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Abstract. A new formulation for the turbulence dissipa-
tion rateε occurring in meandering conditions has been pre-
sented. The derivation consists of a MacLaurin series expan-
sion of a lateral dispersion parameter that represents cases
in which turbulence and oscillatory movements associated to
the meandering events coexist. The new formulation presents
the identical physical premises contained in the classical and
largely used one, but the new formulation derived from me-
andering situations is expressed in terms of the loop param-
eterm that controls the absolute value of the negative lobe
in the meandering autocorrelation function. Therefore, them

magnitude regulates the turbulence dissipation rate. This dis-
sipation rate decreases for cases in which turbulence and low
frequency horizontal wind oscillations coexist and increases
for a fully developed turbulence. Furthermore, a statistical
comparison to observed concentration data shows that the al-
ternative relation for the turbulent dissipation rate occurring
in situations of meandering enhanced dispersion is suitable
for applications in Lagrangian Stochastic dispersion models.

1 Introduction

Lagrangian turbulent velocity correlation coefficient is an
important physical quantity in turbulent diffusion problems.
Generally, the use of this autocorrelation coefficient in the
Taylor statistical diffusion theory allows calculating the dis-
persion parameters associated to the turbulent diffusion mod-
eling studies in the Planetary Boundary Layer (PBL) (Taylor,
1921).

Correspondence to: G. A. Degrazia
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For a stationary and isotropic turbulence, the two-time La-
grangian velocity correlation coefficient may be written as

ρLi (τ ) =
u′

i (t) u′
i (t + τ)

u
′2
i

, (1)

whereτ is the time lag,u′
i (t) is the Lagrangian turbulent

velocity of a fluid particle at timet , i=1, 2 and 3;u′
i repre-

sents the turbulent wind components inx, y andz directions
(u′

1=u′, u′
2=v′ andu′

3=w′).
Based on the Taylor statistical diffusion theory, the follow-

ing formula has been proposed by Frenkiel (1953) to repre-
sent the turbulent Lagrangian autocorrelation coefficients

ρLi (τ ) = exp

(

−
τ

(

m2 + 1
)

TLi

)

cos

(

mτ
(

m2 + 1
)

TLi

)

. (2)

This functional form is composed of the product of the clas-
sical exponential function (representing the autocorrelation
function for a fully developed turbulence) by the cosine func-
tion (describes the meandering phenomenon associated to the
observed low frequency horizontal wind oscillations). This
latter allows Eq. (2) to reproduce the negative lobes observed
in the meandering autocorrelation functions (Anfossi et al.,
2005). The Frenkiel function is a hybrid formula described
in terms ofTLi , the Lagrangian integral time scale for a fully
developed turbulence, andm, the loop parameter, which con-
trols the meandering oscillation frequency associated to the
horizontal wind. Indeed, them parameter controls the nega-
tive lobe absolute value in the autocorrelation function and
hence establishes the meandering phenomenon magnitude
(Anfossi et al., 2005).

Recently, Oettl et al. (2005) and Goulart et al. (2007)
proposed a theory on meandering atmospheric flow in low
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wind speed situations. This theory shows that, in simplified
conditions, the forecast equation for mean wind in the PBL
(Stull, 1988) provides a particular solution that is capable
of describing the meandering behavior. Here, we succinctly
present this derivation employing the three-dimensional
Reynolds-average momentum conservation equation in an at-
mospheric boundary layer (Holton, 1992). Neglecting vis-
cosity terms, this equation that describes the horizontal mean
wind may be written as

∂ui

∂t
+ uj

∂ui

∂xj

= −δi3g + fcεij3uj −
1

ρ

∂pi

∂xi

−
∂
(

u′
iu

′
j

)

∂xj

(3)

wherei, j=1, 2 and 3;ui represents the mean wind com-
ponents inx, y andz directions (u1=u, u2=v andu3=w)

averaged over a certain time interval,fc is the Coriolis pa-
rameter,εij3 is the Levi-Civita tensor,ρ is the mean density,
pi is the mean pressure andg is the gravity acceleration.

The complexity of Eq. (3) does not allow it to be analyti-
cally solved, except under some appropriate simplifying as-
sumption yields from Eq. (3) an analytical solution. How-
ever, we assume that all the horizontal and vertical gradi-
ents of the horizontal wind velocity components and pressure
may be considered as constant. Furthermore, thew magni-
tude, which characterizes subsidence in fair weather bound-
ary layer conditions, may range from 0 to 0.1 ms−1 (Stull,
1988). Thus, assuming these values in Eq. (3), the terms con-
tainingw and horizontal gradients ofw could be neglected.
With these simplifications and assuming the hydrostatic bal-
ance condition yields

{

∂ū
∂t

= −a1ū + b1v̄ + c1
∂v
∂t

= −a2v + b2ū + c2
, (4)

where a1= ∂ū
∂x

, a2= ∂v̄
∂y

, b1=fc− ∂u
∂y

, b2=−fc− ∂v̄
∂x

,

c1=− 1
ρ̄

∂p̄
∂x

−
[

∂(u′u′)
∂x

+ ∂(u′v′)
∂y

+ ∂(u′w′)
∂z

]

and

c2=− 1
ρ̄

∂p̄
∂y

−
[

∂(u′v′)
∂x

+ ∂(v′v′)
∂y

+ ∂(v′w′)
∂z

]

.

Considering thea1,a2, b1, b2, c1 andc2 terms as constants,
the system (4) becomes a first-order linear differential equa-
tion system, where the horizontal wind components in Eq. (4)
may be written as a second-order linear ordinary differential
equation with constant coefficients

d2u

dt2
+ B

du

dt
+ Cu = D, (5)

whereB=a1+a2 , C=a1a2−b1b2 andD=a2c1+b1c2.
According to the values of rootsr1 and r2 from the

auxiliary equation, there are three cases in the solution of
Eq. (5). We select the case that presents oscillatory behav-
ior, which means the conditionB2−4C<0, in the auxiliary
(or characteristic) equation for the given differential Eq. (5),

r1,2=B±
√

B2−4C
2 .

Therefore, the following solution foru (t) andv (t) is ob-
tained

u (t) = e−pt [α1 cos(qt) + α2 sin(qt)] +
D

C
(6a)

and

v (t) = e−pt

[ −α1p+α2q+a1α1
b1

cos(qt) + −α2p−α1q+a1α2
b1

sin(qt) +
+D

C
a1
b1

− c1
b1

]

(6b)

with

p = B
2 = 1

2

(

∂u
∂x

+ ∂v
∂y

)

= 0 (nondivergent wind field),

q =
√

−B2+4C
2 , α1=u0−D

C
,

α2 = 1
q

[v0b1 − a1u0 + c1] , u0=u (t0) andv0=v (t0) .

If the horizontal and vertical gradients of the turbulent mo-
mentum fluxes may be disregarded, a scale analysis allows
the derivation of the following simplified form for Eqs. (6a)
and (6b) (Oettl et al., 2005; Goulart et al., 2007).

u (t) = α1 cos(qt) (7a)

and

v (t) = −α1 sin(qt) , (7b)

The prototype wind field given by Eqs. (7a) and (7b) is
a sound solution, namely a two-dimensional nondivergent
wind field uniform on the horizontal plane. Therefore, these
solutions describe the horizontal wind meandering behavior.

Expressing Eqs. (7a) and (7b) in an analytical functional
form as

U (t) = α1e
−iqt , (8)

and employing Eq. (8) into Eq. (1), the following turbulent
velocity correlation coefficient is obtained

ρLu,v = cos(qτ) − i sin(qτ) , (9)

In fact the correlation functions are different for theu andv

components, and are dependent on the initial time, because
the field is deterministic and unsteady. Only if an average
over a finite number of periods (or over a long time) is taken,
the correlation function turns out to be the same for both the
components, and written as

ρLu,v (τ ) = cos(qτ) , (10)

which presents the cosine functional form as in the Frenkiel
autocorrelation function (Eq. 2). Anfossi et al. (2005) em-
ployed Frenkiel classical mathematical expression to repro-
duce autocorrelation functions observed during meandering
periods, which presented negative lobes.
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Therefore, based on observational evidences (Anfossi et
al., 2005) and on the fact that the oscillatory character, asso-
ciated to the meandering phenomenon, described by the auto-
correlation coefficient proposed by Frenkiel is derived from
the first principles (forecast equation for mean wind), we as-
sume in this study that the Frenkiel autocorrelation function
captures well the physical properties of a fully developed tur-
bulence as well as hybrid flow cases, in which turbulence and
meandering occurrences coexist. Indeed, the Frenkiel formu-
lation (Eq. 2) presents an empirical flexibility that allows rep-
resent observations in the PBL (Manomaiphiboon and Rus-
sel, 2003, and Anfossi et al., 2005). This imparts to Eq. (2) a
heuristic validity.

The turbulence dissipation rate is a quantity frequently
used in turbulent parameterizations applied to Lagrangian
stochatic dispersion models. Indeed, formulations for the
turbulence dissipation rate are extensively employed in tur-
bulent diffusion models to simulate the transport of pas-
sive scalars and the dispersion of contaminants in a fully
developed turbulence (Thomson, 1987; Luhar and Britter,
1989; Sawford, 1991; Wilson and Sawford, 1996; Yeung,
2002; Degrazia et al., 2005). In this study, employing the
Frenkiel autocorrelation coefficient, we derive a new relation
to the turbulence dissipation rate for distinct types of turbu-
lent flows. This new relation presents the same physical con-
tents as those classical derived by Hinze (1975) and Tennekes
(1982), however the dissipation rate could be described not
only for a fully developed turbulence, but also for situations
in which the turbulence weakness allows the occurrence of
the meandering phenomenon. With the above statements be-
comes evident the existence of a strong constraint between
the turbulence dissipation rate and the Lagrangian stochastic
dispersion models. Therefore to investigate the influence of
this new dissipation rate in turbulent diffusion problems, it
is introduced in a Lagrangian stochastic dispersion model in
order to simulate diffusion experiments performed under low
wind speed meandering conditions.

2 Theoretical development

The lateral dispersion parameterσy is a statistical quantity
fundamental for the dispersion modeling and for the deriva-
tion of turbulence dissipation rate functional form (Tennekes,
1982; Degrazia et al., 2005). From the Taylor statistical dif-
fusion theory, this important parameter may be described as

σ 2
y (t) = 2σ 2

v

t
∫

0

(t − τ) ρv (τ ) dτ , (11)

wheret is the travel time of the fluid particle andσv is the
standard deviation of the turbulent lateral velocity. The sub-
stitution of the Frenkiel autocorrelation function into Eq. (11)
yields

σ 2
y (t) = 2σ 2

v TLV

{

t +
(

m2 − 1
)

TLV
− TLV

exp

(

−t
(

1+m2
)

TLV

)[

(

m2−1
)

cos

(

mt
(

1+m2
)

TLV

)

+2m sin

(

mt
(

1 + m2
)

TLV

)]}

(12)

It is well known that atmospheric dispersion in low wind
speed conditions is mainly governed by meandering. In
such conditions, differently than a diffusion generated by a
fully developed turbulence, the airborne contaminants are
dispersed over distinct angular sectors. Therefore, this os-
cillatory behavior is the physical mechanism that reduces the
lateral turbulent diffusion of a plume. Thusly, as can be seen
in Fig. 11 from Anfossi et al. (2005), Taylor’s equation em-
ploying Frenkiel autocorrelation function (Eq. 12) captures
well the role of meandering in altering the turbulent diffu-
sion. For the special casem=0, the Eq. (12) reproduces
the classical expression for the lateral dispersion parameter
valid to a fully developed turbulence, which is obtained by
substituting the classical exponential autocorrelation func-

tion e
−τ/

TLv into Eq. (11) (Pope, 2000). Thus, the Eq. (12)
represents a more general formulation since it describes hy-
brid cases, in which turbulence and oscillatory movements
associated to the meandering occurrences coexist (weak tur-
bulence conditions).

For t<TLv , a MacLaurin series expansion of the general
dispersion parameter (Eq. 12) may be obtained

σ 2
y (t) = 2σ 2

v

[

t2

2
−

t3

6
(

1 + m2
)

TLv

+ ...

]

= σ 2
v t2 −

σ 2
v t3

3
(

1 + m2
)

TLv

+ .... (13)

The comparison of Eq. (13) with the Taylor theorem (Eq. 11)
for small diffusion times shows that the negative term in the
right side of Eq. (13) contributes for the decrease on the hy-
brid dispersion parameter. From the physical point of view,
representing the Taylor model in the spectral form (Degrazia
et al., 2005) may be seen that this negative contribution re-
sults in the suppression of a number of degrees of freedom
of the turbulent field associated to the high-frequency har-
monics. As a consequence, it is reasonable to relate the term

σ2
v t3

3(1+m2)TLv
to the inertial subrange high frequency eddies.

This relationship was firstly obtained by Tennekes (1982)
through the use of the Lagrangian structure function, the La-
grangian autocorrelation function and the inertial subrange
Lagrangian turbulent spectrum. The Tenneke‘s development
establishes the following formulation for the Lagrangian au-
tocorrelation function in terms of inertial subrange quanti-
ties:

ρLv = 1 −
Coετ

2σ 2
v

(14)

Employing relation (14) in the Taylor‘s theorem results
in σ 2

y (t) =σ 2
v t2−C0ε

6 t3, which after comparison with the
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Fig. 1. Lagrangian turbulent energy spectrum in the inertial sub-
range, as determined from Eq. (2) form=0.5.

1E-4 1E-3 0,01 0,1 1

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

m=1

n
-2

F
Lv

(n)

n

 Exponential function

 Frenkiel function

Fig. 2. Lagrangian turbulent energy spectrum in the inertial sub-
range, as determined from Eq. (2) form=1.

truncated hybrid dispersion parameter (13), leads to the fol-
lowing fundamental relation

ε =
2

(

1 + m2
)

C0

σ 2
v

TLv

. (15)

As seen from Eq. (15), this new formula for the turbulence
dissipation rate preserves the fundamental physical premise
that turbulence is dissipated at a rate proportional to the en-
ergy available and inversely proportional to the time scale
of the energy containing eddies (Tennekes, 1982). However,
as a new element in the relation (15), the parameterm ap-
pears, which establishes a new formulation for the turbu-
lent dissipation rate applied to hybrid situations, including
the presence of low-frequency horizontal wind oscillations
(meandering). In comparison with the classical turbulent
dissipation rate derived from the exponential autocorrelation
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Fig. 3. Lagrangian turbulent energy spectrum in the inertial sub-
range, as determined from Eq. (2) form=5.

function for a fully developed turbulence, them magnitude
in the denominator controls the turbulence dissipation rate
that will be larger for the fully developed turbulence case
(small m) and smaller for the meandering case (largem).
Therefore, we expect that the new functional form, Eq. (15),
when employed in Lagrangian stochastic particle models,
reproduces the dispersion process occurring under different
types of turbulent flows in a more robust manner. Recently,
Manomaiphiboon and Russel (2003), through consideration
of mathematical and physical requirements, evaluated Eq. (2)
for the special casem=1. They concluded that for this par-
ticular m value, the Eq. (2) is appropriate to be used in tur-
bulence studies because it complies well with most require-
ments. According to this procedure, we can see that the
more general autocorrelation form, as given by Eq. (2), sat-
isfies the condition

∫∞
0 ρLv (t) dt=TLv so that the Frenkiel

formula is valid as long asTLv is well defined. From the
physical point of view, Eq. (2) satisfies the inertial subrange
conditions as proposed by Kolmogorov (1941, K41 theory)
and suggested by Tennekes (1979); Lagrangian velocity fluc-
tuations should be in accordance withFLv (n) ≈n−2 and
ρLv (t) =1−ct wherec is a constant andFLv (n) is the La-
grangian lateral turbulent spectrum. This is shown in Figs. 1,
2, and 3 where a comparison between the energy spectra de-
rived from both models (classical exponential autocorrela-
tion function and Eq. 2) is presented. From these figures, we
observe that the Frenkiel‘s formulation for distinctm values
(includingm values associated to strong negative lobes) cap-
tures then−2 falloff. Therefore, Eq. (2) agrees with the K41
theory. Furthermore, it can be also seen from Figs. 1, 2, and
3 that asm increases, passing from non-meandering to mean-
dering conditions, the turbulent energy associated to the in-
ertial subrange frequencies (scales) decreases abruptly. Fig-
ure 4 exhibits an autocorrelation function characterized by a
large negative lobe, which is associated to the meandering

Atmos. Chem. Phys., 8, 1713–1721, 2008 www.atmos-chem-phys.net/8/1713/2008/
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phenomenon. The minimum value of this negative lobe, and
the general form in Fig. 4 agrees well with the meandering
autocorrelation functions observed by Anfossi et al. (2005).
Therefore, for largem values characterizing the dominant
presence of the meandering phenomenon in comparison with
the fully developed turbulence, the turbulent energy of the
inertial subrange becomes negligible and the low frequency
horizontal wind oscillations (meandering) represent the fun-
damental energy source for the velocity variance observed in
low wind speed conditions. At this point, it is relevant to con-
sider that in the derivation of the Eq. (15), the most important
result of the present study, we employed Eq. (12) fort<TLv .
As the meandering period is greater thanTLv , our analysis
applies to conditions in whicht≪Tm, whereTm≈2000 s is
the average value of the meandering period (Anfossi et al.,
2005). Therefore, a quasi stationary condition is guaranteed
in the derivation of Eq. (15).

From the analysis above, we conclude that the Frenkiel
hybrid formula (Eq. 2), represents a general expression that
could be used to reproduce autocorrelation functions ob-
served in the PBL. As a consequence, the turbulence dis-
sipation rate derived from Frenkiel autocorrelation function
and given by Eq. (15) represents a general functional form

that converges to the classical relationε= 2
C0

σ2
v

TLv
(obtained

from the exponential autocorrelation function for a fully de-
veloped turbulence) when meandering effects are excluded
(i.e. by settingm∼=0 in Eq. 2).

3 Test of the derived parameterization with the INEL
tracer experiment

The purpose of this section is to test our parameterization as
given by Eq. (15) in a practical application and to show how it
works. Therefore, a Lagrangian stochastic dispersion model
using the turbulent dissipation rate containing the loop pa-
rameterm (Eq. 15) has been employed to simulate the mea-
sured concentration data.

The concentration data employed in the comparison with
the model were obtained from the low wind speed experi-
ment performed in a stable boundary layer from the series of
field observations conducted at the Idaho National Labora-
tory – INEL (Sagendorf and Dickson, 1974).

3.1 Model description

3.1.1 Horizontal components

Recently, Carvalho and Vilhena (2005) suggested an ap-
proach to obtain the solution of the Langevin equation for
low-wind dispersion. The solution consists of the lineariza-
tion of the Langevin equation as stochastic differential equa-
tion:

dui

dt
+ f (t) ui = g (t) , (16)

 Fig. 4. Lagrangian autocorrelation function as given in Eq. (2) for
m=5.

which has the well-known solution determined by the inte-

grating factore

t
∫

t0

f (t ′)dt ′

:

ui =
1

e

t
∫

t0

f (t ′)dt ′

t
∫

t0

g(t ′) e

t
∫

t0

f (t ′)dt ′

dt ′. (17)

In order to embody the low wind speed condition in the
Langevin equation, it is assumed that the functionf (t) is
a complex function. Therefore, the exponentials appearing
in Eq. (17) may be rewritten as:

e

t
∫

t0

f (t ′)dt ′

= e

t
∫

t0

p dt ′+
t
∫

t0

iq dt ′

(18a)

or

e

t
∫

t0

f (t ′)dt ′

= ept+iqt . (18b)

Applying the Euler formula and neglecting the imaginary
component because the wind speed is a real function,
Eq. (17) becomes:

ui = e−pt cos(qt)

t
∫

t0

g(t ′)

(

1

e−pt ′ cos(qt ′)

)

dt ′. (19)

In Eq. (19), the terme−pt cos(qt) is analogous to the auto-
correlation function suggested by Frenkiel (1953) and writ-
ten in a different way by Murgatroyd (1969), wherep andq

are given byp= 1
(m2+1)T

andq= m

(m2+1)T
andT is the time

scale for a fully developed turbulence.
Using the Lagrangian particle models, the turbulence is

considered as Gaussian in the horizontal directions (i=1, 2)

www.atmos-chem-phys.net/8/1713/2008/ Atmos. Chem. Phys., 8, 1713–1721, 2008
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and, therefore, Eq. (19) may be written as:

ui = e−pt cos(qt)

t
∫

t0

(

1

e−pt ′ cos(qt ′)

)

[

βi + γiu
2
i + (C0ε)

1/2 ξi(t
′)
]

dt ′ (20)

whereβi=1
2

∂σ2
i

∂xj
andγi= 1

2σ2
i

(

∂σ2
i

∂xj

)

.

The Picard Method is applied to Eq. (20), assuming that
the initial guess is determined from a Gaussian distribution.
The generic iterative step is written as:

un+1
i = e−pt cos(qt)







un
i +

t
∫

t0

(

1

e−pt ′ cos(qt ′)

)

[

βi + γi(u
2
i )

n + (C0ε)
1/2 ξi(t

′)
]

dt ′
}

. (21)

Concerning them values, it is important to note two distinct
cases about Eq. (21). Form>1, the meandering phenomenon
has an effect upon the dispersion process. On the other
hand, form=0, the meandering phenomenon is vanished and
Eq. (21) is written in terms of the exponential autocorrelation
function (e−t/τl ), which Lagrangian particle models are usu-
ally employed in windy conditions. Therefore, the approach
(21) is capable of simulating the contaminant dispersion in
the PBL in both cases, that is, when the contaminant plume
evolution is governed by eddies associated to a fully devel-
oped turbulence and exhibits a “fanning” kind of behavior
(typical of windy conditions) and when the plume evolution
is governed by low frequency horizontal wind oscillations
(meandering behavior associated to low wind conditions).

For applications, the values obtained for the parametersm

andT are calculated by the empirical formulation suggested
by Carvalho and Vilhena (2005):m= 8.5

(1+U)2 , T = mT∗
2π(m2+1)

andT∗=200m+500.

3.1.2 Vertical component

For the vertical component, the Langevin equation is solved
by the approach as suggested by Carvalho et al. (2005).
While for the horizontal directions the PDF is considered
as Gaussian, for the vertical direction the PDF is assumed
to be non-Gaussian (to deal with non-uniform turbulent con-
ditions and/or convection). In both cases, a Gram-Charlier
PDF, which is given by the series of Hermite polynomials,
may be adopted (Anfossi et al., 1997; Ferrero and Anfossi,
1998).

The Gram-Charlier PDF truncated to the fourth order
is given by the following expression (Kendall and Stuart,
1977):

P(ri) =
e−

(

r2
i

/

2
)

√
2π

[1 + C3H3(ri) + C4H4(ri)] (22)

whereri=ui

/

σi , σi is the turbulent velocity standard devi-
ation, H3 andH4 are the Hermite polynomials andC3 and
C4 their coefficients. In the case of Gaussian turbulence,
Eq. (22) becomes a normal distribution, consideringC3 and
C4 equal to zero. The third order Gram-Charlier PDF is ob-
tained withC4=0.

Applying the Eq. (22) in the Fokker-Planck equation
(Rodean, 1996), the Langevin equation may be written as:

dui

dt
+ αiui = βi + γi + (C0ε)

1/2 ξi(t), (23)

where αi=15C4+1
hi

C0ε

2σ2
ui

, βi=[fi+ri(15C4+1)] 1
hi

C0ε
2σui

and

γi=σi
∂σi

∂xj

gi

hi
,

j may assume 1,2,3 andj 6=i andfi , gi andhi are expres-
sions written as:

fi=−3C3−ri(15C4+1)+6C3r
2
i +10C4r

3
i −C3r

4
i −C4r

5
i (24a)

gi=1−C4+r2
i (1+C4)−2C3r

3
i −5C4r

4
i +C3r

5
i +C4r

6
i (24b)

hi = 1 + 3C4 − 3C3ri − 6C4r
2
i + C3r

3
i + C4r

4
i . (24c)

Multiplying the integrating factor [exp(
∫ t

t0
αids)] by all

terms in Eq. (23), the following integral equation is obtained:

ui = exp



−
t
∫

t0

αids















t
∫

t0

exp







t ′
∫

t0

αids







[

βi + γi + (C0ε)
1/2 ξi(t

′)
]

dt ′
}

, (25)

The Picard Method is now applied to Eq. (25), assuming that
the initial value for the turbulent velocity is a random value
supplied by a Gaussian distribution: The generic iterative
step is written as:

un+1
i = exp



−
t
∫

t0

αn
i ds















u0
i +

t
∫

t0

exp







t ′
∫

t0

αn
i ds







[

βn
i + γ n

i + (C0ε)
1/2 ξn

i (t ′)
]

dt ′
}

. (26)

3.2 Dispersion simulation

The results of the proposed model are compared with con-
centration data collected under stable conditions in low wind
speeds over flat terrain at the Idaho National Engineering
Laboratory (INEL). The results have been published in a US
National Oceanic and Atmospheric Administration (NOAA)
report (Sagendorf and Dickson, 1974).

For simulations, the turbulent flow is considered as inho-
mogeneous only in the vertical direction and the transport is
performed by the longitudinal component of the mean wind
velocity. The horizontal domain was determined according
to sampler distances and the vertical domain was set as equal
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Table 1. Statistical evaluation of the model results.

NMSE R FA2 FB FS

0.14 0.93 0.73 0.08 −0.23

to the observed PBL height. The time step was maintained
constant and it was obtained according to the value of the La-
grangian decorrelation time scale (1t=τL/c), whereτL must
be the smallest value betweenτLu , τLv , τLw andc is an em-
pirical coefficient set as equal to 10. For each simulation, the
number of particles released was 106 and the concentration
was obtained by counting the number of particles in volumes
with dimensions 5 m×5 m and 0.5 m in height. Values ofσi

andτLi
were parameterized according to scheme developed

by Degrazia et al. (1996). For the horizontal components
(Eq. 21) the parameterization ofC0ε has been calculated
from the Eq. (15) employingm values given by the empir-
ical formulation suggested by Carvalho and Vilhena (2005).
For the vertical component, the Eq. (15) is employed with
m=0. The third moment of the vertical velocity component
is assigned according to Chiba (1978) and the fourth mo-
ment is calculated based on method suggested by Anfossi et
al. (1997). The integration method used to solve the integrals
appearing in Eqs. (21) and (26) was the Romberg technique.

Due to the wind direction variability, a full 360◦ sam-
pling grid was implemented. Arcs were laid out with radii of
100, 200 and 400 m from the emission point. Samplers were
placed at intervals of 6◦ on each arc for a total of 180 sam-
pling positions. The receptor height was 0.76 m. The tracer
SF6 was released at a height of 1.5 m. The 1 h average con-
centrations were determined by means of an electron capture
gas chromatography. Wind speeds measured at levels 2, 4,
8, 16, 32 and 61 m were used to calculate the coefficient for
the exponential wind vertical profile. According to Brusasca
et al. (1992) and Sharan and Yadav (1998), the roughness
length used wasz0=0.005 m. The Monin-Obukhov lengthL
and the friction velocityu∗ were not available for the INEL
experiment but may be roughly approximated. Then,L may
be written from an empirical formulation suggested by Zan-
netti (1990) and the stable PBL heighth was determined ac-
cording to expression suggested by Zilitinkevich (1972).

The model performance is shown in Table 1 and Fig. 5.
Table 1 shows the result of the statistical analysis performed
with observed and predicted ground-level centerline concen-
tration values according to Hanna’s (1989) statistical indices.
Figure 5 shows the scatter diagram between observed and
predicted concentration. Observing the results obtained, we
may promptly conclude that the model simulates quite well
the experimental data in low wind stable conditions. The sta-
tistical analysis reveals that all indices are within acceptable
ranges, with NMSE, FB and FS values relatively near to zero
andR and FA2 relatively near to 1.
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Fig. 5. Scatter diagram between observed (Co) and predicted (Cp)

ground-level centerline concentration values for the stable case.
Dashed lines indicate factor of 2, dotted lines indicate factor of 3
and solid line indicates unbiased prediction.

4 Conclusion

In this study, a new formulation for the turbulence dissipa-
tion rateε has been derived and tested. Unlike the classical
form, which is derived from the exponential autocorrelation
function, this new expression (Eq. 15) is obtained from an
autocorrelation function that describes negative lobes in the
observed autocorrelation functions associated to the mean-
dering phenomenon. Furthermore, the cosine function con-
tained in this autocorrelation function, which describes the
oscillatory behavior associated to the meandering events, has
been derived from the forecast equation for mean wind in the
PBL, when a number of simplifications are assumed. There-
fore, the new formulation for the turbulence dissipation rate
is expressed in terms of the loop parameterm and may be
employed to parameterize the turbulence dissipation rate as-
sociated to the low frequency horizontal wind oscillations
(meandering phenomenon) occurring in low wind stable con-
ditions. The new parameterization may be applied in situa-
tions in which turbulence and meandering phenomenon co-
exist. Consequently, the turbulence dissipation rate as given
by Eq. (15) constitutes a general functional form that may be
used in distinct turbulent flow patterns.

The presence ofm in Eq. (15) controls the turbulence dissi-
pation rate. It will be larger for a well-developed turbulence
(neglectedm value) and smaller for the physical state de-
scribed by the turbulence and meandering phenomenon co-
existence (hybrid situation).
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The present parameterization for the turbulence dissipa-
tion rate was evaluated and validated through the comparison
with experimental data. Particularly, the results obtained by
the Lagrangian stochastic dispersion model, employing the
new formula for the turbulence dissipation rate, show that
the model correctly represents the diffusion process in low
wind speed stable conditions.

Considering the statistical evaluation and the scatter dia-
gram given in Fig. 5, the new parameterization for the tur-
bulence dissipation rate seemed to be suitable to simulate
the meandering enhanced diffusion of passive scalars occur-
ring in situations in which turbulence and meandering phe-
nomenon coexist. Therefore, the main result of the present
study is Eq. (15), which represents an alternative expression
for the turbulence dissipation rate for hybrid flow cases and
that has been derived from an autocorrelation function that
reproduces experimental meandering data.
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