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On the vanishing of the Rokhlin invariant

TETSUHIROMORIYAMA

It is a natural consequence of fundamental properties o€#sson invariant that
the Rokhlin invariant (M) of an amphichiral integral homology 3—sphdvke
vanishes. In this paper, we give a new direct proof of thisisldng property.
For such anM, we construct a manifold pairY(Q) of dimensions 6 and 3
equipped with some additional structure (6—dimensiona spmanifold), such
thatQ 2 MIIMII(—M), and {¥, Q) = (-Y, —Q). We prove thatY, Q) bounds
a 7—dimensional spie—manifold ¢, X) by studying the cobordism group of 6—
dimensional spire-manifolds and th&, /2 —actions on the two—point configuration
space oM\ {pt}. Forany suchZ, X), the signature oX vanishes, and this implies
(M) = 0. The idea of the construction of (Q) comes from the definition of the
Kontsevich—Kuperberg—Thurston invariant for rationafrfudogy 3—spheres.

57M27;57N70, 57R20, 55R80

1 Introduction and Main results

1.1 Introduction

The Rokhlin invariant(M) of a closed oriented spin 3—manifol is defined by
(M) = SignX (mod 16)

where X is a smooth compact oriented spin 4—manifold boundedvbyws a spin
manifold, and SigiX is the signature oX. If M is a Z/2—-homology 3-sphere,
then it admits a unique spin structure, and;gM) is a topological invariant oM.
In 1980’s, Casson defined an integer—valued invarigM), what is now called the
Casson invariant, for oriented integral homology 3—sphesiad proved the following
fundamental properties fox (see []):

(1-1) AM=M) = —A(M)
(1-2) 8\(M) = u(M) (mod 16)


http://www.ams.org/mathscinet/search/mscdoc.html?code=57M27,(57N70, 57R20, 55R80)
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It is a natural consequence df1) and (-2 that, if M is amphichiral (namelyM
admits a self-homeomorphism reversing the orientatidrén its Rokhlin invariant
vanishes:

(1-3) M= M — uM)=0

In this paper, we give a new proof of this vanishing propedyihtegral homology
3—spheresorollary 3. We might say that our approach is more direct in the sense
that we only consider the signature of 4—manifolds or relatiearacteristic classes
(Remark 1.6.

Remark 1.1 Walker [19] extended the Casson invariant to a rational-valued iawuari
Aw(M) for oriented rational homology 3—spheres, such thg{M) = 2A(M) if M is
an integral homology 3—sphere. He proved thg{—M) = —A\w(M) holds for anyM,
and 4H1(M; Z) > \w(M) = (M) (mod 16) holds for anyZ/2—homology 3—spheres,
where|A| denotes the number of elements in aAefThese two properties imply that
the same statemertt4{3) holds for allZ/2—homology 3—spheres.

Remark 1.2 Some partial proofs of the vanishing property have beemdiyeseveral
authors (Galewski], Kawauchi P] [8], Pao—Hsiang{], Siebenman17], etc.) before
the Casson invariant was defined.

1.2 Outline of the proof

We outline our proof of 1-3) for integral homology 3—sphere€dgrollary 3, without
giving precise definitions and computations. Seetion 1.3andSection 1.4or more
details. Yet another proof is also given$ection 9(see alsdRemark 1.5.

Aninvariant ¢ An n—dimensionale-manifold o = (W, V, €) is roughly a manifold
pair (\W,V) of dimensionsn and n — 3 equipped with a cohomology class
H?(W\V; Q) called ane—class. In our previous papdf], we defined a rational-valued
invarianto(«) for 6—dimensional closed-manifolds such that(—a) = —o(a), and
that o(03) = SignX for a 7—dimensionaé-manifold 5 = (Z, X, €) (Theorem 1.4

Outline of the proof For an oriented integral homology 3—sphéle we construct
a 6—dimensional closed spermanifold ay = (Y, Q,ev) (Y and Q are spin) such
thatQ = MIIM I (—M) anda_py = —apm. We can prove thatyy is spin null—
cobordant Theorem 2. Namely, there exists a spigmanifold 5 = (Z, X, €) such
that 93 = aym. Therefore,

o(am) = SignX = u(M)  (mod 16)



On the vanishing of the Rokhlin invariant 3

If M= —M, thenay = —am ando(ay) = 0. Consequentlyy (M) = 0. O

1.3 e-classes ance-manifolds

In [15], we introduced the notion o#-class ande-manifold. Let ¢, X) be a pair of
(smooth, oriented, and compact) manif@ddand a proper submanifold (90X c 9Z
and X is transverse taZ) of codimension 3. Letx: Svx) — X be the unit
sphere bundle associated with the normal bung{eof X (identified with a tubular
neighborhood o), ande(Fx) € H?(S(vx); Z) the Euler class of the vertical tangent
subbundleFx C TSwx) of Svx) with respect taox.

Definition 1.3 ([15]) A cohomology class € H2(Z \ X; Q) is called ane-classof
(Z,X) if €lguy) = &(Fx) overQ. The triple 3 = (Z, X, €) is called ane-manifold Set
dimg =dimZ.

A spin structure of3 will mean a pair of spin structures & and X. We call

6 a spin emanifold if it has a spin structure. The boundary ®fis defined as
B = (0Z,0X, €lpz\ax), and the disjoint union of twe-manifolds 5 = (Z, X, &)

(i1=1,2)is defined agl; 11 6> = (Z1 11 Z», X; 11 X5, €3), wherees is the e-class such
thates|z\x, = &. We also define-3 = (-Z, —X, €). We say3 is closedif 93 is the
empty emanifold ) = (0, @, 0). If there exists an isomorphisim (Z1, X;) — (Z5, X5)

of pair of manifolds such that*e, = e;, then we say3; and (3, areisomorphic
(denoted bys, = 3»). See L5, Section 2] for more details.

In [15], we defined the following invariant for 6—dimensional closed-manifolds.
Theorem 1.4 ([15]) There exists a unique rational-valued invariatft) for 6—
dimensional closeé-manifoldsa satisfying the following properties

@ o(—a)=—0(a), olall ') = o(a) + o).
(b) For a7—-dimensionak-manifold 5 = (Z, X, €), o(93) = SignX.

This invarianto is a generalization of Haefliger’s invariar@] for smooth 3—knots in
< [15, Theorem 5].
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1.4 Main results

If a closed spire-manifold o bounds, namely, if there exists a sgfmmanifold 5 such

that 98 = « as a spine-manifold, then we sayv is spin null-cobordant We define

Q¢°"" to be the cobordism group of 6—dimensional spimanifolds, namely, it is an
abelian group consisting of the spin cobordism classésf 6—dimensional closed
spin e-manifolds«;, with the group structure given by the disjoint sum.

In Section 3 for an oriented integral homology 3—-sphekk, we construct a 6—
dimensional closed spie-manifold oy = (Y, Q, ew) such thatQ = M II M IT (—M).
The following theorem will be used to prove the vanishinghef $pin cobordism class
[am] € Qg,spln of ay.

Theorem 1 There is a unique isomorphisi: QS%P" — (Q/16Z) & (Q/4Z) such
that

(1-4) D(W, 0, €]) = (1 / pr(TW)e — €°, 1 / e3> mod 16Z @ 47
6 Jw 2 Jw
for any closed spi—manifoldW ande € H3(W: Q).

Here, p1(TW) is the first Pontryagin class of the tangent bund@\/ of W. Any
element inQg°P" is represented by a closed spgamanifold of the form W, 0, )

(Proposition 5.5 and that is why® is uniquely determined byl{4).

Theorem 2 Foran oriented integral homolo@~sphereM , the6—dimensional closed
spine-manifold ay satisfies the following properties.

(1) a_m = —am-
(2) [am] = 0in Q%"

As a corollary ofTheorem 1./andTheorem 2we obtain a new proof of the vanishing
property (—3) of the Rokhlin invariant for integral homology 3—spheres.

Corollary 3 ([1], [19] for Z/2—homology 3—spheres)fan oriented integral homol-
ogy 3—sphereM is amphichiral, then.(M) = 0.

Proof AssumeM = —M. Theorem 2(1) andTheorem 1.4a) implies o(apy) = 0.
By Theorem 2(2), there exists a 7—dimensional smrmanifold 5 = (Z, X, €) such
that 96 = anm, and in particular, we have(ay) = SignX by Theorem 1.4b). The
manifold X is spin anddX = Q. Let us writeQ = MyUM>U(—M3), M; = M. Gluing
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the boundary componenkd, andM3 of X by a diffeomorphism, we obtain a compact
oriented spin 4—manifol&’ such thatoX’ = M; = M and SignX’ = SignX. By the
definition of the Rokhlin invariant, we have

— H ! H o o
”(M)(mEd 1855an = SignX =o(am) =0 O

Remark 1.5 Yet another direct proof o€Corollary 3is given inSection 9 this is a
shortcut toCorollary 3without usingTheorem 1.4 1t follows from the properties of
that, if a 7—dimensionad—manifold 3 = (Z, X, €) if closed, then SigiX = 0. We can
also prove this directly by using Stokes’ theorem, and theshmd is enough to prove
Corollary 3 The proof given irSection Quses onlyTheorem Zand Stokes’ theorem.

1.5 Plan of the paper
Here is the plan of the paper.

Preliminaries In Section 2 we introduce notation and conventions. 3ection 3
we construct a 6—dimensional closed sgimanifold ay = (Y, Q, ev) such that
Y= (Mx M#-S x ) andQ = MIIMII (—M).

Aninvolution LetG = {1,.} denote a multiplicative group of order 2. Section 4
we define aG—action on Y, Q) by using the permutation of coordinates bhx M

andS® x S°. We can regard as an isomorphism betweemy anda_y (preserving
the orientation), namelyheorem 1) holds.

Spin cobordism group of e-manifolds In Section 5 we proveTheorem 1 more
precisely, we give a short exact sequence
0 — QP"(BSPpin3)) — 2FP(K(Q,2)) — EP" -0,

which is isomorphic to 0— 16Z © 4Z — Q ® Q — (Q/16Z) @ (Q/4Z) — O.
Here, Q:P" denotes the spin cobordism group. A pail,€) of a closed spin 6—
manifold W and e € H%(W; Q) represents an elementV[ ] € QP(K(Q, 2)), and
the isomorphismlemma 5.3

U@ -0oe W (G [ nrwe-é. [ &)

induces the definition ob.
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Signature modulo 32 In Section 6 we construct a certain closed spramanifold
of the form o, = (Y',0, €}) such that §}] = [am] in Qg°P", and thatY’ has an
orientation reversing fre€—action. We show that, i€, is the Poinca dual of a 4—
submanifoldW of Y’, then the following equivalence relation hold¢position 6.3

[am] = 0 (Theorem 22)) «— SignW=0 (mod 32)

G-vector bundle In Section 7 we proveTheorem 22), by constructing such .
This is done by assuming the existence of an oriented veatudleF, of rank 2 over
Y’ with a G—action, such that

(i) eF) = ¢, overQ,
(i) Wi(F/G) = wi(TY'/G) in HI(Y'/G: Z/2) fori = 1,2,

wherew; denotes thé—th Stiefel-Whitney class. Fix &—equivariant smooth sec-
tion s: Y — F, and defineW = {xe€ Y| s(x) =0}. Then, the Poincér dual
of W is €, by (i). The second propertyi) implies that the quotienW/G is ori-
entable and spinnable smooth manifold. By Rokhlin’s thegrere have SighV =
+2SignW/G = 0 (mod 32). HenceTheorem 2(2) holds. InSection 8 we prove
the existence oF satisfying () and i).

In Section 9 we give yet another direct proof Qforollary 3

1.6 Remarks

Remark 1.6 The Casson invariamt(M) is roughly defined by measuring the oriented
number of irreducible representations of the fundamemtalgr (M) in SU(2), and so
the geometric meaning is different fromfM). The relation {-2) is proved by showing
that the Dehn surgery formula fox(M) (mod 2) coincides with that ofy(M). On
the other hand, our proof does not require such formulash@féct that the Casson
invariant is a finite type invariant) in any step including throof of Theorem 1.4
Moreover, in this paper, we only need to consider the sigeaiti4—manifolds or the
related characteristic classes to pr@erollary 3 Therefore, we might say that our
proof is more direct.

Remark 1.7 The idea of the construction afy; comes from the definition of the
Kontsevich—Kuperberg—Thurston invariadikr(M) for oriented rational homology
3—spheresi1] [10], which is a universal real finite type invariant for integnamology
spheres in the sense of Ohtsukg], Habiro [5], and Goussarov3]. A detailed review
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and an elementary proof for the invariance &kt is given by Lescop13]. The
degree one paZ;(M) of Zxkt(M) is equal toAw(M)/4 (first proved by Kuperberg—
Thurston [L1] for integral homology 3—spheres, and later Lescbf] pxtended this
relation to all rational homology 3—spheres). By definitida(M) is described as an
integral over the configuration space CgiM’) = M’ x M’ \ M/, of two points on
M’ =M\ {Xo}, whereM’y, € M’ x M’ is the diagonal submanifold.

Remark 1.8 By the construction of Y, Q) (Section 3, the complementy \ Q is
nothing but the union of the two configuration spaces G@f) and — Confy(RR3),

and theG-action onY \ Q corresponds to the permutation of coordinates on the
configuration spaces. To be brief, the invariafi,) measures the difference between
the manifolds Conf(M’) and Con$(R3) (equipped with some second cohomology
classes) by using the signature of 4—manifolds.

Remark 1.9 If M is an oriented rational homology 3—sphere, then we can defire
dimensional closed-manifold ay = (Y, Q, ey) in exactly the same way as for integral
homology 3—spheres. The isomorphism classgfis a topological invariant oM
(this can be proved in the same way as the pro#frofposition 3.5 and therefore, the
rational number (o) € Q is a topological invariant ol . In a future papés;, we will
prove thato(ay) is equal to the Casson—Walker invariagy(M) up to multiplication
by a constant.

Acknowledgmentsl would like to thank Professor Mikio Furuta, Toshitake Kohn
and Christine Lescop for their advice and support.

2 Notation

We follow the notation introduced irlf]. All manifolds are assumed to be compact,
smooth, and oriented unless otherwise stated, and we useutveard normal first”
convention for boundary orientation of manifolds.

For an oriented real vector bundt of rank 3 over a manifoldX, we denote the
associated unit sphere bundle py: SE) — X, and letFg € TSE) denote the
vertical tangent subbundle &E) with respect tope. The orientations ofg and
S(E) are given by the isomorphismg&E = Re @ Fg andTHE) = pe TX@® Fg, where

T. Moriyama,Casson—-Walker invariant the signature of sgiamanifoldsin preparation
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Re C pgE is the tautological real line bundle & over SE). Consequently, the Euler
class

&(Fe) € H(S(E); 2)
of Fg is defined.

Next, let Z,X), Z O X, be a pair of manifolds, and we assume tKais properly
embedded irZ and the codimension is 3. Throughout this paper, we alwapes®
these assumptions for all pairs of manifolds. Denote/pythe normal bundle oK,

which can be identified with a tubular neighborhoodXoo thatX C vx C Z. For
simplicity, we write

X = ), px = pux: X = X, Fx = Fux, Zx = Z\ Uy,
whereUy is the total space of the open unit disk bundle/gf

If we denote by V, V) = 9(Z, X) the boundary pair of4, X), then we can definey,
Fv, V, pv, Wy, etc. in exactly the same way as above, and we f@#e= V and

e(Fx)|y = e(Fv).

In line with our orientation conventions, if dith= 7 (and so dinW = 6), then the
oriented boundaries dx andWy are given as follows:

0Zx =Wy U (=X), oWy =V

Note thatZyx have the corneN which is empty whenX is closed. By definition,
e c H?(Z\ X; Q) is ane-class Z, X) if, and only if, el = e(Fx) overQ. See [L5] for
more detailed description.

3 Construction of oy

Let M be an oriented integral homology 3—sphere. In this secti@ngive a precise
construction of thee-manifold oy = (Y, Q, ew).

Identify the 3-spher&® with the one-point compactificatioR®11{cc} of the Euclidean
3—spaceR? by adding one pointo at infinity. We can regar@®? x R® as an open
submanifold ofS® x S such thatS® x S = (R3 x R3) 11 (S} U S5), where

(3-1) S=x{x}, S$={x}xS

Fix a base pointxy € M and a smooth oriented local coordinates U — R3
such thaty(xg) = 0. We shall assume tha&i is sufficiently small, so that, for any
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such a local coordinateg’: U’ — R3, there exists an orientation preserving smooth
diffeomorphismh: M — M such thath(U) = U’ and ¢’h|y = ¢: U — R3. Set
P = {(x0,%0)}. We define

Y= (MxM\P)Ug, ($xS\{(0,0)})

to be the oriented closed 6-manifold obtained by gluihgU\ P andR3 xR3\ {(0, 0)}
by using the gluing mag,,: U x U\ P — R3 x R3\ {(0,0)} defined by

(p(x), (V)
16 y). ONI*

where|| || is the standard norm @3 x R3 = R®. By definition,Y = (M x M)#(—S® x
).

(3_2) ggo(xv y) = (X> y) eUxU \ Pv

Remark 3.1 We have to remember that we ugg to perform the gluing, so that we
can define an involution ol in Section 4

We can regardM x M \ P and—S® x $*\ {(0,0)} as open submanifolds of. The
closure ofM x M\ P in Y is Y itself, and so this procedure to obtaihfrom M x M
is a kind of blow—up that replaces one poihto the bouqueSf U Sg where note that

SINS = {(00,00)}
We have the following three 3—submanifolldg (i = 1,2,3) of Y:
Mi=(M x {x})\P, M;=({X}xM)\P, M3z=Ma\P

Here,Ma C M x M is the diagonal submanifold. The closureMf in Y will be
denote byM;, which is smoothly embedded 3—submanifoldYofuch that

Ml = Mi]:[ {(0070)}7 M2 = MéH {(07 OO)}7 M3 = MéH {(OO,OO)}a
Mi=M, MinMj=0 (#]).

We then define
Q - Ml U M2 U (_M3)7

which is a 3—submanifold oY, seeFigure 1

Notation 3.2 We will sometimes write Y(M), Q(M)), instead of just Y, Q), to em-
phasize that this is constructed frdvh.

Two (smooth oriented) manifold pairs\ V) and V', V') are said to bésomorphicif
there exists an orientation preserving diffeomorphismV — W’ such thaf (V) = V’
as an oriented submanifold.
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S x S-side
Y Sy
MZ // —M3 |
M, |
Y = - — -~ P S
////— , Ml :
A / !
P — MY M, :
“M x M"-side

Figure 1: The manifold pairY, Q).

Lemma 3.3 The isomorphism class of the pdl, Q) of manifolds depends only on
the topological type and the orientation Mf. In particular, it does not depend ag
or .

Proof Let V; be an oriented integral homology 3—sphere with a base pgiand
with an orientation preserving local coordinates U; — R3 such thaty;(x) = 0
(i = 1,2). Then, we can define the pair of manifolds

(Yi, Qi) = (Y(Vi), Q(V)),
by using the gluing mag,, as in 3-2).

AssumeV; = V, as an oriented topological manifold. Since the topologenad
the smooth categories are equivalent in dimension threge texists an orientation
preserving diffeomorphisnin: V; — V, such thath(U1) = U, and p1 = ¢2h|y,.
Therefore,g,, coincides with

ggoz(h X h)|U1><U1\P1: Ul X Ul \ Pl - R3 X R3 \ {(07 0)}7
whereP; = {(x;,x)}. Hence, the diffeomorphism
h x h: V1XV1\P1—>V2><V2\P2

uniquely extends to an orientation preserving diffeom@mphY; — Y, which sends
Q1 onto Q. Hence, Y1, Q1) and (Y2, Q) are isomorphic. O
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Lemma 3.4 The pair(Y, Q) admits a unique-class.

Proof In general, a closed manifold pai¥\( V) of dimensions 6 and 3 admits a
uniquee-class if it satisfies the following two condition$H, Proposition 6.1 (5)]:

(1) The restrictiontH2(W; Q) — H2(V; Q) is isomorphic.

(2) [V] =0 in H3(W; Q), where V] is the fundamental homology class ¢t
Since the first and the second betti-number¥ &nd Q vanish, Y, Q) satisfies 1).
By the same reason, we hav®lj] + [M2] = [M3] in H3(Y; Q). Consequently,

[Q] = [M1] + [M2] — [M3] = 0, namely, ¥, Q) satisfies 2). Hence, ¥, Q) admits an
uniquee-class. O

We denote byey € H?(Y \ Q; Q) the uniquee-class of ¥, Q), and we define

am = (Y7 Q?Q\/l)

which is a 6—dimensional closed sgrmanifold.

Proposition 3.5 The isomorphism class efy depends only on the topological type
and the orientation dfl .

Proof In general, if there is an isomorphism (W, V) — (W', V') of pair of mani-
folds of codimension 3, then the pull-batk: H2(W'\V’; Q) — H?(W\ V; Q) maps
an e-class to are-class. Thus, byemma 3.3andLemma 3.4the isomorphism class
of ay depends only on the topological type and the orientatioll of O

4 An involution

LetG = {1, .} be amultiplicative group of order two. L&t, g,,,andam = (Y, Q, ev)
be as inSection 3 In this section, we provEheorem 1), by constructing &—action
on ay which reverses the orientation #f

Remark 4.1 In this paper,G—actions we use may reverses the orientation of mani-
folds. Therefore, in this paper, @—manifold(resp. G—vector bundlgwill mean an
oriented manifold (resp. vector bundle) with a smo@thaction which may reverses
the orientation unless otherwise stated.
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The groupG acts onM x M and $* x S$* by permuting coordinates. Since the
gluing mapg, commutes with thes-action, Y has the induced smoot&-action. It

is easy to check that(M1) = M, and that the fixed point set of the action ®¥nis
Ms. Consequently,(Q) = Q as an oriented submanifold. Note that the involution
reverses the orientation of and preserves that &@. Thus, we can regard as an
isomorphism

(4-1) v (=Y, =Q) — (Y, -Q)

of pair of (oriented) manifolds.

Lemma 4.2 Theorem 1) holds, namelypx_y = —apy.

Proof We shall identify ¥(—M), Q(—M)) with (Y, —Q) which admits a unique-
class—ey by Lemma 3.4and hence,

a_M = (Y7 _Qa _QV|)

The homomorphism*: H?(Y \ Q; Q) — H2(Y \ Q; Q) induced from 4—1) maps an
e-class of ¥, —Q) to ane-class of (Y, —Q), which means*(—ey) = eu. Thus,:
is an isomorphism from-ay to a_y. O

5 Spin cobordism group ofe-manifolds

In [15], we proved that there is an isomorphisig = (Q/Z)®2, where Q¢ is the
cobordism group of 6—dimensionatmanifolds. In this section, we prove that there
is a similar isomorphisnf2¢g*P" = (Q/16Z) @© (Q/4Z). The only difference between
the two proofs is that spin structures are not considereti5f) ind the essential ideas
behind the proofs are the same.

5.1 Preliminaries: K(Q, 2) and BSpin(3)

Let K(Q, 2) be the Eilenberg—MacLane space of tyfie Z). The reduced homology
group ofK(Q, 2) is given as follows (cf.4]):

Q ifk>0andk=0 (mod 2)

0 otherwise

(5-1) Ak(K(Q, 2);7) = {

The cohomology groupiZ(K(Q, 2); Q) = Q (k > 0) is generated by thie-th power
a‘; of the dual elemend; € H3(K(Q, 2);Q) of 1 € m(K(Q, 2)).
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Let BSpin(3) be the classifying space of the Lie gro§pin(3). SinceBSpin3) is
homotopy equivalent to the infinite dimensional quateritiqarojective spacélP,
the following isomorphism holds:

Z ifk>0andk=0 (mod 4)

(5-2) Hk(BSpin(3); Z) = .
0 otherwise

We can assume th&(Q, 2) and BSpin3) have structures of CW-complexes. Let

Q:P"(V) denote the spin cobordism group of a CW-compiexin low—dimensions,

the spin cobordism grou@s®" = Q5P"(pt) of one pointpt is given as follows (cf.12]):

k ][0 1 2 3 456

5-3 :
(5-3) Oz z/2 Z/2 0 Z 0 0

In general, the Atiyah—Hirzebruch spectral sequeBEg(Y) for Q%P"y) converges
(cf. [18)): ‘ ‘
E2q = Hp(Y; 0P = OFZ5(Y)

The following lemma is an easy application of the Atiyahdisruch Spectral se-
qguence.
Lemma 5.1 The following isomorphisms hold:

0FK(Q2)= Q% aP"(BSpin3) = 2
Proof We use %-1), (5-2), and 6-3) to prove this lemma. The Atiyah—Hirzebruch
spectral sequencg) , = Ef ,(K(Q, 2)) for Q3P"(K(Q, 2)) converges on th&?-stage

within the rangep + q < 6, and soEj5, = Eg,q in the same range. Consequently, we
have

o ~)Q ifp=62
PP 10 otherwise
and therefore2SP"(K(Q, 2)) =~ Q%2

Similarly, the spectral sequendg) , = Ej ((BSpir(3)) converges on th&2-stage in
the rangep + q < 4, and

. [z ifp=40
PAP 10 otherwise.

Thus, Q5P"(BSpin3)) = 72, D
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5.2 Spin cobordism groups oBSpir(3) and K(Q, 2)

We define three homomorphisms £, and v as follows. A pair W, e) of a closed
spin 6—manifoldW and a cohomology class € H2(W; Q) represents an element
(W, e € QFP(K(Q,2)). Here, we identifye with the homotopy class of a map
f: W— K(Q,?2) such thaf *a; = e. Define a homomorphism

x: OPNK(Q,2)) — QP2
by x(IW, €]) = (x1(W, &), x2(W, &)), where

aW.9 = 5 [ prwe-e e,

1
Xa2(W, €) = E/Weg’e@-

Similarly, a pair ¥, E) of a closed spin 4—manifolX and a spin vector bundIg of
rank 3 overX represents an elemerX,[E] € Q3""(BSpin(3)). Here, we identify the
isomorphism class dE with the homotopy class of the classifying m&p— BSpin(3)
of E. Note thatp;(E) = 0 (mod 4) (sinceE is spin), and that

(5-4) Sig"X =0 (mod 16)
by the Rokhlin’s theorem. Define a homomorphism

¢: QSPN(BSpIN3)) — 167 @ 47

by EQXE) = (Signx, / pl(E)> |

We will see soon thaj and ¢ are isomorphicliemma 5.3. We define a homomor-
phism
v GP(BSPIN3)) — Q" (K(Q, 2)

by v([X, E]) = [S(E), &(Fg)].

Now, for a pair K, E) representing an element in""(BSpir(3)), the characteristic
classes of the vector bundl&s Fg, TX, and TSE) satisfy the following relations:

(5-5) &(Fe)® = p1(Fe) = pipr(E)
(5-6) = p1(TYE)) — pep1(TX) (modulo 2—torsion elements)
(5-7) pe&(Fg) = 2
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Here, pg,: H(S(E); Z) — HO(X;Z) is the Gysin homomorphism gfg, and 2 ¢
HO(X; Z) denotes the element given by the constant functioX avith the value 2 &
Euler characteristic o8). The Hirzebruch signature theorem states that

(5-8) SignX = %/Xpl(TX).

The next two lemmas are easy to prove.

Lemma 5.2 yv = . In other words, for any paffX, E) of closed spimi—manifold
X and a spin vector bundle of rank 3 over X, we have

(SE). oFe)) = (Signx, /X pl(E)) .

Proof This follows from the formulasg-5), (5-6), (5-7), and 6-8). In fact, we have
PL(TSE))e(Fe) — &(Fe)* = pEp1(TX)e(Fe), and so

1 . 1 .
\A(SE). efFe)) = = / pep(TXE(Fe) = = / p(TX) = SignX.
6 SE) 3 Jx
Similarly, we have

1 kS
o(SE).efFe)) = 5 [ pipuE)e(Fe) = [ pulE) o
S(E) X
Lemma 5.3 The homomorphismg and¢ are isomorphic.

Proof The K3-manifold K3 is a closed spin 4—manifold with the signaturd 6.
There exists an oriented spin vector bunél®f rank 3 overS* such thatp,(E) = 4
in H4(S" Z) = Z. We define two elements,, u; € Q;""(BSpir(3)) as follows:

up = [K3,K3 x R3], u, =[S E]

Then, {(up) = (—16,0) and{(uz) = (0, 4) by definition. Therefore, Iny = (16Z) @
(4Z). In particular, ¢ is a surjective homomorphism frof3”"(BSpir(3)) = 72
(Lemma 5.} to 16Z @ 47Z. This means thag is an isomorphism.

Similarly, we havey(v(u1)) = (—16,0) and x(v(u1)) = (0,4) by Lemma 5.2 and
these two elements form a basis of the vector s{aeéé over Q. Therefore,y is a
linear homomorphism fronf2""(K(Q), 2) = Q%2 (Lemma 5.} to Q%2 of rank 2.
This means thaf is an isomorphism. O
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Proposition 5.4 The sequence of the homomorphisms
0 — QP"(BSpin3) > QPK(Q, 2) - (Q/162) @ (Q/4Z) — 0
is exact, where = x mod 16 @ 47Z.

Proof This follows from that, the diagram

OP"(BsSpIn3)) —— QP(K(Q, 2))

sl% xl%

(167) @ (47) inclusion QEBZ
commutesl(emma 5.2 and the vertical arrows are isomorphiee(nma 5.3. O

5.3 An extension

Let us consider the homomorphism
T QPNK(Q, 2)) — Q"

defined byr([W, €]) = [W, 0, €] for [W, €] € QPP"(K(Q,2)). We can prove that is
surjective as follows.

Leta = (W, V, e) be a 6-dimensional closed smrmanifold. The normal bundley
of V is trivial, because it is spin. We fix a trivialization of;, so that a closed tubular
neighborhood o is identified withV x D3 such thatvV x & = V. Let X be a spin
4—manifold such thadX = V.

Let p: X x & — < be the projection, ané(TS) the Euler class o&?. Two spin
manifoldsWy and X x S have the common spin boundadyy, = V = 9(X x ),
and the cohomology classesand p*e(TS) restrict to the same elemesfFy) on V
over Q. Let us consider the closed oriented spin 6—manifold

(5-9) W =Wy Ug (—X x &)

obtained fromW, and—X x S by gluing along the common boundaries. There exists
a cohomology clasg’ € H*(W'; Q) such that

(5-10) dlw =€elw, €lxxg =P ETS).

We obtain a 6—dimensional closed sgirmanifold o/ = (W', (), €) and a cobordism
class W', €] € QF""(K(Q, 2)) such thatr([W, €]) = [o/].
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Proposition 5.5 Let o, X, anda’ = (W', (),€) be as above. Then, there exists a
7—dimensional spire-manifold of the form3 = (Z, X, &) for some spini—manifold

Z andé € H*(Z\ X; Q) such thab$ = a 11 (—). In particular,w((W',€]) = [a] in
Qg°P". Consequently, the homomorphismis surjective.

Proof Let| = [0, 1] be the interval. In this proof, for a subsatc W, we write
A={t} xACI xWfort=0,1.

Gluing the 7—manifoldd x W and X x D3 along D()g € Wp and V x D3 C
d(X x D3) by using the identity map, we obtain a spin 7—manifold
Z = (X x D% Upyxpay, (I x W)
with the boundary
0Z = WL II ((X x S%) Ug, (~(W)o))
= WII (-W),

and we shall assume th&Z is smooth after the corne¥y is rounded. The spin
4—submanifold

X x{0}) Uy, (I xV)CZ

is properly embedded i#, and is bounded by;. We will rewrite X Uy, (I x V) asX
and identifydZ with WII (—W'), so that

as a spin manifold pair.

Now, all that is left to do is to show the existence ofewlass of Z, X) restricting to
e and€ on the boundary components. Since the includidn— Z \ X is homotopy
equivalence, there exists a cohomology class H2(Z \ X; Q) of (Z,X) such that

&w = €. By constructiong is ane-class of Z, X) such thai|y,, = e. Hence, we
obtain a 7—dimensional spgrmanifold 5 = (Z, X, &) bounded by

8/8 = (Wa V7 é‘W\V) il (_W/a (2)7 é‘W’) =all (—Oé/). D
5.4 Proof of Theorem 1
In this subsection, we proveheorem 1 By Proposition 5.5we can use the formula

(1-4) to define the homomorphisih : Qgspi” — (Q/167) © (Q/4Z). The first thing
we have to do is to show thdt is well-defined.
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Lemma 5.6 The homomorphisn® ngspi” — (Q/167Z) @ (Q/4Z) is well-defined.

Proof Let us consider two 6—dimensional closed spimanifolds of the formsy =
(W, 0,€) anda’ = (W, 0, €) such that W, 0, €] = [W', 0, €] in Qg°"". We only need
to show that the differencg([W, 0, €]) — x([W', 0, €]) belongs to 1& @ 47Z.

There exists a 7—dimensional sgirmanifold 3 = (Z, X, &) such thavg = all(—’).
The 4—submanifoldX is closed, spin, and embedded in the interioiZzof Thus, the
manifold Zx has the smooth spin boundary

0Zyx = WII (—W') II (—X).

Sinceé

5 = &(Fx), we have
a(ZX7 é|Z><) = (Wv e) il (_W/v e() I (_5(7 e(FX))v

and this implies v, €] — [W, €] = [X, e(Fx)] in QP"(K(Q, 2)). By Lemma 5.2we
have
XX, &(Fx)]) = x((X, vx]) = &([X, vx]) € 16Z & 4Z,

wherevy is the normal bundle oX. O
Now, we can provd heorem 1

Proof of Theorem 1 Consider the following commutative diagram:

H H o]

0 —— of"@SpIE) —— 9PKQ,2) — &% 0

The lower horizontal sequence is exactrpposition 5.4and the homomorphism
is surjective byProposition 5.5 To complete the proof, we only have to show that the
upper horizontal sequence is exact, more specifically,

Imv = Kermr.
We prove this in two steps as follows.

Claim 1 Imwv C Kerr. Let [X, E] € Q5P"(BSpir(3)) be any element, then
m(v([X, E])) = [S(E), 0, &Fe)]
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by definition. We can regarX as the image of the zero—section Bfso thatX C
Int D(E). The cohomology class(Fg) is ane-class of §E), ) = d(D(E), X), and it
uniquely extends to ae-class, sayeg, of (D(E), X). The obtained spir-manifold
(D(E), X, eg) is bounded by §E), 0, &(Fg)), and hence, we have(v([X, E])) = 0.

Claim 2 Imv D Kermw. Next, we prove the opposite inclusion. L&V][e] € Kern
be any element, then = (W, (), e) bounds a 7—dimensional spetmanifold 3 =
(Z,X, 8, namelyds = «. In particular, we havé&|y = &(Fx). Since

8(ZX> é|Z><) = (W> e) I (_)A<> e(FX))>
the cobordism classy, €] € QSP(K(Q, 2)) satisfies
[W, € = [X, &Fx)] = v([X, »x]) € Imuv,

wherevy is the normal bundle oX. D

6 Signature modulo32

Let M be an oriented integral homology 3-sphere, angl = (Y,Q,ev) the 6—
dimensional closed spie-manifold constructed irSection 3 Let [am] € Qg°P"
denote the spin cobordism classa@y . In this section, by using the isomorphisin
we derive a necessary and sufficient condition for the vamisfiy,] = 0 in terms of
the signature of a 4—manifoldPoposition 6.3

Recall that we constructed@-action on ¥, Q) in Section 4 The normal bundleq
of Q has aG—equivariant trivializationvg = Q x R3 such that

(6-1) Ux,V) = (109, —v),
(6-2) Q=Qx¢,
where §,V) € vg.

Let Xg be an oriented spin 4—manifold equipped with an identiftcatiXo = M, and
consider the union
X = X1 U Xy U Xs,

whereX; (i = 1,2, 3) are disjoint copies 0Ky such thatoX; = M;, and so
(6-3) oX =Q.

The G—action onQ naturally extends to an action ot such that.(X1) = «(X2) and
that. restricts to the identity oX3. We define a&—action on the trivial vector bundle
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X x R® over X in the same way a${1). Then, theG—vector bundleX x R3 restricts
to vg over Q. Consequently,

(6-4) IX xS =Q.

Note that 6—2), (6—3), and 6—4) hold asG—manifolds.

As in (5-9 and 6-10, let us consider the closed spin 6—dimensicBaimanifold
(6-5) Y =YoUg (X x &)

obtained by gluing the common boundari®¥g = Q = 9(X x $), and the cohomol-
ogy classg}, € H%(Y’; Q) such that

(6-6) alvo =&, Eulxxs = FXeTS),
where
(6_7) foXXSZ—>52

is the projection. We obtain a 6—dimensional closed spmanifold

ay = (Y, 0,ey).

Note that theG—action onY’ is free, and the quotienY’/G is a smooth closed
unoriented manifold.

Lemma 6.1 Fork < 3, the restriction homomorphisms
HX(Y'; Z) — HY(X x $%,2),
HX(Y'/G; Z/2) — HX(X x §)/G;Z/2)

are injective.

Proof We identify the cohomology groupl*(Y’, X x $;Z) with H* (Yo, Q; 7Z), and
H*(Y'/G, (X x $)/G; Z/2) with H*(Yo/G, Q/G; Z/2) by using the excision isomor-
phisms.

The homomorphismy*: H* (X x & Z) — HK(Y',X x % Z) given by the pair
(Y, X x ) coincides with the composition of two homomorphisms

(6-8) HY(X; Z) — H*}(Q; Z2) — HX(Yq, Q; Z),

where the firstarrow is the restriction, and where the seaama is the homomorphism
given by (Yo, Q). Note that the homomorphisiaX(Yo, Q; Z) — H(Yg; Z) is trivial.
Both homomorphisms in6-8 are surjective, and so i§*. Hence, HX(Y';Z) —
HK(X x S Z) is injective.
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Similarly, the homomorphisni*—1(X/G; Z/2) — HX(Y'/G, (X x §)/G;Z/2) coin-
cides with the composition of two surjective homomorphisms

H*"Y(X/G; Z/2) — H*"Y(Q/G; Z/2) — HX(Yo/G,Q/G; Z/2).
Note that the homomorphisri*(Yo/G, Q/G;Z/2) — HX(Yo/G;Z/2) is trivial.
Therefore HX(Y'/G; Z/2) — HX(Y'/G, (X x )/G; Z/2) is injective. o

The following lemma is easy to prove.

Lemma6.2 €, =0 (mod 2)

Proof The Euler characteristic & is 2, which is even. Therefore, the cohomology
classe}, mod 2 belongs to the kernel of the restriction

H(Y'; Q/2Z) — H3(X x §;,Q/27)
by (6—6). Onthe other hand, this homomorphism is injectivébynma 6.1 Therefore,
€, =0 (mod 2). O

Proposition 6.3 Assume that there is4-submanifoldW of Y’ which Poincag dual
is €, . Then, thee-manifold cwy is spin null-cobordangnamely,Theorem 22) holdg
if, and only If,

SignW=0 (mod 32)

Proof By Proposition 5.5[ay] = [a},] in Q&%". By (1-4), we have

soid = (5 [ Vet i, 5 [ &) mod1meaz

Sincepy(TY)|lw = p1(TW) + €3, the first component on the right-hand side is equal
to SignW/2. By Lemma 6.2 we havee/2 = 0 (mod 4), and sod([am]) =
(SignW/2,0) mod 1€ @ 4Z. Since® is an injective byTheorem 1 [a] = O if,
and only if, SigniW/2 =0 (mod 16). O

7 Proof of Theorem 2

In this section, we prov&heorem 22), by constructing a 4—submanifol of Y’ as
in Proposition 6.3
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Proposition 7.1 There exists an oriented vector bunéfleof rank 2 overY' with a
G-—action satisfying the following two properties.

(1) e(F)=¢ey overQ.
(2) wWi(F/G) =w(TY'/G) in H(Y'/G;Z/2) fori = 1, 2.

Here,F /G is the quotient of~, which is unoriented vector bundle of rank 2 over the
unoriented manifoldy’ /G, and herew; denotes the—th Stiefel-Whitney class. The
proof will be given inSection 8

Since G acts freely onY’, there exits aG—equivariant smooth sectiost Y/ — F
transverse to the zero section. We defile= {x € Y’ | s(x) = 0}, which is a smooth
oriented closed 4—dimension@—submanifold ofY’. By Proposition 7.1(1), the
Poincaé dual ofW is €}, . The quotient spac#//G is a unoriented smooth submanifold
of Y'/G.

Lemma7.2 wi(TW/G)=0fori=1,2.

Proof There is an isomorphismY’/Gly,c = TW/G @ F/G|w/c- SinceTY'/G and
F /G have the same Stiefel-Whitney classes(i = 1,2) by Proposition 7.12), we
havew;(TW/G) = 0. O

We can provel'heorem 22) as follows.

Proof of Theorem 2(2) By Lemma 7.2 the closed smooth manifol&V/G is ori-
entable and spinnable. We fix an orientatiorVdfG, then SignVv = +2 SignW/G.
By Rokhlin’s theorem %—4), we have Sigh//G = 0 (mod 16), and consequently,
SignW = 0 (mod 32). O

8 G—vector bundle

In this section, we prov@®roposition 7.1 To construct theG—vector bundleF, we
prove the existence of @—equivariant classifying mafy : Y’ — CP® of F. Here, a
G-action onCP? is defined as follows.

Let H denote the quaternions spanned fiyi,j,k} over R such thati® = j2 =
k? = ijk = —1. By regardingH as the complex spac€ ¢ Cj, we can identify the
complex projective spac€P(H™1) with CP?™! for n > 0 (our main interest is
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whenn = 0,1). The multiplication byj on vectors orH"*! from the left provides a
free involution,: CP?"1 — CP?1 and soCP?*! is a G—manifold. Note that the
natural inclusions? = CP* — CP® commutes with th&—action. The unit 2—sphere
& c R3 has a freeG—action given by the multiplication by a scalarl. We shall
identify CP! with & as aG—manifold.

Let fo: Q — & be the projection onto the fiber given by the trivializati@#), and
fx: Xx & — S beasin6-7. LetS (i = 1,2) be as in-1). Note thatfx|s = fq
and(S) = S.

Let P; (i = 1,2,3) be 0—dimensional submanifolds ¥fdefined as follows:
P1={(0,00)}, P2={(0,0)},  P3={(c0,00)},
thenS N Q = P, U(—P3) andS N Q = P, U (—P3) as oriented manifolds. We define
Ci=S\(QxIntD% (i=12),

which is a proper 3—submanifold df. We shall assume tha; is diffeomorphic to
S %[0, 1], by choosing a small tubular neighborho@dc D* of Q (so thatS° N (Q x D3)

is the disjoint union of two small 3—balls i§*). In particular, the boundaryC; is

the disjoint union two 2-sphere3C; = (S§* N M;) II (—S* N M3). The involution
v: Y — Y restricts to a diffeomorphismic, : C; — C,. We write

C=QuUCLUC,,
then((C) = C.

Lemma8.1 The mapfq: Q — & extends to &—equivariant mapc: C — .

Proof By the definition offg, the two maps
fQ’Sfﬂl\Alll: S?lﬁ |\7|1 — SZ, fQ’Si’ﬂMg: S?lﬂ |\7|3 — SZ
have the degree-1 and—1 respectively. Therefor&|sc,: 9C1 — & extends to a
mapfe,: C; — . We define amaffc: C — S by
fo(X) if xe Q
fc(®) = ¢ fe,(¥) if xe Cy
fc,(t(¥) ifxeC,

for x € C. Itis easy to check that this is well-defined aBdequivariant. O
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To obtain a classifying mafy: Yo — CP®, we consider the obstruction classes to
extending the magc to a G—equivariant magfy;. The primary obstruction class
belongs to the cohomology group

(8-1) H3(Yq/G,C/G; Z-),

where Z_ is the local system orYq/G given by the non-trivial characteristic ho-
momorphismG — Aut(m2(CP%) = {id, —id}. In other words, 1) is the G—
equivariant cohomology group with coefficients in the nomial G-moduleZ (such
that.1 = —1).

Lemma 8.2 The obstruction grouf8-1) vanishes.

Proof The low—dimensional cohomology groups ofg(C) and (Yo/G,C/G) are
given as follows:

(8-2) HX(Yo, C; Z) = HX(Yo/G,C/G;Z) = 0 (k< 3)
There is a long exact sequence
-2 HXY(Y/G,C/G; Z_) a, HX(Yo, C; Z) 5 HX(Yo/G,C/G; Z) — - - -,

whereq* is the pull-back of the covering map Yo — Yo/G, andq is the Gysin
homomorphism. The vanishing€{2) and the exact sequence implies

HX(Yq/G,C/G;Z_) =0 (k< 3). O

Proposition 8.3 There exists &—equivariant mafy : Y — CP? such thafiy
fo.

Q:

Proof By Lemma 8.2the primary obstruction class vanishes. The higher obtsbru
groups vanishes, sincg(CP?) = 0 for 3 < i < 6. Hence,fc extends to aG—
equivariant magy : Yo — CP3. O

Now, let us consider the fiber bundje CP® — HP! which maps a complex liné
in H2 to the corresponding quaternionic lifit@c |. The fiber ofp is CP!, and the
G-action preserves the fiber. LE§f ¢ TCP? be the tangent subbundle 62 with

respect tap, which is an oriented vector bundle of rank 2 o@®® with a G—action.
We then define

(8-3) F=fiF

to be the pull-back oF; underfy. Itis an oriented vector bundle of rank 2 ovér
with a G—action.
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Proof of Proposition 7.1 By the construction of, we have

e(F)’XXSZ = f;(ke(TSZ) = ef\/I‘XxSZ'
By Lemma 6.1 the homomorphismH2(Y’; Q) — H3(X x $%;Q) is injective, and
therefore,e(F) = €, andProposition 7.11) holds.

The vector bundlé= restricts tofy; TS over X x S*. The quotient manifoldX x §)/G
is diffeomorphic to the disjoint union of x & andX x RP?. SinceX is oriented and
spin, we have

Wi(TY'/G)|xx2)/6 = Wik TS/G) = Wi(F/G)|xxg/c (i =1,2).

By Lemma 6.1 we havew;(TY'/G) = w;(F/G). Namely,Proposition 7.12) holds.
O

9 Appendix: Yet another proof of Corollary 3

Let M be an oriented integral homology 3—sphere, ang = (Y,Q,ev) the 6—

dimensional closed spia-manifold constructed fronM. The aim of this section is
to give yet another direct proof d@orollary 3using Theorem 2and without using
Theorem 1.4

Proof Letus assum® = —M, thenay = —anm by Theorem 21). Namely, there
exists a diffeomorphism

h: (¥,Q) — (Y,Q)

which reverses the orientations ¥fand Q such thath*ey, = ey. By Theorem 22),
there exists a 7—dimensional smrmanifold 5 = (Z, X, &) such thatos = apy.

Let us consider the 7—dimensional closed spimanifold
B'=pBUns

obtained by gluing the boundaries of two disjoint copiesfoby using h, more
precisely, we can write

g =2 X&), Z=zunzZ, X =XUpX,

where& € H2(Z' \ X’;Q) is the e-class of Z’, X’) obtained by gluing two copies of
€. Note that the manifoldZ’ and X’ are closed spin.

What we need to prove is Sigh= 0 (mod 16), or equivalently
SignX’ =0 (mod 32)
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It is easy to show that there is the following formula (se® &lsmma 5.2:
: ’ 1 ! 3
SignX’ = 6 /. P1(TX)e(Fx) — e(Fx:)
Xl

SincedZ}, = —X' and& is ane-class of Z’, X') (namely,&|s, = &(Fx:) by defini-
tion), the right—hand side is equal to
—}/ p(TZ)E —& =0
6 Joz,

by Stokes’ theorem. Consequently, SKjn= 0 (mod 32). O
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