Regular solutions for Landau-Lifschitz equation in R^{3}

Gilles Carbou, Pierre Fabrie

To cite this version:

Gilles Carbou, Pierre Fabrie. Regular solutions for Landau-Lifschitz equation in R^{3}. Communications in Applied Analysis, 2001, 5 (1), pp.17-30. hal-00296709

HAL Id: hal-00296709
https://hal.science/hal-00296709
Submitted on 28 May 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Regular Solutions for Landau-Lifschitz Equation in \mathbb{R}^{3}

Gilles Carbou and Pierre Fabrie
Mathématiques Appliquées de Bordeaux, Université Bordeaux 1, 351 cours de la libération, 33405 Talence cedex, France.

Abstract

In this paper we prove local existence, global existence with small data and uniqueness of regular solutions for Landau-Lifschitz equations. Furthermore we establish local existence and uniqueness for a system coupling Maxwell and Landau-Lifschitz equations arising from Micromagnetism theory.

AMS Subject Classification. 35K15, 35Q60

1 Introduction

In Micromagnetism theory (see [2]), the behaviour of a ferromagnet is represented by an unitary vector field u called magnetic moment. The variations of u are gouverned by LandauLifshitz equation

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=u \wedge \Delta u-u \wedge(u \wedge \Delta u) \tag{1.1}\\
u(0, \cdot)=u_{0}(\cdot)
\end{array}\right.
$$

where we assume that $\left|u_{0}\right|=1$.
Existence and non uniqueness for weak solutions of (1.1) are proved by F. Alouges and A. Soyeur in [1]. Furthermore, P.L. Sulem, C. Sulem and C. Bardos establish in [6] local existence of regular solutions for the equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=u \wedge \Delta u \tag{1.2}
\end{equation*}
$$

Concerning equation (1.1) we prove the following theorems.
Theorem 1. Assume that

$$
\left|u_{0}\right|=1, \quad \nabla u_{0} \in \mathbb{H}^{1}\left(\mathbb{R}^{3}\right) .
$$

Then there exists $T>0$, there exists an unique u such that
(i) $\quad u \in \mathbb{L}^{\infty}\left((0, T) \times \mathbb{R}^{3}\right), \quad|u|=1$,
(ii) $\quad \nabla u \in L^{\infty}\left((0, T) ; \mathbb{H}^{1}\left(\mathbb{R}^{3}\right)\right) \cap L^{2}\left((0, T) ; \mathbb{H}^{2}\left(\mathbb{R}^{3}\right)\right)$,
(iii) u satisfies (1.1).

Theorem 2. There exists $\delta>0$ such that if $\left|u_{0}\right|=1$ and if $\nabla u_{0} \in \mathbb{H}^{1}\left(\mathbb{R}^{3}\right)$ with $\left\|\nabla u_{0}\right\|_{H^{1}\left(\mathbb{R}^{3}\right)}<$ δ, then the solution u given by Theorem 1 exists for $T=+\infty$.

The term $-u \wedge(u \wedge \Delta u)$ in (1.1) is in fact a dissipation term. For this reason, global existence with small data is valid for (1.1) and not for (1.2) (see [6]).

On the other hand, the propagation of electromagnetic waves in the ferromagnet is gouverned by a system coupling Landau-Lifschitz and Maxwell equations.

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=u \wedge(\Delta u+H)-u \wedge(u \wedge(\Delta u+H)) \\
& \frac{\partial B}{\partial t}+\operatorname{curl} E=0 \\
& \frac{\partial E}{\partial t}-\operatorname{curl} H=0 \\
& B=H+u \\
& u(0, \cdot)=u_{0}(\cdot), \quad B(0, \cdot)=B_{0}(\cdot), \quad E(0, \cdot)=E_{0}(\cdot)
\end{aligned}
$$

where we assume that $\left|u_{0}\right|=1$ and div $B_{0}=0$.
Instead of working with (u, H, E), we will write the system with the unknowns (u, B, E).

$$
\begin{gather*}
\frac{\partial u}{\partial t}=u \wedge(\Delta u+B)-u \wedge(u \wedge(\Delta u+B)) \tag{1.3}\\
\frac{\partial B}{\partial t}=-\operatorname{curl} E \tag{1.4}\\
\frac{\partial E}{\partial t}=\operatorname{curl} B-\operatorname{curl} u \tag{1.5}\\
u(0, \cdot)=u_{0}(\cdot), \quad B(0, \cdot)=B_{0}(\cdot), \quad E(0, \cdot)=E_{0}(\cdot) \tag{1.6}
\end{gather*}
$$

and we still assume that

$$
\begin{equation*}
\left|u_{0}\right|=1 \text { and } \operatorname{div} B_{0}=0 \text { in } \mathbb{R}^{3} . \tag{1.7}
\end{equation*}
$$

We will establish the following theorem.
Theorem 3. Let $\left(u_{0}, E_{0}, B_{0}\right)$ such that

$$
\begin{gathered}
E_{0} \in \mathbb{H}^{1}\left(\mathbb{R}^{3}\right), \quad B_{0} \in \mathbb{H}^{1}\left(\mathbb{R}^{3}\right), \quad \operatorname{div} B_{0}=0 \\
\left|u_{0}\right|=1, \quad \nabla u_{0} \in \mathbb{H}^{1}\left(\mathbb{R}^{3}\right) .
\end{gathered}
$$

Then there exists $T>0$, there exists an unique (u, E, B) such that
(i) $\quad|u|=1, \quad \nabla u \in L^{\infty}\left((0, T) ; \mathbb{H}^{1}\left(\mathbb{R}^{3}\right)\right) \cap L^{2}\left((0, T) ; \mathbb{H}^{2}\left(\mathbb{R}^{3}\right)\right)$,
(ii) $\quad E$ and B belong to $L^{\infty}\left((0, T) ; \mathbb{H}^{1}\left(\mathbb{R}^{3}\right)\right)$,
(iii) $\quad(u, E, B)$ satisfies (1.3)-(1.6).

The existence of weak solutions for the system (1.3)-(1.6) is proved in [7] and in [3] in the case of a bounded domain.

In [4], J.L. Joly, G. Métivier and J. Rauch prove the existence of solutions for a system similar to (1.3)-(1.6) but without Δu in (1.3).

The asymptotic behaviour of weak solutions of (1.3)-(1.6) in a bounded domain is studied in [3].

The proof of Theorems 1, 2 and 3 is based on a semi-discretization used in [1] and [6].
In Part 2, we describe the discretization process. Part 3 is devoted to the proof of Theorems 1 and 2 . Theorem 3 is proved in the last part.

We fix $h>0$ and we set $x_{j}^{h}=j h$ for $j \in \mathbb{Z}$.
For $\alpha=(i, j, k) \in \mathbb{Z}^{3}$, we note $X_{\alpha}^{h}=\left(x_{i}^{h}, x_{j}^{h}, x_{k}^{h}\right)$ and

$$
C_{\alpha}^{h}=\left\{(x, y, z), x_{i}^{h} \leq x<x_{i}^{h}+h, x_{j}^{h} \leq y<x_{j}^{h}+h, x_{k}^{h} \leq z<x_{k}^{h}+h\right\} .
$$

We denote

$$
Z_{h}^{3}=\left\{X_{\alpha}^{h} \in \mathbb{R}^{3}, \alpha \in \mathbb{Z}^{3}\right\} .
$$

In the sequel of this part, in order to simplify the notations, we will omit the exponent h.
We consider the following operators defined for $u: Z^{3} \rightarrow \mathbb{R}^{3}$:

$$
\begin{gathered}
\tau_{1}^{+} u\left(x_{i}, x_{j}, x_{k}\right)=u\left(x_{i+1}, x_{j}, x_{k}\right) \\
D_{1}^{+} u=\frac{1}{h}\left(\tau_{1}^{+} u-u\right) \\
\tau_{1}^{-}=\left(\tau_{1}^{+}\right)^{-1}, \quad D_{1}^{-}=\tau_{1}^{-} \circ D_{1}^{+}
\end{gathered}
$$

In the same way, we denote $\tau_{2}^{+}, D_{2}^{+}, \tau_{2}^{-}, D_{2}^{-}$the same operations concerning the second variable, and $\tau_{3}^{+}, D_{3}^{+}, \tau_{3}^{-}, D_{3}^{-}$for the third variable.

We set

$$
\begin{gathered}
\tilde{\Delta}=\sum_{i=1}^{3} D_{i}^{-} D_{i}^{+} \\
\widetilde{\operatorname{div}} u=\sum_{i=1}^{3} D_{i}^{+} u^{i} \\
\widetilde{\operatorname{curl}} u=\left(D_{2}^{+} u^{3}-D_{3}^{+} u^{2}, D_{3}^{+} u^{1}-D_{1}^{+} u^{3}, D_{1}^{+} u^{2}-D_{2}^{+} u^{1}\right) .
\end{gathered}
$$

We denote

$$
\int_{Z^{3}} u=\sum_{\alpha \in \mathbb{Z}^{3}} h^{3} u\left(X_{\alpha}\right) .
$$

and we use the following classical notations

$$
\begin{gathered}
\|u\|_{l^{p}}=\left(\int_{Z^{3}}|u|^{p}\right)^{\frac{1}{p}},\left\|D^{+} u\right\|_{l^{p}}=\left(\sum_{i=1}^{3}\left\|D_{i}^{+} u\right\|_{l^{p}}^{p}\right)^{\frac{1}{p}}, \\
\|u\|_{w^{1, p}}=\left(\|u\|_{l^{p}}^{p}+\left\|D^{+} u\right\|_{l^{p}}^{p}\right)^{\frac{1}{p}},\|u\|_{h^{1}}=\|u\|_{w^{1,2}}, \\
\|u\|_{h^{2}}=\left(\|u\|_{h^{1}}^{2}+\sum_{i j}\left\|D_{i}^{+} D_{j}^{+} u\right\|_{l^{2}}^{2}\right)^{\frac{1}{2}},\|u\|_{l^{\infty}}=\sup _{\alpha \in \mathbb{Z}^{3}}\left|u\left(X_{\alpha}\right)\right| .
\end{gathered}
$$

We remark that

$$
\int_{Z^{3}} D_{i}^{+} u \cdot v=-\int_{Z^{3}} u \cdot D_{i}^{-} v
$$

furthermore,

$$
D_{i}^{+}(u v)=D_{i}^{+} u \tau_{i}^{+} v+u D_{i}^{+} v .
$$

We recall now the following discrete Sobolev inequalities.
Lemma 1. There exists a constant C independant of h such that for all $u: Z^{3} \rightarrow \mathbb{R}^{3}$,

$$
\begin{equation*}
\text { if }\|u\|_{h^{1}}<+\infty \text {, then }\|u\|_{l^{6}\left(Z^{3}\right)} \leq C\left\|D^{+} u\right\|_{l^{2}\left(Z^{3}\right)} \tag{2.1}
\end{equation*}
$$

Discrete versions of Sobolev inequalities are established in [5] using interpolation procedures.
The same interpolation process is used in this paper (see 3.3 and 4.3) and is presented in Section 3.3.

3 Proof of theorems 1 and 2

1. Discretization

For $h>0$, let u_{0}^{h} defined on the mesh Z_{h}^{3} such that

- $\left|u_{0}^{h}\right|=1$ on Z_{h}^{3},
- $r_{h} u_{0}^{h}$ tends to u_{0} in $L_{l o c}^{2}\left(\mathbb{R}^{3}\right)$
- $\alpha\left\|D^{+} u_{0}^{h}\right\|_{h^{1}\left(Z_{h}^{3}\right)} \leq\left\|\nabla u_{0}\right\|_{H^{1}\left(\mathbb{R}^{3}\right)} \leq \frac{1}{\alpha}\left\|D^{+} u_{0}^{h}\right\|_{h^{1}\left(Z_{h}^{3}\right)}$
where r_{h} is the interpolating operator defined in [5] and in Section 3.3 of this paper, and where α does not depend on h.

Now we fix $h>0$ and we solve

$$
\left\{\begin{array}{l}
\frac{d u^{h}}{d t}=u^{h} \wedge \tilde{\Delta} u^{h}-u^{h} \wedge\left(u^{h} \wedge \tilde{\Delta} u^{h}\right) \tag{3.1}\\
u^{h}(t=0)=u_{0}^{h}
\end{array}\right.
$$

The map $u \mapsto u \wedge \tilde{\Delta} u-u \wedge(u \wedge \tilde{\Delta} u)$ is locally Lipschitz in $l^{\infty}\left(Z_{h}^{3}\right)$, so there exists an unique solution of (3.1) with Cauchy-Lipschitz Theorem.

In order to simplify the notation, we will omit the exponent h in the computations of the following subsection.

2. Estimates

We multiply (3.1) by u and we obtain that

$$
\frac{d}{d t}|u|^{2}=0
$$

hence $|u|=1$ on Z^{3}, as it is the case for u_{0}.
With the above remark we can modify the form of the equation. We first note that

$$
u \wedge(u \wedge \tilde{\Delta} u)=(u \cdot \tilde{\Delta} u) u-\tilde{\Delta} u
$$

Furthermore, writting that $\tilde{\Delta}\left|u^{2}\right|=0$ as $|u|=1$, we obtain that

$$
2 u \cdot \tilde{\Delta} u+\left|D^{+} u\right|^{2}+\left|D^{-} u\right|^{2}=0
$$

Hence, Equation (3.1) takes the form

$$
\begin{equation*}
\frac{d u}{d t}=u \wedge \tilde{\Delta} u+\tilde{\Delta} u+\frac{1}{2}\left(\left|D^{+} u\right|^{2}+\left|D^{-} u\right|^{2}\right) u \tag{3.2}
\end{equation*}
$$

First estimate. We multiply (3.2) by $\tilde{\Delta} u$ and after summation on Z^{3}, we get

$$
-\frac{1}{2} \frac{d}{d t}\left\|D^{+} u\right\|_{l^{2}}^{2}=\|\tilde{\Delta} u\|_{l^{2}}^{2}+\frac{1}{2} \int_{Z^{3}}\left(\left|D^{-} u\right|^{2}+\left|D^{+} u\right|^{2}\right) u \cdot \tilde{\Delta} u
$$

so we obtain

$$
\begin{equation*}
\frac{d}{d t}\left\|D^{+} u\right\|_{l^{2}}^{2}+2\|\tilde{\Delta} u\|_{l^{2}}^{2} \leq 2\left\|D^{+} u\right\|_{l^{4}}^{2}\|\tilde{\Delta} u\|_{l^{2}} \tag{3.3}
\end{equation*}
$$

Second estimate. We multiply now (3.2) by $\tilde{\Delta}^{2} u$ and after summation on Z^{3} we obtain

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\|\tilde{\Delta} u\|_{l^{2}}^{2}=\int_{Z^{3}} u \wedge \tilde{\Delta} u \cdot \tilde{\Delta}^{2} u-\left\|D^{+} \tilde{\Delta} u\right\|_{l^{2}}^{2} \\
& \quad+\frac{1}{2} \int_{Z^{3}}\left(\left|D^{+} u\right|^{2}+\left|D^{-} u\right|^{2}\right) u \cdot \tilde{\Delta}^{2} u
\end{aligned}
$$

We remark now that

$$
\begin{gather*}
\left|\int_{Z^{3}} u \wedge \tilde{\Delta} u \cdot \tilde{\Delta}^{2} u\right|=\left|\sum_{i} \int_{Z^{3}} D_{i}^{+}(u \wedge \tilde{\Delta} u) \cdot D_{i}^{+} \tilde{\Delta} u\right| \\
=\left|\sum_{i} \int_{Z^{3}} D_{i}^{+} u \wedge \tilde{\Delta} u \cdot D_{i}^{+} \tilde{\Delta} u\right| \\
\leq\left\|D^{+} \tilde{\Delta} u\right\|_{l^{2}}\|\tilde{\Delta} u\|_{l^{3}}\left\|D^{+} u\right\|_{l^{6}} \tag{3.4}
\end{gather*}
$$

Furthermore,

$$
\begin{gathered}
\left|\frac{1}{2} \int_{Z^{3}}\left(\left|D^{-} u\right|^{2}+\left|D^{+} u\right|^{2}\right) u \cdot \tilde{\Delta}^{2} u\right|=\left|\frac{1}{2} \sum_{i} \int_{Z^{3}} D_{i}^{+}\left(\left(\left|D^{-} u\right|^{2}+\left|D^{+} u\right|^{2}\right) u\right) \cdot D_{i}^{+} \tilde{\Delta} u\right| \\
\leq \frac{1}{2}\left\|D^{+}\left(\left(\left|D^{-} u\right|^{2}+\left|D^{+} u\right|^{2}\right) u\right)\right\|_{l^{2}}\left\|D^{+} \tilde{\Delta} u\right\|_{l^{2}}
\end{gathered}
$$

Now we compute $D_{i}^{+}\left(\left|D^{+} u\right|^{2}\right)$ and we obtain that

$$
\left\|D^{+}\left(\left(\left|D^{-} u\right|^{2}+\left|D^{+} u\right|^{2}\right) u\right)\right\|_{l^{2}} \leq C\left(\sum_{i j}\left\|D_{i}^{+} D_{j}^{+} u \cdot D_{j}^{+} u\right\|_{l^{2}}+\left\|\left|D^{+} u\right|^{3}\right\|_{l^{2}}\right)
$$

as $|u|=1$.
Thus there exists a constant K independant of h such that

$$
\begin{equation*}
\frac{d}{d t}\|\tilde{\Delta} u\|_{l^{2}}^{2}+2\left\|D^{+} \tilde{\Delta} u\right\|_{l^{2}}^{2} \leq+K\left(\|\tilde{\Delta} u\|_{l^{3}}\left\|D^{+} u\right\|_{l^{6}}+\left\|D^{+} u\right\|_{l^{6}}^{3}\right)\left\|D^{+} \tilde{\Delta} u\right\|_{l^{2}} \tag{3.5}
\end{equation*}
$$

With Lemma 2.1 and by interpolation there exists a universal constant C such that

$$
\begin{align*}
& \left\|D^{+} u\right\|_{l^{6}} \leq C\|\tilde{\Delta} u\|_{l^{2}} \\
& \|\tilde{\Delta} u\|_{l^{3}} \leq C\|\tilde{\Delta} u\|_{l^{2}}^{\frac{1}{2}}\left\|D^{+} \tilde{\Delta} u\right\|_{l^{2}}^{\frac{1}{2}} \tag{3.6}
\end{align*}
$$

From (3.5) and (3.6) we deduce

$$
\begin{equation*}
\frac{d}{d t}\|\tilde{\Delta} u\|_{l^{2}}^{2}+2\left\|D^{+} \tilde{\Delta} u\right\|_{l^{2}}^{2} \leq K\left(\left\|D^{+} \tilde{\Delta} u\right\|_{l^{2}}^{\frac{3}{2}}\|\tilde{\Delta} u\|_{l^{2}}^{\frac{3}{2}}+\left\|D^{+} \tilde{\Delta} u\right\|_{l^{2}}\|\tilde{\Delta} u\|_{l^{2}}^{3}\right) \tag{3.7}
\end{equation*}
$$

Estimate for Theorem 1.

We absorb $\left\|D^{+} \tilde{\Delta} u\right\|_{l^{2}}$ in (3.7) and we obtain

$$
\begin{equation*}
\frac{d}{d t}\|\tilde{\Delta} u\|_{l^{2}}^{2}+\left\|D^{+} \tilde{\Delta} u\right\|_{l^{2}}^{2} \leq K\|\tilde{\Delta} u\|_{l^{2}}^{6} \tag{3.8}
\end{equation*}
$$

On the other hand, from (3.3), by interpolation in \mathbb{L}^{4}, we derive

$$
\begin{equation*}
\frac{d}{d t}\left\|D^{+} u\right\|_{l^{2}}^{2}+\|\tilde{\Delta} u\|_{l^{2}}^{2} \leq K\left\|D^{+} u\right\|_{l^{2}}\left\|D^{+} u\right\|_{l^{6}}^{3} \leq K\left\|D^{+} u\right\|_{l^{2}}\|\tilde{\Delta} u\|_{l^{2}}^{3} \tag{3.9}
\end{equation*}
$$

Combining (3.8) and (3.9) we obtain

$$
\begin{equation*}
\frac{d}{d t}\left\|D^{+} u\right\|_{h^{1}}^{2}+\|\tilde{\Delta} u\|_{h^{1}}^{2} \leq K\left(1+\left\|D^{+} u\right\|_{h^{1}}^{6}\right) \tag{3.10}
\end{equation*}
$$

We set now $g(t)=\left\|D^{+} u\right\|_{h^{1}}^{2}$ and we have

$$
\frac{d g}{d t} \leq K\left(1+g^{3}\right)
$$

hence there exist $T>0$ and K independant of h such that

$$
\left\{\begin{array}{l}
\left\|D^{+} u\right\|_{L^{\infty}\left(0, T ; h^{1}\right)} \leq K \tag{3.11}\\
\|\tilde{\Delta} u\|_{L^{2}\left(0, T ; h^{1}\right)} \leq K \\
\left\|\frac{d u}{d t}\right\|_{L^{\infty}\left(0, T ; l^{2}\right)} \leq K
\end{array}\right.
$$

The last estimate is obtained using (3.1) and the previous estimate concerning $D^{+} u$.

Estimate for Theorem 2.

We absorb $\left\|D^{+} \tilde{\Delta} u\right\|_{l^{2}}$ only in the first term of the right hand-side of (3.7) writting

$$
\left\|D^{+} \tilde{\Delta} u\right\|_{l^{2}}^{\frac{3}{2}}\|\tilde{\Delta} u\|_{l^{2}}^{\frac{3}{2}} \leq \frac{1}{2}\left(\left\|D^{+} \tilde{\Delta} u\right\|_{l^{2}}^{2}+\left\|D^{+} \tilde{\Delta} u\right\|_{l^{2}}\|\tilde{\Delta} u\|_{l^{2}}^{3}\right),
$$

and we obtain

$$
\begin{equation*}
\frac{d}{d t}\|\tilde{\Delta} u\|_{l^{2}}^{2}+\left\|D^{+} \tilde{\Delta} u\right\|_{l^{2}}^{2} \leq K\|\tilde{\Delta} u\|_{l^{2}}^{3}\left\|D^{+} \tilde{\Delta} u\right\|_{l^{2}} \tag{3.12}
\end{equation*}
$$

Combining (3.9) and (3.12) we derive

$$
\frac{d}{d t}\left\|D^{+} u\right\|_{h^{1}}^{2}+\|\tilde{\Delta} u\|_{h^{1}}^{2} \leq K\left(\|\tilde{\Delta} u\|_{l^{2}}^{3}\left\|D^{+} \tilde{\Delta} u\right\|_{l^{2}}+\left\|D^{+} u\right\|_{l^{2}}^{2}\|\tilde{\Delta} u\|_{l^{2}}^{2}\right)
$$

Hence there exists a constant K independant of h such that

$$
\frac{d}{d t}\left\|D^{+} u\right\|_{h^{1}}^{2}+\|\tilde{\Delta} u\|_{h^{1}}^{2} \leq K\left\|D^{+} u\right\|_{h^{1}}^{2}\|\tilde{\Delta} u\|_{h^{1}}^{2}
$$

thus

$$
\begin{equation*}
\frac{d}{d t}\left\|D^{+} u\right\|_{h^{1}}^{2}+\|\tilde{\Delta} u\|_{h^{1}}^{2}\left(1-K\left\|D^{+} u\right\|_{h^{1}}^{2}\right) \leq 0 \tag{3.13}
\end{equation*}
$$

We set now $\delta=\frac{1}{\sqrt{K}}$ and we suppose that $\left\|D^{+} u_{0}\right\|_{h^{1}}<\delta$.
We claim that for all $t \geq 0,\left\|D^{+} u(t)\right\|_{h^{1}}<\delta$.
If it is not the case, then let t_{1} be the first $t>0$ such that $\left\|D^{+} u(t)\right\|_{h^{1}} \geq \delta$.
For all $t<t_{1}$,

$$
1-K\left\|D^{+} u\right\|_{h^{1}}^{2} \geq 0
$$

hence, for all $t<t_{1}$,

$$
\frac{d}{d t}\left\|D^{+} u\right\|_{h^{1}}^{2} \leq 0, \text { so }\left\|D^{+} u\right\|_{h^{1}}^{2}\left(t_{1}\right) \leq\left\|D^{+} u(0)\right\|_{h^{1}}^{2}<\delta
$$

which leads to a contradiction.
Therefore, if $\left\|D^{+} u_{0}\right\|<\delta$,

$$
\begin{equation*}
\left\|D^{+} u\right\|_{L^{\infty}\left(0,+\infty ; h^{1}\right)}<\delta \tag{3.14}
\end{equation*}
$$

and from (3.13) we deduce that there exists K such that

$$
\begin{equation*}
\|\tilde{\Delta} u\|_{L^{2}\left(0,+\infty ; h^{1}\right)} \leq K \tag{3.15}
\end{equation*}
$$

3. Limit when h goes to zero

Let us prove Theorem 1.
In the preceding subsection, for all $h>0$ we have constructed a solution u^{h} of (3.1) defined on the mesh Z_{h}^{3} which satisfies (3.1) and (3.11).

We extend u^{h} to the whole space using an interpolation process described in [5], p. 224.
We introduce the following interpolating operators :
For $X=\left(x_{1}, x_{2}, x_{3}\right) \in C_{\alpha}^{h}$, if we note $X_{\alpha}^{h}=\left(x_{1}^{h}, x_{2}^{h}, x_{3}^{h}\right)$, we set

- $r_{h} u^{h}(X)=u^{h}\left(X_{\alpha}^{h}\right)$,
- $p_{h} u^{h}(X)=u^{h}\left(X_{\alpha}^{h}\right)+\sum_{i=1}^{3} D_{i}^{+} u^{h}\left(X_{\alpha}^{h}\right)\left(x_{i}-x_{i}^{h}\right)$

$$
+\sum_{1 \leq i<j \leq 3} D_{i}^{+} D_{j}^{+}\left(X_{\alpha}^{h}\right)\left(x_{i}-x_{i}^{h}\right)\left(x_{j}-x_{j}^{h}\right)+D_{1}^{+} D_{2}^{+} D_{3}^{+} u^{h}\left(X_{\alpha}^{h}\right) \prod_{i=1}^{3}\left(x_{i}-x_{i}^{h}\right),
$$

- $q_{h}^{k} u^{h}(X)=u^{h}\left(X_{\alpha}^{h}\right)+\sum_{i \neq k} D_{i}^{+} u^{h}\left(X_{\alpha}^{h}\right)\left(x_{i}-x_{i}^{h}\right)$

$$
+\sum_{\substack{1 \leq i<j \leq 3 \\ i, j \neq k}} D_{i}^{+} D_{j}^{+}\left(X_{\alpha}^{h}\right)\left(x_{i}-x_{i}^{h}\right)\left(x_{j}-x_{j}^{h}\right) .
$$

We recall that

$$
\frac{\partial}{\partial x_{i}}\left(p_{h} u^{h}\right)=q_{h}^{i}\left(D_{i}^{+} u^{h}\right) .
$$

Furthermore we have the following proposition proved in [5].

Proposition 1. If one of the interpolates $p_{h} u^{h}, q_{h} u^{h}$, or $r_{h} u^{h}$ converges strongly (resp. weakly) in L^{2} when h goes to zero, then the two others also converge to the same limit in L^{2} strongly (resp. weakly).

The estimate (3.11) gives that there exists $K>0$ such that for all $h>0$,

$$
\begin{gathered}
\left\|r_{h}\left(D_{i}^{+} D_{j}^{+} D_{k}^{+} u^{h}\right)\right\|_{L^{2}\left((0, T) \times \mathbb{R}^{3}\right)} \leq K \\
\left\|r_{h}\left(D_{i}^{+} D_{j}^{+} u^{h}\right)\right\|_{L^{2}\left((0, T) \times \mathbb{R}^{3}\right)} \leq K \\
\left\|r_{h}\left(D_{i}^{+} u^{h}\right)\right\|_{L^{2}\left((0, T) \times \mathbb{R}^{3}\right)} \leq K
\end{gathered}
$$

Furthermore $r_{h} u^{h}$ is bounded in $L_{l o c}^{2}$ independentely of $h>0$.
Thus, up to subsequences, we deduce that when h goes to zero,

$$
\begin{aligned}
& r_{h} u^{h} \rightharpoonup u \text { in } L_{l o c}^{2} \text { weakly, } \\
& r_{h}\left(D_{i}^{+} u^{h}\right) \rightharpoonup v_{i} \text { in } L^{2} \text { weakly } \\
& r_{h}\left(D_{i}^{+} D_{j}^{+} u^{h}\right) \rightharpoonup w_{i j} \text { in } L^{2} \text { weakly } \\
& r_{h}\left(D_{i}^{+} D_{j}^{+} D_{k}^{+} u^{h}\right) \rightharpoonup \omega_{i j k} \text { in } L^{2} \text { weakly, } \\
& r_{h}\left(\frac{d u^{h}}{d t}\right) \rightharpoonup f \text { in } L^{2} \text { weakly. }
\end{aligned}
$$

Now with Proposition 1., $q_{h}^{i}\left(D_{i}^{+}\left(D_{j}^{+} D_{k}^{+} u^{h}\right)\right)$ and $r_{h}\left(D_{i}^{+} D_{j}^{+} D_{k}^{+} u^{h}\right)$ have the same limit $\omega_{i j k}$, and since $q_{h}^{i}\left(D_{i}^{+}\left(D_{j}^{+} D_{k}^{+} u^{h}\right)\right)=\frac{\partial}{\partial x_{i}}\left(p_{h}\left(D_{j}^{+} D^{+} k u^{h}\right)\right)$, as $p_{h}\left(D_{j}^{+} D^{+} k u^{h}\right)$ tends to $w_{j k}$ in L^{2} weak, we deduce by uniqueness of the limit in \mathcal{D}^{\prime} that

$$
\omega_{i j k}=\frac{\partial}{\partial x_{i}} w_{j k} .
$$

With the same reasonnement we deduce that

$$
v_{i}=\frac{\partial u}{\partial x_{i}}, \quad w_{i j}=\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}, \quad \omega_{i j k}=\frac{\partial^{3} u}{\partial x_{i} \partial x_{j} \partial x_{k}} .
$$

In addition, we have $f=\frac{\partial u}{\partial t}$ and, since $\frac{\partial}{\partial t} p_{h} u^{h} \rightharpoonup \frac{\partial u}{\partial t}$ and $\frac{\partial}{\partial x_{i}} p_{h} u^{h} \rightharpoonup \frac{\partial u}{\partial x_{i}}$ in L^{2} weakly, since $p_{h} u^{h} \rightharpoonup u$ in $L_{l o c}^{2}$ weakly, we deduce that

$$
p_{h} u^{h} \rightarrow u \text { in } L_{l o c}^{p} \text { strongly for } 2 \leq p<6,
$$

using the compactness of Sobolev embeddings in bounded domains.
In order to prove that u satisfies (1.1), we take $\varphi \in \mathcal{D}\left((0, T) \times \mathbb{R}^{3}\right)$ and we introduce Ω such that φ is zero outside of Ω. We have

$$
\begin{equation*}
\int_{\Omega} r_{h}\left(\frac{d u^{h}}{d t}\right) \cdot \varphi=\int_{\Omega} r_{h} u^{h} \wedge r^{h} \tilde{\Delta} u^{h} \cdot \varphi-\int_{\Omega} r^{h} u^{h} \wedge\left(r^{h} u^{h} \wedge r^{h} \tilde{\Delta} u^{h}\right) \cdot \varphi \tag{3.16}
\end{equation*}
$$

Now,

$$
\begin{aligned}
& r_{h} \frac{d u^{h}}{d t} \rightharpoonup \frac{\partial u}{\partial t} \quad \text { in } L^{2}\left(\mathbb{R}^{3}\right) \text { weakly, } \\
& r_{h} \tilde{\Delta} u^{h} \rightharpoonup \Delta u \text { in } L^{2}\left(\mathbb{R}^{3}\right) \text { weakly, } \\
& r_{h} u^{h} \rightarrow u \quad \text { in } L^{2}(\Omega) \text { strongly (for the first term) } \\
& r_{h} u^{h} \rightarrow u \quad \text { in } L^{4}(\Omega) \text { strongly (for the second term). }
\end{aligned}
$$

Thus we can take the limit in (3.16) and we obtain that u satisfies (1.1) in $\mathcal{D}^{\prime}\left(\mathbb{R}^{3}\right)$.
Furthermore, by lower semicontinuity of the different norms, we obtain from (3.11) that u satisfies

$$
\nabla u \in L^{\infty}\left((0, T) ; \mathbb{H}^{1}\left(\mathbb{R}^{3}\right)\right) \cap L^{2}\left((0, T) ; \mathbb{H}^{2}\left(\mathbb{R}^{3}\right)\right)
$$

Finaly, since $r_{h} u^{h} \rightarrow u$ in $L_{l o c}^{2}$ strongly, by extracting a subsequence, $r_{h} u^{h} \rightarrow u$ a.e., hence $|u|=1$ as it is the case for $r_{h} u^{h}$.

Let us prove now the uniqueness of the solution of (1.1) satisfying (i) and (ii) in Theorem 1.
Let \tilde{u} be another solution, and let $\bar{u}=u-\tilde{u}$.
We have

$$
\begin{equation*}
\frac{\partial \bar{u}}{\partial t}=\Delta \bar{u}+\bar{u} \wedge \Delta u+\tilde{u} \wedge \Delta \bar{u}+|\nabla u|^{2} \bar{u}-\nabla \bar{u} \cdot(\nabla u+\nabla \tilde{u}) \tilde{u} \tag{3.17}
\end{equation*}
$$

We multiply (3.17) by \bar{u} and we obtain

$$
\begin{gathered}
\frac{1}{2} \frac{d}{d t}\|\bar{u}\|_{L^{2}}^{2}+\|\nabla \bar{u}\|_{L^{2}}^{2} \leq\|\nabla \bar{u}\|_{L^{2}}\|\bar{u}\|_{L^{2}}\|\nabla \tilde{u}\|_{L^{\infty}}+\|\bar{u}\|_{L^{2}}^{2}\|\nabla u\|_{L^{\infty}}^{2} \\
+\|\bar{u}\|_{L^{2}}\|\nabla \bar{u}\|_{L^{2}}\left(\|\nabla u\|_{L^{\infty}}+\|\nabla \tilde{u}\|_{L^{\infty}}\right) .
\end{gathered}
$$

We absorb $\|\nabla \bar{u}\|_{L^{2}}$ in the left hand-side of the inequality and we obtain

$$
\frac{d}{d t}\|\bar{u}\|_{L^{2}}^{2}+\|\nabla \bar{u}\|_{L^{2}}^{2} \leq K\|\bar{u}\|_{L^{2}}\left(\|\nabla u\|_{L^{\infty}}+\|\nabla \tilde{u}\|_{L^{\infty}}\right) .
$$

Now since ∇u and $\nabla \tilde{u}$ belong to $L^{1}\left(0, T ; L^{\infty}\right)$ (with Sobolev injections), we can use Gronwall Lemma to conclude that $\bar{u}=0$.

Therefore Theorem 1 is proved.
In the same way we prove Theorem 2, starting from Estimates (3.14) and (3.15).

1. Discretization.

For all $h>0$ we consider $\left(u_{0}^{h}, E_{0}^{h}, B_{0}^{h}\right)$ defined on Z_{h}^{3} such that

- $\left|u_{0}^{h}\right|=1, r_{h} u_{0}^{h} \underset{h \rightarrow 0}{\longrightarrow} u_{0}$ in $L_{l o c}^{2}\left(\mathbb{R}^{3}\right)$,
- $\alpha\left\|D^{+} u_{0}^{h}\right\|_{h^{1}\left(Z_{h}^{3}\right)} \leq\left\|\nabla u_{0}\right\|_{H^{1}\left(\mathbb{R}^{3}\right)} \leq \frac{1}{\alpha}\left\|D^{+} u_{0}^{h}\right\|_{h^{1}\left(Z_{h}^{3}\right)}$,
- $B_{0}^{h} \in l^{\infty}\left(Z_{h}^{3}\right), \quad r_{h} B_{0}^{h} \underset{h \rightarrow 0}{\longrightarrow} B_{0}$ in $L^{2}\left(\mathbb{R}^{3}\right)$,
- $\alpha\left\|B_{0}^{h}\right\|_{h^{1}\left(Z_{h}^{3}\right)} \leq\left\|\nabla B_{0}\right\|_{H^{1}\left(\mathbb{R}^{3}\right)} \leq \frac{1}{\alpha}\left\|B_{0}^{h}\right\|_{h^{1}\left(Z_{h}^{3}\right)}$,
- $H_{0}^{h} \in l^{\infty}\left(Z_{h}^{3}\right), \quad r_{h} H_{0}^{h} \underset{h \rightarrow 0}{\longrightarrow} H_{0}$ in $L^{2}\left(\mathbb{R}^{3}\right)$,
- $\alpha\left\|H_{0}^{h}\right\|_{h^{1}\left(Z_{h}^{3}\right)} \leq\left\|\nabla H_{0}\right\|_{H^{1}\left(\mathbb{R}^{3}\right)} \leq \frac{1}{\alpha}\left\|H_{0}^{h}\right\|_{h^{1}\left(Z_{h}^{3}\right)}$,
where α does not depend on h.
We remark that B_{0}^{h} and E_{0}^{h} are bounded in $l^{\infty}\left(Z_{h}^{3}\right)$ but not uniformly in h.
Now, for h fixed, we solve the system

$$
\begin{gather*}
\frac{d u^{h}}{d t}=u^{h} \wedge\left(\tilde{\Delta} u^{h}+B^{h}\right)-u^{h} \wedge\left(u^{h} \wedge\left(\tilde{\Delta} u^{h}+B^{h}\right)\right) \tag{4.1}\\
\frac{d B^{h}}{d t}=-\widetilde{\operatorname{curl}} E^{h} \tag{4.2}\\
\frac{d E^{h}}{d t}=\widetilde{\operatorname{curl}} B^{h}-\widetilde{\operatorname{curl}} u^{h} \tag{4.3}\\
u^{h}(t=0)=u_{0}^{h}, B^{h}(t=0)=B_{0}^{h}, \quad E^{h}(t=0)=E_{0}^{h} \tag{4.4}
\end{gather*}
$$

Using Cauchy-Lipschitz theorem, there exists a local solution of (4.1)-(4.4).
Multiplying (4.1) by u we prove that $\left|u^{h}\right|=1$ hence, we can write (4.1) on the form

$$
\begin{equation*}
\frac{d u^{h}}{d t}=u^{h} \wedge\left(\tilde{\Delta} u^{h}+B^{h}\right)+\tilde{\Delta} u^{h}+\frac{1}{2}\left(\left|D^{+} u^{h}\right|^{2}+\left|D^{-} u^{h}\right|^{2}\right) u^{h}-u^{h} \wedge\left(u^{h} \wedge B^{h}\right) \tag{4.5}
\end{equation*}
$$

Furthermore, we can eliminate E in (4.2)-(4.3) to obtain

$$
\begin{equation*}
\frac{d^{2} B^{h}}{d t^{2}}-\tilde{\Delta} B^{h}=\widetilde{\operatorname{curl}} \widetilde{\operatorname{curl}} u^{h} \tag{4.6}
\end{equation*}
$$

as $\widetilde{\operatorname{div}} B^{h}=0$.
In order to simplify the notations we will omit the exponent h in the computations of the following section.

2. Estimates

First Estimate. We multiply (4.5) by $\tilde{\Delta} u$ and after summation on Z^{3}, we get

$$
-\frac{d}{d t}\left\|D^{+} u\right\|_{l^{2}}^{2}=\|\tilde{\Delta} u\|_{l^{2}}^{2}+\int_{Z^{3}}((u \wedge B)-u \wedge(u \wedge B)) \cdot \tilde{\Delta} u+\frac{1}{2} \int_{Z^{3}}\left(\left|D^{+} u\right|^{2}+\left|D^{-} u\right|^{2}\right) u \cdot \tilde{\Delta} u
$$

Hence

$$
\begin{equation*}
\frac{d}{d t}\left\|D^{+} u\right\|_{l^{2}}^{2}+\|\tilde{\Delta} u\|_{l^{2}}^{2} \leq C\left(\|B\|_{l^{2}}\|\tilde{\Delta} u\|_{l^{2}}+\left\|D^{+} u\right\|_{l^{2}}\|\tilde{\Delta} u\|_{l^{2}}^{2}\right) \tag{4.7}
\end{equation*}
$$

Second Estimate. We multiply (4.5) by $\tilde{\Delta}^{2} u$ and we obtain

$$
\begin{gathered}
\frac{1}{2} \frac{d}{d t}\|\tilde{\Delta} u\|_{l^{2}}^{2}+\left\|D^{+} \tilde{\Delta} u\right\|_{l^{2}}^{2}=\int_{Z^{3}} u \wedge \tilde{\Delta} u \cdot \tilde{\Delta}^{2} u \\
+\frac{1}{2} \int_{Z^{3}}\left(\left|D^{+} u\right|^{2}+\left|D^{-} u\right|^{2}\right) u \cdot \tilde{\Delta}^{2} u \\
-\int_{Z^{3}} \sum_{i} D_{i}^{+}(u \wedge B) \cdot D_{i}^{+} \tilde{\Delta} u+\int_{Z^{3}} \sum_{i} D_{i}^{+}(u \wedge(u \wedge B)) \cdot D_{i}^{+} \tilde{\Delta} u .
\end{gathered}
$$

Now

$$
\int_{Z^{3}} \sum_{i} D_{i}^{+}(u \wedge B) \cdot D_{i}^{+} \tilde{\Delta} u=\sum_{i} \int_{Z^{3}}\left(D_{i}^{+} u \wedge B+\tau_{i}^{+} u \wedge D_{i}^{+} B\right) \cdot D_{i}^{+} \tilde{\Delta} u
$$

thus

$$
\left|\int_{Z^{3}} \sum_{i} D_{i}^{+}(u \wedge B) \cdot D_{i}^{+} \tilde{\Delta} u\right| \leq K\left\|D^{+} \tilde{\Delta} u\right\|_{l^{2}}\left(\left\|D^{+} u\right\|_{l^{4}}\|B\|_{l^{4}}+\left\|D^{+} B\right\|_{l^{2}}\right) .
$$

In the same way,

$$
\left|\int_{Z^{3}} \sum_{i} D_{i}^{+}(u \wedge(u \wedge B)) \cdot D_{i}^{+} \tilde{\Delta} u\right| \leq K\left\|D^{+} \tilde{\Delta} u\right\|_{l^{2}}\left(\left\|D^{+} u\right\|_{l^{4}}\|B\|_{l^{4}}+\left\|D^{+} B\right\|_{l^{2}}\right) .
$$

We treat the first two terms as in part 3 and we get

$$
\begin{gather*}
\frac{1}{2} \frac{d}{d t}\|\tilde{\Delta} u\|_{l^{2}}^{2}+\left\|D^{+} \tilde{\Delta} u\right\|_{l^{2}}^{2} \leq K\left\|D^{+} \tilde{\Delta} u\right\|_{l^{2}}\left(\left\|D^{+} u\right\|_{l^{4}}\|B\|_{l^{4}}+\left\|D^{+} B\right\|_{l^{2}}\right) \\
+K\left(\left\|D^{+} \tilde{\Delta} u\right\|_{l^{2}}^{\frac{3}{2}}\|\tilde{\Delta} u\|_{l^{2}}^{\frac{3}{2}}+\left\|D^{+} \tilde{\Delta} u\right\|_{l^{2}}\|\tilde{\Delta} u\|_{l^{2}}^{3}\right) \tag{4.8}
\end{gather*}
$$

Now, by interpolation and discrete Sobolev embeddings, and absorbing $\left\|D^{+} \tilde{\Delta} u\right\|_{l^{2}}$ in the right hand-side of (4.8), we obtain

$$
\begin{gather*}
\frac{d}{d t}\|\tilde{\Delta} u\|_{l^{2}}^{2}+\left\|D^{+} \tilde{\Delta} u\right\|_{l^{2}}^{2} \leq K\left(\left\|D^{+} u\right\|_{l^{2}}\|\tilde{\Delta} u\|_{l^{2}}\|B\|_{l^{2}}\left\|D^{+} B\right\|_{l^{2}}\right. \tag{4.9}\\
\left.+\left\|D^{+} B\right\|_{l^{2}}^{2}+\|\tilde{\Delta} u\|_{l^{2}}^{6}\right)
\end{gather*}
$$

Third estimate. We multiply (4.2) by B and (4.3) by E and we obtain, as $\|\widetilde{\operatorname{curl}} u\|_{l^{2}} \leq$ $C\left\|D^{+} u\right\|_{l^{2}}$,

$$
\begin{equation*}
\frac{d}{d t}\left(\|B\|_{l^{2}}^{2}+\|E\|_{l^{2}}^{2}\right) \leq K\left\|D^{+} u\right\|_{l^{2}}\|E\|_{l^{2}} \tag{4.10}
\end{equation*}
$$

Fourth estimate. We multiply (4.6) by $\frac{d B}{d t}$ and we get, since $\|\widetilde{\operatorname{curl}} \widetilde{\operatorname{curl}} u\|_{l^{2}} \leq K\|\tilde{\Delta} u\|_{l^{2}}$,

$$
\begin{equation*}
\frac{d}{d t}\left(\left\|\frac{d B}{d t}\right\|_{l^{2}}^{2}+\left\|D^{+} B\right\|_{l^{2}}^{2}\right) \leq K\|\tilde{\Delta} u\|_{l^{2}}\left\|\frac{d B}{d t}\right\|_{l^{2}} \tag{4.11}
\end{equation*}
$$

Combining (4.7), (4.9), (4.10) and (4.11), if we denote

$$
\mathcal{E}(t)=\left(\left\|D^{+} u\right\|_{l^{2}}^{2}+\|\tilde{\Delta} u\|_{l^{2}}^{2}+\|E\|_{l^{2}}^{2}+\|B\|_{l^{2}}^{2}+\left\|\frac{d B}{d t}\right\|_{l^{2}}^{2}+\left\|D^{+} B\right\|_{l^{2}}^{2}\right)(t)
$$

we obtain

$$
\frac{d \mathcal{E}}{d t}+\|\tilde{\Delta} u\|_{h^{1}}^{2}(t) \leq K\left(1+\mathcal{E}^{3}\right) .
$$

Therefore, there exist T and K independent of h such that

$$
\begin{gather*}
\left\|D^{+} u\right\|_{L^{\infty}\left(0, T ; h^{1}\right)} \leq K, \quad\|\tilde{\Delta} u\|_{L^{2}\left(0, T ; h^{1}\right)} \leq K \\
\left\|\frac{d u}{d t}\right\|_{L^{\infty}\left(0, T ; l^{2}\right)} \leq K \tag{4.12}\\
\|B\|_{L^{\infty}\left(0, T ; h^{1}\right)} \leq K, \quad\|E\|_{L^{\infty}\left(0, T ; h^{1}\right)} \leq K
\end{gather*}
$$

We note that we can estimate $\left\|D^{+} E\right\|_{l^{2}}$ since

$$
\begin{gathered}
\left\|D^{+} E\right\|_{l^{2}}=\|\widetilde{\operatorname{div}} E\|_{l^{2}}^{2}+\|\widetilde{\operatorname{curl}} E\|_{l^{2}}^{2} \\
=\left\|\widetilde{\operatorname{div}} E_{0}\right\|_{l^{2}}^{2}+\left\|\frac{d B}{d t}\right\|_{l^{2}}^{2} .
\end{gathered}
$$

3. Limit when h goes to zero and uniqueness.

As in Part 3, we extend the discrete solution $\left(u^{h}, E^{h}, B^{h}\right)$ to the whole space and with the same arguments, we can take the limit when h goes to zero, using (4.12).

The limit (u, E, B) satisfies the properties $(i),(i i)$, and (iii) anounced in theorem 3.
Now let us prove the uniqueness of the regular solution for (1.3)-(1.6).
Let us consider ($\tilde{u}, \tilde{E}, \tilde{B}$) another regular solution for (1.3)-(1.6). We set

$$
\bar{u}=u-\tilde{u}, \quad \bar{E}=E-\tilde{E}, \quad \bar{B}=B-\tilde{B} .
$$

We have

$$
\begin{gather*}
\frac{\partial \bar{B}}{\partial t}=-\operatorname{curl} \bar{E} \tag{4.13}\\
\frac{\partial \bar{E}}{\partial t}=\operatorname{curl} \bar{B}-\operatorname{curl} \bar{u} \tag{4.14}\\
\frac{\partial \bar{u}}{\partial t}=\Delta \bar{u}+\bar{u} \wedge \Delta u+\tilde{u} \wedge \Delta \bar{u}+\bar{u} \wedge B-\tilde{u} \wedge \bar{B} \\
+|\nabla u|^{2} \bar{u}-\nabla \bar{u} \cdot(\nabla u+\nabla \tilde{u}) \tilde{u} \tag{4.15}\\
-\bar{u} \wedge(u \wedge B)-\tilde{u} \wedge(\bar{u} \wedge B+\tilde{u} \wedge \bar{B}) .
\end{gather*}
$$

We multiply (4.15) by \bar{u} and we obtain

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\|\bar{u}\|_{L^{2}}^{2}+\|\nabla \bar{u}\|_{L^{2}}^{2}=\int \tilde{u} \wedge \Delta \bar{u} \cdot \bar{u}-\int \tilde{u} \wedge \bar{B} \cdot \bar{u} \\
& \quad+\int|\nabla u|^{2}|\bar{u}|^{2}-\int \nabla \bar{u} \cdot(\nabla u+\nabla \tilde{u})(\tilde{u} \cdot \bar{u}) \\
& \quad-\int \tilde{u} \wedge(\bar{u} \wedge B) \cdot \bar{u}-\int \tilde{u} \wedge(\tilde{u} \wedge \bar{B}) \cdot \bar{u} .
\end{aligned}
$$

Hence, using that $\|\bar{u}\|_{L^{4}}^{2} \leq C\|\bar{u}\|_{L^{2}}\|\nabla \bar{u}\|_{L^{2}}$, and absorbing the term $\|\nabla \bar{u}\|_{L^{2}}$, we obtain that

$$
\begin{equation*}
\frac{d}{d t}\|\bar{u}\|_{L^{2}}^{2}+\|\nabla \bar{u}\|_{L^{2}}^{2} \leq K\|\bar{u}\|_{L^{2}}^{2}\left(\|\nabla \tilde{u}\|_{L^{\infty}}^{2}+\|\nabla u\|_{L^{\infty}}^{2}+\|B\|_{L^{2}}^{2}+1\right)+\|\bar{B}\|_{L^{2}}^{2} \tag{4.16}
\end{equation*}
$$

Furthermore, multiplying (4.13) by \bar{B} and (4.14) by \bar{E}, we obtain

$$
\begin{equation*}
\frac{d}{d t}\left(\|\bar{E}\|_{L^{2}}^{2}+\|\bar{B}\|_{L^{2}}^{2}\right) \leq 2\|\nabla \bar{u}\|_{L^{2}}\|\bar{E}\|_{L^{2}} \tag{4.17}
\end{equation*}
$$

We set

$$
\mathcal{E}(t)=\left(\|\bar{E}\|_{L^{2}}^{2}+\|\bar{B}\|_{L^{2}}^{2}+\|\bar{u}\|_{L^{2}}^{2}\right)(t)
$$

and

$$
f(t)=\left(1+\|B\|_{L^{2}}^{2}+\|\nabla u\|_{L^{\infty}}^{2}+\|\nabla \tilde{u}\|_{L^{\infty}}^{2}\right)(t) .
$$

Combining (4.16) and (4.17) and absorbing $\|\nabla \bar{u}\|_{L^{2}}$, we obtain

$$
\frac{d}{d t} \mathcal{E}(t) \leq K f(t) \mathcal{E}(t)
$$

We remark that $f(t) \in L^{1}(0, T)$, and with Gronwall Lemma, we conclude that $\mathcal{E}=0$.
Therefore, Theorem 3 is proved.

References

[1] F. Alouges et A. Soyeur, On global weak solutions for Landau Lifschitz equations: existence and non uniqueness, Nonlinear Anal., Theory Methods Appl. 18 (1992), 1071-1084.
[2] W.F. Brown, Micromagnetics, Interscince publisher, John Willey \& Sons, New York, 1963.
[3] G. Carbou, P. Fabrie, Time Average in Micromagnetism, To appear in Journal of Differential Equations.
[4] J.L. Joly, G. Métivier et J. Rauch, Solution globale du système de Maxwell dans un milieu ferromagnétique, Ecole Polytechnique, séminaire EDP, 1996-1997, exposé no 11.
[5] O.A. Ladysenskaia, The Boundary Value Problems of Mathematical Physics, Applied Mathematical Sciences, vol. 49, Berlin, Heidelberg, New York, Springer-Verlag 1985.
[6] P.L. Sulem, C. Sulem, C. Bardos, On the Continuous Limit for a System of Classical Spins, Commun. Math Phys. 107 (1986), 431-454.
[7] A. Visintin, On Landau Lifschitz equation for ferromagnetism, Japan Journal of Applied Mathematics, 2 (1985), 69-84.

