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Abstract. A photo-electric aerosol sensor, a diffusion
charger, an Aethalometer, and a continuous particle counter
were used along with other real-time instruments to char-
acterize the particle-bound polycyclic aromatic hydrocarbon
(p-PAH) content, and the physical/chemical characteristics
of aerosols collected a) in Wilmington (CA) near the Los
Angeles port and close to 2 major freeways, and b) at a dy-
namometer testing facility in downtown Los Angeles (CA),
where 3 diesel trucks were tested. In Wilmington, the p-PAH,
surface area, particle number, and “black” carbon concentra-
tions were 4-8 times higher at 09:00–11:00 a.m. than between
17:00 and 18:00 p.m., suggesting that during rush hour traf-
fic people living in that area are exposed to a higher num-
ber of diesel combustion particles enriched in p-PAH coat-
ings. Dynamometer tests revealed that the p-PAH emissions
from the “baseline” truck (no catalytic converter) were up
to 200 times higher than those from the 2 vehicles equipped
with advanced emission control technologies, and increased
when the truck was accelerating. In Wilmington, integrated
filter samples were collected and analyzed to determine the
concentrations of the most abundant p-PAHs. A correla-
tion between the total p-PAH concentration (µg/m3) and the
measured photo-electric aerosol sensor signal (fA) was also
established. Estimated ambient p-PAH concentrations (Av-
erage=0.64 ng/m3; Standard deviation=0.46 ng/m3) were in
good agreement with those reported in previous studies con-
ducted in Los Angeles during a similar time period. Finally,
we calculated the approximate theoretical lifetime (70 years
per 24-h/day) lung-cancer risk in the Wilmington area due to
inhalation of multi-component p-PAHs and “black” carbon.
Our results indicate that the lung-cancer risk is highest dur-
ing rush hour traffic and lowest in the afternoon, and that the
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genotoxic risk of the considered p-PAHs does not seem to
contribute to a significant part of the total lung-cancer risk
attributable to “black” carbon.

1 Introduction

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in
the urban atmosphere and are typically produced from in-
complete combustion of fossil fuels and organic compounds,
or from high temperature pyrolytic processes involving any
materials containing carbon and hydrogen (Bostrom et al.,
2002). Important sources of PAHs include gasoline- and
diesel-fuelled motor vehicles, biomass burning of agricul-
tural and forest fuels, coal combustion, cigarette and wood
smoke, and fossils fuels. Atmospheric PAHs are found in
the gas-phase (if characterized by high vapor pressures) and
in the particulate phase (if their vapor pressures is relatively
low), or can partition between the gas- and the particle-
phases (Naumova et al., 2003). However, most PAHs, es-
pecially those with more than four aromatic rings, readily
adsorb onto combustion aerosols (Harrison et al., 1996), and
are predominantly associated with particles with an aerody-
namic diameter smaller than 1–2µm (Chetwittayachan et al.,
2002).

The U.S. EPA has recently defined a list of 16 “Prior-
ity PAH Pollutants” based on their mutagenicity and car-
cinogenicity (IARC, 2005). For example, benzo (a) pyrene
has been classified as a Group 1 carcinogen (“carcinogenic
to humans”) and cyclopenta (cd) pyrene, dibenz (a, h) an-
thracene and dibenzo (a, l) pyrene as Group 2 carcinogens
(“probably carcinogenic to humans”). Fine and ultrafine par-
ticles (and, thus, the PAHs bound to them) can penetrate
deeply into the bronchial and pulmonary part of the human
respiratory system, where their deposit and accumulation
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has been associated with short and long term health effects
(Pope et al., 2002; 2004). Along with certain transition met-
als, PAHs and other organic hydrocarbons (e.g. quinones)
have the potential to interact with airway epithelial cells
and macrophages to generate reactive oxygen species (ROS),
which have been linked to respiratory inflammation and other
adverse health effects (Cho et al., 2005; Nel, 2005).

The detection of particle-bound PAHs (p-PAHs) has gen-
erally been accomplished through analytical procedures in-
volving the collection of high mass loadings of particulate
matter (PM) on filters, followed by analysis of the filter ex-
tract by mass spectrometry coupled with gas or liquid chro-
matography (GC/MS or LC/MS) (Schauer et al., 1996; Nau-
mova et al., 2003). However, these methods require a labo-
rious sample preparation, resolve only a fraction of the total
PAH mass and, due to the amounts of PM that need to be
collected to overcome analytical limits of detection, can only
provide average atmospheric p-PAH concentrations with low
time resolutions (e.g., from several hours to a day). Because
the processes leading to the production of PAHs are dynamic
and occur on the time scale of minutes to a few hours, it is
important to monitor their temporal variation in much shorter
time intervals.

The photoelectric aerosol sensor (PAS) has been used
alone or in conjunction with other continuous instruments
to provide information on p-PAH emissions in indoor and
outdoor environments (Zhiqiang et al., 2000; Dunbar et al.,
2001; Chetwittayachan et al., 2002; Wallace, 2005; Ott and
Siegman, 2006), and from specific sources such as motor ve-
hicles (Matter et al., 1999; Marr et al., 2004; Kelly et al.,
2006), commercial and jet aircrafts (Herndon et al., 2005;
Rogers et al., 2005), tobacco products, incense and candles,
cooking sources, wood smoke and fireplaces (Ferge et al.,
2005; Ott and Siegman, 2006). The PAS, the diffusion charg-
ing (DC) sensor, and the condensation particle counter (CPC)
(all real-time particle instruments with a resolution<10-s)
have often been employed together to determine the rela-
tive fraction of nuclei versus accumulation mode particles
in ambient combustion aerosols (Bukowiecki et al., 2002).
The ratio between the PAS and the DC signals (PAS/DC) is
of particular interest, because it provides a measure of the
amount of p-PAHs per unit area of the active surface of par-
ticles (Ott and Siegman, 2006). Thus, the PAS/DC ratio may
be directly related to the quantity of p-PAHs transported into
the human respiratory tract. In a recent study conducted in
the Mexico-City metropolitan area by Marr et al. (2006) an
Aerodyne Aerosol Mass Spectrometer (AMS; Jimenez et al.,
2003) was used for the first time to measure ambient con-
centrations of p-PAHs. The diurnal concentration patterns
captured by aerosol photo-ionization (a PAS was run along-
side the AMS) and aerosol mass spectrometry were generally
consistent.

Motor vehicles account for as much as 90% of the p-PAH
mass in the urban air of big metropolitan areas (Harrison et
al., 1996; Bostrom et al., 2002). Thus, PAH levels could

be significantly reduced by developing air pollution control
strategies targeted at motor vehicles and, in particular, diesel
trucks and older passenger cars that are not equipped with
catalytic converters. To develop such PAH emissions reduc-
tion strategies, reliable information on the types and num-
bers of vehicles operating in urban areas, and on the PAH
emissions rates for each vehicle type are needed. Obtaining
representative measures of PAH emissions rates is difficult
because this parameter is a function of the engine type, the
state of repair of the engine, and the motor vehicle driving
conditions (Schauer et al., 1999; 2002; Zielinska et al., 2004;
Riddle et al., 2007a; 2007b).

In the present study, PAS, DC, CPC and other real-time
measurements were taken: a) in Wilmington (CA), an area
near the Los Angeles port and b) at the California Air Re-
sources Board (CARB) Heavy-Duty Diesel Emissions Test
Laboratory (HDETL), a dynamometer testing facility in
downtown Los Angeles (CA). The ambient air in Wilming-
ton is heavily influenced by a mix of industrial and gasoline-
/diesel-fuelled vehicle emissions. On the other hand, the dy-
namometer tests enabled us to characterize the exhausts of
several individual types of diesel trucks, equipped with dif-
ferent emission control technologies, and operated under dif-
ferent driving conditions. The chemical composition, active
surface area, and particle number concentrations measured
by the PAS, DC, and CPC (respectively) were combined to
provide information on the chemical and physical character-
istics of the studied aerosols. These results were comple-
mented with measurements of the particle size distribution
and of the black carbon (BC) aerosol content to obtain fur-
ther insights on the p-PAHs emitted by motor vehicles and
other sources. Integrated 24-h Teflon filter samples were also
collected in Wilmington, solvent extracted and analyzed by
GC/MS to determine the relative concentrations of the most
abundant p-PAHs found at the urban site. These outcomes
were then used to establish a correlation between the total
p-PAH concentration and the measured PAS signal (from fA
to µg/m3). Finally, we determined the approximate theo-
retical lifetime (70 years per 24-h/day) lung-cancer risk in
the Wilmington area due to inhalation of multi-component
p-PAHs and BC by following a procedure that considers the
benzo (a) pyrene equivalent concentration (B(a)Peq), and
BC as a surrogate for diesel combustion particle exposure
(Sauvain et al., 2003).

2 Experimental methods

2.1 Ambient sampling – the Wilmington site

The first part of this study was conducted in Wilmington
(CA), an urban area about 40 Km south of downtown Los
Angeles. The sampling site was located in one of the bus-
iest parts of the Los Angeles port, less than 1.5 Km east of
the Harbor freeway (I-110), about 4.5 Km west of the Long
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Beach Freeway (I-710), and close to several industrial facil-
ities, such as power plants and oil refineries. The I-110 runs
southbound through the Harbor Gateway, a two-mile wide
north-south corridor that was annexed by the city of Los An-
geles specifically to connect San Pedro, Wilmington and the
port of Los Angeles with the rest the city. Both freeways
are the principal means for transferring freight from the port
of Los Angeles to rail yards and warehouses further inland,
and they are notoriously congested, especially during rush
hour traffic. Although the majority of the I-710 freeway traf-
fic is comprised of light duty gasoline-powered cars, about
15–20% of the total number of vehicles is typically repre-
sented by heavy duty diesel powered trucks (Ntziachristos et
al., 2007a, 2007b) which are expected to be major sources
of combustion related pollutants, including BC and semi-
volatile and p-PAHs.

Our sampling station was set up inside a 10-m long mo-
bile trailer provided by the South Coast Air Quality Man-
agement District (AQMD) with a few instruments deployed
inside a rigid enclosure situated right outside the trailer. All
continuous data were collected during an intensive field cam-
paign conducted between 1 May and 29 May 2007. A photo-
electric aerosol sensor (PAS; model PAS2000CE; EcoChem
Analytics, Murrieta, CA) and a Nano-particle Surface Area
Monitor (NSAM; Model 3550, TSI Inc., Shoreview, MN)
were used to monitor the temporal variation of p-PAHs and
the particle active surface, respectively, with a time resolu-
tion ≤10-s. The principle of operation of the PAS and of
the NSAM, which is essentially a diffusion charger, (Ntzi-
achristos et al., 2007c) is very similar. The fundamental
difference between the two is the particle charging mecha-
nism: the PAS employs photo-ionization by mean of ultravi-
olet light (Niessner, 1986; Matter et al., 1999; Jung and Kit-
telson, 2005), whereas the NSAM utilizes diffusion charging
through a corona discharge (Fissan et al., 2007; Ntziachris-
tos et al., 2007c). In both instruments, positively charged
particles are collected on a filter, generating a current that is
measured by an electrometer (for technical details see Matter
et al., 1999, and Ntziachristos et al., 2007c). Previous studies
have demonstrated that the PAS is most sensitive to p-PAHs
deposited/bound on the particle surface and less responsive
to those covered by layers of other aerosol compounds (Marr
et al., 2004, 2006). The NSAM has been designed and cali-
brated by the manufacturer to provide a signal (in fA) whose
intensity is directly proportional to the human lung-deposited
surface area of particles (a calibration constant is used to con-
vert fA to µm2/cm3).

A dual-beam Aethalometer (Anderson RTAA-900, Ander-
sen Instruments Inc.) was used to determine PM2.5 BC con-
centrations with a time interval of 5-min. This instrument
uses the optical attenuation of 880 nm wavelength light to
measure the BC mass concentration as particles are collected
on a quartz fiber filter strip. Continuous (1-min) ambient
particle number (PN) concentrations were measured using
a condensation particle counter (CPC, model 3022A, TSI

Inc., Shoreview, MN) that was serviced and calibrated by
the manufacturer prior the beginning of this study. Wind di-
rection/speed, temperature and humidity were recorded with
a weather station (Wizard III, Weather Systems Company,
San Jose, CA, USA). For comparison purposes, 1-h averages
were calculated from all continuous data.

A few studies have revealed a good correlation between
the PAS signal (also in fA) and the concentration of 11–
15 of the most abundant p-PAHs on concurrently collected
aerosols samples (McDow et al., 1990; Hart et al., 1993;
Siegmann and Siegmann, 2000; Chetwittayacha et al., 2002).
The correlation between the PAS response and the PAH con-
centration is generally very high (R2

≥0.80) for a wide vari-
ety of sources, including: oil burner exhaust, parking garage
air, cigarette smoke, burners, and urban aerosols, indicat-
ing that it is possible to calibrate the PAS signal to estimate
p-PAH concentrations in several environments. However,
since different locations are characterized by a different mix
of PAH sources, the calibration of the PAS is site-specific
and time dependent. The sensor’s response has also been
reported to be linearly correlated (R2=0.82) with bacterial
genotoxicity (Wasserkort et al., 1996).

From 11 June to 24 June 2007, we collected 10 daily (24-
h) integrated ambient PM2.5 filter samples at the Wilmington
site by using only the 2.5µm cutpoint stage and the after fil-
ter of a Micro-Orifice Uniform Deposit Impactors (MOUDI,
MSP, Inc., Minneapolis, MN) operating at 30 lpm. All im-
paction substrates (37 mm PTFE Teflon filters; 2 mµm pore,
Gelman Science, Ann Arbor, MI) were used as provided by
the manufacturer without any pre-treatment. Each integrated
filter sample was extracted with solvents and analyzed by
GC/MS for the concentration of the most abundant p-PAHs
typically found in urban environments. Details about sample
preparation and GC/MS analysis have been previously de-
scribed by Sheesley et al. (2000, 2004). The PAS signal (fA)
measured in Wilmington was then calibrated against the sum
of the detected p-PAH concentrations (ng/m3). From a simi-
lar calibration procedure, Marr et al. (2004, 2006) estimated
the uncertainty of the PAS response to be around 20%.

2.2 Motor-vehicle emissions sampling – the CARB dy-
namometer facility

The second part of this work was conducted at the California
Air Resource Board-Heavy-Duty Emissions Testing Labora-
tory (CARB-HDETL), located at the Los Angeles Metropoli-
tan Transportation Authority (MTA) in downtown Los An-
geles. The sampling train included heavy-duty dynamome-
ter chassis, constant volume sampling (CVS) dilution tunnel,
and aerosol samplers. Details about this facility and its oper-
ation are described elsewhere (Ayala et al., 2002).

With the exception of the “baseline” vehicle (not equipped
with any catalytic converter) the other 2 tested heavy duty
diesel trucks, a Vanadium-based SCRT vehicle and a Zeolite-
based SCRT truck, were equipped with advanced emission
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Fig. 1. Average hourly diurnal profiles of the photoelectric aerosol
sensor (PAS) and nano-particle surface area monitor (NSAM) sig-
nals (a), and of the black carbon (BC) and particle number (PN)
concentrations(b) measured at the Wilmington site in May 2007.

control technologies that allowed them to meet the state
of California 2007 PM and 2010 NOx emission standards.
SCRT is an integrated system of selective catalytic reduc-
tion (SCR) and continuously regenerating trap (CRT) de-
signed to reduce both PM and NOx emissions. Details
about all 3 vehicles are reported in Table 1. Similarly to
the Wilmington (outdoor) site, several real-time instruments
were employed to fully characterize the motor-vehicle emis-
sions downstream of the CVS. PN concentration data was
obtained by using a CPC (Model 3025A, TSI Inc., Shore-
view, MN), while the particle size distribution was mea-
sured by an Engine Exhaust Particle Sizer (EEPS 3090, TSI
Inc., Shoreview, MN) and a differential mobility spectrome-
ter (DMS 500, Cambustion Ltd., Cambridge, UK). The EEPS
and DMS measured the particle size distribution in the size
range from 5.6 nm to 560 nm and from 5 nm to 1000 nm,
respectively. The physical (surface area) and chemical (p-
PAHs) characteristics of the particles in the exhausts of the
tested vehicles were monitored by an Electrical Aerosol De-
tector (EAD 3070A, TSI Inc., Shoreview, MN) and a Pho-
toelectric Aerosol Sensor (PAS 2000CE, EcoChem), respec-
tively. Additional measurements (not discussed in the current
work) included PN and PAH concentrations of the volatile
fraction of the emissions by mean of a different CPC (Model
3022 A, TSI Inc., Shoreview, MN) and PAS (Model 2000,
EcoChem), respectively, located downstream of 2 thermal
denuders.

All vehicles were tested under two different driving cy-
cles (well defined speed versus time traces, usually displayed
on a computer monitor, which the driver attempts to fol-
low) to simulate various real world conditions: 1) steady-
state cruise, and 2) transient. During steady-state cruise tests,
the vehicles were operated at a speed of 50 mph for 45 min,
whereas in a transient cycle they were driven through a series

of accelerations and decelerations runs at different time inter-
vals, according to the Urban Dynamometer Driving Sched-
ules (UDDS) for heavy-duty vehicles (see “Code of Fed-
eral Regulations” for details). Each cycle was repeated until
the collection substrates were loaded with enough mass for
chemical and toxicological analysis. Ultra-low sulfur diesel
(ULSD) with a sulfur content<15 ppm (provided by BP) was
used as test fuel.

3 Results

3.1 Descriptive analysis

As shown in Fig. 1a and b, the average hourly diurnal profiles
of the PAS, NSAM, BC and PN concentration data collected
in Wilmington were very similar. All ambient measurements
peaked during morning rush hour traffic because of increased
motor-vehicle emissions from both light and heavy duty ve-
hicles, reached a minimum late in the afternoon, and slightly
increased again at night because of a lowered mixing height,
increased atmospheric stability, and possible condensation
of the most volatile species (e.g. organic vapors from ve-
hicles’ exhausts) onto the existing particles due to temper-
ature decrease. The PAS and NSAM signals and the PN and
BC concentrations were 4 to 8 times higher between 09:00
and 11:00 a.m. than at 17:00–18:00 p.m., indicating that dur-
ing traffic periods commuters are exposed to a substantially
higher number of combustion particles enriched in p-PAH
coatings. Similar results were obtained by Ning et al. (2007)
at a typical urban site in the Los Angeles area, where the
atmospheric concentrations of organic species such as alka-
nes, hopanes and steranes, and p-PAHs were up to 6 times
higher during traffic periods than throughout the rest of the
day. These findings are important given the mutagenicity and
carcinogenicity of these organic compounds.

The physical and chemical characteristics of particles
emitted by motor vehicles are highly dependent on the age
and type of car/truck (gasoline- or diesel-fuelled), the pres-
ence or absence of emission control technology, and the driv-
ing conditions (engine load) (Zielinska et al., 2004; Riddle et
al., 2007a, 2007b). Figure 2 shows time series of the PAS and
EAD (DC) signals for the “baseline” (2a) and the Zeolite-
based SCRT vehicles (2b) operated in UDDS mode; both
trucks are diesel-fuelled, although the former is not equipped
with any type of catalytic trap. The inverse correlation be-
tween PAS and EAD signals observed in Figure 2b suggests
that, although the Zeolite-based SCRT exhaust was domi-
nated by photo-emitting material, at times the production of
particles with a very high active surface area (corresponding
to the EAD peaks) suppressed the PAS response. In con-
trast, the PAS and EAD signals of the “baseline” vehicle (2a)
were very well correlated at all times, indicating that its emis-
sions (much higher than those from the Zeolite-based SCRT
truck) were characterized by the presence of relatively large
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Table 1. Details about the 3 tested diesel trucks: Vanadium-based SCRT (V-SCRT), Zeolite-based SCRT (Z-SCRT), and “Baseline” vehicles.)

Vehicle
After treatment type Dilution; CVS flow (cfm)

**
Name/Make/Engine Model/Year Miles Curb Weight (lb) GVWR (lb)* Tested Wt (lb)

V-SCRT/Kenworth/ ∼36 0000 26 640 80 000 53 320 Vanadium based SCRT 2600 (UDDS)
Cummins M11, reflashed
(11L)/1998
Z-SCRT/Kenworth/ ∼36 0000 26 640 80 000 53 320 Zeolite based SCRT 2600 (UDDS)
Cummins M11, reflashed
(11L)/1998
Baseline/Kenworth/ ∼37 4000 26 640 80 000 53 320 None 2600 (UDDS)
Cummins M11, reflashed
(11L)/1998

*GVWR: gross vehicle weight rating. Maximum allowable total weight of the vehicle/loaded trailer on the road.
*Dilution flow through the constant volume sampler (CVS) (total volume of mixture air in the CVS).
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Fig. 2. Time series of the PAS and EAD signals (fA) for the “base-
line” (a) and the Zeolite-based SCRT(b) vehicles, both operating in
UDDS mode. Speed profiles during typical UDDS cycles are also
reported.

particles coated with one or more layers of photo-emitting
material (e.g. p-PAHs). Further details about the dynamome-
ter test results are discussed in the following sections.

3.2 Correlations among the responses of various instru-
ments

PAS versus DC plots are convenient ways to identify the
characteristic properties of different types of combustion
aerosols such as diesel particles, cigarette smoke, candle
smoke, wood fire, etc. (Matter et al., 1999; Bukowiecki et
al., 2002; Ott and Siegman, 2006). Since the responses of
both instruments are a function of the aerosol surface area
concentration, the slope of the regression line of these plots
is related to the capability of the surface to undergo photo-
electric charging, which depends on the nature of the surface
material. Typically, the presence of a high concentration of
nucleation mode particles (diameter<50 nm) results in a low
PAS signal because these are non-photo emitting (Matter et
al., 1999; Baltensperger et al., 2002); thus a low (or even neg-
ative) slope for the PAS versus DC plot is obtained in this sit-
uation. On the other hand, when the aerosol size distribution
is dominated by accumulation mode particles (in the context
of emissions testing usually defined as particles with an aero-
dynamic diameter>50–60 nm) such as diesel emissions, a
highly positive slope is obtained. The presence of aged accu-
mulation mode particles in the analyzed aerosol also tends to
suppress the PAS signal, because these are generally coated
with condensable species with weak photo-emitting proper-
ties, such as sulfate, nitrate and certain semi-volatile hydro-
carbons (Bukowiecki et al., 2002).

As shown in Fig. 3a, the PAS versus NSAM plot ob-
tained in Wilmington is characterized by measurements that
are continuously distributed between two boundaries. This
indicates the presence of both nucleation/aged accumula-
tion mode (lower boundary) and fresh accumulation mode
(upper boundary) particles; the majority of data-points was
scattered in between. This situation is typical of any ur-
ban environment and has been observed in previous stud-
ies conducted in the US (Bukowiecki et al., 2002; Ott
and Siegman, 2006) and in other countries (Chetwittay-
achan et al., 2002; Marr et al., 2004). Analysis of the
slopes from the linear regressions of time-segregated PAS
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Fig. 3. PAS vs NSAM plots considering all measurements obtained at the Wilmington site in May 2007(a), and the corresponding time-
segregated data(b to e). Regression equations and correlation coefficients (R2) were: (a) y=0.13×–1.03,R2=0.47; (b) y=0.04×+3.69,
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 Fig. 4. PAS vs BC plots considering all measurements obtained at the Wilmington site in May 2007(a), and the corresponding time-
segregated data(b to e). Regression equations and correlation coefficients (R2) were: (a) y=5.31×+2.48,R2=0.86; (b) y=3.62×+3.23,
R2=0.69; (c) y=5.44×+2.52,R2=0.82; (d) y=5.27×+2.99;R2=0.86; (e) y=4.04×+3.29,R2=0.84.

and NSAM data revealed that aerosols emitted from 00:00 to 05:00 a.m. (Fig. 3b) (Slope(00:00−05:00)=0.04), and from
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18:00 to 23:00 p.m. (Fig. 3e) (Slope(18:00−23:00)=0.08) were
likely to be dominated by aged accumulation mode parti-
cles covered with non-photo emitting material (e.g. nitrate,
sulfate, water, hydrocarbons, etc.) and, to a lesser ex-
tent, nucleation mode particles. Conversely, an increase in
the regression slopes observed in Fig. 3c and d suggests
that aerosols produced during rush hour traffic (06:00 to
11:00 a.m.) (Slope(06:00−11:00)=0.14) and early in the af-
ternoon (12:00 to 17:00) (Slope(12:00−17:00)=0.14) had the
highest concentrations of freshly emitted accumulation mode
particles, probably in the form of BC covered with p-PAHs.
Diesel vehicles have been found to yield the highest PAS/DC
readings on roadways measurements conducted in Califor-
nia by Ott and Siegman (2006), most likely because diesel
fuel is characterized by a higher PAH content than gaso-
line fuel (Lee et al., 1995). In addition, several roadside,
road tunnel, and chassis dynamometer studies have demon-
strated that the emission factors of p-PAHs (especially of
light molecular weight species such as fluoranthene, pyrene,
and benzo(ghi)fluoranthene in particular) from heavy-duty
diesel vehicles are significantly higher than those from light-
duty gasoline vehicles (Schauer et al., 1999; Zielinska et al.,
2004; Phuleria et al., 2006; Fujita et al., 2007; Ning et al.,
submitted). Overall, the fact that the slope of the PAS versus
DC plot increases during rush hour traffic and decreases at
nighttime is a clear indication of the effect of variable par-
ticle chemical composition throughout the day as a result of
different sources and formation mechanisms.

As illustrated in Fig. 4a to e, the PAS sig-
nal and the BC concentration in Wilmington were
very well correlated during the course of the day
(R2

(alldata)=0.86; R2
(00:00−05:00)=0.69; R2

(06:00−11:00)=0.82;

R2
(12:00−17:00)=0.86;R2

(18:00−23:00)= 0.84), and the magnitude
of the regression slopes did not vary significantly from early
in the morning to late at night (Slope(00:00−05:00)=3.62;
Slope(06:00−11:00)= 5.44; Slope(12:00−17:00)=5.27;
Slope(18:00−23:00)=4.04). These are all indications that
p-PAHs and BC particles at this urban site have a common
origin, and that diesel combustion emissions probably
represent the main source of p-PAHs in the Wilmington area.
These results confirm those obtained by Chetwittayachan et
al. (2002) in Tokyo and Bangkok and by other researcher in
different metropolitan areas where air pollution is dominated
by traffic emissions (Marr et al., 2004, 2006). A summary of
the slopes, intercepts andR2 for the correlations among all
measurements taken at the Wilmington site are reported in
Table 2.

The correlation coefficient and regression slopes of the
PAS versus EAD (DC) plots obtained from the dynamometer
tests were a strong function of the presence or absence of
emission control technologies in the tested vehicles and of
the driving conditions. An example of these types of plots for
the “baseline” vehicle operated in UDDS cycle is reported
in Fig. 5. Similarly to what was observed in Wilmington,

Table 2. Summary of the slopes, intercepts andR2 for the corre-
lations among all of the measured data obtained at the Wilmington
site.

Correlation Time period Slope InterceptR2

PAS (fA) vs. All data 0.132 –1.03 0.48
NSAM (fA)

00:00 to 05:00 0.035 3.69 0.21
06:00 to 11:00 0.141 –0.18 0.31
12:00 to 17:00 0.142 –0.59 0.57
18:00 to 23:00 0.082 1.14 0.60

PAS (fA) vs. All data 0.00050 0.34 0.51
PN (#/cm3)

00:00 to 05:00 0.00010 4.45 0.11
06:00 to 11:00 0.00050 1.09 0.35
12:00 to 17:00 0.00030 2.44 0.31
18:00 to 23:00 0.00030 1.98 0.62

NSAM (fA) vs. All data 0.00330 16.66 0.62
PN (#/cm3)

00:00 to 05:00 0.00430 14.53 0.69
06:00 to 11:00 0.00390 11.28 0.57
12:00 to 17:00 0.00210 23.22 0.51
18:00 to 23:00 0.00360 10.96 0.66

BC (µg/m3) vs. All data 0.00010 –0.68 0.63
PN (#/cm3)

00:00 to 05:00 0.00005 0.24 0.29
06:00 to 11:00 0.00010 –1.21 0.70
12:00 to 17:00 0.00006 –0.10 0.43
18:00 to 23:00 0.00010 –0.74 0.65

BC (µg/m3)vs. All data 0.029 –1.06 0.80
NSAM (fA)

00:00 to 05:00 0.027 –1.10 0.67
06:00 to 11:00 0.030 –1.18 0.78
12:00 to 17:00 0.027 –0.75 0.70
18:00 to 23:00 0.027 –0.96 0.82

PAS (fA) vs. All data 5.307 2.48 0.86
EC (µg/m3)

00:00 to 05:00 3.619 3.23 0.69
06:00 to 11:00 5.437 2.52 0.82
12:00 to 17:00 5.265 2.99 0.86
18:00 to 23:00 4.042 3.29 0.84

the PAS versus NSAM plot consists of data-points that are
uniformly distributed between two boundaries (Fig. 5a).
However, when measurements were segregated based on
the accelerating conditions during the test, the slope of
the regression line changed distinctively from negative
(min=–0.008) to positive (max=0.08) as the vehicle speed
increased from 0 to 57 mph (Fig. 5b), indicating a substantial
variation in the surface properties of the particles present
in the examined exhaust (only regression slopes are shown
in Fig. 5b). Most importantly, the particle size distribution
shifted from nucleation to accumulation mode, going from
the lower (Fig. 5c) to the higher (Fig. 5d) speed ranges,
highlighting the fact that the “baseline” truck had higher
p-PAH emissions at higher driving speeds. Coagulation and
condensational growth were likely to be the mechanisms
associated with the observed increase in particle diameter.
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* Speed range = 0 to 2.5 mph. Peak number concentration (#/cc) occurred when Dp ~ 30 nm 

Fig. 5. PAS vs EAD plots for the “baseline” vehicle operated in UDDS mode considering all measurements(a) and data segregated by
different acceleration cycles(b). The particle size distribution is also reported for lower(d) and higher(c) speed ranges.

Very different results were observed for the PAS versus
EAD plots of vehicles equipped with SCRT emission control
technologies and operating in the UDDS cycle. Distinct
spikes in the PAS signal were clearly detected when plotting
all data-points collected while testing the catalyst-equipped
vehicles (data not shown). Unlike the “baseline” vehicle, the
highest and the lowest PAS signals (and regression slopes)
were observed at start-up (Slope(Vanadium)Start−up=0.56;
Slope(Zeolite)Start−up=1.725) and during the accel-
eration mode (Slope(Vanadium)Acceleration=0.0004;

Slope(Zeolite)Acceleration=0.0007), respectively (Fig. 6a).
Also, a lower relative contribution of nucleation mode
particles to the measured particle number concentration was
observed at start-up (Fig. 6b), probably because the engine
temperature was not high enough to activate the catalyst
(Vanadium or Zeolite) and, thus, to convert gaseous SO2
to particulate sulfate. As the truck speed and the engine
load increased, the exhaust temperature also increased
to a level that favored the formation of nucleation mode
particles. The increase in nucleation mode PM, combined
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Fig. 6. PAS versus EAD plots for vehicles equipped with SCRT emission control technologies and operating in UDDS mode. Figures show
data segregated by different driving modes(a), and the particle size distribution for each driving condition(b).

with the fact that at higher engine loads soot particles are
very efficiently captured by the emission control device
of a vehicle, contributed to lower the PAS signal (hence
emissions of p-PAHs) as the UDDS cycle progressed. These
findings are consistent with those reported by Bukowiecki et
al. (2002) during other chassis dynamometer tests conducted
on diesel vehicles.

It should be noted that throughout our experiments with
trucks equipped with SCRT systems, only measurements ob-
tained during the UDDS cycle showed PAS and EAD sig-
nals significantly above background levels. When the same
vehicles were operated in cruise cycle the PAS current was
always close to zero (data not shown), because the size

distribution was dominated by nucleation mode particles,
which suppress the PAS signal. In addition, during the cruise
cycle the exhaust temperatures were sufficiently high to favor
an optimal operation of the emission control systems, thus
reducing the amount of p-PAHs released.

3.3 Estimated p-PAH concentrations in Wilmington

compound. The PAS signal measured in Wilmington was
calibrated against the sum of the concentrations of the
most abundant p-PAHs obtained from GC/MS analyses
of extracts from 10 integrated filter samples collected in
June 2007. The correlation between 24-h average PAS
signals (fA) and the corresponding sum of the analyzed
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 Fig. 7. Relative abundances of individual p-PAHs analyzed by GC/MS in Wilmington. Only those species with concentrations above the
detection limit were reported (integrated filter samples were also analyzed for Acenaphthene, Fluorene, 2,6-Dimethylnaphthalene, Retene,
Dibenzo(ah)anthracene, Picene, and Dibenzo(ae)pyrene).

p-PAHs (ng/m3) was excellent (R2=0.9; Slope=17.5;
Intercept=–1.33), and the resulting estimated concentrations
(Average=0.64 ng/m3; Min=0.24 ng/m3; Max=3.05 ng/m3;
Standard deviation=0.46 ng/m3) were in good agreement
with those reported in previous studies conducted in Los
Angeles in similar time periods (Schauer et al., 1996;
Manchester-Neelvsg, 2003; Ning et al., 2007). For exam-
ple, in the summer of 2006 Ning et al. (2007) reported that
the average mass concentrations of total p-PAHs measured
outside the University of Southern California (USC) campus
(∼150 m from the I-110 freeway) were 1.93 and 0.49 ng/m3

in the morning and afternoon, respectively. Hourly-averaged
p-PAH concentrations estimated in Wilmington were 1.18
and 0.38 ng/m3 at 08:00 and 17:00, respectively. The slightly
lower p-PAH concentrations of this study are probably due to
the fact that our sampling site was located farther from both
the I-110 (∼1.5 Km east) and the I-710 (∼4.5 Km west) free-
ways compared to the site at USC.

Ambient concentrations of p-PAHs in Los Angeles are
much lower than those detected in other metropolitan areas.
For example, Marr et al. (2006) reported that in April 2003
ambient p-PAHs in Mexico-City peaked at∼110 ng/m3 dur-
ing the morning rush hour and rapidly decayed to∼20 ng/m3

in the afternoon because of changes in source activity pat-
terns and dilution as the boundary layer rises. Overnight
concentrations were as high as 50 ng/m3, probably because
of condensation of gas-phase PAHs onto existing particles
driven by temperature decrease. Interestingly, in Mexico-
City the surface concentration of p-PAH (measured by a
PAS) decreased more rapidly than the bulk PAH concentra-
tion (detected by an AMS) during the late morning, suggest-
ing that freshly emitted combustion-related particles were
quickly coated by non-photo-emitting secondary aerosol

material (organic and inorganic), and that p-PAHs might have
been transformed/lost by heterogeneous reactions with ox-
idants such as OH, ozone, nitrogen oxides, and nitric acid
(photolysis may also be an important sink for p-PAHs) (Marr
et al., 2006).

The distribution of p-PAH species varies significantly with
season, location, and the relative source contributions, espe-
cially those from gasoline- and diesel-fuelled vehicles. Fig-
ure 7 illustrates the relative abundances of the individual
p-PAHs analyzed by GC/MS; only those species with con-
centrations above the detection limit were reported. Pre-
vious roadway tunnel and dynamometer studies (Miguel et
al., 1998; Marr et al., 1999; Zielinska et al., 2004; Phuleria
et al., 2006; Ning et al., submitted) have shown that diesel
vehicle emissions are enriched in lower molecular weight
PAHs (e.g., phenantrene and alkylated phenanthrenes, flu-
oranthene, and chrysene), whereas higher molecular weight
PAHs are associated with gasoline vehicle emissions (e.g.,
benzo(ghi)perylene, indeno[1,2,3-cd]pyrene, and coronene).
The presence of relatively high concentrations of both low
and high molecular weight p-PAHs in the filter samples sug-
gests that contributions from gasoline- and diesel-powered
vehicles (from the I-110 and the I-710, respectively) were
both important. Non-negligible concentrations of methyl-
napthalene and methylchrysene (probably from unburned
diesel fuel; Marr et al., 2006) were also detected in Wilm-
ington. Retene, a semi-volatile PAH that originates predom-
inately from the combustion of wood from conifer trees, and
is considered to be a tracer for soft wood combustion, was
not present in any of the analyzed samples. Because the en-
ergy associated with the PAS lamp (6.0 eV) is less than the
ionization energy of solid-phase naphthalene (6.4 eV) (Seki,
1989), the instrument does not detect this.

Atmos. Chem. Phys., 8, 1277–1291, 2008 www.atmos-chem-phys.net/8/1277/2008/



A. Polidori et al.: Particle-bound polycyclic aromatic hydrocarbons 1287

3.4 Photo-electric activity and molecular weight/structure

To improve our understanding on how the PAS signal re-
sponds to different p-PAHs deposited on the particle surface,
and to investigate which class of PAH contributes the most
to the sensor signal, we plotted the concentrations (ng/m3)

of individual p-PAHs against the corresponding 24-h av-
erage PAS signals. The data–points (Fig. 8) include only
species for which theR2 was higher that 0.7; all other de-
tected p-PAHs were not considered in this discussion. The
relationship between photo-electric activity and molecular
structure, as well as to microstructure (molecular packing)
of the particle/adsorbate system is evident. Our results in-
dicate that the larger the molecule, the higher its probabil-
ity to be photo-ionized by one photon (because of the larger
cross-section). With a few exceptions (phenanthrene and
chrysene in particular), the regression slope was the low-
est for Methylnaphtalene (slope=188.3; MW=142.2) and in-
creased with the molecular weight of the considered species
to a maximum value for Benzo (e) pyrene (slope=939.8;
MW=252.3). As suggested by Niessner (1986) the degree
of molecular packing of PAH molecules in a crystallitic ar-
rangement also affects the intensity of the photo-electric ac-
tivity. In fact, the regression slopes of Perylene and Benzo
(e) pyrene (both characterized by a MW=252.3 and by a
rather “packed” molecular structure) were higher than those
of Benzo(b)fluoranthene and Benzo(k)fluoranthene (2 iso-
mers also having a MW=252.3 but characterized by a more
“linear” structure). It appears that the lower the separation
distance between aromatic rings (i.e., the higher the degree of
packing), the higher the adsorbate-substrate interaction and
the resulting photo-electric activity (Niessner, 1986). How-
ever, in urban environments, the intensity of the PAS re-
sponse is also influenced by the presence or absence of sec-
ondary inorganic or organic aerosols that could decrease the
PAS signal by shielding surface-bound PAHs from detection
by photo-ionization (Marr et al., 2006). Keeping this caveat
in mind, the relationship between the PAS signal and the
PAH molecular structure appears nonetheless to be remark-
ably consistent, as evidenced in the data plotted in Fig. 8.

3.5 Lung-cancer Risk in the Wilmington Area

Because of their mutagenic and carcinogenic properties, ex-
posure to BC, diesel exhaust particles, and p-PAHs may pose
a severe health risk to individuals living in the Wilming-
ton area. Estimating the potential health risk from these
species and comparing the results to those obtained in other
metropolitan areas is instructive, despite the large uncertain-
ties involved in these calculations. Following the procedure
adopted by Sauvain et al. (2003) we determined the lung-
cancer risk associated with exposure to p-PAHs and BC from
diesel combustion particles (DCPs). The most common ap-
proach for estimating health-risks posed by multi-component
p-PAH exposure is based on the individual compound’s po-

Compound Formula MW Slope Intercept R
2

Methylnaphthalene C11H10 142.2 188.3 3.1 0.7

Phenanthrene C14H10 178.2 340.7 1.1 0.9

Fluoranthene C16H10 202.3 289.3 -3.0 0.9

Pyrene C16H10 202.3 324.9 2.2 0.9

Benz(a)anthracene C18H12 228.3 573.6 9.9 0.9

Chrysene C18H12 228.3 344.1 4.6 0.9

Benzo(b)fluoranthene C20H12 252.3 707.6 -7.7 0.7

Benzo(k)fluoranthene C20H12 252.3 695.1 10.3 0.9

Benzo(e)pyrene C20H12 252.3 939.8 -21.1 0.8

Perylene C20H12 252.3 788.1 -0.5 0.7

Compound Formula MW Slope Intercept R
2
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Benz(a)anthracene C18H12 228.3 573.6 9.9 0.9

Chrysene C18H12 228.3 344.1 4.6 0.9

Benzo(b)fluoranthene C20H12 252.3 707.6 -7.7 0.7

Benzo(k)fluoranthene C20H12 252.3 695.1 10.3 0.9
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Fig. 8. Concentrations of individual p-PAHs detected by GC/MS
analyses of integrated filter samples collected in Wilmington in
June 2007 against the corresponding 24-h average PAS signal.
Slopes and intercepts of all regression equations, and molecular for-
mulas and structures of each individual species are also reported

tency equivalence factor (PEF) relative to Benzo (a) pyrene
(B(a)p; considered as a toxicological prototype for all other
p-PAHs). A B(a)P equivalent concentration (B(a)Peq) is cal-
culated by multiplying the individual p-PAH concentrations
by the correspondent PEF (Bostrom et al., 2002; Sauvain
et al., 2003; Chen and Liao, 2006), and the carcinogenic
potency of all considered p-PAHs is then expressed as the
sum of each individual B(a)Peq (

∑
B(a)Peq). To simplify

our calculations, BC was assumed to be emitted only from
DCPs. Although this last assumption might not be com-
pletely true (a non-negligible fraction of BC is also released
from gasoline vehicles, power plants, and biomass burning;
Schauer et al., 2003), it is likely that most of the BC in the
Wilmington area is emitted from diesel combustion sources.
The theoretical lung-cancer risk due to inhalation of p-PAHs
and BC was then calculated by multiplying the

∑
B(a)Peq

and BC concentrations by the corresponding unit risk fac-
tors, here defined as the risk corresponding to a lifetime (70
years per 24-h per day) exposure to 1µg/m3 of

∑
B(a)Peq

or BC. The lifetime unit risk factor estimates considered in
this work were obtained from both epidemiological studies
and research conducted on rats (Sauvain et al., 2003), and
compared reasonably well with those reported by the World
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Table 3. Approximate theoretical lifetime (70 years per 24-h/day) lung-cancer risk in the Wilmington area due to inhalation of multi-
component p-PAHs and BC. Estimations of the contribution of the p-PAHs (genotoxic) risk to the total lung-cancer risk attributable to BC
are also included.

Predicted lung-cancer risk Predicted genotoxic (p-PAH) p-PAH/BC risk (%)
based on BC concentrations lung-cancer risk based on∑

B[a]Peq
* Unit risk factor (µg/m3)−1 * Unit risk factor (µg/m3)−1

Rodent** 1.31×10−5 Rodent** 2.99×10−3

Epidemiology*** 6.07×10−4 Epidemiology*** 5.60×10−2

BC concentrations
∑

B[a]P concentrations
(µg/m3) (µg/m3)

Study mean 08:00 17:00 Study mean 08:00 17:00
Mean BC (µg/m3) 1.47 2.92 0.45

∑
B[a]Peq (µg/m3) 4.76×10−5 8.81×10−5 2.88×10−5

BC lung-cancer risk p-PAHs (genotoxic) lung-cancer risk Study mean Highest Lowest
Study mean 08:00 17:00 Study mean 08:00 17:00

Rodent** 1.92×10−5 3.82×10−5 5.94×10−6 Rodent** 1.42×10−7 2.63×10−7 8.59×10−8 Rodent** 0.74 1.44 0.69
Epidemiology*** 8.93×10−4 1.77×10−3 2.76×10−4 Epidemiology*** 2.66×10−6 4.94×10−6 1.61×10−6 Epidemiology*** 0.30 0.58 0.28

*defined as the risk corresponding to an average lifetime exposure (70 years per 24-h/day) to 1µg/m3 of BC or B(a)P. Our values are
proportionally higher than those reported by Sauvain et al. (2003) for occupational exposure (45 years per 8-hr/day) to 1µg/m3 of diesel
emission particles or B(a)P from diesel exhaust. **lifetime unit risk factor estimated from research conducted on rats; ***lifetime unit risk
factor estimated from epidemiological studies. Note: the lifetime unit risk factor for exposure to total-p-PAHs reported by the World Health
Organization for coke oven workers is 8.70×10−2 (WHO: Air Quality Guidelines for Europe, 2000).

Health Organization for coke oven workers (WHO: Air Qual-
ity Guidelines for Europe, 2000).

The results of these rather simplified risk calculations
(Table 3) highlight two important points. First, the lung-
cancer risk at the Wilmington site is highest during rush
hour traffic (at 08:00; Risk[BC]=3.82×10−5for the rodent-
based estimate to 1.77×10−3 for the epidemiologic estimate;
Risk[p-PAHs]=2.63×10−7 for the rodent-based estimate to
4.94×10−6 for the epidemiologic estimate) and lowest in the
afternoon (at 17:00, Risk[BC]=5.94×10−6 to 2.76×10−4;
Risk[p-PAHs]=8.59×10−8 to 1.61×10−6). Secondly, the
genotoxic risk of the considered p-PAHs does not seem to
contribute to a significant part of the total lung-cancer risk
attributable to BC (less than 2%). For comparison, Sauvain
et al. (2003) estimated that the lifetime risk of lung can-
cer associated with occupational exposure to p-PAHs mea-
sured in a bus depot, a truck repair workshop, and an under-
ground tunnel in Lausanne (Switzerland), was 3 to 8% of the
total risk attributable to diesel exhaust particles emitted in
the summertime. Marr et al. (2004) calculated a mean can-
cer risk level for p-PAHs of approximately 5×10−5 (a value
∼10 times higher than the highest p-PAH risk estimated in
Wilmington) for lifetime exposure to p-PAHs concentrations
found along a typical roadway in the Mexico-City metropoli-
tan area. Although these calculations are rather uncertain and
highly dependent on the sampling location and season (in the
summer a higher percentage of semi-volatile PAHs is present
in the gaseous phase), they suggest that the risk associated
with inhalation to p-PAHs and BC is the highest along road-
ways and in areas characterized by fresh vehicle emissions,
and decreases with increasing distance from the roadways.
This hypothesis is further validated by considering that the

maximum PAS signal (fA) measured for the “baseline” vehi-
cle during our dynamometer tests was more than 250 times
higher than the maximum ambient PAS measurements (fA)
recorded in Wilmington. The health effects associated with
exposure to other carcinogenic compounds present in the at-
mosphere (e.g. nitro-PAHs and other organic compounds),
may further amplify this risk.

4 Conclusions

The photo-electric aerosol sensor (PAS) was used in con-
junction with other continuous instruments to provide infor-
mation on p-PAH emissions a) in Wilmington (CA), near
the Los Angeles port and close the I-110 and I-710 free-
ways, and b) from 3 diesel trucks with and without emis-
sion control technologies (SCRT and “baseline” vehicles, re-
spectively). Ambient concentrations of p-PAHs peaked be-
tween 09:00 and 11:00 (along with those of particle surface
area, PN, and BC) because of increased contributions from
both gasoline- and diesel-fuelled vehicles, and were 4 times
higher than later in the afternoon. The observed changes in
the chemical and physical properties of p-PAHs throughout
the day suggest that the toxicity of fresh versus aged parti-
cles may differ. In particular, the bioavailability of p-PAHs
is likely to be the highest during rush hour traffic, when fresh
combustion particles are not coated with other non photo-
emitting compounds. p-PAH emissions from the “baseline”
vehicle were up to 200 times higher than those from the
SCRT trucks, and increased when the vehicle was acceler-
ating. The highest PAS readings for SCRT trucks were ob-
tained at start-up, probably because the engine temperature
was not high enough to activate the catalyst (Vanadium or
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Zeolite). Total p-PAHs concentrations in Wilmington (Av-
erage=0.64 ng/m3; Min=0.24 ng/m3; Max=3.05 ng/m3; Stan-
dard deviation=0.46 ng/m3) were in good agreement with
those reported in previous studies conducted in Los Ange-
les in similar time periods, but much lower than those de-
tected in other metropolitan areas such as Mexico-city (p-
PAH ∼110 ng/m3 during morning rush hour; Marr et al.,
2004, 2006). Finally, estimations of the theoretical lifetime
(70 years per 24-h/day) lung-cancer risk in Wilmington as-
sociated with exposure to p-PAHs and BC from diesel com-
bustion particles revealed that the lung-cancer risk is highest
during rush hour traffic (at 08:00; Risk[BC]=3.82×10−5 to
1.77×10−3; Risk[p-PAHs]=2.63×10−7 to 4.94×10−6) and
lowest in the afternoon (at 17:00, Risk[BC]=5.94×10−6 to
2.76×10−4; Risk[p-PAHs]=8.59×10−8 to 1.61×10−6). It is
reasonable to assume that commuters spending several hours
per day on the I-110 and the I-710 face an even higher lung-
cancer risk than individuals living around the Wilmington
area due to prolonged exposure to higher concentrations of
p-PAHs and BC.
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