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Note on the Deodhar decomposition of a double Schubert cell

We show that for an algebraic reductive group G , the partition of a double Schubert cell in the flag variety G /B defined by Deodhar, and coming from a Bialynicki-Birula decomposition, is not a stratification in general. We give a counterexample for a group of type Bn, where the closure of some specific cell of dimension 2n has a non-trivial intersection with a cell of dimension 3n -3.

INTRODUCTION

Let G be an algebraic reductive group defined over an algebraically closed field k together with a fixed Borel subgroup B containing a maximal torus T of G . The Coxeter system corresponding to these data will be denoted by (W , S). More precisely, W = N G (T )/T and S is the set of non-trivial elements s ∈ W such that BsB is of minimal dimension. The opposite Borel subgroup B * will be defined as the conjugate of B by the longest element w 0 of W .

We will be concerned with a refinement of the Bruhat stratification of the flag variety G /B. Recall that under the action of B (resp. B * ), this variety decomposes into a disjoint union of orbits, each of them containing a unique element of W . Such an orbit will be denoted by Bw • B (resp. B * w • B) and referred as the Schubert cell (resp. the opposite Schubert cell) corresponding to w .

Given two elements of the Weyl group w and v , Deodhar has defined in [Deo] a partition of the double Schubert cell Bw • B ∩ B * v • B into affine smooth locally closed subvarieties of the flag variety G /B. This decomposition is not unique in general and depends on a reduced expression of w . When such an expression is chosen, the decomposition has a combinatorial definition: the set of cells is parametrized by some subexpressions of w , the distinguished ones, and each cell is isomorphic to k n × (k × ) m where n and m can be defined in terms of the associated subexpression (see [START_REF] Deodhar | On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells[END_REF]theorem 1.1]).

In the special case where w is a Coxeter element, Deodhar was able to describe the closure of a cell (see [START_REF] Deodhar | On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells[END_REF]section 4]), giving thus a complete description of the geometry of the double Schubert cell. This particular example, together with the recent work of Webster and Yakimov on a more general decomposition (see [WY] and [We]), lead to the following expectations:

(i) the closure of a cell is a union of cells;

(ii) there is a natural order on the set of cells related to the Bruhat order, such that the closure of a cell has a non trivial intersection with all the smaller cells for this order. Unfortunately, these two assertions fail in general, and we give two examples showing that the situation is much more complicated (section 2.2 and 2.3). At the present time, we have no clue for what can be the closure of a cell.

DOUBLE SCHUBERT CELLS AND DEODHAR DECOMPOSITION

We recall in this section the principal result of [Deo], using a different approach due to Morel (see [START_REF] Morel | Note sur les polynômes de Kazhdan-Lusztig[END_REF]Section 3]) which relies on a general decomposition theorem, namely the Bialynicki-Birula decomposition, applied to Bott-Samelson varieties.

Let w ∈ W be an element of the Weyl group of G . The Schubert variety X w associated to w is the closure in G /B of the Schubert cell Bw • B. This variety is not smooth in general, but Demazure has constructed in [Dem] a resolution of the singularities, called the Bott-Samelson resolution, which is a projective smooth variety over X w . The construction is as follows: we fix a reduced expression w = s 1 • • • s ℓ of w and we define the Bott-Samelson variety to be

BS = P s1 × B • • • × B P s ℓ /B
where P si = B ∪ Bs i B is the standard parabolic subgroup corresponding to the simple reflection s i . It is thus defined as the quotient of P s1 × • • • × P s ℓ by the right action of B ℓ given by (p 1 , ... , For a subexpression γ = (γ 1 , ... , γ ℓ ) ∈ Γ of w , we denote by γ i = γ 1 • • • γ i the i-th partial subword and we define the following two sets: and

p ℓ ) • (b 1 , ... , b ℓ ) = (p 1 b 1 , b -1 1 p 2 b 2 , ... , p -1 ℓ-1 p ℓ b ℓ ). The homomorphism π : BS -→ X w which sends the class [p 1 , ... , p ℓ ] in BS of an element (p 1 , ... , p ℓ ) ∈ P s1 × • • • × P s ℓ to the class of the product p 1 • • • p ℓ in G /B
I (γ) = i ∈ {1, ... , ℓ} | γ i = s i J(γ) = i ∈ {1, ... , ℓ} | γ i s i < γ i .
With these notations, Deodhar's decomposition theorem (see [Deo, Theorem 1.1 and Corollary 1.2]) can be stated as follows:

Theorem 1.1 (Deodhar, 84). There exists a family (D γ ) γ∈Γ of disjoint smooth locally closed subvarieties of Bw • B such that:

(i) D γ is non empty if and only if J(γ) ⊂ I (γ); (ii) if D γ is non empty, then it is isomorphic to k |I (γ)|-|J(γ)| × (k × ) ℓ-|I (γ)| as a variety;
(iii) for all v ∈ W , the double Schubert cell has the following decomposition:

Bw • B ∩ B * v • B = γ∈Γv D γ
where Γ v is the subset of Γ consisting of all subexpressions γ such that γ ℓ = v .

Remark 1.2. In the first assertion, the condition for a cell D γ to be non-empty, that is J(γ) ⊂ I (γ), can be replaced by:

∀ i = 2, ... , ℓ γ i -1 s i < γ i -1 =⇒ γ i = s i .
A subexpression γ ∈ Γ which satisfies this condition is called a distinguished subexpression.

For example, if G = SL 3 (k) and w = w 0 = sts, then there are seven distinguished subexpressions, the only one being not distinguished is (s, 1, 1).

Sketch of proof: the Bott-Samelson variety is a smooth projective variety endowed with an action of the torus T . Let us consider the restriction of this action to m through a strictly dominant cocharacter χ : m -→ T . Since this action has a finite number of fixed points, namely the elements of Γ, there exists a Bialynicki-Birula decomposition of the variety BS into a disjoint union of affine spaces indexed by Γ (see [START_REF] Bialynicki-Birula | Some theorems on actions of algebraic groups[END_REF]Theorem 4.3])

BS = γ∈Γ C γ .
In [Hä], Härterich has explicitly computed the cells C γ . To describe this computation, we need some more notations: Φ will be the root system corresponding to the pair (G , T ) and Φ + (resp. Φ -) the set of positive (resp. negative) roots defined by B (resp. B * ). For any root α ∈ Φ we denote by U α the corresponding one-parameter subgroup and we choose an isomorphism u α : k -→ U α . The simple roots associated to the simple reflections of the reduced expression w = s 1 • • • s ℓ will be denoted by α 1 , ... , α ℓ . Finally, we consider the open immersion a γ : ℓ -→ BS defined by

a γ (x 1 , ... , x ℓ ) = [u γ1(-α1) (x 1 )γ 1 , ... , u γ ℓ (-α ℓ ) (x ℓ )γ ℓ ].
Then one can easily check that π -1 (Bw

• B) = Im(a (s1,••• ,sr ) ).
Moreover, Härterich's computations (see [Hä, Section 1]) show that for any subexpression γ ∈ Γ, one has:

C γ = a γ {(x 1 , ... , x ℓ ) ∈ ℓ | x i = 0 if i ∈ J(γ)} .
Taking the trace of this decomposition with π -1 (Bw • B), one obtains a decomposition of the variety π -1 (Bw • B). Furthermore, the restriction of π to this variety induces an isomorphism with Bw • B, and thus gives a partition of Bw • B into disjoint cells:

π -1 (Bw • B) = γ∈Γ π -1 (Bw • B) ∩ C γ ≃ γ∈Γ Bw • B ∩ π(C γ ) = Bw • B.
If we define D γ to be the intersection Bw • B ∩ π(C γ ), then it is explicitly given by:

D γ ≃ π -1 (D γ ) = a γ {(x 1 , ... , x ℓ ) ∈ ℓ | x i = 0 if i ∈ J(γ) and x i = 0 if i / ∈ I (γ)} .
This description, together with the inclusion π(C γ ) ⊂ B * γ ℓ • B, proves the three assertions of the theorem. 

BwB ∩ U * =      1 0 0 a 1 0 c b 1   c = 0 and ab -c = 0    .
Considering the alternative a = 0 or a = 0, one has BwB ∩ U * ≃ (k × ) 3 ∪ k × k × , which is exactly the decomposition given by the two distinguished expressions (1, 1, 1) and (s, 1, s).

Notations 1.4. For a subexpression γ ∈ Γ, we define the sequence

Φ(γ) = γ i (-α i ) i = 1, ... , ℓ and γ i (α i ) > 0 .
Using Härterich's computation for the cell C γ and the definition of π, one can see that each element of π(C γ ) ⊂ B * γ ℓ • B has a representative in the unipotent radical U * of B * which can be written in the following form:

α∈Φ(γ) u α (x α ) with each x α ∈ k,
the product being taken with respect to the order on Φ(γ). At the level of D γ , some of the variables x α must be non-zero (those corresponding to γ i (-α i ) with γ i = 1) but the expression becomes unique, and it will be referred as the canonical expression in U * of an element of D γ .

ON THE CLOSURE OF DEODHAR CELLS

This section is devoted to the two questions raised in the introduction. Before recalling them, we make the statements more precise. For w = s 1 ... s ℓ a reduced expression of an element w of W , we have defined in the previous section a desingularization of the Schubert variety X w . One can embed this variety into a product of flag varieties as follows: we define the morphism ι :

BS -→ (G /B) ℓ by ι([p 1 , p 2 , ... , p ℓ ]) = (p 1 B, p 1 p 2 B, ... , p 1 p 2 • • • p ℓ B).
Note that π is the last component of this morphism. Let γ ∈ Γ be a subexpression of w . As a direct consequence of the construction of C γ , one has

ι(C γ ) ⊂ ℓ i =1 B * γ i • B.
Since BS is projective, ι is a closed morphism, and hence it sends the closure of a cell C γ in BS to the closure of ι(C γ ). Therefore, it is natural to consider a partial order on the set Γ coming from to the Bruhat order on W since it describes the closure relation for Schubert cells. For δ ∈ Γ, we define δ γ ⇐⇒ γ i ≤ δ i for all i = 1, ... , ℓ.

Then, by construction:

C γ ⊂ δ γ C δ and D γ ⊂ δ γ D δ
where D γ denotes the closure of D γ in the Schubert cell Bw • B. Now with these notations, the questions raised in the introduction can be rewritten as: It is possible to give a positive answer to both of these questions in some specific cases -w a Coxeter element or γ maximal. However, this is not the case in general, and the situation can be even worse, as shown in the following sections.

II.1 -Chevalley formula in type B n

From now on, G will be a quasi-simple group of type B n , for example the orthogonal group SO 2n+1 (k). The Weyl group W = W n and its underlying root system correspond to the following Dynkin diagram:

t 1 t 2 t 3 t 4 t n-1 t n
The set of generators will be denoted by S = {t 1 , ... , t n } and the associated simple roots by {β 1 , ... , β n }. There are n 2 positive roots, and their expression in terms of the simple ones is given by [Bou, Planche II]:

• α i + α i +1 + • • • + α j for 1 ≤ i ≤ j ≤ n; • 2α 1 + • • • + 2α i + α i +1 + • • • + α j for 1 ≤ i < j ≤ n.
Recall that to each of these roots and their opposite correspond a one-parameter subgroup u α : k -→ U α . Since every element of a Deodhar cell can be written in terms of these subgroups (see notations 1.4), we need to recall the fundamental tool we will be using for all the computations, that is, the Chevalley commutator formula (see [START_REF] Carter | Finite simple groups of Lie type[END_REF]Theorem 5.2.2]). One may, and we will, choose indeed the family (u α ) α∈Φ such that if α, β ∈ Φ are any linearly independent roots and x, y ∈ k any scalars, one has:

u α (x) ; u β (y ) = u α (x)u β (y )u α (-x)u β (-y ) = i ,j>0 u i β+jα (C ijβα (-y ) i x j )
where the product is taken over all pairs of positive integers i, j for which iβ + jα is a roots, in order of increasing i +j. For the simplicity of the proofs, we give here some explicit expressions of this formula in the specific cases we will encounter: Formula 2.3. Let x, y ∈ k. For α, β ∈ Φ -and i = 2, ... , n -1, we have

(i) if α + β / ∈ Φ then u α (x)u β (y )u α (-x) = u β (y ) ; (ii) if α = -β i and β = -β i +1 -• • • -β n then u α (x)u β (y )u α (-x) = u α+β (±xy )u β (y ) ; (iii) if α = -2β 1 -β 2 -• • • -β n-1 and β = -β 2 -• • • -β n then u α (x)u β (y )u α (-x) = u α+β (±xy )u β (y ) ; (iv) if α = -β i -• • • -β n-1 and β = -β n then u α (x)u β (y )u α (-x) = u β (y )u α+β (±xy ) ; (v) if α = -β 1 -• • • -β n-1 and β = -β n then u α (x) ; u β (y ) = u 2α+β (±x 2 y )u α+β (±xy ).
Remark 2.4. The values of the constants C ijβα can be determined by [START_REF] Carter | Finite simple groups of Lie type[END_REF]Section 4.3]. Note that the signs of these constants depend on a choice on some of the elements of the Chevalley basis of the Lie algebra of G (namely, the extra-special pairs, see [START_REF] Carter | Finite simple groups of Lie type[END_REF]Section 4.2]). However, this will not be relevant in our computations and we will use the notation ±.

II.2 -Obstruction to the stratification

In this section we give a negative answer to question 2.1. To do so, we consider an element w of W n defined by the following reduced expression:

w = t n t n-1 • • • t 2 t 1 t 2 • • • t n-1 t n t n-1 • • • t 2 t 1 t 2 • • • t n-1
and we define γ, δ ∈ Γ to be the following two distinguished subexpressions of w : and γ = (1, t n-1 , t n-2 , ... , t 2 , 1, t 2 , ... , t n-1 , 1, t n-1 , ... , t 2 , 1, t 2 , ... , t n-1 ) δ = (1, t n-1 , t n-2 , ... , t 2 , t 1 , 1, 1, ... ... ... ... ... ... ... , 1, t 1 , t 2 , ... , t n-1 ).

The dimension of the cells associated to these subexpressions is given by theorem 1.1.(ii). One can easily check that dim D γ = 2n and dim D δ = 3n -3 although the two subexpressions are related by δ γ. Therefore, for n ≥ 4, the closure of D γ cannot contain the cell D δ and in this situation, one can no longer give a positive answer to both of the questions. More precisely, we prove: 

  is called the Bott-Samelson resolution. It is a proper surjective morphism of varieties and it induces an isomorphism between π -1 (Bw • B) and Bw • B. Now the torus T acts naturally on BS by left multiplication on the first component, or equivalently by conjugation on each component, so that π becomes a T -equivariant morphism. There are finitely many fixed points for this action, represented by the classes of the elements of Γ = {1, s 1 } × • • • × {1, s ℓ } in BS; such an element will be called a subexpression of w .

Example 1. 3 .

 3 In the case where G = SL 3 (k), and w = w 0 = sts, one can easily describe the double Schubert cell Bw • B ∩ B * • B. It is isomorphic to BwB ∩ U * by the map u → uB, where U * denotes the unipotent radical of B * . Besides, by Gauss reduction, the set BwBw -1 = BB * consists of all matrices whose principal minors are non-zero. Hence,

Question 2. 1 .

 1 Is the closure of D γ a union of cells ? In other terms, does the partition (D γ ) γ∈Γ define a stratification of the variety Bw • B ? Question 2.2. For a subexpression δ γ, do we have D γ ∩ D δ = ∅ ?

Proposition 2. 5 .

 5 The closure of D γ in the double Schubert cell Bw • B ∩ B * • B contains a subvariety of D δ of dimension n.
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Proof. (i) Let Ψ be the subset of the root system Φ defined by

The sum of two elements of this subset is never a root, so that all the corresponding oneparameter subgroups commute. Associated to this set of roots, we define

By the previous remark and formula 2.3.(i), this product does not depend on any order on Ψ. In order to make the connection with the cells D γ and D δ , we define the corresponding variety in G /B by

It is an affine variety of dimension n, isomorphic to V . We show now that it is contained in both D γ and D δ , which will prove the assertion of the theorem.

(ii) Using [START_REF] Bourbaki | Groupes et algèbres de Lie[END_REF]Section V.4.1], one can easily determine the elements of the sequence Φ(δ); their opposite are given by

Recall from notations 1.4 that the elements of D δ are parametrized by variables (x β ) β∈Φ(δ) living in k × (whose for which δ i = 1) or k. For this specific subexpression, one can check that the first (2n -2)-th roots correspond to variables in k × whereas the last (n -1)-th correspond to variables in k. Therefore, for y = (y 1 , ... , y n ) ∈ (k × ) n , we can consider the element of D δ associated to the following specialization: (x β ) β∈Φ(δ) = (y 1 , y 2 , ... , y n-1 , y n , -y n-1 , ... , -y 3 , -y 2 , 0, ... , 0).

The corresponding representative in U * is thus given by

where, with a view of making the computations readable, we have denoted by u * α = u -α the one-parameter subgroup corresponding to the root -α. By successive applications of formula 2.3.(i) and 2.3.(ii), the expression of v y simplifies into

Since every element of V can be written in this form, this proves that D δ contains the ndimensional variety Ω.

(iii) As in (ii), it is easy to compute the sequence of roots occurring in the canonical expression in U * of the elements of D γ (see notations 1.4). Its opposite is given by

, let us consider the representative u z ∈ U * of the element of D γ corresponding to the following choice of variables:

Because all the variables are non-zero, there is no need to check which root should correspond to a variable in k × or k. Besides, we can apply formula 2.3.(i) to change the order of some terms in u z and to get

Applying successively formula 2.3.(i) and 2.3.(iv) leads to the following expression for v z

). Then, by using formula 2.3.(i) and then 2.3.(v) we obtain

Finally, in this expression it is possible to evaluate the limit at t = ∞

). Once again, we observe that every element of V can be written in this form, which proves that

Corollary 2.6. For any positive integer n, there exist w ∈ W , a reduced expression of w , and γ, δ ∈ Γ 1 two subexpressions of w such that:

In particular, this gives a negative answer to question 2.1.

II.3 -Disjointness of cells

We move now attention to the problem raised in question 2.2. We assume that n = 3 and we consider the following two distinguished subexpressions of w 0 associated to the reduced expression w 0 = t 3 t 2 t 1 t 2 t 3 t 2 t 1 t 2 t 1 and

We have τ σ, and the corresponding cells are subvarieties of B * t 2 • B of dimension 6.

Proposition 2.7. The closure D σ of D σ in the Schubert cell Bw 0 • B is disjoint from the cell D τ , giving hence a negative answer to question 2.2.

Proof. Using [START_REF] Bourbaki | Groupes et algèbres de Lie[END_REF]Section V.4.1], one can compute the one-parameter subgroups occurring in the canonical expression in U * of the elements of D σ and D τ (see notations 1.4). They are associated to the following sequences of roots: and

By definition, both of the cells D σ and D τ are contained in B * t 2 • B, but since the simple negative root -β 1 does not occur in Φ(σ), the cell D σ is actually contained in

On the other hand, -β 1 occurs only once in Φ(τ ) and corresponds to a variable in k × : more precisely, if i = 7 then

• τ i = t 2 t 1 t 2 and τ i = 1 so that i / ∈ I (τ ) corresponds to a variable in k × ; • τ i (-α i ) = τ i (-β 1 ) = t 2 t 1 t 2 (-β 1 ) = -β 1 so that the cell D τ is disjoint from (B * ∩ t1 B * )t 2 • B and then from the closure of D σ .

Remark 2.8. This situation is not specific to the low-dimensional cells. One can actually extend this example to the type B n for any n ≥ 3 by considering the concatenation of σ and τ with the subexpression of v = t n • • • t 2 t 1 t 2 • • • t n defined by η = (1, 1, ... , 1, t 2 , 1, t 2 , 1, ... , 1).

The Deodhar cells corresponding to the subexpressions σ = η • σ and τ = η • τ are now of dimension 2n + 2, and satisfy indeed the previous proposition.