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A Kernel-Type Estimators of Shannon’s Entropy
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Universit́e de Paris VI1

Abstract

We establish uniform-in-bandwidth consistency for kernel-type estimators of the differ-

ential entropy. Precisely, in this work, we consider two kernel-type estimators of Shannon’s

entropy. As a consequence, an asymptotic100% confidence interval of entropy is provided.
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1 Introduction and estimation

Let (Xn)n≥1 be a sequence of i.i.d.Rd-valued random vectors,d ≥ 1, with distribution function

F(x) = P(X ≤ x) for x ∈ Rd. We set hereX = (X1, . . . , Xd) ≤ x = (x1, . . . , xd) whenever

Xi ≤ xi, for all i = 1, . . . , d. Assume thatF(·) has a density functionf(·) with respect to Lebesgue

measure onRd. The differential entropy off(·) is defined by the quantity

H(f) = −
∫

Rd

f(x) log (f(x)) dx (1.1)

= −
∫

Rd

log (f(x)) dF(x), (1.2)

whenever this integral is meaningful, and wheredx denotes Lebesgue measure inRd. We will use

the convention that0 log(0) = 0 sinceu log(u) → 0 asu → 0. The differential entropy concept

was introduced by Shannon (1948). Since then and because of numerous potential applications, the

subject has received a considerable interest handling various problems as estimating the quantity

H(f). We refer to Beirlantet al.(1997), and the references therein, for details. The main purpose of

the present paper is to establish uniform in bandwidth consistency of the so-called kernel estimator

∗e-mail: salim.bouzebda@upmc.fr
†e-mail: issam.elhattab@upmc.fr
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of the entropy functionalH(f).

As a first step of our study, we gather hereafter hypotheses needed to establish our results.

(F.1) The functionalH(f) is well-defined by (1.1), in the sense that

|H(f)| < ∞. (1.3)

A kernelK(·) will be any measurable function fulfilling the following conditions.

(K.1) K(·) is of bounded variation onRd;

(K.2) K(·) is right continuous onRd, i.e., for anyt = (t1, . . . , td), we have

K(t1, . . . , td) = lim
ε1↓0,...,εd↓0

K(t1 + ε1, . . . , td + εd);

(K.3) ‖K‖∞ := sup
t∈Rd |K(t)| =: κ < ∞;

(K.4)
∫
Rd K(t)dt = 1.

The well known Akaike-Parzen-Rosenblatt (refer to Akaike (1954), Parzen (1962) and Rosenblatt

(1956)) kernel estimator off(·) is defined, for anyx ∈ Rd, by

fn,hn
(x) = (nhd

n)
−1

n∑

i=1

K((x−Xi)/hn), (1.4)

where0 < hn ≤ 1 is the smoothing parameter.

In a second step, givenfn,hn
(·), we estimateH(f) using the representation (1.1), by setting

H
(1)
n,hn

(f) = −
∫

An

fn,hn
(x) log

(
fn,hn

(x)
)
dx, (1.5)

whereAn := {x : fn,hn
(x) ≥ γn}, andγn ↓ 0 is a sequence of positive constant. Theplug-inesti-

matorH(1)
n,hn

(f) was introduced by Dmitriev and Tarasenko (1973) ford = 1 andAn = [−bn, bn],

wherebn is a specified sequence of constants. The integral estimatorH
(1)
n,hn

(f) can however be eas-

ily calculated if, for example,fn(·) is a histogram. We will consider also theresubstitutionestimate

proposed Ahmad and Lin (1976). In this case, the estimator ofH(f) based on the representation

(1.2) is given by

H
(2)
n,hn

(f) = −1

n

n∑

i=1

1Ωn,i
log (fn,hn

(Xi)) , (1.6)

whereΩn,i := {fn,hn
(Xi) ≥ γn}.

The limiting behavior offn,hn
(·), for appropriate choices of the bandwidthhn, has been exten-

sively investigated in the literature (refer to Devroye andGyörfi (1985) and Prakasa Rao (1983)).
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In particular, under our assumptions, the condition thathn → 0 together withnhn → ∞ is

necessary and sufficient for the convergence in probabilityof fn,hn
(x) towards the limitf(x),

independently ofx ∈ Rd and the densityf(·). Various uniform consistency results involving

the estimatorfn,hn
(·) have been recently established. We refer to Deheuvels and Mason (2004),

Einmahl and Mason (2005), Giné and Mason (2008). In this paper we will use their methods to

establish convergence results for the estimatesH
(1)
n,hn

(f) andH(2)
n,hn

(f) of H(f) in the similar spirit

of Bouzebda and Elhattab (2009, 2010). To prove the strong consistency ofH(1)
n,hn

, we shall con-

sider another, but more appropriate and more computationally convenient, centering factor than the

expectationEH(1)
n,hn

, which is delicate to handle. This is given by

ÊH
(1)
n,hn

(f) = −
∫

An

Efn,hn
(x) log

(
Efn,hn

(x)
)
dx.

The remainder of this paper is organized as follows. In Section 2, we state our main results con-

cerning the limiting behavior ofH(1)
n,hn

(f) andH(2)
n,hn

(f). Some concluding remarks and possible

future developments are mentioned in Section 3. To avoid interrupting the flow of the presentation,

all mathematical developments are relegated to Section 4.

2 Main results

The main result, concerningH(1)
n,h, to be proved here may now be stated precisely as follows.

Theorem 2.1 LetK(·) satisfy(K.1-2-3-4), and letf(·) be a bounded density fulfill(F.1). Letc > 0

and{hn}n≥1 be a sequence of positive constants such that,cn−1γ−4
n (log n) ≤ hn < 1. Then there

exists a positive constantΥ, such that

lim sup
n→∞

sup
hn≤h≤1

√
nhγ4

n|H
(1)
n,h(f)− ÊH

(1)
n,h(f)|√

(log(1/h) ∨ log logn)
≤ Υ a.s.

The proof of Theorem 2.1 is postponed until§4.

Let (h′
n)n≥1 and(h′′

n)n≥1 be two sequences of constants such that0 < h′
n < h′′

n < 1, together with

h′′
n → 0 and for anyβ > 0, nh′

nγ
4
n/ logn → ∞, asn → ∞. A direct application of Theorem 2.1

shows that, with probability 1,

sup
h′

n≤h≤h′′

n

|H(1)
n,h(f)− ÊH

(1)
n,h(f)| = O

(√
(log(1/h′

n) ∨ log log n)

nh′
nγ

4
n

)
.

This, in turn, implies that

lim
n→∞

sup
h′

n≤h≤h′′

n

|H(1)
n,h(f)− ÊH

(1)
n,h(f)| = 0 a.s. (2.1)

The following result handles the uniform deviation of the estimateH(1)
n,hn

(f) with respect toH(f).

3



Corollary 2.2 LetK(·) satisfy(K.1-2-3-4), and letf(·) be a uniformly Lipschitz continuous and

bounded density onRd, fulfilling (F.1). Then for anyβ > 0, and for each pair of sequences

0 < h′
n < h′′

n ≤ 1 with h′′
n → 0, nh′

nγ
4
n/ logn → ∞ and | log(h′′

n)|/ log logn → ∞ asn → ∞, we

have

lim
n→∞

sup
h′

n≤h≤h′′

n

|H(1)
n,h(f)−H(f)| = 0 a.s. (2.2)

The proof of Corollary 2.2 is postponed until§4.

We note that the main problem in using entropy estimates suchas (1.5) is to choose properly the

smoothing parameterhn. The uniform in bandwidth consistency result given in (2.2)shows that any

choice ofh betweenh′
n andh′′

n ensures the consistency ofH
(1)
n,h(f). Now, we shall establish another

result in a similar direction for a class of compactly supported densities. We need the following

additional conditions.

(F.2) f(·) has a compact support sayI, and there exists a constant0 < M < ∞ such as

sup
x∈I

∣∣∣∣∣
∂sf(x)

∂xj1
1 . . . ∂xjd

d

∣∣∣∣∣ ≤ M, j1 + · · ·+ jd = s.

(K.5) K(·) is of orders, i.e., for some constantS 6= 0,

∫

Rd

tj11 . . . tjdd K(t)dt = 0, j1, . . . , jd ≥ 0, j1 + · · ·+ jd = 1, . . . , s− 1,
∫

Rd

|tj11 . . . tjdd |K(t)dt = S, j1, . . . , jd ≥ 0, j1 + · · ·+ jd = s.

Under the condition (F.2), the differential entropy off(·) may be written as follows

H(f) = −
∫

I

f(x) log (f(x)) dx.

Theorem 2.3 LetK(·) satisfy(K.1-2-3-4-5), and letf(·) fulfill (F.1-2). Then for anyβ > 0, and

for each pair of sequences0 < h′
n < h′′

n ≤ 1 with h′′
n → 0 andnh′

nγ
4
n/ logn → ∞ asn → ∞, we

have

lim sup
n→∞

sup
h′

n≤h≤h′′

n

√
nhγ4

n|H
(1)
n,h(f)−H(f)|

√
log(1/h) ∨ log logn

≤ ζ(I) a.s.,

where

ζ(I) = sup
x∈I

{
f(x)

∫

Rd

K2(u)du

}1/2

.
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The proof of Theorem 2.3 is postponed until§4.

To state the our result concerningH(2)
n,hn

(f) we need the following additional conditions.

(F.3) E

[
log2

(
f(X)

)]
< ∞.

Remark 2.4 Condition(F.3) is extremely weak and is satisfied by all commonly encountered dis-

tributions including many important heavy tailed distributions for which the moments do not exists

(see. e.g. Song (2000)) for more details and references on the subject.

To prove the strong consistency ofH
(2)
n,hn

we consider the following centering factor

ÊH
(2)
n,hn

(f) =
1

n

n∑

i=1

1Ωn,i
log (E(fn,hn

(x) | Xi = x)) .

The main results concerningH(2)
n,h(f) is given in the following Theorems.

Theorem 2.5 LetK(·) satisfy(K.1-2-3-4), and letf(·) be a bounded density fulfill(F.1). Letc > 0

and{hn}n≥1 be a sequence of positive constants such that,cn−1γ−2
n (log n) ≤ hn < 1. Then there

exists a positive constantΥ′, such that

lim sup
n→∞

sup
hn≤h≤1

√
nhγ2

n|H
(2)
n,h(f)− ÊH

(2)
n,h(f)|√

(log(1/h) ∨ log log n)
≤ Υ′ a.s.

The proof of Theorem 2.5 is postponed until§4.

Theorem 2.6 Assuming that the kernel functionK(·) is compactly supported and satisfies the

conditions(K.1-2-3-4-5). Let f(·) be a bounded density function fulfilling the conditions(F.1-

2-3). Let {h′
n}n≥1 and{h′′

n}n≥1 such thath′
n = An−δ andh′′

n = Bn−δ with arbitrary choices of

0 < A < B < ∞ and (1/(d + 4)) ≤ δ < 1. Then for eachβ > 0 and γ > 0, we have with

probability one,

lim sup
n→∞

sup
h′

n≤h≤h′′

n

√
nhγ2

n|H
(2)
n,h(f)−H(f)|

√
2 log(1/h)

≤ σI, (2.3)

where

σI =
1

γ

{
sup
x∈I

f(x)

∫

Rd

K2(u)du

}1/2

,

whereI is given in(F.2).

The proof of Theorem 2.6 is postponed until§4.
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Remark 2.7 Theorem 2.3 leads to the construction of asymptotic100% certainty interval for the

true entropyH(f), using the techniques developed in Deheuvels and Mason (2004). We give in

what follows, the idea how to construct this interval. Throughout, we leth ∈ [h′
n, h

′′
n], whereh′

n

andh′′
n are as in Theorem 2.3. We infer from Theorem 2.3 that, for suitably chosen data-dependent

functionsLn = Ln(X1, . . . , Xn) > 0, for each0 < ε < 1 and for anyβ > 0, we have, asn → ∞,

P

(
1

Ln

|H(1)
n,h(f)−H(f)| ≥ 1 + ε

)
→ 0. (2.4)

Assuming the validity of the statement (2.4), we obtain asymptotic certainty interval forH(f) in

the following sense. For each0 < ε < 1, we have, asn → ∞,

P

(
H(f) ∈

[
H

(1)
n,h(f)− (1 + ε)Ln, H

(1)
n,h(f) + (1 + ε)Ln

])
→ 1. (2.5)

Whenever (2.5) holds for each0 < ε < 1, we will say that the interval

[
H

(1)
n,h(f)− Ln, H

(1)
n,h(f) + Ln

]
,

provides asymptotic100% certainty interval forH(f).

To constructLn we proceed as follows. Assume that there exists a sequence{In}n≥1 of strictly

nondecreasing compact subsets ofI, such that

⋃

n≥1

In = I

(for the estimation of the supportI we may refer to Devroye and Wise (1980) and the references

therein). Furthermore, suppose that there exists a sequence(possibly random) {ζn(In)}, n =

1, 2, . . . , converging toζ(I) in the sense that

P

(∣∣∣∣
ζn(In)

ζ(I)
− 1

∣∣∣∣ ≥ ε

)
→ 0 as n → ∞ for each ε > 0. (2.6)

Observe that the statement (2.6) is satisfied when the choice

ζn(In) = sup
x∈In

√
fn,h(x)

∫

Rd

K2(u)du

is considered. Consequently, we may define the quantityLn displayed in the statement (2.4) by

Ln =

√
γ4
n

(
log(1/h) ∨ log log n

)

nh
× ζn(In).

Remark 2.8 A practical choice ofγn is β(logn)−α whereβ > 0 andα ≥ 0. In the case of the

density which is bounded away from0, α is equal to0.
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Remark 2.9 Giné and Mason (2008) establish uniform in bandwidth consistency for the one-live-

out entropy estimator, which is defined by

Ĥn,hn
= −1

n

n∑

i=1

log {fn,hn,−i(Xi)} ,

where

fn,hn,−i(Xi) = 1/((n− 1)hn)
∑

1≤j 6=i≤n

K ((Xi −Xj)/hn) .

Their results hold subject to the condition that the densityf(·) is bounded away from0 on its

support.

3 Concluding remarks and future works

We have addressed the problem of nonparametric estimation of Shannon’s entropy. The results

presented in this work are general, since the required conditions are fulfilled by a large class of

densities. Furthermore, if we assume that the densityf(·) is bounded away from0 on its support,

then the rate of the strong convergence is of order{{log(1/hn)}/{nhn}}1/2 which is the same rate

of the strong convergence for the density kernel-type estimators. The evaluation of the integral in

(1.5) requires numerical integration and is not easy iffn,hn
(·) is a kernel density estimator but it

does not involve any stochastic aspects. The integral estimator can however be easily calculated if

we approximatefn,hn
(·) by piecewise-constant functions on a fine enough partition,for example,

fn,hn
(·) is a histogram. We mention that in some particular case (K(·) is a double exponential

kernel), the approximations are easily calculated since the distribution function corresponding to

the kernelK(·) is available, confer Eggermont and LaRiccia (1999). An interesting aspect of the

H
(2)
n,hn

(f) is that its rate of convergence is faster than that ofH
(1)
n,hn

(f) and that is very easy to

compute. It will be interesting to enrich our results presented here by an additional uniformity in

term ofγn in the supremum appearing in all our theorems, which requires non trivial mathematics,

this would go well beyond the scope of the present paper. Another direction of research is to obtain

results similar to that in Giné and Mason (2008) for entropyestimator under general conditions.
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4 Proofs

Proof of Theorem 2.1. We first decomposeH(1)
n,hn

(f)−ÊH
(1)
n,hn

(f) into the sum of two components,

by writing

H
(1)
n,hn

(f)− ÊH
(1)
n,hn

(f)

= −
∫

An

fn,hn
(x) log

(
fn,hn

(x)
)
dx

+

∫

An

Efn,hn
(x) log

(
Efn,hn

(x)
)
dx

= −
∫

An

{log fn,hn
(x)− logEfn,hn

(x)}Efn,hn
(x)dx

−
∫

An

{fn,hn
(x)− Efn,hn

(x)} log fn,hn
(x)dx

:= ∆1,n,hn
+∆2,n,hn

. (4.1)

We observe that for allz > 0, |log z| ≤
∣∣ 1
z
− 1
∣∣+ |z − 1|. Therefore, we get

| log fn,hn
(x)− logEfn,hn

(x)| =
∣∣∣∣log

fn,hn
(x)

Efn,hn
(x)

∣∣∣∣

≤
∣∣∣∣
Efn,hn

(x)

fn,hn
(x)

− 1

∣∣∣∣ +
∣∣∣∣
fn,hn

(x)

Efn,hn
(x)

− 1

∣∣∣∣

=
|Efn,hn

(x)− fn,hn
(x)|

fn,hn
(x)

+
|fn,hn

(x)− Efn,hn
(x)|

Efn,hn
(x)

.

Recalling thatAn := {x : fn,hn
(x) ≥ γn}, we readily obtain from these relations that, for any

x ∈ An,

| log fn,hn
(x)− logEfn,hn

(x)| ≤ 2

γn
|fn,hn

(x)− Efn,hn
(x)| .

We can therefore write, for anyn ≥ 1, the inequalities

|∆1,n,hn
| =

∣∣∣∣
∫

An

{log fn,hn
(x)− logEfn,hn

(x)}Efn,hn
(x)dx

∣∣∣∣

≤
∫

An

|log fn,hn
(x)− logEfn,hn

(x)|Efn,hn
(x)dx

≤ 2

γn

∫

An

|fn,hn
(x)− Efn,hn

(x)|Efn,hn
(x)dx

≤ 2

γn
sup
x∈An

|Efn,hn
(x)− fn,hn

(x)|
∫

An

Efn,hn
(x)dx

≤ 2

γn
sup
x∈Rd

|Efn,hn
(x)− fn,hn

(x)|
∫

Rd

Efn,hn
(x)dx.

In view of (K.4), we have,
∫

Rd

Efn,h(x)dx = 1.
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Thus, for anyn ≥ 1, we have

|∆1,n,hn
| ≤ 2

γn
sup
x∈Rd

|Efn,hn
(x)− fn,hn

(x)| . (4.2)

We next evaluate the second term∆2,n,hn
in the right side of (4.1). Since|log z| ≤ 1

z
+ z, for all

z > 0, we see that

|∆2,n,hn
| =

∣∣∣∣
∫

An

{fn,hn
(x)− Efn,hn

(x)} log fn,hn
(x)dx

∣∣∣∣

≤
∫

An

|fn,hn
(x)− Efn,hn

(x)|
[

1

fn,hn
(x)

+ fn,hn
(x)

]
dx.

Similarly as above, we get, for anyx ∈ An,

1

fn,hn
(x)

+ fn,hn
(x) =

(
1

fn,hn
(x)fn,hn

(x)
+ 1

)
fn,hn

(x)

≤
( 1

γ2
n

+ 1
)
fn,hn

(x).

We can therefore write, for anyn ≥ 1,

|∆2,n,hn
|

≤
( 1

γ2
n

+ 1
)∫

An

|Efn,hn
(x)− fn,hn

(x)| fn,hn
(x)dx

≤
( 1

γ2
n

+ 1
)
sup
x∈An

|Efn,hn
(x)− fn,hn

(x)|
∫

An

fn,hn
(x)dx

≤
( 1

γ2
n

+ 1
)
sup
x∈An

|Efn,hn
(x)− fn,hn

(x)|
∫

Rd

fn,hn
(x)dx.

In view of (K.4), we have,
∫

Rd

fn,h(x)dx = 1.

Thus, for anyn ≥ 1, we have

|∆2,n,hn
| ≤

( 1

γ2
n

+ 1
)
sup
x∈Rd

|Efn,hn
(x)− fn,hn

(x)| . (4.3)

We now impose some slightly more general assumptions on the kernelK(·) than that of Theorem

2.1. Consider the class of functions

K =
{
K((x− ·)/h1/d) : h > 0, x ∈ R

d
}
.

For ε > 0, setN(ε,K) = supQN(κε,K, dQ), where the supremum is taken over all probability

measuresQ on (Rd,B). Here,dQ denotes theL2(Q)-metric andN(κε,K, dQ) is the minimal

number of balls{g : dQ(g, g
′) < ε} of dQ-radiusε needed to coverK. We assume thatK satisfies

the following uniform entropy condition.
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(K.6) for someC > 0 andν > 0,

N(ε,K) ≤ Cε−ν, 0 < ε < 1. (4.4)

Finally, to avoid using outer probability measures in all ofstatements, we impose the following

measurability assumption.

(K.7) K is a pointwise measurable class, that is, there exists a countable subclassK0 of K such that

we can find for any functiong ∈ K a sequence of functions{gm : m ≥ 1} in K0 for which

gm(z) −→ g(z), z ∈ R
d.

Remark that condition (K.6) is satisfied whenever (K.1) holds, i.e.,K(·) is of bounded variation on

Rd (in the sense of Hardy and Kauser, see, e.g. Clarkson and Adams (1933), Vituškin (1955) and

Hobson (1958)). Condition (K.7) is satisfied whenever (K.2)holds, i.e.,K(·) is right continuous

(refer to Deheuvels and Mason (2004) and Einmahl and Mason (2005) and the references therein).

By Theorem1 of Einmahl and Mason (2005), wheneverK(·) is measurable and satisfies (K.3-4-

6-7), and whenf(·) is bounded, we have for eachc > 0, and for a suitable functionΣ(c), with

probability 1,

lim sup
n→∞

sup
cn−1 logn≤h≤1

√
nh‖fn,h − Efn,h‖∞√
log(1/h) ∨ log log n

= Σ(c) < ∞, (4.5)

which implies, in view of (4.2) and (4.3), that, with probability 1,

lim sup
n→∞

sup
hn≤h<1

√
nhγ4

n|∆1,n,h|√
(log(1/h) ∨ log log n)

= 0, (4.6)

and

lim sup
n→∞

sup
hn≤h<1

√
nhγ4

n|∆2,n,h|√
(log(1/h) ∨ log log n)

≤ Υ(c). (4.7)

Recalling (4.1), the proof of Theorem 2.1 is completed by combining (4.6) with (4.7). �

Proof of Corollary 2.2. RecallAn = {x : fn,hn
(x) ≥ γn} and letAc

n,β the complement ofAn in

Rd (i.e.,Ac
n,β = {x : fn,hn

(x) < γn}). Observe that

|f(x)| ≥ |fn,hn
(x)| − |fn,hn

(x)− f(x)| ≥ γn +O(h′′
n
1/d

).

Recall that| log(h′′
n)|/ log log n → ∞ asn → ∞, thus, forn enough large, the second term of the

last inequality is dominated by the first one, then, we obtain

|f(x)| ≥ γn.

10



We repeat the arguments above with the formal change ofH
(1)
n,hn

(f) by H(f). We show that, for

anyn ≥ 1,

|ÊH(1)
n,hn

(f)−H(f)|

≤
∣∣∣∣∣

∫

Ac
n,β

f(x) log
(
f(x)

)
dx

∣∣∣∣∣

+
1

γn
sup
x∈Rd

|Efn,hn
(x)− f(x)|

+
( 1

γ2
n

+ 1
)
sup
x∈Rd

|Efn,hn
(x)− f(x)| . (4.8)

We have

∫

Ac
n,β

f(x)dx ≤
∫

1

2
f(x)≤γn

f(x)dx+

∫

fn,h(x)≤γn≤
1

2
f(x)

f(x)dx

≤
∫

1

2
f(x)≤γn

f(x)dx+ 2

∫

Rd

|fn,h(x)− f(x)|dx.

Observe that we have

1{ 1

2
f(x)≤γn}f(x) ≤ f(x)

and1{ 1

2
f(x)≤γn}f(x) → 0 asn → ∞, thus an application of Lebesgue dominated convergence

theorem gives

lim
n→∞

∫

1

2
f(x)≤γn

f(x)dx = 0. (4.9)

Recall that the conditionshn → 0 together withnhn → ∞ asn → ∞, ensure that (see e.g.,

Devroye and Györfi (1985))

lim
n→∞

∫

Rd

|fn,hn
(x)− f(x)|dx = 0 a.s.

Thus, for allh ∈ [h′
n, h

′′
n] such thatnh′

n → ∞ andh′′
n → 0, asn → ∞, we have

lim
n→∞

sup
h′

n≤h≤h′′

n

∫

Rd

|fn,h(x)− f(x)|dx = 0 a.s. (4.10)

By (4.10) and (4.9) we have

lim
n→∞

sup
h′

n≤h≤h′′

n

∫

Ac
n,β

f(x)dx = 0 a.s. (4.11)

SinceH(f) is finite, the measure

ν(A) =

∫

A

| log
(
f(x)

)
|dF(x),

11



is absolutely continuous with respect to the measureµ(A) =
∫
A
dF(x), which implies that

lim
n→∞

sup
h′

n≤h≤h′′

n

∫

Ac
n,β

f(x) log
(
f(x)

)
dx = 0 a.s. (4.12)

In the other hand, we know (see, e.g, Einmahl and Mason (2005)), that when the densityf(·) is

uniformly Lipschitz and continuous, we have for eachh′
n < h < h′′

n, asn → ∞,

‖Efn,h(x)− f(x)‖∞ = O(h′′
n
1/d

). (4.13)

Thus, we have

lim
n→∞

sup
h′

n≤h≤h′′

n

γ−2
n ‖Efn,h(x)− f(x)‖∞ = 0.

This when combined with (4.8), entails that, asn → ∞,

sup
h′

n≤h≤h′′

n

‖ÊH(1)
n,h(f)−H(f)‖ → 0. (4.14)

By (4.11) and (4.14) in connection with (2.1) imply (2.2). �

Proof of Theorem 2.3. Under conditions (F.2), (K.5) and using Taylor expansion oforders we

get, forx ∈ I,

|Efn,h(x)− f(x)| = hs/d

s!

∣∣∣∣∣

∫ ∑

k1+···+kd=s

tk11 . . . tkdd
∂sf(x− hθt)

∂xk1
1 . . . ∂xkd

d

K(t)dt

∣∣∣∣∣ ,

whereθ = (θ1, . . . , θd) and 0 < θi < 1, i =, 1, . . . , d. Thus a straightforward application of

Lebesgue dominated convergence theorem gives, forn large enough,

sup
x∈I

|Efn,h(x)− f(x)| = O(h′′
n
s/d

). (4.15)

Let J be a nonempty compact subset of the interior ofI (saẙI). First, note that we have

lim sup
n→∞

sup
h′

n≤h≤h′′

n

sup
x∈J

√
nh|fn,h(x)− f(x)|√
log(1/h) ∨ log logn

= sup
x∈J

{
f(x)

∫

Rd

K2(t)dt

}1/2

. (4.16)

Set, for alln ≥ 1,

πn(J) =

∣∣∣∣
∫

J

fn,hn
(x) log

(
fn,hn

(x)
)
dx−

∫

J

f(x) log
(
f(x)

)
dx

∣∣∣∣ . (4.17)

Using condition (F.2) (f(·) is compactly supported),f(·) is bounded away from zero on its support,

thus, we have forn enough large,f(x) > 2n, for all x in the support off(·). By the same previous

arguments we have, forn enough large,

πn(J) ≤ 1

γn
sup
x∈J

|fn,hn
(x)− f(x)|

+
( 1

γ2
n

+ 1
)
sup
x∈J

|fn,hn
(x)− f(x)| .

12



One finds, by combining the last equation with (4.16),

lim sup
n→∞

sup
h′

n≤h≤h′′

n

√
nhγ4

n πn(J)√
{(log(1/h) ∨ log log n)

≤ sup
x∈J

{
f(x)

∫

Rd

K2(t)dt

}1/2

. (4.18)

Let {Jℓ}, ℓ = 1, 2, . . . , be a sequence of nondecreasing nonempty compact subsets ofI̊ such that

⋃

ℓ≥1

Jℓ = I.

Now, from (4.18), it is straightforward to observe that

lim
ℓ→∞

lim sup
n→∞

sup
h′

n≤h≤h′′

n

√
nhγ4

nπn(Jℓ)√
(log(1/h) ∨ log log n)

≤ lim
ℓ→∞

sup
x∈Jℓ

{
f(x)

∫

Rd

K2(t)dt

}1/2

≤ sup
x∈I

{
f(x)

∫

Rd

K2(t)dt

}1/2

.

The proof of Corollary 2.3 is completed. �

Proof of Theorem 2.5. Let ϕn,hn
(x) = E(fn,hn

(x)). Recall that

H
(2)
n,hn

(f)− ÊH
(2)
n,hn

(f) = −1

n

n∑

i=1

1Ωn,i
log(fn,hn

(Xi)) + 1Ωn,i
log (ϕn,hn

(Xi))

=: Ξn,hn
.

Using a Taylor-Lagrange expansion of thelog(·) function, we have, for some random sequence

θn ∈ (0, 1),

Ξn,hn
=

1

n

n∑

i=1

1Ωn,i

[
fn,hn

(Xi)− ϕn,hn
(Xi)

(1− θn)fn,hn
(Xi) + θnϕn,hn

(Xi)

]
.

Recalling thatΩn,i =
{
fn,hn

(Xi) ≥ γn
}

, we readily obtain, with probability 1,

|Ξn,hn
| ≤ 1

nγn

n∑

i=1

1Ωn,i
|fn,hn

(Xi)− ϕn,hn
(Xi)|

≤ 1

γn
sup
x∈I

|fn,hn
(x)− ϕn,hn

(x)|

=
1

γn
sup
x∈I

|fn,hn
(x)− E(fn,hn

(x))| .

Combining the last inequality with (4.5), we readily obtainthe desired result. �

Proof of Theorem 2.6. We have

H
(2)
n,hn

(f)−H(f) = {H(2)
n,hn

(f)− ÊH
(2)
n,hn

(f)}+ {ÊH(2)
n,hn

(f)−H(f)}.

Since the first term in the right hand of the last equality is controlled in the preceding proof, it re-

mains only to evaluate the second one. To simplify our exposition, we will decomposêEH(2)
n,hn

(f)−

13



H(f) into the sum of three components,

ÊH
(2)
n,hn

(f)−H(f) = −1

n

n∑

i=1

1Ωn,i
log(ϕn,hn

(Xi)) + E (log (f(Xi)))

= −1

n

n∑

i=1

1Ωn,i
(log(ϕn,hn

(Xi))− log(f(Xi)))

−1

n

n∑

i=1

(
1Ωn,i

log(f(Xi))− log(f(Xi))
)

−1

n

n∑

i=1

(log(f(Xi))− E (log(f(Xi))))

=: −∇1,n,hn
−∇2,n,hn

−∇3,n,hn
. (4.19)

In view of (4.19), we have

∇1,n,hn
=

1

n

n∑

i=1

1Ωn,i
(log(ϕn,h(Xi))− log(f(Xi))) .

Using a Taylor-Lagrange expansion of thelog(·) function, we have, for some random sequence

θn ∈ (0, 1),

∇1,n,hn
=

1

n

n∑

i=1

1Ωn,i

[
ϕn,hn

(Xi)− f(Xi)

(1− θn)ϕn,hn
(Xi) + θnf(Xi)

]
.

By (F.2), there exists anηI such thatf(x) > ηI for all x ∈ I. It follows that forn enough large

that,f(x) > γn for all x ∈ I. Recalling thatΩn,i =
{
fn,hn

(Xi) ≥ γn
}

, we readily obtain, with

probability 1,

|∇1,n,hn
| ≤ 1

nγn

n∑

i=1

1Ωn,i
|ϕn,hn

(Xi)− f(Xi)|

≤ 1

γn
sup
x∈I

|ϕn,hn
(x)− f(x)| .

We mention that the bandwidthh is to be chosen in such a way that the bias offn,h(x) may be

neglected, in the sense that

lim
n→∞

sup
h′

n≤h≤h′′

n

{
nh

2 log(1/h)

}1/2

sup
x∈I

∣∣ϕn,h(x)− f(x)
∣∣ = 0, (4.20)

which is implied by (4.15). Thus,

lim sup
n→∞

sup
h′

n≤h≤h′′

n

√
nhγ2

n|∇1,n,h|√
2 log(1/h)

= 0. (4.21)

We next evaluate the second term∇2,n,hn
in the right side of (4.19). We have from (4.15) and (4.5)

sup
h′

n≤h≤h′′

n

sup
x∈I

∣∣fn,h(x)− f(x)
∣∣ = O

(√
(log(1/h′

n)

nh′
n

)
.
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Thus, forn sufficiently large, almost surely,fn,h(x) ≥ (1/2)f(x) for all x ∈ I and allh ∈ [h′
n, h

′′
n].

Note that under condition (F.2), the densityf(·) is compactly supported, it is possible to find a

positive constantηI such asf(x) > ηI. This implies thatfn,h(x) ≥ ηI/2, and thus, for alln enough

large, we have, almost surely,

1Ωn,i
= 1, (4.22)

which implies that, for alln enough large, almost surely,

∇2,n,hn
= 0. (4.23)

We finally evaluate the second term∇3,n,hn
in the right side of (4.19). We have,

∇3,n,hn
= −1

n

n∑

i=1

ξi,

where, fori = 1, . . . , n,

ξi := log{f(Xi)} − E

(
log{f(Xi)}

)
,

are a centered i.i.d. random variables with finite variance Var
(
log(f(Xi))

)
(condition (F.3)). Ob-

serve that

γn
n

√
nhn

∑n
i=1 ξi√

2 log(1/hn)
=

γn
√
hn log log n√
log(1/hn)

∑n
i=1 ξi√

2n log log n

which, by the law of the iterated logarithm, tends to0 asn tends to infinity. Namely,

lim
n→∞

sup
h′

n≤h≤h′′

n

√
nhγ2

n|∇3,n,h|√
2 log(1/h)

= 0. (4.24)

Using (4.24) and (4.23) in connection with Fact 1 completes the proof of Theorem 2.6. �
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