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In this paper we prove local existence, global existence with small data and uniqueness of regular solutions for Landau-Lifschitz equations. Furthermore we establish local existence and uniqueness for a system coupling Maxwell and Landau-Lifschitz equations arising from Micromagnetism theory.

Introduction

In Micromagnetism theory (see [START_REF] Brown | Micromagnetics, Interscince publisher[END_REF]), the behaviour of a ferromagnet is represented by an unitary vector field u called magnetic moment. The variations of u are gouverned by Landau-Lifshitz equation

   ∂u ∂t = u ∧ ∆u -u ∧ (u ∧ ∆u) u(0, •) = u 0 (•) (1.1)
where we assume that |u 0 | = 1.

Existence and non uniqueness for weak solutions of (1.1) are proved by F. Alouges and A. Soyeur in [START_REF] Alouges | On global weak solutions for Landau Lifschitz equations: existence and non uniqueness, Nonlinear Anal[END_REF]. Furthermore, P.L. Sulem, C. Sulem and C. Bardos establish in [START_REF] Sulem | On the Continuous Limit for a System of Classical Spins[END_REF] local existence of regular solutions for the equation

∂u ∂t = u ∧ ∆u. (1.2) 
Concerning equation (1.1) we prove the following theorems. Theorem 1. Assume that |u 0 | = 1, ∇u 0 ∈ IH 1 (IR 3 ).

Then there exists T > 0, there exists an unique u such that

(i) u ∈ IL ∞ ((0, T ) × IR 3 ), |u| = 1,
(ii) ∇u ∈ L ∞ ((0, T ); IH 1 (IR 3 )) ∩ L 2 ((0, T ); IH 2 (IR 3 )), (iii) u satisfies (1.1).

Theorem 2. There exists δ > 0 such that if |u 0 | = 1 and if ∇u 0 ∈ IH 1 (IR 3 ) with ∇u 0 IH 1 (IR 3 ) < δ, then the solution u given by Theorem 1 exists for T = +∞.

The term -u∧(u∧∆u) in (1.1) is in fact a dissipation term. For this reason, global existence with small data is valid for (1.1) and not for (1.2) (see [START_REF] Sulem | On the Continuous Limit for a System of Classical Spins[END_REF]).

On the other hand, the propagation of electromagnetic waves in the ferromagnet is gouverned by a system coupling Landau-Lifschitz and Maxwell equations.

∂u ∂t = u ∧ (∆u + H) -u ∧ (u ∧ (∆u + H)), ∂B ∂t + curl E = 0, ∂E ∂t -curl H = 0, B = H + u, u(0, •) = u 0 (•), B(0, •) = B 0 (•), E(0, •) = E 0 (•),
where we assume that |u 0 | = 1 and div B 0 = 0.

Instead of working with (u, H, E), we will write the system with the unknowns (u, B, E).

∂u ∂t = u ∧ (∆u + B) -u ∧ (u ∧ (∆u + B)) (1.3) ∂B ∂t = -curl E (1.4) ∂E ∂t = curl B -curl u (1.5) u(0, •) = u 0 (•), B(0, •) = B 0 (•), E(0, •) = E 0 (•) (1.6)
and we still assume that

|u 0 | = 1 and div B 0 = 0 in IR 3 . (1.7) 
We will establish the following theorem.

Theorem 3. Let (u 0 , E 0 , B 0 ) such that E 0 ∈ IH 1 (IR 3 ), B 0 ∈ IH 1 (IR 3 ), div B 0 = 0, |u 0 | = 1, ∇u 0 ∈ IH 1 (IR 3 ).
Then there exists T > 0, there exists an unique (u, E, B) such that

(i) |u| = 1, ∇u ∈ L ∞ ((0, T ); IH 1 (IR 3 )) ∩ L 2 ((0, T ); IH 2 (IR 3 )), (ii) E and B belong to L ∞ ((0, T ); IH 1 (IR 3 )), (iii) (u, E, B) satisfies (1.3)-(1.6).
The existence of weak solutions for the system (1.3)-(1.6) is proved in [START_REF] Visintin | On Landau Lifschitz equation for ferromagnetism[END_REF] and in [START_REF] Carbou | Time Average in Micromagnetism[END_REF] in the case of a bounded domain.

In [START_REF] Joly | Solution globale du système de Maxwell dans un milieu ferromagnétique[END_REF], J.L. Joly, G. Métivier and J. Rauch prove the existence of solutions for a system similar to (1.3)-(1.6) but without ∆u in (1.3).

The asymptotic behaviour of weak solutions of (1.3)-(1.6) in a bounded domain is studied in [START_REF] Carbou | Time Average in Micromagnetism[END_REF].

The proof of Theorems 1, 2 and 3 is based on a semi-discretization used in [START_REF] Alouges | On global weak solutions for Landau Lifschitz equations: existence and non uniqueness, Nonlinear Anal[END_REF] and [START_REF] Sulem | On the Continuous Limit for a System of Classical Spins[END_REF]. In Part 2, we describe the discretization process. Part 3 is devoted to the proof of Theorems 1 and 2. Theorem 3 is proved in the last part.

Discretization space, notations

We fix h > 0 and we set x h j = jh for j ∈ Z Z. For α = (i, j, k) ∈ Z Z 3 , we note X h α = (x h i , x h j , x h k ) and

C h α = (x, y, z), x h i ≤ x < x h i + h, x h j ≤ y < x h j + h, x h k ≤ z < x h k + h .
We denote

Z 3 h = X h α ∈ IR 3 , α ∈ Z Z 3 .
In the sequel of this part, in order to simplify the notations, we will omit the exponent h.

We consider the following operators defined for u : Z 3 → IR 3 :

τ + 1 u(x i , x j , x k ) = u(x i+1 , x j , x k ) D + 1 u = 1 h (τ + 1 u -u) τ - 1 = (τ + 1 ) -1 , D - 1 = τ - 1 • D + 1
In the same way, we denote τ + 2 , D + 2 , τ - 2 , D - 2 the same operations concerning the second variable, and τ + 3 , D + 3 , τ - 3 , D - 3 for the third variable. We set

∆ = 3 i=1 D - i D + i , div u = 3 i=1 D + i u i curl u = (D + 2 u 3 -D + 3 u 2 , D + 3 u 1 -D + 1 u 3 , D + 1 u 2 -D + 2 u 1
). We denote

Z 3 u = α∈Z Z 3 h 3 u(X α ).
and we use the following classical notations

u l p = Z 3 |u| p 1 p , D + u l p = 3 i=1 D + i u p l p 1 p , u w 1,p = u p l p + D + u p l p 1 p , u h 1 = u w 1,2 , u h 2 =   u 2 h 1 + ij D + i D + j u 2 l 2   1 2 , u l ∞ = sup α∈Z Z 3 |u(X α )|.
We remark that

Z 3 D + i u • v = - Z 3 u • D - i v, furthermore, D + i (uv) = D + i u τ + i v + uD + i v.
We recall now the following discrete Sobolev inequalities.

Lemma 1. There exists a constant C independant of h such that for all u :

Z 3 → IR 3 , if u h 1 < +∞, then u l 6 (Z 3 ) ≤ C D + u l 2 (Z 3 ) , (2.1) 
Discrete versions of Sobolev inequalities are established in [START_REF] Ladysenskaia | The Boundary Value Problems of Mathematical Physics[END_REF] using interpolation procedures.

The same interpolation process is used in this paper (see 3.3 and 4.3) and is presented in Section 3.3.

3 Proof of theorems 1 and 2

Discretization

For h > 0, let u h 0 defined on the mesh Z 3 h such that

• |u h 0 | = 1 on Z 3 h , • r h u h 0 tends to u 0 in L 2 loc (IR 3 ) • α D + u h 0 h 1 (Z 3 h ) ≤ ∇u 0 H 1 (IR 3 ) ≤ 1 α D + u h 0 h 1 (Z 3 h )
where r h is the interpolating operator defined in [START_REF] Ladysenskaia | The Boundary Value Problems of Mathematical Physics[END_REF] and in Section 3.3 of this paper, and where α does not depend on h. Now we fix h > 0 and we solve

       du h dt = u h ∧ ∆u h -u h ∧ (u h ∧ ∆u h ) u h (t = 0) = u h 0 (3.1)
The map u → u ∧ ∆uu ∧ (u ∧ ∆u) is locally Lipschitz in l ∞ (Z 3 h ), so there exists an unique solution of (3.1) with Cauchy-Lipschitz Theorem.

In order to simplify the notation, we will omit the exponent h in the computations of the following subsection.

Estimates

We multiply (3.1) by u and we obtain that

d dt |u| 2 = 0, hence |u| = 1 on Z 3 , as it is the case for u 0 .
With the above remark we can modify the form of the equation. We first note that

u ∧ (u ∧ ∆u) = (u • ∆u)u -∆u.
Furthermore, writting that ∆|u 2 | = 0 as |u| = 1, we obtain that

2u • ∆u + |D + u| 2 + |D -u| 2 = 0.
Hence, Equation (3.1) takes the form

du dt = u ∧ ∆u + ∆u + 1 2 (|D + u| 2 + |D -u| 2 )u (3.2)
First estimate. We multiply (3.2) by ∆u and after summation on Z 3 , we get

- 1 2 d dt D + u 2 l 2 = ∆u 2 l 2 + 1 2 Z 3 |D -u| 2 + |D + u| 2 u • ∆u, so we obtain d dt D + u 2 l 2 + 2 ∆u 2 l 2 ≤ 2 D + u 2 l 4 ∆u l 2 (3.3)
Second estimate. We multiply now (3.2) by ∆2 u and after summation on Z 3 we obtain 1 2

d dt ∆u 2 l 2 = Z 3 u ∧ ∆u • ∆2 u -D + ∆u 2 l 2 + 1 2 Z 3 |D + u| 2 + |D -u| 2 u • ∆2 u.
We remark now that

Z 3 u ∧ ∆u • ∆2 u = i Z 3 D + i (u ∧ ∆u) • D + i ∆u = i Z 3 D + i u ∧ ∆u • D + i ∆u ≤ D + ∆u l 2 ∆u l 3 D + u l 6 (3.4) 
Furthermore,

1 2 Z 3 |D -u| 2 + |D + u| 2 u • ∆2 u = 1 2 i Z 3 D + i (|D -u| 2 + |D + u| 2 )u • D + i ∆u ≤ 1 2 D + (|D -u| 2 + |D + u| 2 )u l 2 D + ∆u l 2 .
Now we compute D + i (|D + u| 2 ) and we obtain that

D + (|D -u| 2 + |D + u| 2 )u l 2 ≤ C   ij D + i D + j u • D + j u l 2 + |D + u| 3 l 2   as |u| = 1.
Thus there exists a constant K independant of h such that

d dt ∆u 2 l 2 + 2 D + ∆u 2 l 2 ≤ +K ∆u l 3 D + u l 6 + D + u 3 l 6 D + ∆u l 2 (3.5)
With Lemma 2.1 and by interpolation there exists a universal constant C such that

D + u l 6 ≤ C ∆u l 2 ∆u l 3 ≤ C ∆u 1 2 l 2 D + ∆u 1 2 l 2 (3.6)
From (3.5) and (3.6) we deduce

d dt ∆u 2 l 2 + 2 D + ∆u 2 l 2 ≤ K D + ∆u 3 2 l 2 ∆u 3 2 l 2 + D + ∆u l 2 ∆u 3 l 2 (3.7)
Estimate for Theorem 1.

We absorb D + ∆u l 2 in (3.7) and we obtain

d dt ∆u 2 l 2 + D + ∆u 2 l 2 ≤ K ∆u 6 l 2 (3.8)
On the other hand, from (3.3), by interpolation in IL 4 , we derive

d dt D + u 2 l 2 + ∆u 2 l 2 ≤ K D + u l 2 D + u 3 l 6 ≤ K D + u l 2 ∆u 3 l 2 (3.9)
Combining (3.8) and (3.9) we obtain

d dt D + u 2 h 1 + ∆u 2 h 1 ≤ K 1 + D + u 6 h 1 (3.10)
We set now g(t) = D + u 2 h 1 and we have

dg dt ≤ K(1 + g 3 ),
hence there exist T > 0 and K independant of h such that

                 D + u L ∞ (0,T ;h 1 ) ≤ K, ∆u L 2 (0,T ;h 1 ) ≤ K, du dt L ∞ (0,T ;l 2 ) ≤ K. (3.11) 
The last estimate is obtained using (3.1) and the previous estimate concerning D + u.

Estimate for Theorem 2.

We absorb D + ∆u l 2 only in the first term of the right hand-side of (3.7) writting

D + ∆u 3 2 l 2 ∆u 3 2 l 2 ≤ 1 2 D + ∆u 2 l 2 + D + ∆u l 2 ∆u 3 l 2 ,
and we obtain

d dt ∆u 2 l 2 + D + ∆u 2 l 2 ≤ K ∆u 3 l 2 D + ∆u l 2 (3.12)
Combining (3.9) and (3.12) we derive

d dt D + u 2 h 1 + ∆u 2 h 1 ≤ K ∆u 3 l 2 D + ∆u l 2 + D + u 2 l 2 ∆u 2 l 2
Hence there exists a constant K independant of h such that

d dt D + u 2 h 1 + ∆u 2 h 1 ≤ K D + u 2 h 1 ∆u 2 h 1 6 thus d dt D + u 2 h 1 + ∆u 2 h 1 (1 -K D + u 2 h 1 ) ≤ 0 (3.13)
We set now δ = 1 √ K and we suppose that D + u 0 h 1 < δ. We claim that for all t ≥ 0, D + u(t) h 1 < δ. If it is not the case, then let t 1 be the first t > 0 such that

D + u(t) h 1 ≥ δ. For all t < t 1 , 1 -K D + u 2 h 1 ≥ 0, hence, for all t < t 1 , d dt D + u 2 h 1 ≤ 0, so D + u 2 h 1 (t 1 ) ≤ D + u(0) 2 h 1 < δ
which leads to a contradiction.

Therefore, if D + u 0 < δ, D + u L ∞ (0,+∞;h 1 ) < δ (3.14)
and from (3.13) we deduce that there exists K such that ∆u L 2 (0,+∞;h 1 ) ≤ K (3.15)

Limit when h goes to zero

Let us prove Theorem 1.

In the preceding subsection, for all h > 0 we have constructed a solution u h of (3.1) defined on the mesh Z 3 h which satisfies (3.1) and (3.11). We extend u h to the whole space using an interpolation process described in [START_REF] Ladysenskaia | The Boundary Value Problems of Mathematical Physics[END_REF], p. 224. We introduce the following interpolating operators :

For X = (x 1 , x 2 , x 3 ) ∈ C h α , if we note X h α = (x h 1 , x h 2 , x h 3 ), we set • r h u h (X) = u h (X h α ), • p h u h (X) = u h (X h α ) + 3 i=1 D + i u h (X h α )(x i -x h i ) + 1≤i<j≤3 D + i D + j (X h α )(x i -x h i )(x j -x h j ) + D + 1 D + 2 D + 3 u h (X h α ) 3 i=1 (x i -x h i ), • q k h u h (X) = u h (X h α ) + i =k D + i u h (X h α )(x i -x h i ) + 1 ≤ i < j ≤ 3 i, j = k D + i D + j (X h α )(x i -x h i )(x j -x h j ).
We recall that

∂ ∂x i (p h u h ) = q i h (D + i u h ).
Furthermore we have the following proposition proved in [START_REF] Ladysenskaia | The Boundary Value Problems of Mathematical Physics[END_REF].

Proposition 1. If one of the interpolates p h u h , q h u h , or r h u h converges strongly (resp. weakly) in L 2 when h goes to zero, then the two others also converge to the same limit in L 2 strongly (resp. weakly).

The estimate (3.11) gives that there exists K > 0 such that for all h > 0,

r h (D + i D + j D + k u h ) L 2 ((0,T )×IR 3 ) ≤ K r h (D + i D + j u h ) L 2 ((0,T )×IR 3 ) ≤ K r h (D + i u h ) L 2 ((0,T )×IR 3 ) ≤ K Furthermore r h u h is bounded in L 2
loc independentely of h > 0. Thus, up to subsequences, we deduce that when h goes to zero,

r h u h u in L 2 loc weakly, r h (D + i u h ) v i in L 2 weakly, r h (D + i D + j u h ) w ij in L 2 weakly, r h (D + i D + j D + k u h ) ω ijk in L 2 weakly, r h ( du h dt ) f in L 2 weakly. Now with Proposition 1., q i h (D + i (D + j D + k u h )) and r h (D + i D + j D + k u h
) have the same limit ω ijk , and since

q i h (D + i (D + j D + k u h )) = ∂ ∂x i (p h (D + j D + ku h ))
, as p h (D + j D + ku h ) tends to w jk in L 2 weak, we deduce by uniqueness of the limit in D that

ω ijk = ∂ ∂x i w jk .
With the same reasonnement we deduce that

v i = ∂u ∂x i , w ij = ∂ 2 u ∂x i ∂x j , ω ijk = ∂ 3 u ∂x i ∂x j ∂x k .
In 

p h u h → u in L p loc strongly for 2 ≤ p < 6,
using the compactness of Sobolev embeddings in bounded domains.

In order to prove that u satisfies (1.1), we take ϕ ∈ D((0, T ) × IR 3 ) and we introduce Ω such that ϕ is zero outside of Ω. We have

Ω r h ( du h dt ) • ϕ = Ω r h u h ∧ r h ∆u h • ϕ - Ω r h u h ∧ (r h u h ∧ r h ∆u h ) • ϕ (3.16) Now, r h du dt h ∂u ∂t in L 2 (IR 3 ) weakly, r h ∆u h ∆u in L 2 (IR 3 ) weakly, r h u h → u in L 2
(Ω) strongly (for the first term), r h u h → u in L 4 (Ω) strongly (for the second term).

Thus we can take the limit in (3.16) and we obtain that u satisfies (1.1) in D (IR 3 ).

Furthermore, by lower semicontinuity of the different norms, we obtain from (3.11) that u satisfies ∇u ∈ L ∞ ((0, T );

IH 1 (IR 3 )) ∩ L 2 ((0, T ); IH 2 (IR 3 )).
Finaly, since r h u h → u in L 2 loc strongly, by extracting a subsequence, r h u h → u a.e., hence |u| = 1 as it is the case for r h u h . Let us prove now the uniqueness of the solution of (1.1) satisfying (i) and (ii) in Theorem 1.

Let ũ be another solution, and let ū = u -ũ. We have

∂ ū ∂t = ∆ū + ū ∧ ∆u + ũ ∧ ∆ū + |∇u| 2 ū -∇ū • (∇u + ∇ũ)ũ (3.17) 
We multiply (3.17) by ū and we obtain 1 2

d dt ū 2 L 2 + ∇ū 2 L 2 ≤ ∇ū L 2 ū L 2 ∇ũ L ∞ + ū 2 L 2 ∇u 2 L ∞ + ū L 2 ∇ū L 2 ( ∇u L ∞ + ∇ũ L ∞ ).
We absorb ∇ū L 2 in the left hand-side of the inequality and we obtain

d dt ū 2 L 2 + ∇ū 2 L 2 ≤ K ū L 2 ( ∇u L ∞ + ∇ũ L ∞ ).
Now since ∇u and ∇ũ belong to L 1 (0, T ; L ∞ ) (with Sobolev injections), we can use Gronwall Lemma to conclude that ū = 0.

Therefore Theorem 1 is proved.

In the same way we prove Theorem 2, starting from Estimates (3.14) and (3.15).

4 Proof of Theorem 3

Discretization.

For all h > 0 we consider (u h 0 , E h 0 , B h 0 ) defined on Z 3 h such that

• |u h 0 | = 1, r h u h 0 -→ h→0 u 0 in L 2 loc (IR 3 ), • α D + u h 0 h 1 (Z 3 h ) ≤ ∇u 0 H 1 (IR 3 ) ≤ 1 α D + u h 0 h 1 (Z 3 h ) , • B h 0 ∈ l ∞ (Z 3 h ), r h B h 0 -→ h→0 B 0 in L 2 (IR 3 ), • α B h 0 h 1 (Z 3 h ) ≤ ∇B 0 H 1 (IR 3 ) ≤ 1 α B h 0 h 1 (Z 3 h ) , • H h 0 ∈ l ∞ (Z 3 h ), r h H h 0 -→ h→0 H 0 in L 2 (IR 3 ), • α H h 0 h 1 (Z 3 h ) ≤ ∇H 0 H 1 (IR 3 ) ≤ 1 α H h 0 h 1 (Z 3 
h ) , where α does not depend on h.

We remark that B h 0 and E h 0 are bounded in l ∞ (Z 3 h ) but not uniformly in h. Now, for h fixed, we solve the system

du dt h = u h ∧ ( ∆u h + B h ) -u h ∧ (u h ∧ ( ∆u h + B h )) (4.1) dB dt h = -curl E h (4.2) dE dt h = curl B h -curl u h (4.3) u h (t = 0) = u h 0 , B h (t = 0) = B h 0 , E h (t = 0) = E h 0 (4.4)
Using Cauchy-Lipschitz theorem, there exists a local solution of (4.1)-(4.4). Multiplying (4.1) by u we prove that |u h | = 1 hence, we can write (4.1) on the form

du dt h = u h ∧ ( ∆u h + B h ) + ∆u h + 1 2 (|D + u h | 2 + |D -u h | 2 )u h -u h ∧ (u h ∧ B h ) (4.5)
Furthermore, we can eliminate E in (4.2)-(4.3) to obtain

d 2 B h dt 2 -∆B h = curl curl u h (4.6)
as div B h = 0. In order to simplify the notations we will omit the exponent h in the computations of the following section.

Estimates.

First Estimate. We multiply (4.5) by ∆u and after summation on Z 3 , we get

- d dt D + u 2 l 2 = ∆u 2 l 2 + Z 3 ((u ∧ B) -u ∧ (u ∧ B)) • ∆u + 1 2 Z 3 |D + u| 2 + |D -u| 2 u • ∆u. Hence d dt D + u 2 l 2 + ∆u 2 l 2 ≤ C B l 2 ∆u l 2 + D + u l 2 ∆u 2 l 2 (4.7)
Second Estimate. We multiply (4.5) by ∆2 u and we obtain 1 2

d dt ∆u 2 l 2 + D + ∆u 2 l 2 = Z 3 u ∧ ∆u • ∆2 u + 1 2 Z 3 |D + u| 2 + |D -u| 2 u • ∆2 u - Z 3 i D + i (u ∧ B) • D + i ∆u + Z 3 i D + i (u ∧ (u ∧ B)) • D + i ∆u. Now Z 3 i D + i (u ∧ B) • D + i ∆u = i Z 3 D + i u ∧ B + τ + i u ∧ D + i B • D + i ∆u, thus Z 3 i D + i (u ∧ B) • D + i ∆u ≤ K D + ∆u l 2 D + u l 4 B l 4 + D + B l 2 .
In the same way,

Z 3 i D + i (u ∧ (u ∧ B)) • D + i ∆u ≤ K D + ∆u l 2 D + u l 4 B l 4 + D + B l 2 .
We treat the first two terms as in part 3 and we get 1 2

d dt ∆u 2 l 2 + D + ∆u 2 l 2 ≤ K D + ∆u l 2 D + u l 4 B l 4 + D + B l 2 +K D + ∆u 3 2 l 2 ∆u 3 2 l 2 + D + ∆u l 2 ∆u 3 l 2 (4.8)
Now, by interpolation and discrete Sobolev embeddings, and absorbing D + ∆u l 2 in the right hand-side of (4.8), we obtain 

d dt ∆u 2 l 2 + D + ∆u 2 l 2 ≤ K D + u l 2 ∆u l 2 B l 2 D + B l 2 + D + B 2 l 2 + ∆u
E(t) = D + u 2 l 2 + ∆u 2 l 2 + E 2 l 2 + B 2 l 2 + dB dt 2 l 2 + D + B 2 l 2 (t), we obtain dE dt + ∆u 2 h 1 (t) ≤ K 1 + E 3 .
Therefore, there exist T and K independent of h such that

D + u L ∞ (0,T ;h 1 ) ≤ K, ∆u L 2 (0,T ;h 1 ) ≤ K du dt L ∞ (0,T ;l 2 ) ≤ K B L ∞ (0,T ;h 1 ) ≤ K, E L ∞ (0,T ;h 1 ) ≤ K (4.12)
We note that we can estimate D + E l 2 since

D + E l 2 = div E 2 l 2 + curl E 2 l 2 = div E 0 2 l 2 + dB dt 2 l 2 .
3. Limit when h goes to zero and uniqueness.

As in Part 3, we extend the discrete solution (u h , E h , B h ) to the whole space and with the same arguments, we can take the limit when h goes to zero, using (4.12).

The limit (u, E, B) satisfies the properties (i), (ii), and (iii) anounced in theorem 3. 

d dt ū 2 L 2 + ∇ū 2 L 2 = ũ ∧ ∆ū • ū -ũ ∧ B • ū + |∇u| 2 |ū| 2 -∇ū • (∇u + ∇ũ)(ũ • ū) -ũ ∧ (ū ∧ B) • ū -ũ ∧ (ũ ∧ B) • ū.
Hence, using that ū We remark that f (t) ∈ L 1 (0, T ), and with Gronwall Lemma, we conclude that E = 0. Therefore, Theorem 3 is proved.

  Now let us prove the uniqueness of the regular solution for (1.3)-(1.6). Let us consider (ũ, Ẽ, B) another regular solution for (1.3)-(1.6). We setū = u -ũ, Ē = E -Ẽ, B = Bū ∧ ∆u + ũ ∧ ∆ū + ū ∧ B -ũ ∧ B +|∇u| 2 ū -∇ū • (∇u + ∇ũ)ũ -ū ∧ (u ∧ B) -ũ ∧ (ū ∧ B + ũ ∧ B).

  , since curl curl u l 2 ≤ K ∆u l 2 ,

	Fourth estimate. We multiply (4.6) by and we getd dB dt dt dB dt 2 l 2 + D + B 2 l 2 ≤ K ∆u l 2	dB dt l 2	(4.11)
	Combining (4.7), (4.9), (4.10) and (4.11), if we denote		
			(4.9)
	6 l 2		
	Third estimate. We multiply (4.2) by B and (4.3) by E and we obtain, as curl u l 2 ≤ C D + u l 2 , d dt B 2 l 2 + E 2 l 2 ≤ K D + u l 2 E l 2 (4.10)

  2 L 4 ≤ C ū L 2 ∇ū L 2 , and absorbing the term ∇ū L 2 , we obtain that d dt ū 2 L 2 + ∇ū 2 L 2 ≤ K ū 2

		L 2		∇ũ 2 L ∞ + ∇u 2 L ∞ + B 2 L 2 + 1 + B 2 L 2	(4.16)
	Furthermore, multiplying (4.13) by B and (4.14) by Ē, we obtain
	d dt	Ē 2 L 2 + B 2 L 2 ≤ 2 ∇ū L 2 Ē L 2	(4.17)
	We set		
	E(t) =	Ē 2 L 2 + B 2 L 2 + ū 2 L 2	(t)
	and		
	f (t) = 1 + B 2 L 2 + ∇u 2 L ∞ + ∇ũ 2 L ∞ (t).
	Combining (4.16) and (4.17) and absorbing ∇ū L 2 , we obtain
			d dt	E(t) ≤ Kf (t)E(t).