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Abstract. We prove that the generalized Benjamin-Ono equations ∂tu +
H∂2

xu ± uk∂xu = 0, k ≥ 4 are locally well-posed in the scaling invariant
spaces Ḣsk(R) where sk = 1/2 − 1/k. Our results also hold in the non-
homogeneous spaces Hsk(R). In the case k = 3, local well-posedness is
obtained in Hs(R), s > 1/3.
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1 Introduction

In this paper we pursue our study of the Cauchy problem for the generalized
Benjamin-Ono equations

{

∂tu+ H∂2
xu± uk∂xu = 0, x, t ∈ R,

u(x, t = 0) = u0(x), x ∈ R,
(gBO)

with k an integer ≥ 3 and with H the Hilbert transform defined via the
Fourier transform by

Hf = F−1(−i sgn(ξ)f̂(ξ)), f ∈ S ′(R). (1.1)

The Hilbert transform is a real operator, and consequently we look for
real-valued solutions. In view of (1.1), we see that H is nothing but −i
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on positive frequencies and +i on negative ones. A very close equation to
(gBO) is then the derivative nonlinear Schrödinger equation

∂tu− i∂2
xu± uk∂xu = 0. (1.2)

for which all our results remain true. Furthermore, (gBO) and (1.2) enjoy
the same linear estimates, see Section 3.

A remarkable feature of (gBO) is the following scaling invariance: if
u(t, x) is a solution of the equation on [−T,+T ], then for any λ > 0,
uλ(t, x) = λ1/ku(λ2t, λx) also solves (gBO) on [−λ−2T,+λ−2T ] with ini-
tial data uλ(0, x) and moreover

‖uλ(·, 0)‖Ḣs = λs+ 1
k
− 1

2‖u(·, 0)‖Ḣs .

Hence the Ḣs(R) norm is invariant if and only if s = sk = 1/2− 1/k and we
may expect well-posedness in Ḣsk(R).

When k = 1, (gBO) is the ordinary Benjamin-Ono equation derived by
Benjamin [1] and later by Ono [15] as a model for one-dimensional waves in
deep water. The Cauchy problem for the Benjamin-Ono equation has been
extensively studied these last years, see [17, 16, 6]. In [18], Tao introduced
a gauge transformation (a kind of Cole-Hopf transformation) which amelio-
rate the derivative nonlinearity, and get the well-posedness of this equation
in Hs(R), s ≥ 1. Recently, combining a gauge transformation together with
a Bourgain’s method, Ionescu and Kenig [5] shown that one could go down
to L2(R), which seems to be the critical space for the Benjamin-Ono equa-
tion. Note also that Burq and Planchon [4] have obtained well-posedness
in Hs(R), s > 1/4 by similar methods. It is worth noticing that all these
results have been obtained by compactness methods. On the other hand,
Molinet, Saut and Tzvetkov [14] proved that, for all s ∈ R, the flow map
u0 7→ u is not of class C2 from Hs(R) to Hs(R). Furthermore, building suit-
able families of approximate solutions, Koch and Tzvetkov proved in [11]
that the flow map is actually not even uniformly continuous on bounded
sets of Hs(R), s > 0. This explains why a Picard iteration scheme fails to
solve the Benjamin-Ono equation in Sobolev spaces.

In the case of the modified Benjamin-Ono equation (k = 2), Kenig and
Takaoka [10] have recently obtained the global well-posedness in the energy
space H1/2(R). This have been proved thanks to a localized gauge trans-
formation combined with a space-time L2 estimate of the solution. It is
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important to note that this result is far from that given by the scaling index
s2 = 0. However, it is known to be sharp since the solution map u0 7→ u is
not C3 in Hs(R) as soon as s < 1/2 (see [13]).

In the case k = 3, the local well-posedness is known in Hs(R), s > 1/3
for small initial data [13] but only in Hs(R), s > 3/4 for large initial data.
In [19], we showed that (gBO) is C4-ill-posed in Hs(R), s < 1/3, in the sense
that the flow-map u0 7→ u fails to be C4. We prove here that well-posedness
occurs in Hs(R), s > 1/3, and without smallness assumption on the initial
data.

Concerning the case k ≥ 4, global well-posedness in Hs(R), s > sk was
derived for small initial data by Molinet and Ribaud in [13]. Later, by means
of a gauge transformation, the same authors [12] removed the size restriction
on the data and showed well-posedness in H1/2(R), whatever the value of
k. By a refinement of their method, we reached in [19] the well-posedness
in Hs(R), s > sk, but for high nonlinearities only (k ≥ 12 in fact). On the
other hand, in the particular case k = 4, Burq and Planchon [3] proved the
local well-posedness in the critical space Ḣ1/4(R). Inspired by their works,
we extend in this paper the well-posedness to Ḣsk(R) for any k ≥ 4, and our
method is flexible enough to get the result in the non-homogeneous space
Hsk(R). A standard fixed point argument allows us to construct a unique
solution in a subspace of Ḣsk(R) with a continuous flow-map u0 7→ u. Recall
that Biagioni and Linares [2] proved using solitary waves, that this map
cannot be uniformly continuous in Ḣsk(R). In the surcritical case s < sk,
we also know that the solution-map (if it exists) fails to be Ck+1 in Hs(R),
see [13].

2 Notations and main results

2.1 Notations

For A and B two positive numbers, we write A . B if it exists c > 0 such
that A ≤ cB. Similarly define A & B, A ∼ B if A ≥ cB and A . B . A
respectively. When the constant c is large enough, we write A≪ B. For any
f ∈ S ′(R), we use Ff or f̂ to denote its Fourier transform. For 1 ≤ p ≤ ∞,
Lp is the standard Lebesgue space and its space-time versions Lp

xL
q
T and

Lq
TL

p
x (T > 0) are endowed with the norms

‖f‖Lp
xLq

T
=

∥

∥‖f‖Lq
t ([−T ;T ])

∥

∥

Lp
x(R)

and ‖f‖Lq
T Lp

x
=

∥

∥‖f‖Lp
x(R)

∥

∥

Lq
t ([−T ;T ])

.
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The pseudo-differential operator Dα
x is defined by its Fourier symbol |ξ|α.

We will denote by P+ and P− the projection on respectively the positive
and the negative spatial Fourier modes. Thus one has

iH = P+ − P−.

Let η ∈ C∞
0 (R), η ≥ 0, supp η ⊂ {1/2 ≤ |ξ| ≤ 2} with

∑∞
−∞ η(2−jξ) = 1

for ξ 6= 0. We set p(ξ) =
∑

j≤−3 η(2
−jξ) and consider, for all j ∈ Z, the

operator Qj defined by

Qj(f) = F−1(η(2−jξ)f̂(ξ)).

We adopt the following summation convention. Any summation of the form
r . j, r ≫ j,... is a sum over the r ∈ Z such that 2r . 2j ..., thus for
instance

∑

r.j =
∑

r:2r.2j . We define then the operators Q.j =
∑

r.j Qr,

Q≪j =
∑

r≪j Qr, etc. For 1 ≤ p, q, r ≤ ∞ and s ∈ R, let Ḃs,r
p (Lq

T ) be the
homogeneous Besov space equipped with the norm

‖f‖Ḃs,r
p (Lq

T ) =
(

∑

j∈Z

[2js‖Qjf‖Lp
xLq

T
]r

)1/r
.

Finally for s ∈ R and θ ∈ [0, 1], we define the solution space Ṡs,θ (where
lives our solution u) and the nonlinear space Ṅ s,θ (where lives the nonlinear
term uk∂xu) by

Ṡs,θ = Ḃ
s+ 3θ−1

4
,2

4
1−θ

(L
2
θ
T ), Ṅ s,θ = Ḃ

s+ 1−3θ
4

,2
4

3+θ

(L
2

2−θ

T ).

2.2 Main results

We first state our well-posedness results in the case k ≥ 4.

Theorem 2.1. Let k ≥ 4 and u0 ∈ Ḣsk(R). There exists T = T (u0) > 0
and a unique solution u of (gBO) such that u ∈ ŻT with

ŻT = C([−T,+T ], Ḣsk(R)) ∩ Ẋsk ∩ Lk
xL

∞
T .

Moreover, the flow map u0 7→ u is locally Lipschitz from Ḣsk(R) to ŻT .

In the non-homogeneous case, one has the following result.
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Theorem 2.2. Let k ≥ 4 and u0 ∈ Hs(R), s ≥ sk. There exists T =
T (u0) > 0 and a unique solution u of (gBO) such that u ∈ ZT with

ZT = C([−T,+T ],Hs(R)) ∩Xs ∩ Lk
xL

∞
T .

Moreover, the flow map u0 7→ u is locally Lipschitz from Hs(R) to ZT .

Remark 2.1. We only obtain the Lipschitz continuity of the map u0 7→ u
in Theorems 2.1 and 2.2 in Ḣsk(R) (resp. Hs(R)). As noticed in the intro-
duction, the solution map given by Theorem 2.1 is not uniformly continuous
from Ḣsk(R) to C([−T, T ], Ḣsk(R)). Moreover, when s < sk, the flow map
in Theorem 2.2 is no longer of class Ck+1 in Hs(R). It is not clear wether
the map given by Theorems 2.1 and 2.2 is Ck+1 or not.

Remark 2.2. The spaces Ẋsk and Xs will be defined in Section 3 and
are directly related with the linear estimates for the linear Benjamin-Ono
equation.

The main tools to prove Theorems 2.1 and 2.2 are the sharp Kato
smoothing effect and the maximal in time inequality for the free solution
V (t)u0 where V (t) = eitH∂2

x . Recall that for regular solutions, (gBO) is
equivalent to its integral formulation

u(t) = V (t)u0 ∓

∫ t

0
V (t− t′)(uk(t′)∂xu(t

′))dt′. (2.1)

It is worth noticing that (gBO) provides a perfect balance between the
derivative nonlinear term on one hand, and the available linear estimates
on the other hand. Heuristically, one may use (2.1) to write

‖Dsk+1/2
x u‖L∞

x L2
T

+ ‖u‖Lk
xL∞

T
. ‖u0‖Ḣsk + ‖Dsk−1/2

x ∂x(uk+1)‖L1
xL2

T

. ‖u0‖Ḣsk + ‖Dsk+1/2
x u‖L∞

x L2
T
‖u‖k

Lk
xL∞

T

and perform a fixed point procedure. Unfortunately, such an argument fails
for several reasons:

• First, it is not clear wether the second inequality holds true or not. In-
deed, we used the fractional Leibniz rule (see the Appendix in [9], [12])
at the end points Lp, p = 1,∞. However, this inequality becomes true

if one works in the associated Besov spaces Ḃ
sk+1/2,2
∞ (L2

T ) ∩ Ḃ0,2
k (L∞

T )
and provides sharp well-posedness for small initial data, see [13].

5



• The term ‖V (t)u0‖Lk
xL∞

T
will be small only if ‖u0‖Ḣsk is small as well,

even for small T . Nevertheless, as noticed in [3], if we consider instead
the difference V (t)u0 − u0, then its Lk

xL
∞
T -norm is small provided we

restrict ourselves to a small interval [−T, T ] (see Lemma 3.5).

• We also need to get a better share of the derivative in the nonlinear
term. By a standard paraproduct decomposition, we see that the worst
contribution in ∂xu

k+1 is given by π(u, u) where

π(f, g) =
∑

j

∂xQj((Q≪jf)kQ∼jg).

The main idea is then to inject this term (or more precisely π(V (t)u0, u))
in the linear part of the equation to get the variable-coefficient Schrödinger
equation

∂tu+ H∂2
xu+ π(V (t)u0, u) = f (2.2)

where f will be a well-behaved term. Linear estimates for equation
(2.2) are obtained by the localized gauge transform

wj = e
i
2

∫ x
−∞

(Q≪ju0)k

P+Qju, j ∈ Z.

Now we turn to the case k = 3. By similar considerations, we obtain the
following result.

Theorem 2.3. Let k = 3 and u0 ∈ Hs(R), s > 1/3. There exists T =
T (u0) > 0 and a unique solution u of (gBO) such that u ∈ ZT with

ZT = C([−T,+T ],Hs(R)) ∩Xs ∩ L3
xL

∞
T .

Moreover, the flow map u0 7→ u is locally Lipschitz from Hs(R) to ZT .

This paper is organized as follows. In Section 3, we recall some sharp
estimates related with the linear operator V (t), and we derive linear esti-
mates for equation (2.2). Section 4 is devoted to the case k ≥ 4. Finally, we
prove Theorem 2.3 in Section 5.

3 Linear estimates

3.1 Estimates for the linear BO equation

This section deals with the well-known linear estimates for the Benjamin-
Ono equation. Note that all results stated here hold as well for the Schrödinger
operator S(t) = eit∂

2
x .
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The following lemma summarizes the main estimates related to the group
V (t). See for instance [7, 8] for the proof.

Lemma 3.1. Let ϕ ∈ S(R), then

‖V (t)ϕ‖L∞
T L2

x
. ‖ϕ‖L2 , (3.1)

‖D1/2
x V (t)ϕ‖L∞

x L2
T

. ‖ϕ‖L2 , (3.2)

‖D−1/4
x V (t)ϕ‖L4

xL∞
T

. ‖ϕ‖L2 . (3.3)

Moreover, if T ≤ 1 and j ≥ 0,

‖Q≤0V (t)ϕ‖L2
xL∞

T
. ‖Q≤0ϕ‖L2 (3.4)

2−j/2‖QjV (t)ϕ‖L2
xL∞

T
. ‖Qjϕ‖L2 (3.5)

Definition 3.1. A triplet (α, p, q) ∈ R × [2,∞]2 is said to be 1-admissible
if (α, p, q) = (1/2,∞, 2) or

4 ≤ p <∞, 2 < q ≤ ∞,
2

p
+

1

q
≤

1

2
, α =

1

p
+

2

q
−

1

2
. (3.6)

By Sobolev embedding and interpolation between estimates (3.2) and
(3.3) we obtain the following result.

Proposition 3.1 ([12]). If (α, p, q) is 1-admissible, then for all ϕ in S(R),

‖Dα
xV (t)ϕ‖Lp

xLq
T

. ‖ϕ‖L2 . (3.7)

Now we define our resolution spaces.

Definition 3.2. Let k ≥ 4 and s ∈ R be fixed. For 0 < ε ≪ 1, we define
the spaces Ẋs = Ṡs,ε ∩ Ṡs,1 endowed with the norm

‖u‖Ẋs = ‖u‖Ṡs,ε + ‖u‖Ṡs,1 .

At this stage it is important to remark that Ẋs does not contain any
L∞

T component. As a consequence, for each u ∈ Ẋs and η > 0 fixed, we can
choose T = T (u) such that ‖u‖Ẋs < η.

In the case k = 3, we shall require the following result which is not
covered by Proposition 3.1.

Lemma 3.2 ([12]). Let 0 < T ≤ 1 and s > 1/3. Then it holds that

‖V (t)ϕ‖L3
xL∞

T
. ‖ϕ‖Hs , ∀ϕ ∈ S(R). (3.8)
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We next state the Lp
xL

q
T and Lq

TL
p
x estimates for the linear operator

f 7→
∫ t
0 V (t− t′)f(t′)dt′.

Lemma 3.3 ([12]). Let α ∈ R, and 2 < p, q ≤ ∞ such that for all ϕ ∈ S(R),

‖Dα
xV (t)ϕ‖Lp

xLq
T

. ‖ϕ‖L2 .

Then for all f ∈ S(R2),

∥

∥

∥
D1/2

x

∫ t

0
V (t− t′)f(t′)dt′

∥

∥

∥

L∞
T L2

x

. ‖f‖L1
xL2

T
, (3.9)

∥

∥

∥Dα+1/2
x

∫ t

0
V (t− t′)f(t′)dt′

∥

∥

∥

Lp
xLq

T

. ‖f‖L1
xL2

T
. (3.10)

Similarly, if
‖Dα

xV (t)ϕ‖Lp
xLq

T
. ‖ϕ‖Hs

for any ϕ ∈ S(R), then

∥

∥

∥
Dα+1/2

x

∫ t

0
V (t− t′)f(t′)dt′

∥

∥

∥

Lp
xLq

T

. ‖〈Dx〉
sf‖L1

xL2
T
. (3.11)

We shall need the following Besov version of Lemma 3.3.

Lemma 3.4. Let k ≥ 4. For all f ∈ S(R)2,

∥

∥

∥

∫ t

0
V (t− t′)f(t′)dt′

∥

∥

∥

Lk
xL∞

T

. ‖f‖Ṅ sk,1 .

Proof. Note that the triplets (1/2,∞, 2) and (−sk, k,∞) are both 1-admissible.
In particular we deduce

∥

∥

∥

∫ T

−T
D1/2

x V (−t′)h(t′)dt′
∥

∥

∥

L2
. ‖h‖L1

xL2
T
, ∀h ∈ S(R2),

which is the dual estimate of (3.7) for (α, p, q) = (1/2,∞, 2). Since L2 =
Ḃ0,2

2 , we infer

∥

∥

∥

∫ T

−T
D1/2

x V (−t′)h(t′)dt′
∥

∥

∥

L2
. ‖h‖Ḃ0,2

1 (L2
T ), ∀h ∈ S(R2).

The usual TT ∗ argument provides

∥

∥

∥

∫ T

−T
V (t− t′)f(t′)dt′

∥

∥

∥

Lk
xL∞

T

. ‖f‖
Ḃ
−1/k,2
1 (L2

T )
.

We can conclude with the Christ-Kiselev lemma for reversed norms (Theo-
rem B in [3]).
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3.2 Linear estimates for equation (2.2)

Here and hereafter we take k ≥ 4, the special case k = 3 will be discussed
in Section 5.

Next lemma will be crucial in the proof of our main results.

Lemma 3.5. Let k ≥ 4 and u0 ∈ Ḣsk . For any η > 0, there exists T =
T (u0) such that

‖V (t)u0 − u0‖Lk
xL∞

T
< η.

Proof. Let N > 0 to be chosen later. One has

‖V (t)u0 − u0‖Lk
xL∞

T
.

∑

|j|<N

‖Qj(V (t)u0 − u0)‖Lk
xL∞

T
+





∑

|j|>N

‖Qju0‖
2
Ḣsk





1/2

.

Note that v = V (t)u0 − u0 solves the equation

∂tv + H∂2
xv = −H∂2

xu0

with zero initial data. Thus V (t)u0 − u0 =
∫ t
0 V (t− t′)H∂2

xu0dt
′ and

∑

|j|<N

‖Qj(V (t)u0 − u0)‖Lk
xL∞

T
.

∑

|j|<N

22j
∥

∥

∥

∫ t

0
V (t′)Qju0dt

′
∥

∥

∥

Lk
xL∞

T

. T
∑

|j|<N

22j‖V (t)Qju0‖Lk
xL∞

T

. T22N‖u0‖Ḣsk .

It suffices now to choose sufficiently large N and then T small enough.

Let us turn back to the nonlinear (gBO) equation. The sign of the
nonlinearity is irrelevant in the study of the local problem, and we choose
for convenience the plus sign.

Using standard paraproduct rearrangements, we can rewrite the nonlin-
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ear term in (gBO) as follows:

∂xQj(u
k+1) = ∂xQj( lim

r→∞
(Q<ru)

k+1)

= ∂xQj

(

∞
∑

−∞

(Q<r+1u)
k+1 − (Q<ru)

k+1
)

= ∂xQj

(

∞
∑

−∞

Qru(Q.ru)
k
)

= ∂xQj

(

∑

r∼j

Qru(Q≪ru)
k
)

+ ∂xQj

(

∑

r&j

(Q∼ru)
2(Q.ru)

k−1
)

= ∂xQj((Q≪ju)
kQ∼ju) − gj .

We set
π(f, g) =

∑

j

∂xQj((Q≪jf)kQ∼jg)

so that (gBO) reads

∂tu+ H∂2
xu+ π(u, u) = g(t, x)

with
g =

∑

j

gj .

Setting
f = π(uL, u) − π(u, u) + g

where uL = V (t)u0 is the solution of the free BO equation, we see that
(gBO) is equivalent to

∂tu+ H∂2
xu+ π(uL, u) = f(t, x). (3.12)

We intend to solve (gBO) by a fixed point procedure on the Duhamel for-
mulation of (3.12):

u(t) = U(t)u0 −

∫ t

0
U(t− t′)f(t′)dt′,

where U(t)ϕ is solution to

∂tu+ H∂2
xu+ π(V (t)u0, u) = 0, u(0) = ϕ.

It is worth noticing that U(t) depends on the data u0.

10



Setting uj = Qju and fj = Qjf , we get from (3.12) that

∂tuj+H∂2
xuj+∂x((u0,≪j)

kuj) = ∂x[((u0,≪j)
k−(uL,≪j)

k)uj ]−∂x[Qj , (uL,≪j)
k]u∼j+fj

and we will denote by Rj the right-hand side. Now take the positive fre-
quencies and set vj = P+uj:

i∂tvj + ∂2
xvj + i∂x((u0,≪j)

kvj) = iP+Rj .

With b≪j = 1
2 (u0,≪j)

k, we obtain

i∂tvj + (∂x + ib≪j)
2vj = gj (3.13)

with
gj = −i∂xb≪j.vj − b2≪jvj + iP+Rj. (3.14)

Lemma 3.6. Let vj be a solution to (3.13) with initial data v0,j ∈ Ḣsk ∩Ḣs.
Then there exists C = C(u0) such that

‖vj‖Ẋs ≤ C‖v0,j‖Ḣs + C‖gj‖Ṅ s,1 .

Proof. We define wj by

wj = ei
∫ x b≪jvj .

Then we easily check that wj solves

i∂twj + ∂2
xwj = ei

∫ x b≪jgj .

From the well-known linear estimates on the Schrödinger equation (Lemmas
3.1-3.3) we infer

‖∂xwj‖L∞
x L2

T
. ‖ei

∫ x b≪jv0,j‖Ḣ1/2 + ‖gj‖L1
xL2

T
.

Since ∂xwj = ei
∫ x b≪j (∂xvj + b≪jvj), we have

‖∂xvj‖L∞
x L2

T
. ‖∂xwj‖L∞

x L2
T

+ ‖b≪jvj‖L∞
x L2

T

. ‖∂xwj‖L∞
x L2

T
+ 2−j‖b≪j‖L∞‖∂xvj‖L∞

x L2
T
.

On the other hand, we can make 2−j‖(u0,≪j)
k‖L∞ as small as desired by

choosing the implicit constant J = J(u0) in u0,≪j large enough:

2−j‖(u0,<j−J)k‖L∞ . 2−j2j−J‖u0‖
k
Lk . c(u0)2

−J ≪ 1.
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It follows that

‖∂xvj‖L∞
x L2

T
. ‖ei

∫ x b≪jv0,j‖Ḣ1/2 + ‖gj‖L1
xL2

T
.

We now use the fractional Leibniz rule (Theorem A.12 in [9]) and Bernstein
inequality to estimate the first term in the right-hand side,

‖ei
∫ x b≪jv0,j‖Ḣ1/2 . ‖ei

∫ x b≪j‖L∞‖v0,j‖Ḣ1/2 + ‖D1/2
x ei

∫ x b≪j‖L∞‖v0,j‖L2

. ‖v0,j‖Ḣ1/2 + ‖(u0,≪j)
k‖L2‖v0,j‖L2

. (1 + ‖u0‖
k
Lk)‖v0,j‖Ḣ1/2

Since vj, gj as well as v0,j are frequency localized, we conclude

‖vj‖Ḃs+1/2,2
∞ (L2

T )
. ‖v0,j‖Ḣs + ‖gj‖Ḃs−1/2,2

1 (L2
T )
. (3.15)

We also need L4
xL

∞
T -norm estimates. Our equation can be rewritten as

i∂tvj + ∂2
xvj = gj + hj

with
hj = b2≪jvj − i∂x(b≪jvj) − ib≪j∂xvj.

Thus we get from Lemmas 3.1-3.3 that

‖vj‖Ḃs−1/4,2
4 (L∞

T )
. ‖v0,j‖Ḣs + ‖gj‖Ḃs−1/2,2

1 (L2
T )

+ ‖hj‖Ḃs−1/2,2
1 (L2

T )
.

We bound the hj contribution with (3.15):

‖b2≪jvj‖Ḃs−1/2,2
1 (L2

T )
. 2j(s−1/2)‖b2≪j‖L1‖vj‖L∞

x L2
T

. (2−j/2‖b≪j‖L2)2‖vj‖Ḃs+1/2,2
1 (L2

T )

. ‖b‖2
L1(‖v0,j‖Ḣs + ‖gj‖Ḃs−1/2,2

1 (L2
T )

),

and

‖∂x(b≪jvj) + b≪j∂xvj‖Ḃs−1/2,2
1 (L2

T )
. 2j(s+1/2)‖b≪j‖L1‖vj‖L∞

x L2
T

. ‖b‖L1(‖v0,j‖Ḣs + ‖gj‖Ḃs−1/2,2
1 (L2

T )
).

Therefore,

‖vj‖Ḃs−1/4,2
4 (L∞

T )
. ‖v0,j‖Ḣs + ‖gj‖Ḃs−1/2,2

1 (L2
T )

(3.16)

and the claim follows by interpolation between (3.16) and (3.15).

12



We are now ready to prove the main linear estimate on equation (3.12).

Proposition 3.2. Let u be a solution of (3.12) with initial data u0 ∈ Ḣs ∩
Ḣsk , s ∈ R. Then there exists T = T (u0) > 0 and C = C(u0) such that on
[−T,+T ],

‖u‖Ẋs ≤ C‖u0‖Ḣs + C‖f‖Ṅ s,1.

Proof. Using that |P+uj | = |P−uj | (since u is real) and Lemma 3.6, we infer

‖uj‖Ẋs . ‖vj‖Ẋs . ‖Qju0‖Ẋs + ‖fj‖Ṅ s,1 + ‖∂x(u0,≪j)
kvj‖Ṅ s,1 + ‖(u0,≪j)

2kvj‖Ṅ s,1

+
∥

∥

∥∂x[((u0,≪j)
k − (uL,≪j)

k)uj ]
∥

∥

∥

Ṅ s,1
+

∥

∥

∥∂x[Qj , (uL,≪j)
k]u∼j

∥

∥

∥

Ṅ s,1

= ‖Qju0‖Ẋs + ‖fj‖Ṅ s,1 +A+B + C +D.

We bound A by

A . 2j(s−1/2)‖∂x(u0,≪j)
kvj‖L1

xL2
T

. 2−j‖∂x(u0,≪j)
k‖L12j(s+1/2)‖vj‖L∞

x L2
T

. 2−j‖∂x(u0,≪j)
k‖L1‖vj‖Ẋs .

As previously, 2−j‖∂x(u0,≪j)
k‖L1 can be made as small as needed by choos-

ing the implicit constant J = J(u0) in u0,≪j large enough:

2−j‖∂x(u0,<j−J)k‖L1 . 2−j2j−J‖u0‖
k
Lk . c(u0)2

−J ≪ 1.

One proceeds similarly for B:

B . 2j(s−1/2)‖(u0,≪j)
2kvj‖L1

xL2
T

. 2−j‖(u0,≪j)
k‖L∞‖u0‖

k
Lk2j(s+1/2)‖vj‖L∞

x L2
T

≪ ‖vj‖Ẋs .

Now we estimate C:

C . 2j(s−1/2)‖∂x[((u0,≪j)
k − (uL,≪j)

k)uj ]‖L1
xL2

T

. 2j(s+1/2)‖(u0,≪j)
k − (uL,≪j)

k‖L1
xL2

T
‖uj‖L∞

x L2
T

. ‖u0 − uL‖Lk
xL∞

T
(‖u0‖

k−1
Lk + ‖uL‖

k−1
Lk

xL∞
T

)‖uj‖Ẋs

≪ ‖uj‖Ẋs

13



by Lemma 3.5. Finally we deal with term D. By commutator lemma
(Lemma 2.4 in [3]), we get

D . 2j(s−1/2)‖∂x[Qj, (uL,≪j)
k]uj‖L1

xL2
T

. 2j(s−1/2)2−j‖∂x(uL,≪j)
k‖

L
4

4−ε
x L

2
ε
T

‖∂xuj‖
L

4
ε
x L

2
1−ε
T

. 2−j23jε/4‖∂x(uL,≪j)
k‖

L
4

4−ε
x L

2
ε
T

‖uj‖Ṡs,1−ε

. 2−j23jε/4‖∂xuL,≪j‖
L

( 1
k
−

ε
4 )−1

x L
2
ε
T

‖uL,≪j‖
k−1
Lk

xL∞
T
‖uj‖Ẋs

. ‖D3ε/4
x uL,≪j‖

L
( 1

k
−

ε
4 )−1

x L
2
ε
T

‖uj‖Ẋs .

Since the triplet (3ε
4 − sk, (

1
k − ε

4 )−1, 2
ε ) is 1-admissible, for any η > 0, we

can choose T > 0 small enough such that

‖D3ε/4
x uL‖

L
( 1

k
−

ε
4 )−1

x L
2
ε
T

< η.

Gathering all these estimates we infer

‖uj‖Ẋs . ‖Qju0‖Ẋs + ‖fj‖Ṅ s,1 .

Summing this inequality over j finishes the proof of Proposition 3.2.

We also need Lk
xL

∞
T -norm estimates.

Proposition 3.3. Let u be a solution of (3.12) with initial data u0 ∈ Ḣsk .
Then there exists T > 0 and C = C(u0) such that

‖u‖Lk
xL∞

T
≤ C‖u0‖Ḣsk +C‖f‖Ṅ sk,1 .

Moreover, if u0 ∈ Ḣs ∩ Ḣsk, s ∈ R, then

‖u‖L∞
T Ḣs

x
≤ C‖u0‖Ḣs + C‖f‖Ṅ s,1. (3.17)

Proof. We can rewrite our equation as

u = uL −

∫ t

0
V (t− t′)(f − π(uL, u))dt

′.

By virtue of Lemma 3.4 and Lemma 3.3, we deduce

‖u‖Lk
xL∞

T
. ‖u0‖Ḣsk + ‖f‖Ṅ sk,1 + ‖π(uL, u)‖Ṅ sk,1 ,
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‖u‖L∞
T Ḣs

x
. ‖u0‖Ḣs + ‖f‖Ṅ s,1 + ‖π(uL, u)‖Ṅ s,1 .

Then we get

‖π(uL, u)‖Ṅ s,1 .
(

∑

j

[

2j(s+1/2)‖(uL,≪j)
ku∼j‖L1

xL2
T

]2
)1/2

. ‖uL‖
k
Lk

xL∞
T

(

∑

j

[

2j(s+1/2)‖u∼j‖L∞
x L2

T

]2
)1/2

. ‖u0‖
k
Ḣsk

‖u‖Ẋs

. C(u0)(‖u0‖Ḣs + ‖f‖Ṅ s,1)

by Proposition 3.2.

4 Well-posedness for k ≥ 4

4.1 Nonlinear estimates

Now we estimate the right-hand side of (3.12) in Ṅ s,1-norm.

Proposition 4.1. For any u ∈ Ẋs ∩ Lk
xL

∞
T , we have

‖π(uL, u) − π(u, u)‖Ṅ s,1 . ‖uL − u‖Lk
xL∞

T

(

‖uL‖
k−1
Lk

xL∞
T

+ ‖u‖k−1
Lk

xL∞
T

)

‖u‖Ẋs

and
‖g‖Ṅ s,1 . ‖u‖k−1

Lk
xL∞

T
‖u‖2

Ẋs .

Proof. Set uj = Qju, u≪j = Q≪ju, etc. Then:

‖π(uL, u) − π(u, u)‖Ṅ s,1 .
(

∑

j

[

2j(s−1/2)‖∂x[((uL,≪j)
k − (u≪j)

k)u∼j]‖L1
xL2

T

]2
)1/2

.
(

∑

j

[

2j(s+1/2)‖(uL,≪j)
k − (u≪j)

k‖L1
xL∞

T
‖u∼j‖L∞

x L2
T

]2
)1/2

. ‖uL − u‖Lk
xL∞

T

(

‖uL‖
k−1
Lk

xL∞
T

+ ‖u‖k−1
Lk

xL∞
T

)

‖u‖Ẋs .
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We bound the second term by

‖g‖Ṅ s,1 .
(

∑

j

[

2j(s+1/2)
∑

r&j

‖(u∼r)
2(u.r)

k−1‖L1
xL2

T

]2
)1/2

.
(

∑

j

[

∑

r&j

2j(s+1/2)‖u∼r‖
L

4
ε
x L

2
1−ε
T

‖u∼r‖
L

( 1
k
−

ε
4 )−1

x L
2
ε
T

‖u.r‖
k−1
Lk

xL∞
T

]2
)1/2

. ‖u‖k−1
Lk

xL∞
T

sup
r

23εr/4‖u∼r‖
L

( 1
k
−

ε
4 )−1

x L
2
ε
T

×
(

∑

j

[

∑

r&j

(2(j−r)(s+1/2))(2r(s+1/2−3ε/4)‖u∼r‖
L

4
ε
x L

2
1−ε
T

)
]2

)1/2

. ‖u‖k−1
Lk

xL∞
T
‖u‖Ṡs,ε

(

∑

j≤0

2j(s+1/2)
)(

∑

j

[

2j(s+1/2−3ε/4)‖u∼j‖
L

4
ε
x L

2
1−ε
T

]2
)1/2

. ‖u‖k−1
Lk

xL∞
T
‖u‖2

Ẋs

where we used discrete Young inequality.

4.2 Existence in Ḣ
sk(R)

Consider the map F defined as

F (u) = U(t)u0 −

∫ t

0
U(t− t′)f(t′)dt′.

We shall contract F in the intersection of two balls:

BM (u0, T ) = {u ∈ Ẋsk ∩ Lk
xL

∞
T : ‖u− u0‖Lk

xL∞
T

≤ δ}

and
BS(u0, T ) = {u ∈ Ẋsk ∩ Lk

xL
∞
T : ‖u‖Ẋsk ≤ δ}

endowed with the norm

‖u‖ẎT
= ‖u‖Ẋsk + ‖u‖Lk

xL∞
T
.

Gathering Propositions 3.2, 3.3 and 4.1 (with s = sk) we find that there
exists C = C(u0) > 1 such that

‖F (u)‖Ẋsk ≤ C‖U(t)u0‖Ẋsk + C(1 + ‖u− u0‖
k−1
Lk

xL∞
T

)‖u‖2
Ẋsk

+ C(‖uL − u0‖Lk
xL∞

T
+ ‖u− u0‖Lk

xL∞
T

)(1 + ‖u− u0‖
k−1
Lk

xL∞
T

)‖u‖Ẋsk
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and

‖F (u) − u0‖Lk
xL∞

T
≤ ‖U(t)u0 − u0‖Lk

xL∞
T

+ C(1 + ‖u− u0‖
k−1
Lk

xL∞
T

)‖u‖2
Ẋsk

+ C(‖uL − u0‖Lk
xL∞

T
+ ‖u− u0‖Lk

xL∞
T

)(1 + ‖u− u0‖
k−1
Lk

xL∞
T

)‖u‖Ẋsk .

We can choose T = T (u0) small enough so that the quantities ‖U(t)u0‖Ẋsk ,
‖uL − u0‖Lk

xL∞
T

and ‖U(t)u0 − u0‖Lk
xL∞

T
are smaller than ε = 1

128C2 . Thus if
u ∈ BM ∩BS , then

‖F (u)‖Ẋsk ≤ 4Cε+ 4Cδ2

and
‖F (u) − u0‖Lk

xL∞
T

≤ 4Cε+ 4Cδ2.

Now we take δ = 1
8C so that F (u) belongs to BM ∩ BS . In the same way,

for any u1 and u2 in BM ∩BS, one has

‖F (u1) − F (u2)‖ẎT
. ‖f(u1) − f(u2)‖Ṅ sk,1

. ‖uL − u1‖Lk
xL∞

T
(1 + ‖u1‖

k−1
Lk

xL∞
T

)‖u1 − u2‖Ẋsk

+ ‖u2‖Ẋsk (‖u1‖
k−1
Lk

xL∞
T

+ ‖u2‖
k−1
Lk

xL∞
T

)‖u1 − u2‖Lk
xL∞

T

+ ‖u1‖
2
Ẋsk

(‖u1‖
k−2
Lk

xL∞
T

+ ‖u2‖
k−2
Lk

xL∞
T

)‖u1 − u2‖Lk
xL∞

T

+ ‖u2‖
k−1
Lk

xL∞
T

(‖u1‖Ẋsk + ‖u2‖Ẋsk )‖u1 − u2‖Ẋsk .

(4.1)

Therefore,
‖F (u1) − F (u2)‖ẎT

. (ε+ δ)‖u1 − u2‖ẎT

and for ε, δ small enough, F : BM ∩ BS → BM ∩ BS is contractive. There
exists a solution u in BM ∩BS .

The next step is to show that u ∈ C([−T,+T ], Ḣsk(R)). Using (3.17)
and Proposition 4.1, we obtain that u ∈ L∞

T Ḣ
sk
x . For any t1, t2 ∈ [0, T ] with

t1 < t2, writing u(t) as

u(t) = V (t− t1)u(t1) −

∫ t

t1

V (t− t′)∂xu
k+1(t′)dt′,
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we get

‖u(t1) − u(t2)‖Ḣsk . sup
t∈[t1,t2]

‖u(t) − u(t1)‖Ḣsk

. sup
t∈[t1,t2]

‖u(t1) − V (t− t1)u(t1)‖Ḣsk

+
∥

∥

∥

∫ t

t1

V (t− t′)∂xu
k+1(t′)dt′

∥

∥

∥

L∞(t1,t2;Ḣsk )

→ 0

as t1 → t2.
Now consider u0,1, u0,2 ∈ Ḣsk two initial data, and u1, u2 ∈ ŻT satisfying

u1(t) = U1(t)u0,1 −

∫ t

0
U1(t− t′)f1(u1)(t

′)dt′,

u2(t) = U2(t)u0,2 −

∫ t

0
U2(t− t′)f2(u2)(t

′)dt′,

where Uj(t)ϕ is solution to

∂tu+ H∂2
xu+ π(V (t)u0,j , u) = 0, u(0) = ϕ

and fj is defined by

fj(u) = π(V (t)u0,j , u) − π(u, u) + g(u).

We intend to show that there exists a nondecreasing polynomial function
P ≥ 1 such that

‖u1 − u2‖ŻT
. P (‖u1‖ŻT

+ ‖u2‖ŻT
)
[

‖u0,1 − u0,2‖Ḣsk

+ (‖u1‖Ẋsk + ‖u2‖Ẋsk )‖u1 − u2‖ŻT

]

(4.2)

where the implicit constant in the inequality may depends on u0,1, u0,2.
Obviously, the uniqueness of the solution to (gBO) and the fact that the
flow map is locally Lipschitz from Ḣsk(R) to ŻT follow directly from (4.2).

One has

‖U1(t)u0,1−U2(t)u0,2‖ŻT
. ‖U1(t)(u0,1−u0,2)‖ŻT

+‖(U1(t)−U2(t))u0,2‖ŻT
.

The first term in the right-hand side is bounded by ‖u0,1 − u0,2‖Ḣsk . To
treat the second one, we note that (U1(t) − U2(t))u0,2 is solution to

∂tu+H∂2
xu+π(V (t)u0,1, u) = π(V (t)u0,1, U2(t)u0,2)−π(V (t)u0,2, U2(t)u0,2)
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with zero initial data. Hence by Propositions 3.2 and 3.3,

‖(U1(t) − U2(t))u0,2‖ŻT
. ‖π(V (t)u0,1, U2(t)u0,2) − π(V (t)u0,2, U2(t)u0,2)‖Ṅ sk,1

. ‖u0,1 − u0,2‖Ḣsk .

We also need to bound

∥

∥

∥

∫ t

0
(U1(t− t′)f1(u1) − U2(t− t′)f2(u2))dt

′
∥

∥

∥

ŻT

.
∥

∥

∥

∫ t

0
U1(t− t′)(f1(u1) − f1(u2))dt

′
∥

∥

∥

ŻT

(4.3)

+
∥

∥

∥

∫ t

0
U1(t− t′)(f1(u2) − f2(u2))dt

′
∥

∥

∥

ŻT

(4.4)

+
∥

∥

∥

∫ t

0
(U1(t− t′) − U2(t− t′))f2(u2)dt

′
∥

∥

∥

ŻT

. (4.5)

(4.3) is bounded by

(4.3) . ‖f1(u1) − f1(u2)‖Ṅ sk,1

and we can use (4.1) to get the desired estimate. Term (4.4) is bounded by

(4.4) . ‖π(V (t)u0,1, u2) − π(V (t)u0,2, u2)‖Ṅ sk,1

. ‖u2‖Ẋsk ‖u0,1 − u0,2‖Ḣsk .

Finally, note that
∫ t
0 (U1(t− t′) − U2(t− t′))f2(u2)dt

′ is solution to

∂tu+ H∂2
xu+ π(V (t)u0,1, u) = π(V (t)u0,2, ψ) − π(V (t)u0,1, ψ),

with zero initial data, and where ψ =
∫ t
0 U2(t− t′)f2(u2)dt

′. It follows that

(4.5) . ‖π(V (t)u0,2, ψ) − π(V (t)u0,1, ψ)‖Ṅ sk,1

. ‖ψ‖Ẋsk ‖u0,1 − u0,2‖Ḣsk

. (‖u2‖Ẋsk + ‖u2‖
k+1
Ẋsk

)‖u0,1 − u0,2‖Ḣsk .

Gathering all these estimates we obtain (4.2).

4.3 Existence in H
s(R), s ≥ sk

Define the spaces Xs = Ẋ0 ∩ Ẋs and N s,θ = Ṅ 0,θ ∩ Ṅ s,θ.
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We closely follow the proof of Theorem 2.1. We show that F is a con-
traction in the intersection of

BM (u0, T ) = {u ∈ Xs ∩ Lk
xL

∞
T : ‖u− u0‖Lk

xL∞
T

≤ δ}

and
BS(u0, T ) = {u ∈ Xs ∩ Lk

xL
∞
T : ‖u‖Xs ≤ δ}

endowed with the norm

‖u‖YT
= ‖u‖Xs + ‖u‖Lk

xL∞
T
.

Using Propositions 3.2, 3.3 and 4.1 (applied with s ≥ sk and s = 0) and the
embedding N s,1 →֒ Ṅ sk,1 for s ≥ sk we find

‖F (u)‖Xs ≤ C‖U(t)u0‖Xs + C(1 + ‖u− u0‖
k−1
Lk

xL∞
T

)‖u‖2
Xs

+ C(‖uL − u0‖Lk
xL∞

T
+ ‖u− u0‖Lk

xL∞
T

)(1 + ‖u− u0‖
k−1
Lk

xL∞
T

)‖u‖Xs

and

‖F (u) − u0‖Lk
xL∞

T
≤ ‖U(t)u0 − u0‖Lk

xL∞
T

+ C(1 + ‖u− u0‖
k−1
Lk

xL∞
T

)‖u‖2
Xs

+ C(‖uL − u0‖Lk
xL∞

T
+ ‖u− u0‖Lk

xL∞
T

)(1 + ‖u− u0‖
k−1
Lk

xL∞
T

)‖u‖Xs .

In the same way, one may show that

‖F (u1) − F (u2)‖YT
. ‖f(u1) − f(u2)‖N s,1

. ‖uL − u1‖Lk
xL∞

T
(1 + ‖u1‖

k−1
Lk

xL∞
T

)‖u1 − u2‖Xs

+ ‖u2‖Xs(‖u1‖
k−1
Lk

xL∞
T

+ ‖u2‖
k−1
Lk

xL∞
T

)‖u1 − u2‖Lk
xL∞

T

+ ‖u1‖
2
Xs(‖u1‖

k−2
Lk

xL∞
T

+ ‖u2‖
k−2
Lk

xL∞
T

)‖u1 − u2‖Lk
xL∞

T

+ ‖u2‖
k−1
Lk

xL∞
T

(‖u1‖Xs + ‖u2‖Xs)‖u1 − u2‖Xs .

This proves the existence in Hs(R). The end of the proof is identical to that
of Theorem 2.1.

5 Well-posedness for k = 3

Let k = 3 and s > 1/3 be fixed.
The scheme of the proof is the same as for the case k ≥ 4 with minor

modifications. First, in view of Lemma 3.2, it is clear that Lemma 3.5 holds
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for k = 3 with u0 ∈ Ḣsk replaced by u0 ∈ Hs. Next we see that the

Ḃ
3ε
4

,2

( 1
k
− ε

4
)−1(L

2
ε
T ) -norm which appears in Proposition 4.1 when estimating the

nonlinear term g is not bounded by the Ṡε,1-norm for k = 3. So we modify
slightly the space Xs by setting

Xs = Ẋ0 ∩ Ẋs ∩ Ḃε,2
3 (L

2
ε
T ).

On one hand, it is clear from Sobolev inequalities that

‖u‖
Ḃ

3ε
4 ,2

( 1
3−

ε
4 )−1

(L
2
ε
T )

. ‖u‖
Ḃε,2

3 (L
2
ε
T )

. ‖u‖Xs .

On the other hand, the Ḃε,2
3 (L

2
ε
T )-norm is acceptable since by (3.8),

‖V (t)ϕ‖
Ḃε,2

3 (L
2
ε
T )

.
(

∑

j

4jε‖QjV (t)ϕ‖2
L3

xL∞
T

)1/2

.
(

∑

j

‖Qjϕ‖
2
H1/3+2ε

)1/2
. ‖ϕ‖Hs

for ε≪ 1. From this, it is straightforward to check that the subcritical non-
homogeneous versions of Propositions 3.2, 3.3 and 4.1 are valid whenever
k = 3. This essentially proves Theorem 2.3.
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