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We establish uniform-in-bandwidth consistency for kernel-type estimators of the differential entropy. Precisely, in this work, we consider two kernel-type estimators of Shannon's entropy. As a consequence, an asymptotic 100% confidence interval of entropy is provided.

Introduction and estimation

Let (X n ) n≥1 be a sequence of i.i.d. R d -valued random vectors, d ≥ 1, with distribution function F(x) = P(X ≤ x) for x ∈ R d . We set here X = (X 1 , . . . , X d ) ≤ x = (x 1 , . . . , x d ) whenever X i ≤ x i , for all i = 1, . . . , d. Assume that F(•) has a density function f (•) with respect to Lebesgue measure on R d . The differential entropy of f (•) is defined by the quantity

H(f ) = - R d f (x) log (f (x)) dx (1.1) = - R d log (f (x)) dF(x), (1.2)
whenever this integral is meaningful, and where dx denotes Lebesgue measure in R d . We will use the convention that 0 log(0) = 0 since u log(u) → 0 as u → 0. The differential entropy concept was introduced by [START_REF] Shannon | A mathematical theory of communication[END_REF]. Since then and because of numerous potential applications, the subject has received a considerable interest handling various problems as estimating the quantity H(f ). We refer to [START_REF] Beirlant | Nonparametric entropy estimation: an overview[END_REF], and the references therein, for details. The main purpose of the present paper is to establish uniform in bandwidth consistency of the so-called kernel estimator of the entropy functional H(f ).

As a first step of our study, we gather hereafter hypotheses needed to establish our results.

(F.1) The functional H(f ) is well-defined by (1.1), in the sense that

|H(f )| < ∞.
(1.3)

A kernel K(•) will be any measurable function fulfilling the following conditions.

(K.1) K(•) is of bounded variation on R d ;

(K.2) K(•) is right continuous on R d , i.e., for any t = (t 1 , . . . , t d ), we have

K(t 1 , . . . , t d ) = lim ε 1 ↓0,...,ε d ↓0 K(t 1 + ε 1 , . . . , t d + ε d ); (K.3) K ∞ := sup t∈R d |K(t)| =: κ < ∞; (K.4) R d K(t)dt = 1.
The well known Akaike-Parzen-Rosenblatt (refer to [START_REF] Akaike | An approximation to the density function[END_REF], [START_REF] Parzen | On estimation of a probability density function and mode[END_REF] and [START_REF] Rosenblatt | Remarks on some nonparametric estimates of a density function[END_REF]) kernel estimator of f (•) is defined, for any x ∈ R d , by

f n,hn (x) = (nh d n ) -1 n i=1 K((x -X i )/h n ), (1.4) 
where 0 < h n ≤ 1 is the smoothing parameter.

In a second step, given f n,hn (•), we estimate H(f ) using the representation (1.1), by setting

H (1) n,hn (f ) = - An f n,hn (x) log f n,hn (x) dx, (1.5) 
where

A n := {x : f n,hn (x) ≥ γ n }, and γ n ↓ 0 is a sequence of positive constant. The plug-in esti- mator H (1)
n,hn (f ) was introduced by [START_REF] Dmitriev | The estimation of functionals of a probability density and its derivatives[END_REF] for d = 1 and

A n = [-b n , b n ]
, where b n is a specified sequence of constants. The integral estimator H

(1) n,hn (f ) can however be easily calculated if, for example, f n (•) is a histogram. We will consider also the resubstitution estimate proposed [START_REF] Ahmad | A nonparametric estimation of the entropy for absolutely continuous distributions[END_REF]. In this case, the estimator of H(f ) based on the representation (1.2) is given by

H (2) n,hn (f ) = - 1 n n i=1 1 Ω n,i log (f n,hn (X i )) , (1.6)
where

Ω n,i := {f n,hn (X i ) ≥ γ n }.
The limiting behavior of f n,hn (•), for appropriate choices of the bandwidth h n , has been extensively investigated in the literature (refer to [START_REF] Devroye | Nonparametric density estimation[END_REF] and Prakasa [START_REF] Rao | Nonparametric functional estimation[END_REF]).

In particular, under our assumptions, the condition that h n → 0 together with nh n → ∞ is necessary and sufficient for the convergence in probability of f n,hn (x) towards the limit f (x), independently of x ∈ R d and the density f (•). Various uniform consistency results involving the estimator f n,hn (•) have been recently established. We refer to [START_REF] Deheuvels | General asymptotic confidence bands based on kernel-type function estimators[END_REF], [START_REF] Einmahl | Uniform in bandwidth consistency of kernel-type function estimators[END_REF], [START_REF] Giné | Uniform in bandwidth estimation of integral functionals of the density function[END_REF]. In this paper we will use their methods to establish convergence results for the estimates H

(1) n,hn (f ) and H

(2) n,hn (f ) of H(f ) in the similar spirit of Bouzebda andElhattab (2009, 2010). To prove the strong consistency of H

(1) n,hn , we shall consider another, but more appropriate and more computationally convenient, centering factor than the expectation EH

(1) n,hn , which is delicate to handle. This is given by

EH (1) n,hn (f ) = - An Ef n,hn (x) log Ef n,hn (x) dx.
The remainder of this paper is organized as follows. In Section 2, we state our main results concerning the limiting behavior of H

(1) n,hn (f ) and H

(2) n,hn (f ). Some concluding remarks and possible future developments are mentioned in Section 3. To avoid interrupting the flow of the presentation, all mathematical developments are relegated to Section 4.

Main results

The main result, concerning H

(1) n,h , to be proved here may now be stated precisely as follows.

Theorem 2.1 Let K(•) satisfy (K.1-2-3-4), and let f (•) be a bounded density fulfill (F.1). Let c > 0 and {h n } n≥1 be a sequence of positive constants such that, cn -1 γ -4 n (log n) ≤ h n < 1. Then there exists a positive constant Υ, such that

lim sup n→∞ sup hn≤h≤1 nhγ 4 n |H (1) n,h (f ) -EH (1) n,h (f )| (log(1/h) ∨ log log n) ≤ Υ a.s.
The proof of Theorem 2.1 is postponed until §4.

Let (h ′ n ) n≥1 and (h ′′ n ) n≥1 be two sequences of constants such that 0 < h ′ n < h ′′ n < 1, together with h ′′ n → 0 and for any β > 0, nh ′ n γ 4 n / log n → ∞, as n → ∞.
A direct application of Theorem 2.1 shows that, with probability 1,

sup h ′ n ≤h≤h ′′ n |H (1) n,h (f ) -EH (1) n,h (f )| = O (log(1/h ′ n ) ∨ log log n) nh ′ n γ 4 n .
This, in turn, implies that

lim n→∞ sup h ′ n ≤h≤h ′′ n |H (1) n,h (f ) -EH (1) 
n,h (f )| = 0 a.s.

(2.1)

The following result handles the uniform deviation of the estimate H

(1)

n,hn (f ) with respect to H(f ).

Corollary 2.2 Let K(•) satisfy (K.1-2-3-4), and let f (•) be a uniformly Lipschitz continuous and bounded density on R d , fulfilling (F.1). Then for any β > 0, and for each pair of sequences

0 < h ′ n < h ′′ n ≤ 1 with h ′′ n → 0, nh ′ n γ 4 n / log n → ∞ and | log(h ′′ n )|/ log log n → ∞ as n → ∞, we have lim n→∞ sup h ′ n ≤h≤h ′′ n |H (1) n,h (f ) -H(f )| = 0 a.s. (2.2)
The proof of Corollary 2.2 is postponed until §4.

We note that the main problem in using entropy estimates such as (1.5) is to choose properly the smoothing parameter h n . The uniform in bandwidth consistency result given in (2.2) shows that any choice of h between h ′ n and h ′′ n ensures the consistency of H

(1)

n,h (f ). Now, we shall establish another result in a similar direction for a class of compactly supported densities. We need the following additional conditions.

(F.2) f (•) has a compact support say I, and there exists a constant 0 < M < ∞ such as

sup x∈I ∂ s f (x) ∂x j 1 1 . . . ∂x j d d ≤ M, j 1 + • • • + j d = s.
(K.5) K(•) is of order s, i.e., for some constant S = 0,

R d t j 1 1 . . . t j d d K(t)dt = 0, j 1 , . . . , j d ≥ 0, j 1 + • • • + j d = 1, . . . , s -1, R d |t j 1 1 . . . t j d d |K(t)dt = S, j 1 , . . . , j d ≥ 0, j 1 + • • • + j d = s.
Under the condition (F.2), the differential entropy of f (•) may be written as follows

H(f ) = - I f (x) log (f (x)) dx. Theorem 2.3 Let K(•) satisfy (K.1-2-3-4-5), and let f (•) fulfill (F.1-2).
Then for any β > 0, and

for each pair of sequences 0 < h ′ n < h ′′ n ≤ 1 with h ′′ n → 0 and nh ′ n γ 4 n / log n → ∞ as n → ∞, we have lim sup n→∞ sup h ′ n ≤h≤h ′′ n nhγ 4 n |H (1) n,h (f ) -H(f )| log(1/h) ∨ log log n ≤ ζ(I) a.s., where 
ζ(I) = sup x∈I f (x) R d K 2 (u)du 1/2 .
The proof of Theorem 2.3 is postponed until §4.

To state the our result concerning H

(2) n,hn (f ) we need the following additional conditions.

(F.3) E log 2 f (X) < ∞.
Remark 2.4 Condition (F.3) is extremely weak and is satisfied by all commonly encountered distributions including many important heavy tailed distributions for which the moments do not exists (see. e.g. [START_REF] Song | Limit theorems for nonparametric sample entropy estimators[END_REF]) for more details and references on the subject.

To prove the strong consistency of H

(2)

n,hn we consider the following centering factor

EH (2) n,hn (f ) = 1 n n i=1 1 Ω n,i log (E(f n,hn (x) | X i = x)) .
The main results concerning H

(2)

n,h (f ) is given in the following Theorems.

Theorem 2.5 Let K(•) satisfy (K.1-2-3-4), and let f (•) be a bounded density fulfill (F.1). Let c > 0

and {h n } n≥1 be a sequence of positive constants such that, cn -1 γ -2 n (log n) ≤ h n < 1. Then there exists a positive constant Υ ′ , such that lim sup n→∞ sup hn≤h≤1 nhγ 2 n |H (2) n,h (f ) -EH (2) n,h (f )| (log(1/h) ∨ log log n) ≤ Υ ′ a.s.
The proof of Theorem 2.5 is postponed until §4.

Theorem 2.6 Assuming that the kernel function K(•) is compactly supported and satisfies the conditions (K.1-2-3-4-5). Let f (•) be a bounded density function fulfilling the conditions (F.1-

2-3). Let {h ′ n } n≥1 and {h ′′ n } n≥1 such that h ′ n = An -δ and h ′′ n = Bn -δ with arbitrary choices of 0 < A < B < ∞ and (1/(d + 4)) ≤ δ < 1.
Then for each β > 0 and γ > 0, we have with probability one,

lim sup n→∞ sup h ′ n ≤h≤h ′′ n nhγ 2 n |H (2) n,h (f ) -H(f )| 2 log(1/h) ≤ σ I , (2.3)
where

σ I = 1 γ sup x∈I f (x) R d K 2 (u)du 1/2
, where I is given in (F.2).

The proof of Theorem 2.6 is postponed until §4.

Remark 2.7 Theorem 2.3 leads to the construction of asymptotic 100% certainty interval for the true entropy H(f ), using the techniques developed in [START_REF] Deheuvels | General asymptotic confidence bands based on kernel-type function estimators[END_REF]. We give in what follows, the idea how to construct this interval. Throughout, we let h

∈ [h ′ n , h ′′ n ]
, where h ′ n and h ′′ n are as in Theorem 2.3. We infer from Theorem 2.3 that, for suitably chosen data-dependent functions L n = L n (X 1 , . . . , X n ) > 0, for each 0 < ε < 1 and for any β > 0, we have, as n → ∞,

P 1 L n |H (1) n,h (f ) -H(f )| ≥ 1 + ε → 0. (2.4)
Assuming the validity of the statement (2.4), we obtain asymptotic certainty interval for H(f ) in the following sense. For each 0 < ε < 1, we have, as n → ∞,

P H(f ) ∈ H (1) n,h (f ) -(1 + ε)L n , H (1) 
n,h (f ) + (1 + ε)L n → 1.
(2.5) Whenever (2.5) holds for each 0 < ε < 1, we will say that the interval

H (1) n,h (f ) -L n , H (1) 
n,h (f ) + L n ,
provides asymptotic 100% certainty interval for H(f ).

To construct L n we proceed as follows. Assume that there exists a sequence {I n } n≥1 of strictly nondecreasing compact subsets of I, such that n≥1

I n = I
(for the estimation of the support I we may refer to [START_REF] Devroye | Detection of abnormal behavior via nonparametric estimation of the support[END_REF] and the references therein). Furthermore, suppose that there exists a sequence (possibly random) {ζ n (I n )}, n = 1, 2, . . . , converging to ζ(I) in the sense that

P ζ n (I n ) ζ(I) -1 ≥ ε → 0 as n → ∞ for each ε > 0. (2.6)
Observe that the statement (2.6) is satisfied when the choice

ζ n (I n ) = sup x∈In f n,h (x) R d K 2 (u)du
is considered. Consequently, we may define the quantity L n displayed in the statement (2.4) by

L n = γ 4 n log(1/h) ∨ log log n nh × ζ n (I n ).
Remark 2.8 A practical choice of γ n is β(log n) -α where β > 0 and α ≥ 0. In the case of the density which is bounded away from 0, α is equal to 0.

Remark 2.9 [START_REF] Giné | Uniform in bandwidth estimation of integral functionals of the density function[END_REF] establish uniform in bandwidth consistency for the one-liveout entropy estimator, which is defined by

H n,hn = - 1 n n i=1 log {f n,hn,-i (X i )} ,
where

f n,hn,-i (X i ) = 1/((n -1)h n ) 1≤j =i≤n K ((X i -X j )/h n ) .
Their results hold subject to the condition that the density f (•) is bounded away from 0 on its support.

Concluding remarks and future works

We have addressed the problem of nonparametric estimation of Shannon's entropy. The results presented in this work are general, since the required conditions are fulfilled by a large class of densities. Furthermore, if we assume that the density f (•) is bounded away from 0 on its support, then the rate of the strong convergence is of order {{log(1/h n )}/{nh n }} 1/2 which is the same rate of the strong convergence for the density kernel-type estimators. The evaluation of the integral in (1.5) requires numerical integration and is not easy if f n,hn (•) is a kernel density estimator but it does not involve any stochastic aspects. The integral estimator can however be easily calculated if we approximate f n,hn (•) by piecewise-constant functions on a fine enough partition, for example, f n,hn (•) is a histogram. We mention that in some particular case (K(•) is a double exponential kernel), the approximations are easily calculated since the distribution function corresponding to the kernel K(•) is available, confer [START_REF] Eggermont | Best asymptotic normality of the kernel density entropy estimator for smooth densities[END_REF]. An interesting aspect of the

H (2)
n,hn (f ) is that its rate of convergence is faster than that of H

(1) n,hn (f ) and that is very easy to compute. It will be interesting to enrich our results presented here by an additional uniformity in term of γ n in the supremum appearing in all our theorems, which requires non trivial mathematics, this would go well beyond the scope of the present paper. Another direction of research is to obtain results similar to that in [START_REF] Giné | Uniform in bandwidth estimation of integral functionals of the density function[END_REF] for entropy estimator under general conditions.

Proofs

Proof of Theorem 2.1. We first decompose H

(1) n,hn (f )-EH

(1) n,hn (f ) into the sum of two components, by writing

H (1) n,hn (f ) -EH (1) n,hn (f ) = - An f n,hn (x) log f n,hn (x) dx + An Ef n,hn (x) log Ef n,hn (x) dx = - An {log f n,hn (x) -log Ef n,hn (x)} Ef n,hn (x)dx - An {f n,hn (x) -Ef n,hn (x)} log f n,hn (x)dx := ∆ 1,n,hn + ∆ 2,n,hn . (4.1)
We observe that for all z > 0, |log z| ≤ 1 z -1 + |z -1|. Therefore, we get

| log f n,hn (x) -log Ef n,hn (x)| = log f n,hn (x) Ef n,hn (x) ≤ Ef n,hn (x) f n,hn (x) -1 + f n,hn (x) Ef n,hn (x) -1 = |Ef n,hn (x) -f n,hn (x)| f n,hn (x) + |f n,hn (x) -Ef n,hn (x)| Ef n,hn ( 

x) .

Recalling that A n := {x : f n,hn (x) ≥ γ n }, we readily obtain from these relations that, for any

x ∈ A n , | log f n,hn (x) -log Ef n,hn (x)| ≤ 2 γ n |f n,hn (x) -Ef n,hn (x)| .
We can therefore write, for any n ≥ 1, the inequalities

|∆ 1,n,hn | = An {log f n,hn (x) -log Ef n,hn (x)} Ef n,hn (x)dx ≤ An |log f n,hn (x) -log Ef n,hn (x)| Ef n,hn (x)dx ≤ 2 γ n An |f n,hn (x) -Ef n,hn (x)| Ef n,hn (x)dx ≤ 2 γ n sup x∈An |Ef n,hn (x) -f n,hn (x)| An Ef n,hn (x)dx ≤ 2 γ n sup x∈R d |Ef n,hn (x) -f n,hn (x)| R d
Ef n,hn (x)dx.

In view of (K.4), we have,

R d
Ef n,h (x)dx = 1.

Thus, for any n ≥ 1, we have

|∆ 1,n,hn | ≤ 2 γ n sup x∈R d |Ef n,hn (x) -f n,hn (x)| . (4.2)
We next evaluate the second term ∆ 2,n,hn in the right side of (4.1). Since |log z| ≤ 1 z + z, for all z > 0, we see that

|∆ 2,n,hn | = An {f n,hn (x) -Ef n,hn (x)} log f n,hn (x)dx ≤ An |f n,hn (x) -Ef n,hn (x)| 1 f n,hn (x) + f n,hn (x) dx.
Similarly as above, we get, for any x ∈ A n ,

1 f n,hn (x) + f n,hn (x) = 1 f n,hn (x)f n,hn (x) + 1 f n,hn (x) ≤ 1 γ 2 n + 1 f n,hn (x).
We can therefore write, for any n ≥ 1,

|∆ 2,n,hn | ≤ 1 γ 2 n + 1 An |Ef n,hn (x) -f n,hn (x)| f n,hn (x)dx ≤ 1 γ 2 n + 1 sup x∈An |Ef n,hn (x) -f n,hn (x)| An f n,hn (x)dx ≤ 1 γ 2 n + 1 sup x∈An |Ef n,hn (x) -f n,hn (x)| R d f n,hn (x)dx.
In view of (K.4), we have,

R d f n,h (x)dx = 1.
Thus, for any n ≥ 1, we have

|∆ 2,n,hn | ≤ 1 γ 2 n + 1 sup x∈R d |Ef n,hn (x) -f n,hn (x)| . (4.3)
We now impose some slightly more general assumptions on the kernel K(•) than that of Theorem 2.1. Consider the class of functions

K = K((x -•)/h 1/d ) : h > 0, x ∈ R d . For ε > 0, set N(ε, K) = sup Q N(κε, K, d Q )
, where the supremum is taken over all probability measures Q on (R d , B). Here, d Q denotes the L 2 (Q)-metric and N(κε, K, d Q ) is the minimal number of balls {g : d Q (g, g ′ ) < ε} of d Q -radius ε needed to cover K. We assume that K satisfies the following uniform entropy condition.

(K.6) for some C > 0 and ν > 0,

N(ε, K) ≤ Cε -ν , 0 < ε < 1. (4.4)
Finally, to avoid using outer probability measures in all of statements, we impose the following measurability assumption.

(K.7) K is a pointwise measurable class, that is, there exists a countable subclass K 0 of K such that we can find for any function g ∈ K a sequence of functions {g m : m ≥ 1} in K 0 for which

g m (z) -→ g(z), z ∈ R d .
Remark that condition (K.6) is satisfied whenever (K.1) holds, i.e., K(•) is of bounded variation on R d (in the sense of Hardy and Kauser, see, e.g. [START_REF] Clarkson | On definitions of bounded variation for functions of two variables[END_REF], [START_REF] Vituškin | O mnogomernyh variaciyah[END_REF] and [START_REF] Hobson | The theory of functions of a real variable and the theory of Fourier's series[END_REF]). Condition (K.7) is satisfied whenever (K.2) holds, i.e., K(•) is right continuous (refer to [START_REF] Deheuvels | General asymptotic confidence bands based on kernel-type function estimators[END_REF] and [START_REF] Einmahl | Uniform in bandwidth consistency of kernel-type function estimators[END_REF] and the references therein).

By Theorem 1 of [START_REF] Einmahl | Uniform in bandwidth consistency of kernel-type function estimators[END_REF], whenever K(•) is measurable and satisfies (K.3-4-6-7), and when f (•) is bounded, we have for each c > 0, and for a suitable function Σ(c), with probability 1,

lim sup n→∞ sup cn -1 log n≤h≤1 √ nh f n,h -Ef n,h ∞ log(1/h) ∨ log log n = Σ(c) < ∞, (4.5) 
which implies, in view of (4.2) and (4.3), that, with probability 1,

lim sup n→∞ sup hn≤h<1 nhγ 4 n |∆ 1,n,h | (log(1/h) ∨ log log n) = 0, (4.6) 
and

lim sup n→∞ sup hn≤h<1 nhγ 4 n |∆ 2,n,h | (log(1/h) ∨ log log n) ≤ Υ(c). (4.7)
Recalling (4.1), the proof of Theorem 2.1 is completed by combining (4.6) with (4.7).

Proof of Corollary 2.2. Recall

A n = {x : f n,hn (x) ≥ γ n } and let A c n,β the complement of A n in R d (i.e., A c n,β = {x : f n,hn (x) < γ n }). Observe that |f (x)| ≥ |f n,hn (x)| -|f n,hn (x) -f (x)| ≥ γ n + O(h ′′ n 1/d ).
Recall that | log(h ′′ n )|/ log log n → ∞ as n → ∞, thus, for n enough large, the second term of the last inequality is dominated by the first one, then, we obtain

|f (x)| ≥ γ n .
We repeat the arguments above with the formal change of H

(1) n,hn (f ) by H(f ). We show that, for any n ≥ 1,

| EH (1) n,hn (f ) -H(f )| ≤ A c n,β f (x) log f (x) dx + 1 γ n sup x∈R d |Ef n,hn (x) -f (x)| + 1 γ 2 n + 1 sup x∈R d |Ef n,hn (x) -f (x)| . (4.8)
We have

A c n,β f (x)dx ≤ 1 2 f (x)≤γn f (x)dx + f n,h (x)≤γn≤ 1 2 f (x) f (x)dx ≤ 1 2 f (x)≤γn f (x)dx + 2 R d |f n,h (x) -f (x)|dx.
Observe that we have

1 { 1 2 f (x)≤γn} f (x) ≤ f (x)
and 1 { 1 2 f (x)≤γn} f (x) → 0 as n → ∞, thus an application of Lebesgue dominated convergence theorem gives

lim n→∞ 1 2 f (x)≤γn f (x)dx = 0. (4.9)
Recall that the conditions h n → 0 together with nh n → ∞ as n → ∞, ensure that (see e.g., [START_REF] Devroye | Nonparametric density estimation[END_REF])

lim n→∞ R d |f n,hn (x) -f (x)|dx = 0 a.s. Thus, for all h ∈ [h ′ n , h ′′ n ] such that nh ′ n → ∞ and h ′′ n → 0, as n → ∞, we have lim n→∞ sup h ′ n ≤h≤h ′′ n R d |f n,h (x) -f (x)|dx = 0 a.s. (4.10)
By (4.10) and (4.9) we have

lim n→∞ sup h ′ n ≤h≤h ′′ n A c n,β f (x)dx = 0 a.s. (4.11) Since H(f ) is finite, the measure ν(A) = A | log f (x) |dF(x),
is absolutely continuous with respect to the measure µ(A) = A dF(x), which implies that

lim n→∞ sup h ′ n ≤h≤h ′′ n A c n,β f (x) log f (x) dx = 0 a.s. (4.12)
In the other hand, we know (see, e.g, [START_REF] Einmahl | Uniform in bandwidth consistency of kernel-type function estimators[END_REF]), that when the density f (•) is uniformly Lipschitz and continuous, we have for each

h ′ n < h < h ′′ n , as n → ∞, Ef n,h (x) -f (x) ∞ = O(h ′′ n 1/d ).
(4.13) Thus, we have

lim n→∞ sup h ′ n ≤h≤h ′′ n γ -2 n Ef n,h (x) -f (x) ∞ = 0.
This when combined with (4.8), entails that, as n → ∞, Proof of Theorem 2.3. Under conditions (F.2), (K.5) and using Taylor expansion of order s we get, for x ∈ I,

sup h ′ n ≤h≤h ′′ n EH (1) n,h (f ) -H(f ) → 0. ( 4 
|Ef n,h (x) -f (x)| = h s/d s! k 1 +•••+k d =s t k 1 1 . . . t k d d ∂ s f (x -hθt) ∂x k 1 1 . . . ∂x k d d K(t)dt ,
where θ = (θ 1 , . . . , θ d ) and 0 < θ i < 1, i =, 1, . . . , d. Thus a straightforward application of Lebesgue dominated convergence theorem gives, for n large enough,

sup x∈I |Ef n,h (x) -f (x)| = O(h ′′ n s/d ). (4.15)
Let J be a nonempty compact subset of the interior of I (say I). First, note that we have

lim sup n→∞ sup h ′ n ≤h≤h ′′ n sup x∈J √ nh|f n,h (x) -f (x)| log(1/h) ∨ log log n = sup x∈J f (x) R d K 2 (t)dt 1/2 . (4.16)
Set, for all n ≥ 1,

π n (J) = J f n,hn (x) log f n,hn (x) dx - J f (x) log f (x) dx .
(4.17)

Using condition (F.2) (f (•) is compactly supported), f (•) is bounded away from zero on its support, thus, we have for n enough large, f (x) > 2 n , for all x in the support of f (•). By the same previous arguments we have, for n enough large,

π n (J) ≤ 1 γ n sup x∈J |f n,hn (x) -f (x)| + 1 γ 2 n + 1 sup x∈J |f n,hn (x) -f (x)| .
One finds, by combining the last equation with (4.16),

lim sup n→∞ sup h ′ n ≤h≤h ′′ n nhγ 4 n π n (J) {(log(1/h) ∨ log log n) ≤ sup x∈J f (x) R d K 2 (t)dt 1/2 . (4.18)
Let {J ℓ }, ℓ = 1, 2, . . . , be a sequence of nondecreasing nonempty compact subsets of I such that ℓ≥1 J ℓ = I. Now, from (4.18), it is straightforward to observe that

lim ℓ→∞ lim sup n→∞ sup h ′ n ≤h≤h ′′ n nhγ 4 n π n (J ℓ ) (log(1/h) ∨ log log n) ≤ lim ℓ→∞ sup x∈J ℓ f (x) R d K 2 (t)dt 1/2 ≤ sup x∈I f (x) R d K 2 (t)dt 1/2 .
The proof of Corollary 2.3 is completed.

Proof of Theorem 2.5. Let ϕ n,hn (x) = E(f n,hn (x)). Recall that

H (2) n,hn (f ) -EH (2) n,hn (f ) = - 1 n n i=1 1 Ω n,i log(f n,hn (X i )) + 1 Ω n,i log (ϕ n,hn (X i )) =: Ξ n,hn .
Using a Taylor-Lagrange expansion of the log(•) function, we have, for some random sequence θ n ∈ (0, 1),

Ξ n,hn = 1 n n i=1 1 Ω n,i f n,hn (X i ) -ϕ n,hn (X i ) (1 -θ n )f n,hn (X i ) + θ n ϕ n,hn (X i )
.

Recalling that Ω n,i = f n,hn (X i ) ≥ γ n , we readily obtain, with probability 1,

|Ξ n,hn | ≤ 1 nγ n n i=1 1 Ω n,i |f n,hn (X i ) -ϕ n,hn (X i )| ≤ 1 γ n sup x∈I |f n,hn (x) -ϕ n,hn (x)| = 1 γ n sup x∈I |f n,hn (x) -E(f n,hn (x))| .
Combining the last inequality with (4.5), we readily obtain the desired result.

Proof of Theorem 2.6. We have

H (2) n,hn (f ) -H(f ) = {H (2) n,hn (f ) -EH (2) n,hn (f )} + { EH (2) n,hn (f ) -H(f )}.
Since the first term in the right hand of the last equality is controlled in the preceding proof, it remains only to evaluate the second one. To simplify our exposition, we will decompose EH

(2) n,hn (f )-

H(f ) into the sum of three components, EH (2) n,hn (f ) -H(f ) = - 1 n n i=1 1 Ω n,i log(ϕ n,hn (X i )) + E (log (f (X i ))) = - 1 n n i=1 1 Ω n,i (log(ϕ n,hn (X i )) -log(f (X i ))) - 1 n n i=1 1 Ω n,i log(f (X i )) -log(f (X i )) - 1 n n i=1 (log(f (X i )) -E (log(f (X i )))) =: -∇ 1,n,hn -∇ 2,n,hn -∇ 3,n,hn . (4.19)
In view of (4.19), we have

∇ 1,n,hn = 1 n n i=1 1 Ω n,i (log(ϕ n,h (X i )) -log(f (X i ))) .
Using a Taylor-Lagrange expansion of the log(•) function, we have, for some random sequence

θ n ∈ (0, 1), ∇ 1,n,hn = 1 n n i=1 1 Ω n,i ϕ n,hn (X i ) -f (X i ) (1 -θ n )ϕ n,hn (X i ) + θ n f (X i )
.

By (F.2), there exists an η I such that f (x) > η I for all x ∈ I. It follows that for n enough large that, f (x) > γ n for all x ∈ I. Recalling that Ω n,i = f n,hn (X i ) ≥ γ n , we readily obtain, with probability 1,

|∇ 1,n,hn | ≤ 1 nγ n n i=1 1 Ω n,i |ϕ n,hn (X i ) -f (X i )| ≤ 1 γ n sup x∈I |ϕ n,hn (x) -f (x)| .
We mention that the bandwidth h is to be chosen in such a way that the bias of f n,h (x) may be neglected, in the sense that We next evaluate the second term ∇ 2,n,hn in the right side of (4.19). We have from (4.15) and (4.5)

sup h ′ n ≤h≤h ′′ n sup x∈I f n,h (x) -f (x) = O (log(1/h ′ n ) nh ′ n .
Thus, for n sufficiently large, almost surely, f n,h (x) ≥ (1/2)f (x) for all x ∈ I and all h ∈ [h ′ n , h ′′ n ]. Note that under condition (F.2), the density f (•) is compactly supported, it is possible to find a positive constant η I such as f (x) > η I . This implies that f n,h (x) ≥ η I /2, and thus, for all n enough large, we have, almost surely, (4.22) which implies that, for all n enough large, almost surely, ∇ 2,n,hn = 0. (4.23)

1 Ω n,i = 1,
We finally evaluate the second term ∇ 3,n,hn in the right side of (4.19). We have,

∇ 3,n,hn = - 1 n n i=1 ξ i ,
where, for i = 1, . . . , n, 

ξ i := log{f (X i )} -E log{f (X i )} ,

  which, by the law of the iterated logarithm, tends to 0 as n tends to infinity. Namely, Using (4.24) and (4.23) in connection with Fact 1 completes the proof of Theorem 2.6.

	serve that							
	γ n n	√	nh n 2 log(1/h n ) n i=1 ξ i	=	γ n	√ log(1/h n ) h n log log n	√	n i=1 ξ i 2n log log n
			lim n→∞	sup n ≤h≤h ′′ h ′ n	nhγ 2 n |∇ 3,n,h | 2 log(1/h)	= 0.	(4.24)

are a centered i.i.d. random variables with finite variance Var log(f (X i )) (condition (F.3)). Ob-