̃u‖l2 only in the first term of the right hand-side of (3.7) writting

‖D+∆̃u‖
3

2

l2
‖∆̃u‖

3

2

l2
≤

1

2

(
‖D+∆̃u‖2

l2 + ‖D+∆̃u‖l2 ‖∆̃u‖3
l2

)
,

and we obtain
d

dt
‖∆̃u‖2

l2 + ‖D+∆̃u‖2
l2 ≤ K‖∆̃u‖3

l2 ‖D+∆̃u‖l2 (3.12)

Combining (3.9) and (3.12) we derive

d

dt
‖D+u‖2

h1 + ‖∆̃u‖2
h1 ≤ K

(
‖∆̃u‖3

l2 ‖D+∆̃u‖l2 + ‖D+u‖2
l2‖∆̃u‖2

l2

)

Hence there exists a constant K independant of h such that

d

dt
‖D+u‖2

h1 + ‖∆̃u‖2
h1 ≤ K‖D+u‖2

h1 ‖∆̃u‖2
h1
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thus
d

dt
‖D+u‖2

h1 + ‖∆̃u‖2
h1(1 − K‖D+u‖2

h1) ≤ 0 (3.13)

We set now δ = 1√
K

and we suppose that ‖D+u0‖h1 < δ.

We claim that for all t ≥ 0, ‖D+u(t)‖h1 < δ.
If it is not the case, then let t1 be the first t > 0 such that ‖D+u(t)‖h1 ≥ δ.
For all t < t1,

1 − K‖D+u‖2
h1 ≥ 0,

hence, for all t < t1,

d

dt
‖D+u‖2

h1 ≤ 0, so ‖D+u‖2
h1(t1) ≤ ‖D+u(0)‖2

h1 < δ

which leads to a contradiction.

Therefore, if ‖D+u0‖ < δ,
‖D+u‖L∞(0,+∞;h1) < δ (3.14)

and from (3.13) we deduce that there exists K such that

‖∆̃u‖L2(0,+∞;h1) ≤ K (3.15)

3. Limit when h goes to zero

Let us prove Theorem 1.
In the preceding subsection, for all h > 0 we have constructed a solution uh of (3.1) defined

on the mesh Z3
h which satisfies (3.1) and (3.11).

We extend uh to the whole space using an interpolation process described in [5], p. 224.
We introduce the following interpolating operators :
For X = (x1, x2, x3) ∈ Ch

α, if we note Xh
α = (xh

1 , xh
2 , xh

3), we set

• rhuh(X) = uh(Xh
α),

• phuh(X) = uh(Xh
α) +

∑3
i=1 D+

i uh(Xh
α)(xi − xh

i )

+
∑

1≤i<j≤3 D+
i D+

j (Xh
α)(xi − xh

i )(xj − xh
j ) + D+

1 D+
2 D+

3 uh(Xh
α)
∏3

i=1(xi − xh
i ),

• qk
huh(X) = uh(Xh

α) +
∑

i6=k D+
i uh(Xh

α)(xi − xh
i )

+
∑

1 ≤ i < j ≤ 3
i, j 6= k

D+
i D+

j (Xh
α)(xi − xh

i )(xj − xh
j ).

We recall that
∂

∂xi

(phuh) = qi
h(D+

i uh).

Furthermore we have the following proposition proved in [5].
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Proposition 1. If one of the interpolates phuh, qhuh, or rhuh converges strongly (resp. weakly)
in L2 when h goes to zero, then the two others also converge to the same limit in L2 strongly
(resp. weakly).

The estimate (3.11) gives that there exists K > 0 such that for all h > 0,

‖rh(D+
i D+

j D+
k uh)‖L2((0,T )×IR3) ≤ K

‖rh(D+
i D+

j uh)‖L2((0,T )×IR3) ≤ K

‖rh(D+
i uh)‖L2((0,T )×IR3) ≤ K

Furthermore rhuh is bounded in L2
loc independentely of h > 0.

Thus, up to subsequences, we deduce that when h goes to zero,

rhuh ⇀ u in L2
loc weakly,

rh(D+
i uh) ⇀ vi in L2 weakly,

rh(D+
i D+

j uh) ⇀ wij in L2 weakly,

rh(D+
i D+

j D+
k uh) ⇀ ωijk in L2 weakly,

rh(
duh

dt
) ⇀ f in L2 weakly.

Now with Proposition 1., qi
h(D+

i (D+
j D+

k uh)) and rh(D+
i D+

j D+
k uh) have the same limit ωijk,

and since qi
h(D+

i (D+
j D+

k uh)) =
∂

∂xi

(ph(D+
j D+kuh)), as ph(D+

j D+kuh) tends to wjk in L2 weak,

we deduce by uniqueness of the limit in D ′ that

ωijk =
∂

∂xi

wjk.

With the same reasonnement we deduce that

vi =
∂u

∂xi

, wij =
∂2u

∂xi∂xj

, ωijk =
∂3u

∂xi∂xj∂xk

.

In addition, we have f =
∂u

∂t
and, since

∂

∂t
phuh ⇀

∂u

∂t
and

∂

∂xi

phuh ⇀
∂u

∂xi

in L2 weakly,

since phuh ⇀ u in L2
loc weakly, we deduce that

phuh → u in L
p
loc strongly for 2 ≤ p < 6,

using the compactness of Sobolev embeddings in bounded domains.

In order to prove that u satisfies (1.1), we take ϕ ∈ D((0, T )× IR3) and we introduce Ω such
that ϕ is zero outside of Ω. We have

∫

Ω
rh(

duh

dt
) · ϕ =

∫

Ω
rhuh ∧ rh∆̃uh · ϕ −

∫

Ω
rhuh ∧ (rhuh ∧ rh∆̃uh) · ϕ (3.16)
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Now,

rh

du

dt

h

⇀
∂u

∂t
in L2(IR3) weakly,

rh∆̃uh ⇀ ∆u in L2(IR3) weakly,

rhuh → u in L2(Ω) strongly (for the first term),

rhuh → u in L4(Ω) strongly (for the second term).

Thus we can take the limit in (3.16) and we obtain that u satisfies (1.1) in D ′(IR3).

Furthermore, by lower semicontinuity of the different norms, we obtain from (3.11) that u

satisfies
∇u ∈ L∞((0, T ); IH1(IR3)) ∩ L2((0, T ); IH2(IR3)).

Finaly, since rhuh → u in L2
loc strongly, by extracting a subsequence, rhuh → u a.e., hence

|u| = 1 as it is the case for rhuh.

Let us prove now the uniqueness of the solution of (1.1) satisfying (i) and (ii) in Theorem 1.

Let ũ be another solution, and let ū = u − ũ.
We have

∂ū

∂t
= ∆ū + ū ∧ ∆u + ũ ∧ ∆ū + |∇u|2ū −∇ū · (∇u + ∇ũ)ũ (3.17)

We multiply (3.17) by ū and we obtain

1

2

d

dt
‖ū‖2

L2 + ‖∇ū‖2
L2 ≤ ‖∇ū‖L2‖ū‖L2‖∇ũ‖L∞ + ‖ū‖2

L2‖∇u‖2
L∞

+‖ū‖L2‖∇ū‖L2(‖∇u‖L∞ + ‖∇ũ‖L∞).

We absorb ‖∇ū‖L2 in the left hand-side of the inequality and we obtain

d

dt
‖ū‖2

L2 + ‖∇ū‖2
L2 ≤ K‖ū‖L2(‖∇u‖L∞ + ‖∇ũ‖L∞).

Now since ∇u and ∇ũ belong to L1(0, T ;L∞) (with Sobolev injections), we can use Gronwall
Lemma to conclude that ū = 0.

Therefore Theorem 1 is proved.

In the same way we prove Theorem 2, starting from Estimates (3.14) and (3.15).
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4 Proof of Theorem 3

1. Discretization.

For all h > 0 we consider (uh
0 , Eh

0 , Bh
0 ) defined on Z3

h such that

• |uh
0 | = 1, rhuh

0 −→
h→0

u0 in L2
loc(IR

3),

• α‖D+uh
0‖h1(Z3

h
) ≤ ‖∇u0‖H1(IR3) ≤

1
α
‖D+uh

0‖h1(Z3

h
),

• Bh
0 ∈ l∞(Z3

h), rhBh
0 −→

h→0
B0 in L2(IR3),

• α‖Bh
0 ‖h1(Z3

h
) ≤ ‖∇B0‖H1(IR3) ≤

1
α
‖Bh

0 ‖h1(Z3

h
),

• Hh
0 ∈ l∞(Z3

h), rhHh
0 −→

h→0
H0 in L2(IR3),

• α‖Hh
0 ‖h1(Z3

h
) ≤ ‖∇H0‖H1(IR3) ≤

1
α
‖Hh

0 ‖h1(Z3

h
),

where α does not depend on h.
We remark that Bh

0 and Eh
0 are bounded in l∞(Z3

h) but not uniformly in h.
Now, for h fixed, we solve the system

du

dt

h

= uh ∧ (∆̃uh + Bh) − uh ∧ (uh ∧ (∆̃uh + Bh)) (4.1)

dB

dt

h

= −c̃url Eh (4.2)

dE

dt

h

= c̃url Bh − c̃url uh (4.3)

uh(t = 0) = uh
0 , Bh(t = 0) = Bh

0 , Eh(t = 0) = Eh
0 (4.4)

Using Cauchy-Lipschitz theorem, there exists a local solution of (4.1)-(4.4).
Multiplying (4.1) by u we prove that |uh| = 1 hence, we can write (4.1) on the form

du

dt

h

= uh ∧ (∆̃uh + Bh) + ∆̃uh +
1

2
(|D+uh|2 + |D−uh|2)uh − uh ∧ (uh ∧ Bh) (4.5)

Furthermore, we can eliminate E in (4.2)-(4.3) to obtain

d2Bh

dt2
− ∆̃Bh = c̃url c̃url uh (4.6)

as d̃iv Bh = 0.
In order to simplify the notations we will omit the exponent h in the computations of the

following section.
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2. Estimates.

First Estimate. We multiply (4.5) by ∆̃u and after summation on Z3, we get

−
d

dt
‖D+u‖2

l2 = ‖∆̃u‖2
l2 +

∫

Z3

((u ∧ B) − u ∧ (u ∧ B)) · ∆̃u +
1

2

∫

Z3

(
|D+u|2 + |D−u|2

)
u · ∆̃u.

Hence
d

dt
‖D+u‖2

l2 + ‖∆̃u‖2
l2 ≤ C

(
‖B‖l2 ‖∆̃u‖l2 + ‖D+u‖l2 ‖∆̃u‖2

l2

)
(4.7)

Second Estimate. We multiply (4.5) by ∆̃2u and we obtain

1

2

d

dt
‖∆̃u‖2

l2 + ‖D+∆̃u‖2
l2 =

∫

Z3

u ∧ ∆̃u · ∆̃2u

+
1

2

∫

Z3

(
|D+u|2 + |D−u|2

)
u · ∆̃2u

−

∫

Z3

∑

i

D+
i (u ∧ B) · D+

i ∆̃u +

∫

Z3

∑

i

D+
i (u ∧ (u ∧ B)) · D+

i ∆̃u.

Now
∫

Z3

∑

i

D+
i (u ∧ B) · D+

i ∆̃u =
∑

i

∫

Z3

(
D+

i u ∧ B + τ+
i u ∧ D+

i B

)
· D+

i ∆̃u,

thus ∣∣∣∣∣

∫

Z3

∑

i

D+
i (u ∧ B) · D+

i ∆̃u

∣∣∣∣∣ ≤ K‖D+∆̃u‖l2

(
‖D+u‖l4‖B‖l4 + ‖D+B‖l2

)
.

In the same way,
∣∣∣∣∣

∫

Z3

∑

i

D+
i (u ∧ (u ∧ B)) · D+

i ∆̃u

∣∣∣∣∣ ≤ K‖D+∆̃u‖l2

(
‖D+u‖l4‖B‖l4 + ‖D+B‖l2

)
.

We treat the first two terms as in part 3 and we get

1

2

d

dt
‖∆̃u‖2

l2 + ‖D+∆̃u‖2
l2 ≤ K‖D+∆̃u‖l2

(
‖D+u‖l4‖B‖l4 + ‖D+B‖l2

)

+K

(
‖D+∆̃u‖

3

2

l2
‖∆̃u‖

3

2

l2
+ ‖D+∆̃u‖l2 ‖∆̃u‖3

l2

) (4.8)

Now, by interpolation and discrete Sobolev embeddings, and absorbing ‖D+∆̃u‖l2 in the
right hand-side of (4.8), we obtain

d

dt
‖∆̃u‖2

l2 + ‖D+∆̃u‖2
l2 ≤ K

(
‖D+u‖l2‖∆̃u‖l2‖B‖l2‖D

+B‖l2

+‖D+B‖2
l2

+ ‖∆̃u‖6
l2

) (4.9)

Third estimate. We multiply (4.2) by B and (4.3) by E and we obtain, as ‖c̃url u‖l2 ≤
C‖D+u‖l2 ,

d

dt

(
‖B‖2

l2 + ‖E‖2
l2

)
≤ K‖D+u‖l2 ‖E‖l2 (4.10)
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Fourth estimate. We multiply (4.6) by
dB

dt
and we get, since ‖c̃url c̃url u‖l2 ≤ K‖∆̃u‖l2 ,

d

dt

(
‖
dB

dt
‖2

l2 + ‖D+B‖2
l2

)
≤ K‖∆̃u‖l2 ‖

dB

dt
‖l2 (4.11)

Combining (4.7), (4.9), (4.10) and (4.11), if we denote

E(t) =

(
‖D+u‖2

l2 + ‖∆̃u‖2
l2 + ‖E‖2

l2 + ‖B‖2
l2 + ‖

dB

dt
‖2

l2 + ‖D+B‖2
l2

)
(t),

we obtain
dE

dt
+ ‖∆̃u‖2

h1(t) ≤ K
(
1 + E3

)
.

Therefore, there exist T and K independent of h such that

‖D+u‖L∞(0,T ;h1) ≤ K, ‖∆̃u‖L2(0,T ;h1) ≤ K

‖
du

dt
‖L∞(0,T ;l2) ≤ K

‖B‖L∞(0,T ;h1) ≤ K, ‖E‖L∞(0,T ;h1) ≤ K

(4.12)

We note that we can estimate ‖D+E‖l2 since

‖D+E‖l2 = ‖d̃iv E‖2
l2 + ‖c̃url E‖2

l2

= ‖d̃iv E0‖
2
l2 + ‖

dB

dt
‖2

l2 .

3. Limit when h goes to zero and uniqueness.

As in Part 3, we extend the discrete solution (uh, Eh, Bh) to the whole space and with the same
arguments, we can take the limit when h goes to zero, using (4.12).

The limit (u,E,B) satisfies the properties (i), (ii), and (iii) anounced in theorem 3.

Now let us prove the uniqueness of the regular solution for (1.3)-(1.6).
Let us consider (ũ, Ẽ, B̃) another regular solution for (1.3)-(1.6). We set

ū = u − ũ, Ē = E − Ẽ, B̄ = B − B̃.

We have
∂B̄

∂t
= −curl Ē (4.13)

∂Ē

∂t
= curl B̄ − curl ū (4.14)

∂ū

∂t
= ∆ū + ū ∧ ∆u + ũ ∧ ∆ū + ū ∧ B − ũ ∧ B̄

+|∇u|2ū −∇ū · (∇u + ∇ũ)ũ

−ū ∧ (u ∧ B) − ũ ∧ (ū ∧ B + ũ ∧ B̄).

(4.15)
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We multiply (4.15) by ū and we obtain

1

2

d

dt
‖ū‖2

L2 + ‖∇ū‖2
L2 =

∫
ũ ∧ ∆ū · ū −

∫
ũ ∧ B̄ · ū

+

∫
|∇u|2|ū|2 −

∫
∇ū · (∇u + ∇ũ)(ũ · ū)

−

∫
ũ ∧ (ū ∧ B) · ū −

∫
ũ ∧ (ũ ∧ B̄) · ū.

Hence, using that ‖ū‖2
L4 ≤ C‖ū‖L2‖∇ū‖L2 , and absorbing the term ‖∇ū‖L2 , we obtain that

d

dt
‖ū‖2

L2 + ‖∇ū‖2
L2 ≤ K‖ū‖2

L2

(
‖∇ũ‖2

L∞ + ‖∇u‖2
L∞ + ‖B‖2

L2 + 1
)

+ ‖B̄‖2
L2 (4.16)

Furthermore, multiplying (4.13) by B̄ and (4.14) by Ē, we obtain

d

dt

(
‖Ē‖2

L2 + ‖B̄‖2
L2

)
≤ 2‖∇ū‖L2‖Ē‖L2 (4.17)

We set

E(t) =

(
‖Ē‖2

L2 + ‖B̄‖2
L2 + ‖ū‖2

L2

)
(t)

and

f(t) =

(
1 + ‖B‖2

L2 + ‖∇u‖2
L∞ + ‖∇ũ‖2

L∞

)
(t).

Combining (4.16) and (4.17) and absorbing ‖∇ū‖L2 , we obtain

d

dt
E(t) ≤ Kf(t)E(t).

We remark that f(t) ∈ L1(0, T ), and with Gronwall Lemma, we conclude that E = 0.
Therefore, Theorem 3 is proved.
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