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Abstract. An Ensemble Kalman Filter (EnKF) data assim-
ilation system was developed for a regional dust transport
model. This paper applied the EnKF method to investigate
modeling of severe dust storm episodes occurring in March
2002 over China based on surface observations of dust con-
centrations to explore the impact of the EnKF data assimi-
lation systems on forecast improvement. A series of sensi-
tivity experiments using our system demonstrates the abil-
ity of the advanced EnKF assimilation method using surface
observed PM10 in North China to correct initial conditions,
which leads to improved forecasts of dust storms. However,
large errors in the forecast may arise from model errors (un-
certainties in meteorological fields, dust emissions, dry de-
position velocity, etc.). This result illustrates that the EnKF
requires identification and correction model errors during the
assimilation procedure in order to significantly improve fore-
casts. Results also show that the EnKF should use a large
inflation parameter to obtain better model performance and
forecast potential. Furthermore, the ensemble perturbations
generated at the initial time should include enough ensemble
spreads to represent the background error after several assim-
ilation cycles.

1 Introduction

Dust storms have drawn much concern during the past two
decades for the various impacts on atmospheric environment,
biogeochemical cycles, radiative balance and human health.
In recent years, many observational programs have been car-
ried out to study Asian dust storms, and much progress has
been achieved and improved the understanding of climatic
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and synoptic features of soil dust aerosols (Murayama et al.,
2001; Mori et al., 2002; Sugimoto, 2002; Sugimoto et al.,
2002; Zhang et al., 2003). On the other hand, in order to pro-
vide high spatial and temporal resolution forecasts of Asian
dust and reproduce many important observational facts, sev-
eral numerical models have been developed and used to study
the deflation, transport and budget of soil dust over East Asia
(Wang et al., 2000; Shao, 2001; Song et al., 2001; Uno et al.,
2001; Gong et al., 2003; Shao et al., 2003; Park et al., 2003;
Liu et al., 2003; Han et al., 2004). The intercomparison study
(DMIP) involving eight dust emission/transport models over
Asia found that the model results correctly captured the ma-
jor dust onset and cessation timing at each observation site.
However, the maximum concentrations predicted by each
model differed by 2–4 times (Uno et al., 2006), clearly indi-
cating that modeling results of dust storms with these models
are significantly model dependent.

Numerical forecasts of dust storms suffer from uncertain-
ties both in initial conditions and in the model itself. Sim-
ply comparing model forecasts to observations cannot sep-
arate these uncertainties. Using a data assimilation tech-
nique we can firstly reduce uncertainty of initial conditions
that may lead to improved forecasts and secondly better ex-
amine model errors through comparison with observations,
since the uncertainty of initial conditions can be maximally
reduced by assimilation of observations at initial times. Vau-
tard et al. (2004) investigated the potential of data assimila-
tion of surface ozone concentrations in a chemistry-transport
model over the European continent using statistical interpo-
lation and showed that both the analyses and the 1∼2 day
forecast are improved. Recently, Yumimoto et al. (2007)
applied a four-dimensional variation (4DVAR) to a regional
dust model to assimilate NIES Lidar observations over East
Asia to inverse Asian dust emissions demonstrating better
estimation capability. Niu et al. (2007) developed a 3DVAR
using satellite retrieved dust loading and surface visibility in
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Fig. 1. The model domain and the observational network .The
closed circles indicate positions of those PM10 observations used
in assimilation cycles on 22 March, while the rectangles are those
used for independent verifications.

the CUACE/Dust forecast system and showed the capability
of short-term forecast improvement. These all indicate the
important role of data assimilation to combine observations
with modeling in air quality prediction. In these methods,
the background error statistics, one of the most important as-
pects of data assimilation, are usually assumed to be spatially
homogeneous, horizontally isotropic, and temporally station-
ary. This assumption may disagree with the actual errors
which may have significant flow-dependence, especially for
meso-scale motions. Although the background error statis-
tics can evolve implicitly in 4DVAR during the time window,
the complexity of constructing the adjoint matrix and the ex-
pensive computation in 4DVAR usually prevent it from com-
mon application especially for complicated models. Hanea
et al. (2007) used a hybrid Kalman filter algorithm combin-
ing the reduced-rank square root (RRSQRT) and the ensem-
ble Kalman filter (EnKF) for ozone simulation in the Eu-
ropean Operational Smog (EUROS) atmospheric chemistry
transport model. The hybrid algorithm combines the best of
both filters with more than 30 model evaluations.

In this study we perform ensemble Kalman filter (EnKF)
data assimilation experiments during some severe dust storm
episodes in China using surface observations of dust con-
centrations and a realistic model in order to explore the
impacts on forecast skills. The EnKF is an advanced and
flexible technique for data assimilation which can calculate
flow-dependent statistics from the ensemble forecasts and
have been widely used in atmospheric and oceanic applica-
tions (Evensen, 1994; Houtekamer and Mitchell, 1998, 2001;
Mitchell and Houtekamer, 2000, 2002; Houtekamer et al.,
2005; Whitaker et al., 2002; Lorenc, 2003; Evensen, 2003,
2006; Hanea et al., 2007). However the EnKF has not been
applied in severe dust storm forecasts. In this study, we made
an initial effort to explore the potential problems of this issue
with EnKF.

Table 1. Number of valid PM10 observations after quality control
over North China during 15–25 March 2002.

Date 15 16 17 18 19 20 21 22 23 24 25

No. of Obs. 0 6 16 10 11 12 17 23 8 4 0

2 Data source and model description

2.1 Data

Daily averaged PM10 (suspended particles with aerodynamic
diameter measuring 10µm or less) concentrations observed
by the State Environmental Protection Administration, China
(SEPA) from 15 March 2002 to 25 March 2002 are used for
assimilation and validation. PM10 observations reflect not
only dust aerosols but also anthropogenic aerosols. Before
they are used, the PM10 observations are selected according
to the 3-h surface synoptic observations of dust events from
the China Meteorological Administration (CMA). If there
is at least one occurrence of floating dust phenomenon ob-
served at stations located within 1 latitude degree around the
PM10 station during the day, the contribution of PM10 ob-
servations of this station are considered as mainly coming
from dust, and thus selected for assimilation and validation.
Otherwise the data would be discarded. The number of qual-
ified PM10 observations after quality control is listed in Ta-
ble 1, clearly indicating irregular sampling of dust storms.
Figure 1 presents the distribution of observation sites (green
dots) passing through quality control and used for assimi-
lation on 22 March, and the red rectangles represent three
selected independent sites that are only used for verification.
The Lidar observation at Beijing was performed at the Sino-
Japan Friendship Center for Environmental Protection during
the same period (Sugimoto et al., 2003). The visibility obser-
vations are the surface observations from the China Meteo-
rological Administration (CMA).

2.2 Model description and setting

The regional dust transport model (Wang et al., 2000) in-
cluded deflation, transport, diffusion, and removal processes
during the life cycle of the yellow sand particles. This model
had been successfully used to study atmospheric trace gases
and particles, such as SOx, dust, O3 and acid rain over East
Asia (Wang et al., 2000, 2002; Uematsu et al., 2003). The
advanced deflation module of yellow sand has been designed
after detailed analysis of the meteorological conditions, land-
form, and climatology from daily weather report at about
300 local weather stations in north China. Details about the
model are described by Wang et al. (2000). The simulation
domain used ranges from (75◦ E, 16◦ N) to (146◦ E, 60◦ N)
consisting of 72 by 45 horizontal grid cells and 18 vertical
layers as shown in Fig. 1.
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Fig. 2. Correlations (line contours) of surface concentrations with those at different points denoted by the black dots directly estimated from
ensemble perturbations at 03:00 UTC on 16 March 2002. The shaded areas show the simulated surface concentrations of dust particles.

A heavy dust storm occurred in northern China and
reached Beijing on 20 March 2002, with peak concentration
of Total Suspended Particles (TSP) reaching 10.9 mg m−3,
54 times higher than the National Air Quality Standard of
China (Sun et al., 2004). Model analysis with Lidar obser-
vation of this dust storm in Beijing revealed the source and
transport path of the dust and further explained the reasons
for the occurrence of such extremely high dust concentra-
tions (Sugimoto et al., 2003). It not only swept over most
parts of China but also reached Korea and Japan. Using
model simulation, Park et al. (2003) studied dust emissions
from the source areas of it. In addition, Shao et al. (2003)
simulated it with an integrated modeling system and found
the model could accurately predict the spatial pattern and
temporal evolution of dust concentration. Han et al. (2004)
developed a size-segregated aerosol model and coupled this
with a regional air quality model to simulate the dust storms
of 15–24 March 2002. In this study, we developed a regional
chemical transport model combined with EnKF data assim-
ilation method to improve the forecast performance and to
investigate the vertical structure of this super dust storm dur-
ing the period of 15–25 March 2002 in East Asia.

3 Data assimilation with Ensemble Kalman Filter

The basic idea of the EnKF (Evensen, 1994) is to construct
a Monte Carlo ensemble such that the mean of the ensemble
is the best estimate, and the ensemble error covariance is a
good estimate of the forecast error covariance.

At the current assimilation timet (for notational simplic-
ity, the t time subscript will be dropped), we assume that
we have an ensemble of forecasts that randomly sample the
forecast errors, denoted byxb

1, x
b
2, · · · , x

b
m. The ensemble

mean is defined byxb=m−1
m
∑

i=1
xb

i . The ensemble perturba-

tion from the mean for the i-th member isx′b
i =xb

i −xb. The
EnKF performs an ensemble of similar assimilation cycles,
i=1, . . ., m, with each member updated to a different real-
ization of the observations:

xa
i = xb

i + K̂
(

yi − H(xb
i )

)

, (1)

whereH is the observation operator that maps the model
states to the observation space. In Eq. (1),yi≈N(0, R) is
a perturbed observations from observationsy, andR is the
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Fig. 3. As in Fig. 2, but at 03:00 UTC on 20 March 2002.

observation error covariance which is diagonal with variance
equal to 10% of the value ofy. The gain matrixK̂ is defined
as

K̂ = P̂bH T (H P̂bH T + R)−1. (2)

It can be formed without ever explicitly estimating and stor-
ing the full forecast error covariancêPb, but byusing the fol-
lowing equations to calculatêPbH T and H P̂bH T directly
(Evensen, 1994, Houtekamer and Mitchell, 1998):

P̂bH T =
1

m − 1

m
∑

i=1

x′b
i (H(xb

i ) − H(xb))T , (3)

H P̂bH T =
1

m−1

m
∑

i=1

(H(xb
i )−H(xb))(H(xb

i )−H(xb))T .(4)

In Eqs. (3) and (4),

H(xb) =
1

m

m
∑

i=1

H(xb
i ).

Once each member is updated, we take the analyzed ensem-

ble meanxa=m−1
m
∑

i=1
xa

i as the optimal analysis.

In this study, the initial background ensemble perturba-
tions are generated by adding random amplitude and phase
shifts to the first-guessx(x, y, z) as follows:

xi(x, y, z) = (1 + δi)x(x + εi, y + ωi, z + ηi)

where,

δ ∈ N(0, a2), ε ∈ N(0, l2x), ω ∈ N(0, l2y), η ∈ N(0, l2z ).

lx, gf, ly andlz represent the standard deviations of the phase
perturbations and are assumed to be about 200 km in this
study, while the amplitude perturbationa is assumed to be
20% of the first guess. In order to prevent the usage of nega-
tive values, we generatea using an exponential function as

a = e

(

γ×sd− 1
2×sd2

)

whereγ is randomly drawn from a normal distribution with
zero mean and variance equal to 1, andsd is equal to 20%.
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Fig. 4. Comparison of the root mean square (RMS) error between
observed daily-mean PM10 levels and predicted 24 h-averaged dust
aerosol concentrations (d<10µm) without assimilation (line rect-
angle) and the analyses of EnKF assimilation (shaded rectangle) at
three independent validation sites during 16–24 March 2002. The
10-day assimilation cycle is used for EnKF analysis.

A parameterα≥1 is introduced to allow for inflation of the
forecast error variance since the ensemble spread itself may
be too small to draw the model states to the observations. In
this case, Eq. (2) will be rewritten as

K = αP bH T
(

αHP bH T + R

)−1
. (5)

In the study here, the parameterα increases with time from 1
to 640 (estimated according to the likely minimal root mean
square error).

In addition, the value for dust concentrations should be
positive. Therefore, the analysis would be set to be zero if it
is negative.

4 Results

Two sets of model runs with and without the assimilation
schemes addressed above were performed to test the perfor-
mance of the EnKF used in the regional transport model of
dust. Firstly, the tests were performed once a day during
15–25 March 2002 with initial perturbations generated on
03:00 UTC, 15 March to check the overall impact of the as-
similation on 24-h forecasts.

To give an impression of the anisotropic nature of the hor-
izontal correlations, we present some examples of horizon-
tal correlations of surface concentrations with respect to the
points shown with the black dots in Figs. 2 and 3. The corre-
lations are directly estimated from 50-member ensembles on
03:00 UTC, 16 and 20 March. It can be seen that the spatial
structures are dependent on the flow which displays the most
important property of EnKF compared to other traditional
data assimilation methods such as optimal interpolation (OI)
and three-dimension variational assimilation (3D-Var). In OI
and 3D-Var algorithms, the statistics in background error co-
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Figure 5Fig. 5. Similar to Fig. 4, but for the 24 h-averaged predictions with-
out (line rectangle) and with (shaded rectangle) assimilation at all
observational sites when the observations pass through quality con-
trol.

variance are generally taken to be isotropic and largely ho-
mogeneous with little variation in time, which is not consis-
tent with the real systems.

The root mean square (RMS) errors between daily av-
eraged PM10 observations and the simulated 24 h-averaged
forecasts (d<10µm) without assimilation (line rectangle)
and the analyses with EnKF assimilation (shaded rectan-
gle) at three independent observation stations were calcu-
lated during 16–25 March 2002 (Fig. 4). It can be seen that
the RMS errors of the assimilated results are much smaller
than that without assimilation totally, which clearly shows
the potential ability of the EnKF method used in the regional
transport model. The RMS errors of the 24 h-averaged fore-
casts without (line rectangle) and with (shaded rectangle) as-
similation for all sites are shown in Fig. 5. The difference be-
tween observations and the 24 h forecasts with assimilation
are smaller than those without assimilation, showing that the
forecasts are also improved after EnKF assimilation, but not
obviously for the whole area.

An independent Lidar observed the dust extinction coeffi-
cients in Beijing in the same period. Figure 6 gives a com-
parison between Lidar observations and the modeled dust
extinction coefficient with and without assimilation. These
results illustrate that use of the EnKF method solely assimi-
lating surface PM10 concentration changed the vertical struc-
tures of dust distribution and significantly improved the mod-
eling results in Beijing compared with Lidar observations.
Two peaks of dust concentration distribution exhibited on
20 March in Beijing with EnKF assimilation agree well with
the observed dust extinction coefficients near the surface. For
higher layers about 500–1000 m above the ground, it is possi-
ble that observations on 20 March might be missing because
the dust layer is too thick. This prevents the penetration of
the lidar signal, so that we cannot compare the results in de-
tail. Generally speaking, the vertical distribution after assim-
ilation is improved with the RMS error reduced (Fig. 6d) and
the correlation a little increase (Fig. 6e). This may be largely
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Fig. 6. Comparison of Lidar observed(a) and predicted dust extinc-
tion coefficient (unit: 1/km) without(b) and with(c) assimilation in
Beijing during 15–24 March 2002. Comparison of the root mean
square error(d) and correlation(e) between observations and pre-
dictions below 3 km with and without assimilation in Beijing during
00:00 UTC, 19 March to 00:00 UTC 22 March 2002.
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Fig. 7. Time series of surface concentrations of dust aerosols with
(blue solid line) and without (green dashed line) EnKF assimilation
and visibility in Beijing during 19–21 March 2002.
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Fig. 8. Comparisons of assimilation results and simulation with
observed daily-mean PM10 observations at three independent ob-
servation stations, respectively.
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Fig. 9. Variations of observed PM10 at Dalian and Qinhuangdao
during 16–15 March 2002.

Fig. 10. As in Fig. 2 but with respect to Dalian site on 17 March
(top panel) and 21 March (bottom one). The black dot and the green
dot are the locations of Dandian and Qinhuangdao, respectively.

due to the vertical structure in background error covariance
calculated from the ensemble, which propagates the surface
PM10 observations to high levels.

Surface dust concentrations and visibility at 3 h intervals
are compared in Beijing in Fig. 7. On 20 March, the two
troughs of visibility correspond to the two peaks of dust con-
centrations with assimilation but just one peak of the simu-
lated results without assimilation, with the bigger trough cor-
responding to the higher peak. This clearly demonstrates the
important role ofthe ensemble Kalman filter plays. The cor-
relation between the 3 h surface visibility and dust concen-
trations during the period of 20–21 March is−0.69 without

Fig. 11. Surface distribution of dust concentration over East Asia
without (a) and with (b) assimilation on 20 March 2002. The
contours show the difference between situations with and without
assimilation. The colored circles represented the observed PM10
(mg/m3).

Fig. 12. As in Fig. 11, but on 21 March 2002.

assimilation and−0.73 with assimilation, which exceed the
significance of 99%. Figure 8 shows the assimilated results
of surface dust aerosols (d<10µm) with assimilation once a
day at three independent observed stations, respectively (a, b,
c as shown in Fig. 1). It shows that the assimilation analyses
are closer to the observations than in the simulation with-
out EnKF assimilation, especially at Shijiazhuang (b) and
Shanghai (c). The assimilated results in Dalian (a) are not
so close to the observations as the simulation, which may be
due to the low resolution of the model. If the model resolu-
tion is relatively high the assimilated results are better, such
as the results of (b) and (c).
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We here select point A (Dalian) to explain the important of
resolution. For Dalian, the analyses on 17 and 21 March are
worse than in the simulation, while the others are compara-
ble to the simulation. From Fig. 9 we can see that the varia-
tion of observed PM10 at two nearly points (Dalian and Qin-
huangdao) are quite different, especially on 17 March and 21
March, indicateing that spatial variability of the dust storm
is very strong and the correlation coefficient is in fact small.
However, the resolution of model is 1◦×1◦, which may be
too low to resolve the spatial variability of such processes,
and then the dust concentrations calculated from the model
are similarly distributed in a relatively large region. So the
correlations estimated directly from the ensemble forecasts
are distributed in a relatively large region, which does not
agree with the actual one, so it can bias the assimilated re-
sults. Figure 10 gives the correlation distribution of Dalian
on 17 March (upper panel) and 21 March (bottom panel),
in which the black dot and the green dot denote the posi-
tion of Dalian and Qinghuangdao respectively. We can see
that the correlation coefficients of these two points are larger
than 0.8. Therefore, the method to solve it is to increase the
model resolution.

Figures 11 and 12 give surface distribution of 24 h-
averaged dust concentration over East Asia without (a) and
with assimilation (b) on 20 21 March, respectively. The con-
tours show the difference between situations with and with-
out assimilation. Compared with the PM10 observations, the
forecast concentrations on 20 March are much larger than
the observations, especially in the north part of North China,
while smaller in the south part. After EnKF assimilation, the
average of one-day forecast concentrations decreases in the
north part and increases in the south part of North China.
On 21 March, the forecasts after assimilation decrease in the
middle and south part and increase in north and southwest
part of North China. Overall, the EnKF assimilation com-
pensates the model deficiency and improves the forecasts.

5 Conclusion and discussion

The correlation patterns of several selected points shown
in Figs. 2 and 3 prove that EnKF can calculate the flow-
dependent statistics which may not be expected in other tra-
ditional assimilation techniques. To use surface PM10 obser-
vations for data assimilation of dust storms, it is necessary
to select them according to the surface synoptic dust event
reports. This study shows that, using advanced methods such
as EnKF, the assimilation of surface PM10 observations can
provide better initial conditions and lead to improved fore-
casts of dust storms. However, the forecasts still have much
room for improvement. First, the current PM10 observations
that are reported to SEPA are only daily-averaged. For fast
changing processes such as dust storms, this study shows
that much more frequent observations are needed to correctly
describe the fast evolution structure. Denser observational

networks are also necessary to specify the spatial variabil-
ity of such processes as air pollution (see Fig. 8). Second,
the model errors are the main contributors to forecast errors,
at least in some regions. The assimilation can provide good
initial conditions, but a forecast with large errors can result
from model errors (see Fig. 5). Therefore, significant im-
provement of forecasts it requires identification and correc-
tion model errors during the assimilation procedure. This
may be achieved by either four-dimensional variation method
or augmented EnKF. This should be a priority for further
studies in this direction.

The dust concentrations vary very rapidly and are gener-
ally independent in different dust process. Therefore, the en-
semble perturbations generated at the initial time may not
have enough ensemble spread to represent the background
error after several assimilation cycles. In this study we found
it is necessary to use a large inflation parameter (α defined in
Eq. (5). In future study, we will try our best to specify the
model errors (e.g. errors in meteorological fields, dust emis-
sions, dry deposition velocity) to overcome this limitation. In
addition, we also found that the analysis may have negative
values for dust concentrations. We use a simple approach that
sets negative values to zero. More skillful methods should be
explored in further studies.
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