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A Kernel-Type Estimators of Shannon’s Entropy
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Universié de Paris Vi

Abstract

We establish uniform-in-bandwidth consistency for kettyple estimators of the differ-
ential entropy. Precisely, in this work, we consider tworleditype estimators of Shannon’s
entropy. As a consequence, an asymptoiie’ confidence interval of entropy is provided.
AMS Subject Classificatior82F12 ; 62F03 ; 62G30 ; 60F17 ; 62E20.
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1 Introduction and estimation

Let (X,),-, be a sequence of i.i.dR*-valued random vectorg, > 1, with distribution function
F(x) = P(X < x) for x € RY. We set her&X = (X,...,X,) < x = (1,...,74) Whenever
X; <uz;foralli =1,... d. Assume thaF(-) has a density functiofi(-) with respect to Lebesgue

measure ofR?. The differential entropy of (-) is defined by the quantity

1) == [ 160105 (7)) dx D)
—— [ 0w (7)) dF(x), (12)

whenever this integral is meaningful, and whexredenotes Lebesgue measuréih We will use
the convention thal log(0) = 0 sinceulog(u) — 0 asu — 0. The differential entropy concept
was introduced by Shanncn (1948). Since then and becausengrous potential applications, the
subject has received a considerable interest handlinguaproblems as estimating the quantity
H(f). We refer to Beirlanet al. (1997), and the references therein, for details. The maioqae of

the present paper is to establish uniform in bandwidth ebascy of the so-called kernel estimator

*e-mail: salim.bouzebda@upmc.fr
fe-mail: issam.elhattab@upmc.fr



of the entropy functional (f).

As a first step of our study, we gather hereafter hypothessdaukto establish our results.

(F.1) The functionalH ( f) is well-defined by[(1]1), in the sense that

|H(f)| < oc. (1.3)

A kernel K (-) will be any measurable function fulfilling the following cditions.
(K.1) K(-) is of bounded variation oR;
(K.2) K(-)isright continuous ofR?, i.e., for anyt = (¢,,...,t;), we have

K(ty,...,tg) = lm K(t; +e1,...,tq+ €q);
€10,...,64J0

(K.3) || K||oo := supgepa | K ()] =: £ < 003

(K.4) [pu K(t)dt = 1.

The well known Akaike-Parzen-Rosenblatt (refer to Akaik®54), Parzen (1962) and Rosenblatt
(1956)) kernel estimator of(-) is defined, for ank € R¢, by

fonn (x) = (nhd)~ ZK (x — X;)/hy), (1.4)

where0 < h,, < 1is the smoothing parameter.

In a second step, giveh, , (+), we estimatdd ( f) using the representation (1.1), by setting

) (f)=- ’ o (%) 10g (fropn (X)) %, (1.5)

whereA,, = {x: f, 5. (x) > 7.}, andv, | 0 is a sequence of positive constant. Teg-in esti-
matorH,f,)Ln(f) was introduced by Dmitriev and Tarasenko (1973)dor 1 and A,, = [—b,, by],
whereb,, is a specified sequence of constants. The integral estirﬁéjﬁgy( f) can however be eas-
ily calculated if, for examplef, (-) is a histogram. We will consider also thesubstitutiorestimate

proposed Ahmad and Lin (1976). In this case, the estimatdf (¢f) based on the representation
(1.2) is given by
1 n
H () = =3 Lo, 108 (fus, (X)), (1.6)
=1
whereQ,,; := { fun, (Xi) = 7}

The limiting behavior off,, ;, (), for appropriate choices of the bandwidil, has been exten-

sively investigated in the literature (refer/to Devroye &brfl (1985) and Prakasa Rao (1983)).
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In particular, under our assumptions, the condition that— 0 together withnh,, — oo is
necessary and sufficient for the convergence in probalolfity,, ;, (x) towards the limitf(x),
independently ofk € R? and the densityf(-). Various uniform consistency results involving
the estimatorf,, ;. () have been recently established. We refer to Deheuvels asdM@004),
Einmahl and Mason (2005), Giné and Mason (2008). In thiepage will use their methods to
(f) of H(f) in the similar spirit
of Bouzebda and Elhattab (2009, 2010). To prove the strongistency ofHS,)Ln, we shall con-

establish convergence results for the estimﬁiﬁ‘%ﬂ( andHnQ,)Ln
sider another, but more appropriate and more computalyjor@tvenient, centering factor than the

expectatioriEHf:,)M, which is delicate to handle. This is given by

A~

BH),(£) =~ [ Efun, ()10 (Efun, () dx
Anp

The remainder of this paper is organized as follows. In 8ai, we state our main results con-
cerning the limiting behavior oHS,’Ln(f) andHf,)Ln(f). Some concluding remarks and possible
future developments are mentioned in Sedfion 3. To avoatriapting the flow of the presentation,

all mathematical developments are relegated to Selction 4.

2 Main results

The main result, concernin@fﬁ,’l, to be proved here may now be stated precisely as follows.

Theorem 2.1 Let K(+) satisfy(K.1-2-3-4) and letf(-) be a bounded density fulf{F.1). Letc > 0
and{h,},>: be a sequence of positive constants such that!~,*(logn) < h, < 1. Then there
exists a positive constafit, such that
| Vb H () — EH ()]
limsup sup ’ ’
nsoo ho<h<t  +/(log(1/h) Vloglogn)
The proof of Theorem 21 is postponed ugl

<7T a.s.

Let (h!),>1 and(h)),>; be two sequences of constants such thath,, < k! < 1, together with
h!” — 0 and for anys > 0, nh!~y}/logn — oo, asn — oo. A direct application of Theorem 2.1
shows that, with probability 1,

sup |H)(f) —EH) ()] =0 <\/(10g(1/h%)\/10glogn)>'

h1, <h<h!! nh;,vn

This, in turn, implies that

lim sup \Hflh() EH( () =0 as. (2.1)

n—oo h/ <h<h”

The following result handles the uniform deviation of thﬁmater:,)ln(f) with respect taH ( f).
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Corollary 2.2 Let K(-) satisfy(K.1-2-3-4) and letf(-) be a uniformly Lipschitz continuous and
bounded density oR?, fulfilling (F.1). Then for any3 > 0, and for each pair of sequences
0 < hl, <h” <1withh” — 0,nh!~v}/logn — oo and|log(h”)|/loglogn — oo asn — oo, we
have

lim sup HO(F) - HHI =0 as. (2.2)

The proof of Corollary 2.2 is postponed uriff.

We note that the main problem in using entropy estimates asdlL.5) is to choose properly the
smoothing parametér,. The uniform in bandwidth consistency result giverLin2i29ws that any

choice ofh betweerh! andh! ensures the consistency i f,)l(f). Now, we shall establish another
result in a similar direction for a class of compactly supedrdensities. We need the following

additional conditions.

(F2) f(-) has a compact support shyand there exists a constdnk 2t < oco such as

9 f(x)

Sup ) Ji ) Jd
xl .. xd

xel

<M, j1+--+ja=s.

(K.5) K(-)is of orders, i.e., for some constam # 0,
/dtjlltgldK(t)dtzoy jla---ajdzoa j1+"'+jd:]‘""’s_1’
R

/ ‘t? tfid|K(t)dt = 67 jlu"'v.jd Z 07 .jl + +.7d = S.
R4
Under the condition (F.2), the differential entropy faf) may be written as follows

H(f) = - / F() log (£(x)) dx.

Theorem 2.3 Let K (-) satisfy(K.1-2-3-4-5) and letf(-) fulfill (F.1-2) Then for any3 > 0, and

for each pair of sequencés< 1/, < h! < 1 with k! — 0 andnh!~}/logn — oo asn — oo, we

n

have
| ViSO (f) = H(f)
limsup sup < (D) a.s.,
noo hy<h<hy /log(1/h) Vloglogn

where

s {760 [ K?(u)du}m .

x€Il



The proof of Theorerh 213 is postponed uitl

To state the our result concernilﬁdf,)ln(f) we need the following additional conditions.
(F3) E[logQ (f(X))} < 0.

Remark 2.4 Condition(F.3)is extremely weak and is satisfied by all commonly encouwhtdise
tributions including many important heavy tailed distritmns for which the moments do not exists

(see. e.g._ Song (2000)) for more details and referenceseosuhject.

To prove the strong consistencyﬁff,)ln we consider the following centering factor
Hr(fh" Z]lﬂmlog (frm, (x) | Xi =x)).

The main results concernid@f,)l(f) is given in the following Theorems.

Theorem 2.5 Let K(+) satisfy(K.1-2-3-4) and letf(-) be a bounded density fulf{F.1). Letc > 0
and{h,},>1 be a sequence of positive constants such that!~, ?(logn) < h, < 1. Then there
exists a positive constafit, such that

2 mrr2
) VAR H (f) — BHE (/)|
msup sup

T a.s.
nsoo ho<h<t  +/(log(1/h) Vloglogn)

The proof of Theore 215 is postponed uitl

Theorem 2.6 Assuming that the kernel functidii(-) is compactly supported and satisfies the
conditions(K.1-2-3-4-5) Let f(-) be a bounded density function fulfilling the conditidiFsl-
2-3). Let{h, },>1 and{h!},>; such thath!, = An=% andh! = Bn~° with arbitrary choices of
0 <A< B <ooand(1/(d+4)) <6 < 1. Then for each3 > 0 andy > 0, we have with
probability one,

ViR 5 (f) — H(J)

limsup sup < oy, 2.3
n—oco  hl,<h<h!! 2log(1/h) ' (@3)

where

or = {supf K2 du} ,

x€Il

wherel is given in(F.2).

The proof of Theorem 216 is postponed uigl



Remark 2.7 Theoreni 213 leads to the construction of asympttii’; certainty interval for the
true entropyH (f), using the techniques developed_ in Deheuvels and Masod)20Ue give in
what follows, the idea how to construct this interval. Ttgbaut, we leth € [h, h!], whereh!,

n)»''n

andh! are as in Theorern 2.3. We infer from Theotem 2.3 that, foablytchosen data-dependent

functionsL,, = L,,(X1,...,X,) > 0, for each0 < ¢ < 1 and for any$ > 0, we have, as — oo,
1
P (L IHO) - HI = 14 ) o (2.4)

Assuming the validity of the statement (2.4), we obtain pgytic certainty interval forH (f) in

the following sense. For eac¢h< ¢ < 1, we have, ag — oo,

P (H(f) € [HO() = 1+ )L, HO() + (1 +e)La] ) = 1. (2.5)
Whenevell(2]5) holds for eabh< = < 1, we will say that the interval

[H () = Loy HO(f) + La],

provides asymptotit00% certainty interval forH (f).
To constructZ,, we proceed as follows. Assume that there exists a seqyénge.; of strictly
nondecreasing compact subset$,duch that

Ur.=1

n>1
(for the estimation of the suppaitwe may refer to_Devroye and Wise (1980) and the references
therein). Furthermore, suppose that there exists a sequépossibly random{(,(1,,)},n =
1,2,..., converging ta(I) in the sense that
p ( Gn(In)

¢(I)

Observe that the statemeht (2.6) is satisfied when the choice

—1‘25)—>0 as n — oo foreache > 0. (2.6)

Cn(IL,) = sup \/fn,h(x) e K?*(u)du

XEHn

is considered. Consequently, we may define the quantitisplayed in the statement (2.4) by

X Cn(Ly).

;o vE(log(1/h) V loglogn)
" nh

Remark 2.8 A practical choice ofy, is 5(logn)~“ whereg > 0 anda > 0. In the case of the

density which is bounded away frah is equal to0.
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Remark 2.9 |Giné and Masan (2008) establish uniform in bandwidth consestéor the one-live-

out entropy estimator, which is defined by

ﬁn,hn = —% Z log {fn,hn,fi(Xi)} )
where
Fpoi(Xs) =1/ (0= Dhy) D> K (X = X;)/h).
1<j#i<n

Their results hold subject to the condition that the dengity is bounded away from on its

support.

3 Concludingremarksand futureworks

We have addressed the problem of nonparametric estimati®hannon’s entropy. The results
presented in this work are general, since the required tiondiare fulfilled by a large class of
densities. Furthermore, if we assume that the derf§ityis bounded away frorfi on its support,
then the rate of the strong convergence is of ofdésg(1/h,,)}/{nh,}}'/? which is the same rate
of the strong convergence for the density kernel-type edtirs. The evaluation of the integral in
(1.8) requires numerical integration and is not easy,if, (-) is a kernel density estimator but it
does not involve any stochastic aspects. The integral agiingsan however be easily calculated if
we approximatef,, », (-) by piecewise-constant functions on a fine enough partifmmexample,
fnn.(+) is @ histogram. We mention that in some particular cdse )(is a double exponential
kernel), the approximations are easily calculated sineadtktribution function corresponding to
the kernelK (-) is available, confer Eggermont and LaRiccia (1999). Anrigdgéng aspect of the
Hff,)m(f) is that its rate of convergence is faster than thaﬂé]’f,)m(f) and that is very easy to
compute. It will be interesting to enrich our results preésdrhere by an additional uniformity in
term of~,, in the supremum appearing in all our theorems, which requiom trivial mathematics,
this would go well beyond the scope of the present paper. aratirection of research is to obtain

results similar to that in Giné and Mason (2008) for entrepiimator under general conditions.



4 Proofs

Proof of Theorem[2.1. We first decomposé[f:,)m (f) —I@HS}M (f) into the sum of two components,

by writing
H) (F) —EH (f)
_ / (<) 108 (Ju, (9)
n / n E fop, (x) 10g (E fon, (X)) dx
- - / {10g (%) — 108 Efy 1, (%)} Ef i, (x)dx

n

- " {fn,hn (X> o Efn,hn (X)} 10g fn,hn (X)dX

= Al,n,hn + AQ,n,hn- (41)

We observe that for al > 0, [log z| < |1 — 1| + |z — 1|. Therefore, we get

108 f () = 08B, ()] = oz g 222
Efn,hn (X) B fn,hn (X) _
S o B0
‘Efn,hn (X> - fn,hn (X) ‘ + ‘fn,hn (X) - Efn,hn (X> |
frhn (X) E fo,n, (%) '

Recalling thatd,, := {x : f,n.(X) > 7.}, we readily obtain from these relations that, for any
x € A,

| log fon, (x) — log Efun. ()| < §|fn,hn<x>—1afn,hn<x>|.

We can therefore write, for any > 1, the inequalities

N \ [ 1108 £ 50 = 18 B (9 B, ()0

< ‘log fn,hn (X> - log Efn,hn (X)‘ Efn,hn (X)dx

An
< 73 / 3) = Ef ()| E o, (01
2

< = sup [Bfon, () = fana (X)) [ Efon, (x)dx
2
Tn xERA R4

In view of (K.4), we have,

/ Ef,n(x)dx = 1.
Rd
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Thus, for anyn > 1, we have

2
|A1,n7hn| S — Sup |Efn7hn (X) - fn,hn(x)| . (42)

Tn xERd
We next evaluate the second tef ,, 5,,, in the right side of[(4]1). Sincogz| < % + z, for all

z > 0, we see that

| A2 n,] A {fann (%) = Efon, (%)} 10g frn, (x)dx
< [ U0 = B, 0] | =g+ frna )]
Similarly as above, we get, for anye A,
1 1
o T = (g +L) o

< (7% + l)fn,hn(x)'

We can therefore write, for any > 1,

|A2,n,hn|
< (53 +1) [ 1BA 00 Fun 09 fun ()i

n

= (% + 1) sup |E fpn, (x) — fn,hn(x)|[4 Fa, (x)dx

n XEAn

§<%+Q$mmhwﬂ—hm®|th@“'

n XEAn

In view of (K.4), we have,

/ fon(x)dx = 1.
R4

Thus, for anyn > 1, we have

Bl < (25 1) 5D [Efon (50 = fun ()] (4.3

n x€R4

We now impose some slightly more general assumptions oneiveek/( (-) than that of Theorem

[2.1. Consider the class of functions
K= {K((x AV R >0, x € Rd}.

Fore > 0, setN(e,K) = supg N(ke, K, dg), where the supremum is taken over all probability
measures) on (R B). Here,dy denotes thel,(Q)-metric andN (ke, K, dg) is the minimal
number of balls{g : dy(g,¢’) < €} of dg-radiuss needed to covelC. We assume thdt satisfies

the following uniform entropy condition.



(K.6) for someC' > 0 andv > 0,

N, K)<Ce’,0<e< 1. (4.4)

Finally, to avoid using outer probability measures in allstdtements, we impose the following

measurability assumption.

(K.7) Kis a pointwise measurable class, that is, there exists daol@rsubclask’, of K such that

we can find for any functiop € K a sequence of functiodg;,, : m > 1} in Ky for which

gm(2) — g(2), z € RY.

Remark that condition (K.6) is satisfied whenever (K.1) kolce.,K (-) is of bounded variation on
R? (in the sense of Hardy and Kauser, see, e.g. Clarkson and $\(IE@83), Vituskin|(1955) and
Hobson ((1958)). Condition (K.7) is satisfied whenever (K@)ds, i.e.,K(-) is right continuous
(refer to.Deheuvels and Mason (2004) and Einmahl and Magi®bj2and the references therein).

By Theoreml of [Einmahl and Mason (2005), wheneuEl-) is measurable and satisfies (K.3-4-
6-7), and whenf(-) is bounded, we have for each> 0, and for a suitable functio®(c), with
probability 1,

Vil fp = Efonllo

lim su su = >(c) < o0, 4.5
n%mpcnflloggghgl V1og(1/h) Vloglog n © (45)

which implies, in view of[(4.R) and (4.3), that, with probkyi 1,

V nh’yfz‘Al,nﬂ

limsup sup =0, (4.6)
n—oo  hn<h<1 y/(log(1/h) V loglogn)

and
/nhyi Ag,
limsup sup | Azl < Y(e). 4.7)
n—oo hn<h<l y/(log(1/h) V loglogn)
Recalling [4.1), the proof of Theordm 2.1 is completed by bimimg (4.6) with [4.7). [ |

Proof of CorollaryR2 RecallA,, = {x : fu4,(x) > 7.} and letAs, ; the complement oft,, in
R? (i.e., AS 3 = {x: fun,(x) <7,}). Observe that

FGO] 2 | Frhn ()] = [t (%) = ()] > 4 + OB,

Recall that log(h!)|/ loglogn — oo asn — oo, thus, forn enough large, the second term of the

last inequality is dominated by the first one, then, we obtain

[f ()| = -
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We repeat the arguments above with the formal changféﬁfn(f) by H(f). We show that, for

anyn > 1,
BHY () - H(f)
< (x) log (f(x))dx
Az,,e
+2 sup [Efun (%) — F)]
Tn xeRd
#(5 1) sup [Efun, (0~ 19 “8)
We have

IN

/ f(x)dx / f(x)dx + / f(x)dx
8 3 /()< Fan(X)<m< L f(x)

[ f(x)dx + 2/ | frn(x) — f(x)]dx.
3 f(x)<vm Rd

2

IN

Observe that we have

Lo pao<yyf (%) < f(x)

and 1{%f(x)§%}f(x) — 0 asn — oo, thus an application of Lebesgue dominated convergence

theorem gives
lim f(x)dx = 0. (4.9)
TS L)<

Recall that the conditions,, — 0 together withnh,, — oo asn — oo, ensure that (see e.g.,
Devroye and Gyorfi (1985))

lim | frn, (x) — f(x)|dx =0 a.s.

n—o0 R

Thus, for allh € [h,, h!] such thath], — co andh, — 0, asn — oo, we have

lim sup / | fan(x) — f(x)]dx =0 a.s. (4.10)
n—oo hfnﬁhﬁhz R4
By (4.10) and[(4.90) we have
lim  sup / f(x)dx =0 a.s. (4.112)
N0 h, <h<hi JAG

SinceH (f) is finite, the measure
() = | Jlog (160) dE ()

11



is absolutely continuous with respect to the meagiré) = [, dF(x), which implies that

lim  sup (x) log (f(x))dx =0 a.s. (4.12)

0 hr <h<hi JAc
In the other hand, we know (see, €.g, Einmahl and Mason (2008t when the density(-) is

uniformly Lipschitz and continuous, we have for edgh< h < h!, asn — oo,
IEfan() = f()leo = O("). (4.13)
Thus, we have

lim sup 5 [Efan(x) = f(x)[lc = 0.

00 by <h<h!

This when combined with_(4.8), entails that,ras+ oo,

sup [[EH)(f) = H(f)| 0. (4.14)
hi, <h<hj
By (4.11) and[(4.14) in connection with (2.1) imply (2.2). [ |

Proof of Theorem 2.3 Under conditions (F.2), (K.5) and using Taylor expansiommfer s we

get, forx € I,
he/d 0° f(x — hot
)~ 160l = | [ e I ke,
! PRI S Xy v l’d
whered = (6,,...,04) and0 < 6; < 1,7 =,1,...,d. Thus a straightforward application of

Lebesgue dominated convergence theorem gives, farge enough,
sup [Efop (%) = ()] = O(r"). (4.15)
bS]
LetJ be a nonempty compact subset of the interiol (s‘ayf[). First, note that we have
I _ 1/2
limsup sup sup nhl fun(x) — F)] = sup {f(x) KQ(t)dt} ) (4.16)
n—oo h,<h<hy xel \/log(1/h) Vloglogn  xeJ Rd
Set, for alln > 1,

T (J) = . (4.17)

/ Famn () 10g (fam, (%)) dx — / F() log (f(x))dx
J J

Using condition (F.2) ((-) is compactly supported(-) is bounded away from zero on its support,
thus, we have forn. enough largef (x) > 2,,, for all x in the support off (). By the same previous

arguments we have, farenough large,

od) < —sup | fup (x) — ()|
Tn xel
+(5 1) s a0 = 0.

12



One finds, by combining the last equation w[th (4.16),

/ h 4 . 1/2
limsup sup nhyn Tnld) < sup {f(x) KQ(t)dt} : (4.18)
noo <h<hy v/{(log(1/h) Vloglogn) ~ xeI Rd
Let{J,},¢=1,2,..., be asequence of nondecreasing nonempty compact sub&estsabf that

U&:m

>1

Now, from (4.18), it is straightforward to observe that

Vg (Je)

1/2
< lim sup {f(x) KQ(t)dt}
Rd

lim limsup sup

(=00 noo hy,<h<hy /(log(1/h) Vloglogn) =00 xe],
1/2
< sup {f(x) K2(t)dt} :
x€el R4
The proof of Corollary 213 is completed. [ |

Proof of Theorem[25 Let p,, 1, (x) = E(f,..n,(x)). Recall that

~

1 n
H (N =EHS (F) = == Ta,,108(fun, (X)) + Lo, 108 (P, (X))
1=1

Using a Taylor-Lagrange expansion of theg(-) function, we have, for some random sequence
0, € (0,1),

= _1y frna (Xi) = nn, (X5)
- Bl Z Lo {(1 = On) frpn (Xi) + Ononn, (X5)

Recalling that?,,; = {fn,hn(Xi) > %}, we readily obtain, with probability 1,

i=1

mmAsgyzmwmmx%@wmm

=1

1
< —sup | fan, (X) = On, (X))
Tn xel
1
= —sup | fun, (%) = E(fon, (X))]
Tn xel
Combining the last inequality with (4.5), we readily obtéie desired result. [ |

Proof of Theorem[2.6 We have

HE () - H(f) = {HD (f)—EHS (A} +{EHS) (f) = H(f)}.

vn

Since the first term in the right hand of the last equality istoalled in the preceding proof, it re-

mains only to evaluate the second one. To simplify our exjgosiwe will decompos@lef)n(f) —
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H(f) into the sum of three components,

BHE (1)~ H() = > o, log(pur, (X)) + E (log (£(X.)

_ _% > Lo, (105(pnn, (X)) ~ log(£(X.)))

_% Z (Lo, log(f(X;)) — log(f(X3)))

= _Vl,n,hn - VZ,n,hn - V3,n,hn- (419)

In view of (4.19), we have

Vinie = O To,, (os(pnn(X,)) — logl/(X.)).

Using a Taylor-Lagrange expansion of theg(-) function, we have, for some random sequence

071 6 (07 ]')l

B l " Onhn (Xi) — f(Xy)
Vi, =+ ; Lo, {(1 — 0n)Pnn (Xi) + 0, f(Xi) |

By (F.2), there exists an; such thatf(x) > n; for all x € L. It follows that forn enough large

that, f(x) > v, for all x € I. Recalling that,; = { fu:.(X;) > 7.}, we readily obtain, with

probability 1,
1 n
Vian < o > o, @nn (X)) — f(X)]
"oi=1
1
< —sup |onp, (x) — f(x)].
Tn xel

We mention that the bandwidthis to be chosen in such a way that the biasf,pf(x) may be

neglected, in the sense that

TLh 1/2
I o on(X) — — 0, 4.20
nl—>nolohélill?§)h§{ {210g(1/h)} et [ona(%) = £ () 429
which is implied by [4.15). Thus,
v/ nh~y? n
limsup sup UAENAEY) =0. (4.21)

n—oo hy<h<h! +/2log(1/h)
We next evaluate the second teWh , ,, in the right side of{(4.19). We have froin (4115) ahd {4.5)

up sup}fn7h<x>—f<x>}=0< m)

/
h! <h<h! xel nhl,
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Thus, forn sufficiently large, almost surely,, ,(x) > (1/2) f(x) for allx € T and allh € [k, h]].
Note that under condition (F.2), the densijty) is compactly supported, it is possible to find a
positive constanf; such asf(x) > n;. This implies thatf, ,(x) > n/2, and thus, for alk enough

large, we have, almost surely,

1g,, =1, (4.22)
which implies that, for alh enough large, almost surely,
Vanh, = 0. (4.23)

We finally evaluate the second tei¥y ,, ,,, in the right side of{(4.19). We have,

1 n
V3,n,hn = __E 5@'7
n <
=1

where, fori =1, ..., n,
&, := log{f(X:)} — E( log{/(Xy)}),
are a centered i.i.d. random variables with finite varianas{ Mg(f(Xi))) (condition (F.3)). Ob-

serve that

Yo VIl 3501 & Vlnloglogn 3TN &,
n +/2log(1/hy,) Vlog(1/h,) +/2nloglogn

which, by the law of the iterated logarithm, tend$tasn tends to infinity. Namely,

\/nhy? n

lim  sup il Vsl =0. (4.24)
n—oopr <p<ny +/21og(1/h)

Using [4.2%) and{4.23) in connection with Fact 1 completesaroof of Theorer 2.6. [ |
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