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Abstract— The Expectation-Maximization (EM) algorithm is studied

to perform channel estimation in a low cost and high data rate impulse
radio UWB receiver. The system under consideration uses a pulse

position modulation with a simple analog energy detector. In order to

overcome the problems inherent to high data rates, such as inter-symbol
interferences, a probabilistic equalizer is used. The EM algorithm and the

equalizer are embedded into the loop of an iterative channel decoder. This

permits to refine both the channel parameters and the signal probability

at each iteration. We present numerical results performed on the channel
models from the IEEE 802.15.3a task group. These results show that the

EM algorithm contributes to achieve data rate greater than 100Mb/s with

a simple impulse radio UWB receiver.

I. I

The future of ultra-wideband (UWB) system is bound to the system
cost at both the receiver and transmitter side. For instance, a low cost
communication system could simplify the deployment of sensor or
ad-hoc networks. The cheapest electronic architectures are achieved
with impulse radio (IR) transmissions [20] whereas high data rates
take advantage from OFDM [1] or Direct Sequence modulation
schemes [9]. Among the architectures in IR UWB, the energy detector
(ED) based on a simple schottky diode and a capacitor is by far
the less complex. The other alternative is the transmitted reference
(TR) receiver [6], [7] or coherent detector using a Rake receiver [5],
[14]. With regards to the ED receiver these electronic architectures
are more complex with the necessity of analog delay lines and/or
frequency mixers.

The increase of data rate in IR UWB transmission is directly de-
pendent on the equalization process quality in a dispersive multipath
channel as defined in [10]. We consider the basic IR receiver based on
a low-cost ED analog front-end and a digital processor in charge of
the baseband processing. The modulation is a non-linear M-ary pulse

position modulation (M-PPM) which, at high data rate, is impaired
with intersymbol interference (ISI) in high dispersive communication
channels as those defined in [10].

To fight these impairments a new method of equalization based on
a probabilistic equalizer is defined in [13]. However, this approach
needs realistic channel parameters. The expectation-maximization

(EM) algorithm [8] provides a numerical method for obtaining max-
imum likelihood of estimates that might not be available otherwise.
Previous research for joint channel parameter estimation and symbol
detection have been developed in [11], [18]. In [15], the EM algorithm
has been investigated over random ISI channels.

In this work, we present an new method for joint channel pa-
rameters estimation and energy equalization via the EM algorithm
applied to IR UWB with ED. The derived algorithm is inserted into
the channel decoder loop to benefit from the iterative capacity of the
decoder.

A training sequence is first exploited to get an initial estimate of
the channel, then the equalizer is performed and feeds the channel

decoder which in turn gives updated probabilities to the EM estimator.
This loop is illustrated by a simplified schematic in Figure 1.
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Fig. 1. Simplified receiver architecture.

This work is organized as follow: In Section II, the system model
and energy distribution are specified. The considered probabilistic
equalizer is described in III. Section IV presents the EM algorithm
adapted to the energy detection. In section V, simulation results are
presented for different interference levels and compared to the perfect
channel state information (CSI) condition. Finally, a conclusion of
this study is summarized in Section VI.

II. SM

We consider a pulse-based UWB transmission of a sequence of
independent symbols c = (c1, c2, . . . , cN) over an additive white
Gaussian noise (AWGN). We assume that the sequence c is a
codeword of channel code C .

As depicted in Figure 2, the encoded data is mapped into channel
symbols suitable for modulation. We adopt an M-PPM modulation
with M slots per symbol cn. Thus, inter-symbol and inter-slot inter-
ferences are unavoidable at high data rate transmission in a dispersive
channel.
The designed receiver assumes that the number of interfered symbols
is K, that is equivalent to P = (K − 1)M + 1 interfered slots. So, the
signal at the output of the filter can be written as follows:

sn(t) =
K−1
∑

k=0

xn−k(t) (1)

where xn−k(t) is the channel response of (n− k)th transmitted symbol
defined by

xn−k(t) = pn−k(t) ⊗ h(t) (2)

where ⊗ denotes the convolution product, h(t) is the impulse
response of the channel and pn−k(t) = p(t − An−kTslot) is the
pulse generated according to the symbol cn−k, where An−k takes
value in {0, 1, 2, . . . ,M − 1} with respect to cn−k and Tslot is the
time slot duration for an M-PPM modulation. For simulation
reasons, the pulse is considered as being a Dirac δ function,
thus xn−k(t) = p(t − An−kTslot). This assumption will not affect our
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Fig. 2. Transmitter and receiver design.

reasoning.

The detected energy at slot position m for nth symbol has the
following expression

En,m =

∫ nTs+(m)Tslot

nTs+(m−1)Tslot

(sn(t) + zn(t))2 dt (3)

where Ts = MTslot is the symbol duration and zn(t) is an additive
white Gaussian noise, with mean zero and variance σ2.
This energy can be approximated, for a process which has a band-
width W, by a set of 2TslotW sample [19] as follows

En,m =

2L
∑

`=1

(s`n,m + z`n,m)2 (4)

where 2L = 2TslotW is the number of freedom degrees over the
interval Tslot, and s`n,m and z`n,m are respectively the `th sample of
sn(t) and zn(t) in mth slot of nth symbol.
According to the received energy at each slot, the detector computes
the probability of getting it. As it is showed in [13], the energy En,m

follows a non-central chi-square (χ2) distribution with 2L degrees of

freedom if Bn,m =
∑2L
`=1(s`n,m)2

, 0; i.e. B is called the non-centrality
parameter; defined by

p(En,m |Bn,m) =
1

2σ2

(

En,m

Bn,m

)
L−1

2

e
− (En,m+Bn,m )

2σ2 IL−1















√
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(5)

where IL−1(u) is the (L−1)th-order modified Bessel function of the first
kind [2]. The energy En,m follows a central chi-square distribution
with 2L degrees of freedom if Bn,m =

∑2L
`=1(s`n,m)2 = 0, defined by

p(En,m |0) =
1

σ2L2LΓ(L)
(En,m)L−1 exp

(

−En,m

2σ2

)

(6)

where Γ(z) is the gamma function [2].

III. E E

In order to overcome the different types of interferences due to
high data rate, it is necessary to integrate an equalizer. The selected
equalizer that matches our receiver is described in [13]. Equalization
is performed according to the slot energy distribution computed by the
detector. Then, the receiver computes the probability density function
p(En|xn) to get the transmitted symbol xn, this probability is given by

p(En|xn) =
∑

xn−1 ,...,xn−K+1
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∏
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(7)

where p(En,m |Bn,m) = p(En,m|sn,m) defined in section II. The interested
reader should refer to [13] for details on the proof of (7). The
parameter Bn,m defines the energy in slot m for the symbol n if the
noise is null. Let B represents the set of all possible value that Bn,m

can take. At the receiver side, if we consider that the number on
interfered symbols does not exceed K, the cardinal of B is finite. In
Table I are listed the different values of |B| according to K; i.e. P;
with a 4-PPM modulation.

TABLE I

R        K  |B| 
 4-PPM

K P |B|
2 5 15
3 9 88
4 13 424

We notice that |B| grows approximately in O(MK). In the sequel,
B j refers to an element of B = {B j}.

IV. EM    

A. EM algorithm overview

As we noticed in the previous section some specific channel
parameters must be computed to perform the equalizer. To estimate
the (CSI), the EM algorithm [3], [8] is a good candidate. It allows
to build a probabilistic equalizer which could be used to feed the
decoder in the iterative decoding loop. The EM algorithm is applied to
find the maximum likelihood log p(x,y|θ) and it is especially effective
when the likelihood of the incomplete data is much more difficult
to maximize than the likelihood of the complete data. We denote by
incomplete data the received vector y, by missing data the transmitted
vector x, by complete data the couple (x, y) and by θ the parameter
to be estimated. θ is the channel parameter in our case.
The EM algorithm starts from an initial value of θ0 and it improves
this value iteratively. This algorithm proceeds in two steps at each
iteration: the first one consists of the expectation step (E-step), and
the second one consists of the maximization step (M-step). Given a
current parameter value θi at iteration i, the EM algorithm computes
an update θi+1. The final EM estimate depends on the initial value
θ0. In each iteration, the likelihood increases monotonously.
To summarize:

1) Start with θ0

2) Repeat the following two steps for each iteration i (i=1,2,. . . ),

a) E-step: compute the expectation value of log-likelihood
of complete data conditioned by observed samples and
the current solution of θi:

Q(θ|θi) = Ex[log
(

p(x, y|θ)|y, θi
)

] (8)

b) M-step: find θi+1 that maximize the auxiliary function
Q(θ|θi),

θi+1 = arg max
θ

Q(θ|θi) (9)

In the case of unknown source distribution and by the means of
Bayes’ rule and considering that x and θ are independent, we get

p(x, y|θ) = p(y|x, θ)p(x|θ) = p(y|x, θ)p(x) ∝ p(y|x, θ) (10)

then the new auxiliary function (8) expression is

Q(θ|θi) = Ex[log p(y|x, θ)|y, θi] =
∑

x

log p(y|x, θ)P(x|y, θi)

=
∑

x

log p(y|x, θ)APPi(x) (11)

where APPi(x) = P(x|y, θi) is the a posteriori probability of x at the
ith iteration of the EM algorithm.



B. EM application to energy detection

As described in section II, the incomplete data is the vector of
energy E = (E1,E2, . . . ,EN) where En is the energy per symbol
that is equal to (En,1,En,2, . . . ,En,M ). The missing data is the vector
of transmitted symbols x = (x1, x2, . . . , xN) and the parameter to
be estimated which characterize the channel is θ = (B, σ2), with
B = {B j}.
Then, the auxiliary function in energy domain is given by

Q(θ|θi) =
∑

x

log
[

p(E|x, θ)] APPi(x) (12)

Equation (12) can be decomposed into a product of probabilities by
expending the conditioned probability p(E|x, θ) as follows

p(E|x, θ) = p(E1, . . . ,EN |x1, . . . , xn, θ) (13)

since the collected energy per symbol is independent from one symbol
to another and it depends only on the interfering symbols, one can
write

p(E|x, θ) =
N

∏

n=1

p(En|xn−K+1, . . . , xn−1, xn, θ) =
N

∏

n=1

p(En|Bn, θ
i) (14)

the last equation comes from the unicity of the resultant energy
for a given interfering symbols, i.e. (xn−K+1, . . . , xn) is equivalent to
Bn = (Bn,1, . . . , Bn,M). Moreover, the received energy per slot En,m,
that forms En, depends on Bn only throw Bn,m. Thus, equation (14)
becomes

p(E|x, θ) =

N
∏

n=1

M
∏

m=1

p(En,m|Bn,m, θ) (15)

Applying (5) and (15) into (12), leads to the following auxiliary
function

Q(θ|θi) =
∑

x

N
∑

n=1

M
∑

m=1

log p(En,m |Bn,m, θ)APP(x) (16)

=

∑

x

N
∑

n=1

M
∑

m=1

(

log
1

2σ2
+

L − 1
2

logEn,m

− L − 1
2

log Bn,m −
En,m + Bn,m

2σ2

+ log IL−1















√

Bn,m En,m

σ2















)

APPi(x)

(17)

It is noted that the missing data {Bn,m} is also the estimated
parameter. So to get rid of the parameter x in (17), it is necessary to
rewrite APPi(x) according to {Bn,m}, we use the following approxi-
mation which has a negligible degradation on EM performance and
a very low evaluation complexity [3], the a posteriori probability is
conditioned on the received energy E, since it is the only information
available at the receiver:

∑

x

Bn,mAPPi(x) =
∑

x

Bn,mP(x|E, θi) (18)

=
∑

x1 ,...,xN

Bn,mP(x1, . . . , xN |E, θi) (19)

=
∑

n−K+1,...,xn

Bn,mP(xn−K+1, . . . , xn|E, θi)

(20)

Equation (20) comes from the fact that Bn,m depends only on K

interfering symbols in the nth symbol position. For each value of
the interfering symbols set (xn−K+1, . . . , xn), we get a unique vector

of Bn, so the sum over xn−K+1, . . . , xn can be replaced by the sum
over the possible value that Bn can take. It yields to

∑

x

Bn,mP(xn−K+1, . . . , xn|E, θi) =
∑

Bn

Bn,mP(Bn|E, θi) (21)

Proceeding as for equation (20), we get
∑

Bn

Bn,mP(Bn|E, θi) =
∑

Bn

Bn,mP(Bn,1, . . . , Bn,M |E, θi) (22)

=
∑

Bn,m

Bn,mP(Bn,m|E, θi) (23)

where Bn,m ∈ B.
The updated parameters are obtained by applying (23) into (17) and
deriving it with respect to θ. The derivative in terms of B j of equation
(23) is given by

∂

∂B j

∑

Bn,m

Bn,mP(Bn,m|E, θi) = P(Bn,m = B j|E, θi) (24)

where P(Bn,m = B j|E, θi) is the probability to get B j in slot m for
symbol n. With no loss of generality and for notation simplicity,
pi(Bn,m = B j) stands for P(Bn,m = B j|E, θi). Using (24) to drive (17)
according to B j, it yields to

∂Q(θ|θi)
∂B j

=

N
∑

n=1

M
∑

m=1

− 1
2σ2

pi(Bn,m = B j)

+

√

En,m

2σ2
√

B j

IL

( √
B j En,m

σ2

)

IL−1

( √
B j En,m

σ2

) pi(Bn,m = B j)

(25)

Solving ∂Q(θ|θi)
∂B j

= 0 with respect to B j, it leads to:

√

B j

N
∑

n=1

M
∑

m=1

pi(Bn,m = B j) =

N
∑

n=1

M
∑

m=1

√

En,m

IL

( √
B j En,m

σ2

)

IL−1

( √
B j En,m

σ2

) pi(Bn,m = B j)

(26)

Equation (26) has no explicit solution. Some researches looked for
an approximation of the non-centrality parameter of a chi-squared
distribution [12], [16], [17]. We investigated a new approximation
of the non-centrality parameter that has better results than those
presented in the literature defined by

B
(i+1)
j
≈
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N
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2

(27)

where B
(i+1)
j

is the value of B j at (i + 1)th iteration and

f (En,m, 2Lσ2(i)
) =















En,m − 2Lσ2(i) if En,m > 2Lσ2(i)

0 if En,m < 2Lσ2(i) (28)

where σ2(i) is the updated of the noise variance at the ith iteration
of the EM algorithm. We have not been able to show why (27) is a
good approximation, but we conjecture it to be true.

To obtain the update parameter for σ2 we proceed as for B j. So,
we derive the auxiliary function with respect to σ2 and forcing the



derivative to zero. After considering the approximation (23), we get
the expression (29):

N
∑

n=1

M
∑

m=1

∑

Bn,m

(En,m + Bn,m

2σ2
− L

)

P(Bn,m|E, θi)

=

N
∑

n=1

M
∑

m=1

∑

Bn,m

√

Bn,m

√

En,m

σ2

IL

(
√

En,m

)

IL−1

( √
B j En,m

σ2

)P(Bn,m|E, θi)
(29)

where
∑

Bn,m
is the summation over all the possible value that Bn,m

could take, so it can be replaced by the sum over B j ∈B multiplied
by the probability that in slot m of the nth symbol we get B j at the ith

iteration of the EM algorithm. Such probability is defined previously
by pi(Bn,m = B j). Equation (29) becomes then

∑

B j

N
∑

n=1

M
∑

m=1

(En,m + B j

2σ2
− L

)

pi(Bn,m = B j)

=
∑

B j

[

√

B j

σ2

( N
∑

n=1

M
∑

m=1

√

En,m

IL

(
√

En,m

)

IL−1

( √
B j En,m

σ2

) pi(Bn,m = B j)
)

] (30)

The update parameter of σ2 at (i + 1)th iteration is obtained by
applying (26) into the right hand side of (30), that gives

σ2(i+1)
=

1
2LMN

N
∑

n=1

M
∑

m=1

∑

B
(i)
j

(En,m − B
(i)
j

)pi(Bn,m = B
(i)
j

) (31)

It should be noticed that
∑M

m=1

∑

B j
pi(Bn,m = B j) = M.

V. S R

The simulations are computed with a bit interleaved coded modula-
tion (BICM) [4] and a data rate of 100 Mb/s. A convolutional channel
encoder at rate 1/2 with octal generator (23, 35) followed by a
pseudo-random bit-inter-leaver is implemented. A 4-PPM modulation
is assumed. The frame has a length of 1024 bits and the SISO
decoder computes 10 iterations. We consider two hypothesis. The first
one, a perfect CSI is considered: only the equalizer is implemented
and the different channel parameters are given to the receiver. We
simulate for different values of K which is the number of inter-
symbol interferences which are processed, but not the true number
which could be greater. That means that if K is low, the receiver is
both less complex and less effective.

In second case, the channel parameters are estimated by the mean
of the EM algorithm which is combined to the SISO decoder. Only
one iteration of the EM algorithm is computed per decoder iteration,
so we perform a total of 10 EM iterations, since the decoder computes
10 iterations.

A. Perfect CSI condition

Perfect CSI is assumed. Figure 3 shows the BER for considered
value of K = 2. The performances of the receiver can be improved
in high dispersive channel; such as CM3 and CM4; if the receiver
increases the value of K as shown in Figure 4 and Figure 5 for K = 3
and K = 4 respectively. In fact, the maximum excess delays for CM1,
CM2, CM3 and CM4 are respectively around 50ns, 80ns, 140ns and
200ns, according to [10]. So with a 4-PPM modulation at 100Mb/s;
i.e. the symbol duration Ts = 20ns; the real number of interfered
symbols for each channel model are approximately 3, 4, 7 and 10
for CM1, CM2, CM3 and CM4 respectively.

Results with K = 4 show no BER improvement. It is then
preferable to stay at K = 3 because the number of energy coefficients
Bn,m to calculate is smaller, as shown in Table I.
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Fig. 3. BER for different channel models using BICM(23,35) at rate 1/2
with K = 2 in perfect CSI.

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 6  8  10  12  14  16  18  20

B
it
 E

rr
o
r 

R
a
te

 (
in

fo
rm

a
ti
o
n
)

Eb/N0 (dB)

P=9, BICM (23,35) at rate 1/2, 10 SISO iterations and Energetic Equalization in Perfect CSI at 100Mbps

CM1
CM2
CM3
CM4

Fig. 4. BER for different channel models using BICM(23,35) at rate 1/2
with K = 3 in perfect CSI.

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 6  8  10  12  14  16  18  20

B
it
 E

rr
o
r 

R
a
te

 (
in

fo
rm

a
ti
o
n
)

Eb/N0 (dB)

P=13, BICM (23,35) at rate 1/2, 10 SISO iterations and Energetic Equalization in Perfect CSI at 100Mbps

CM1
CM2
CM3
CM4
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with K = 4 in perfect CSI.

B. Channel estimation consideration

The EM algorithm is used and initialized by a set of training
sequences. In our simulation, only 20 symbols are used as a training
sequence, especially chosen to get the maximum of possible inter-
ferences. Simulations with K = 2 and 3 are depicted in Figure 6 and
Figure 7 respectively. Results with K = 4, being very similar to those



with K = 3, are not shown in this paper.
The performance is very close to that obtained in a perfect CSI

receiver. We remark that the performance of the receiver when K = 2;
Figure 6; is better than that obtained with the perfect CSI receiver;
Figure 3. This can be explained by the receiver assumption that
time excess delay of the channel does not exceed (K − 1)Ts + Tslot;
i.e. not more than K = 2 interfering symbols; but in reality, the
excess delay of the channel is much longer than that. With the EM
algorithm, the number of estimated energy coefficients is still 15 but
the coefficients are corrected if the channel has more than 2 inter-
symbol interferences. We noticed that it is not necessary to increase
the complexity of the receiver with a greater value of K when the
data rate is 100 Mb/s, even if the channels are highly dispersive (case
of CM3 and CM4).
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VI. C

The EM algorithm has been studied to estimate the channel
parameters of an M-PPM UWB communication. The parameters are
composed of the noise signal and energy coefficients corresponding
to K inter-symbol interferences caused by high data-rate communica-
tions in dispersive channels. The channel estimation is used iteratively
and jointly with a probabilistic equalization and a channel decoder.
At 100 Mbits/s the EM is capable of a good estimation of parameters

since the results are close to the perfect CSI implementation of the
probabilistic equalizer. Moreover, the value of K can be low even if
the real value is greater for highly dispersive channels like CM1 and
CM2. Further simulations have to be carried out at higher bit rates to
study the exact value of K for different communication speeds. Future
works will also include the complexity refinement, as for instance the
reduction of the energy coefficients to optimize the digital processing
cost.
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