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Abstract. The kinetic collection equation (KCE) describes

the evolution of the average droplet spectrum due to succes-

sive events of collision and coalescence. Fluctuations andn(i, t) 1¢
non-zero correlations present in the stochastic coalescence j; Z kG-
process would imply that the size distributions may not be

correctly modeled by the KCE. . o

In this study we expand the known analytical studies of —n() ZK(I’ i) @
the coalescence equation with some numerical tools such as
Monte Carlo simulations of the coalescence process. Théeren(i, r) can be obtained far=0 from a given initial spec-
validity time of the KCE was estimated by calculating the trum »(i, 0). The coagulation kernek (i, j) contains the
maximum of the ratio of the standard deviation for the largestprobability of coalescence of two drops of Masses; .
droplet mass over all the realizations to the averaged value. The KCE g|ves the time rate of Change of the average num-
A good correspondence between the analytical and the nuper of; droplets as the difference of two terms, the first term
merical approaches was found for all the kernels. The exdescribes the average rate of production of droplets of mass
pected values from analytical solutions of the KCE, were y; due to coalescence between pairs of drops whose masses
Compared with true eXpeCted values of the stochastic CO”eCadd_xl.,and the second term describes the average rate of de-
tion equation (SCE) estimated with Gillespie’s Monte Carlo pletion of x; droplets due to their coalescences with other
algorithm and analytical solutions of the SCE, after and be-groplets. As was pointed out by Gillespie (1975), the KCE is
fore the breakdown time. only an approximate time-evolution equation fofi, t) be-

The possible implications for cloud physics are discussedcause the numbers of droplets of different masses are statis-
in particular the possibility of application of these results to tically correlated, and the KCE equation contains no definite
kernels modified by turbulence and electrical processes.  information concerning the size of the fluctuations from the
average, which would be observed in independent realiza-
tions of the coalescence stochastic process. Furthermore, for
1 Introduction certain collection kernels, the KCE gives nonphysical solu-

tions in which the total mass of the system is not conserved
The kinetic collection equation (KCE) describes the temporal(Drake, 1972; Aldous, 1997). For example, the solution of
change of the mean number of particles of masa agiven  the KCE using a kernel proportional to the product of the
volume of fluid through the process of coalescence and isnasses of the colliding droplets, features unrealistic behav-
written as ior such as failure to conserve mass, and divergence of the
second moments.

The main goal of our work is to test a numerical criteria
for the validity time of the KCE (Inaba et al., 1999), with an-
alytical results obtained for the KCE with kernels for which
analytical solutions existed. Because of that, we are not us-

Correspondenceto: L. Alfonso ing a realistic collection kernel determined from either labo-
BY (lesterson@yahoo.com) ratory measurements or theoretical flow modeling. The idea
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is to test the numerical results with simple kernels in order toof the process and can be used to calculate the true aver-
extend the results to real kernels in future works. ages as suggested by Bayewitz et al. 1974) and Tanaka and
Drake (1972) carefully analyzed the solutions of the KCE Nakazawa (1994) as:
for polynomial kernels of the formA+B(x;+x;)+Cx;x;, _
and concluded that any polynomial containingxan; term {ni) = anP(n; 1 ®3)
is a poor approximation, based on the fact that the non-linear "
term leads to a time when the second moment of the raindrop The KCE results from taking the first moments for the
distribution becomes infinite, and liquid water content in no particle number distribution (Eq. 3) and assuming that
longer conserved. (ninj) = (n;) (n;). Under these assumptions Eq. (2) reduces
The reason for these behaviors has been previously exo the KCE. Eq. (2) is very difficult to solve, even numer-
plained and results from the fact that the KCE are valid onlyically since the number of states increases extremely fast
for infinite systems, e.g., systems with large number of par-with No Analytical solutions were obtained for three cases:
ticles in large volumes. However, as droplets grow by coa-sum kernelB(x;+x;) productC(x; xx;) and constant ker-
lescence, the number of them inevitably decreases, and, asrl. Bayewitz et al. (1974) obtained an evolution equation
result, the KCE becomes invalid to describe the process.  for the true mean of the total number of particles for the con-
This problem is relevant to cloud physics, since the evo-stant kernel case. Tanaka and Nakazawa (1993) compared
lution of the large end of the spectrum is crucial in the de-the size distributions calculated from Eq. (2) for the three
scription of precipitation development. The KCE assumescases, with analytical solutions of the KCE and examined
that the number of particles(i, ¢) is a continuous variable. the conditions under which the kinetic collection equation
If the collection kernel increases steeply with the mass of thds valid. The stochastic completeness of the KCE was also
particles, then the collection rate at the high-mass end of thetudied by Valioulis and List (1984).
spectrum is significant. A single drop can acquire a mass Going further in this direction we will use the Monte Carlo
much larger than the rest of the system and becomes sepapproach in order to examine the conditions under which the
rated from the smooth mass spectrum. In such a situationkinetic collection equation is valid. Special attention will be
the statistical fluctuations at the high-mass end of the specpaid to the time evolution and fluctuations of droplet con-
trum must be taken into account. centration in the large end of the size distribution, which is
A numerical approach to the collection process that takescrucial in precipitation development.
into account statistical fluctuations is Monte Carlo (MC). The main result of the present paper will be the test of the
Gillespie (1975) first developed an exact Monte Carlo frame-numerical criteria suggested by Inaba et al. (1999), to calcu-
work for simulating the stochastic coalescence processlate the validity time for the KCE. This result is compared
Within this framework, all assumptions included in the with analytical results previously obtained by Drake (1972)
stochastic collection equation are avoided. and Tanaka and Nakazawa (1994). We were lead to this con-
Another way to handle this problem is to study the prob- jecture on the basis of numerical simulations with the Monte
ability P(n1,np, ..., ny; t) that the system has a drop spec- Carlo algorithm presented in Sect. 2. In Sect. 3, approxi-
truma=(ny, ny, ..., ny) attimer. The evolution of the prob- mating polynomials and analytical solution for the KCE and
ability distribution P is described by the stochastic coales- SCE are presented. Simulations and a comparison with ana-
cence equation (Bayewitz et al., 1974; Lushnikov, 1978;lytical solutions are described in Sect. 4. Finally, in Sect. 5
Tanaka and Nakazawa, 1993; Inaba et al., 1999; and morwe discuss the results and possible applications to more gen-
recently Wang et al., 2006). This equation has the form:  eral kernels of importance for cloud physics.

OP() _n o ,
o = X; 'ZlK(l’ Jni+1)(n;j+1) 2 TheMonte Carlo algorithm
=1 j=i+
P(.,ni+1, .onj+1, . nipj—1,..51) In this study we use the stochastic algorithm developed by
N g Gillespie (1976) for chemical reactions. This algorithm was
+Z éK(i, D+ M+ P (. ni+2, ..., n2i—1, ...; 1) reformulated to simulate the kinetic behaviour of aggregat-
i=1

ing systems by Laurenzi and Diamond (1999), by defining
species as a type of aggregate with a specific size and com-
position. In our case, species represent droplets of different
sizes.

The first two terms in the right-hand side of Eq. (2) show  Within this framework, there is a unique indgxfor each
the probabilities of transition from other states into the statepair of droplets, j that may collide. For a system withi
n=(n1, na, ..., ny); the last two terms represent those from species( S1,Sz,...,SN)u € %ﬂ) The set(u) defines the
the staten=(n1, ny, ...ny) to other states. The solution total collision space, and is equal to the total number of pos-
of Eqg. (2) will produce the complete probabilistic picture sible interactions. With this set the collision probability den-

N N N 1
-3 > K(i,j)nin,P(ﬁ;z)—ZEK(i,i)ni(ni—l)P(ﬁ;t) )

i=1 j=i+1 i=1
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sity function P (t, u) can be determined. This quantity is method to obtain random numbers is applied. In the inver-
defined by: sion method this random number is taken as the probability
P (t, u) dt=Probability that at timer the next colli- of a collision in the time period according toP; (t). This
sion in volumeV will occur in the infinitesimal interval  probability is obtained by integrating, (r) from O tozt:
(t+7, t+t+dt) and will be au collision.
Gillespie derives this probability density function for a
system ofN species as

T T

r1=fP1 @) dzzfaexp(—az) dz=1—exp(—at) (9)
0 0

N(N+1)
P (t, w)dr = a, exp| — 22: ajt @) Considering th_at J:rl.:ri‘ is also a uniformly Qistributed
= random number in the interval (0,1), then the timean be
calculated from (Eq. 7) in the form:
Herex € Y% The functions:, are calculated according 1 1
to T=—1n (—*) (20)
o rl

',':V_]'K','--dtz o _ o
ati. j) (& jymin, The collision numbep is calculated similarly. A random

Probability that two unlike particlesand j with numberr, uniformly distributed in the interval (0,1) is gen-
populations(number of particlesn; andn; erated. Then the pd?, (v) (EqQ. 8) must be integrated over
will collide within the inminent time interval (5) until the sum of the. probability exceeds the random num-

berr;, The inequality to obtain the collision indexhas the
form (Gillespie, 1976)

. 1. . ni(mi—1) 1
a(i,i)y)="V 1K(l,l)—dt: fod K
2 Z a, < roo < Zav (11)
Probability that two particles of the same species =1 =1
with population(number of particlesn; The former results lead to the Gillespie’s direct algorithm:
collide within the inminent time interval (6)

1. Initialize (set initial numbers of species, get0, set
The collision probability density function is the basis of stopping criteria).
the Monte Carlo algorithm. For calculating the evolution of
the system, two random numbersind must be generated. 2. Calculate the function, for all .. Chooser according
Equation (4) leads directly to the answers of the aforemen-  to the exponential distributiofs () =« exp(—at) dr.
tioned questions. First, what is the probability distribution

. . . . _ a_H
for times. SummingP (z, 1) dt over all u (all possible col- 3. Calculatg: according to the distributioR, (1) = 7.

lisions) results in 4. Change the numbers of species to reflect the execution

N(N+1) N(N+1) of a collision.

2 2

Py (t)dt = Z P(t,pn) = Z a, exp 5. If stopping criteria are not met, go to step 2.

n=1 n=1

N(1\£+l)
_ 3 Analytical solutions of the KCE and SCE using poly-
(_ X; a”r) = aexp(-ar)dr (7) nomial approximations.
V=
NN+ The collection kernel for hydrodynamic interactions for the
With o= i a continuous case has the form:
v=1
The probability function for reactions can be obtained in K (x, ) =7 [R)+r(MI*E (x, ) [V () =V ()],

a similar way, by integrating the probability density function x>y (12)

(pdf) P (z, n) dt over allt from 0 tooo results in o
In (10), x andy are the masses of the colliding droplets,

P (1) = G (8) R(x) is the radius of the larger collector droplet, an@) is
o the radius of the smaller collected droplgfyx, y) is the col-
Equation (7) shows that the probability of a collision in lection efficiency and is given by the product of the collision
time follows an exponential distribution. In order to obtain efficiency and coalescence efficiency. For general kernels of
a random pair £, u), according to the probability density the form (12), the KCE has to be solved numerically.
function P (z, 1) we first generate a random numberndis- Analytical solutions of the continuous KCE have been ob-
tributed uniformly in the interval (0,1), then, the inversion tained by Golovin (1963), Scott (1968), Drake (1972) and

www.atmos-chem-phys.net/8/969/2008/ Atmos. Chem. Phys., 8, 969-982, 2008
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0.3 = 4 Numerical estimation of thevalidity timefor the KCE
4.1 Validity of the KCE for kernels of the forr@xy
- K(x,y)=B(x+y)
" Analyioal soluton sCE Long (1974) demonstrated that for small droplets
Monte Carlo Simulation (R<50um) as terms of higher degree are included in

0.2 — a polynomial, the kerneK (x, y) in the continuous case

is approximated adequately. Nevertheless, many authors
(Drake, 1972; Pruppacher and Klett, 1997) have claimed
that the termsry give a “nonphysical” behaviour of the
solutions, since solution does not conserve mass and there
is a divergence of the second moment. The fifg§ X and
second {f2) moments (with respect to the droplet mass
distribution) for the continuous case are defined by

0.1 =

RELATIVE CONCENTRATION (N/N,)
1

]

Mo(t) = / x°n(x, 1)dx (14a)
0 F————— 0
0 4 12 16 0o
BIN NUMBER
Mi(t) = /xn(x, Hdx (14b)
Fig. 1. The number of particles, averaged over 1000 simulations 0

and normalized to initial number of particle§¢{=100), versus the
analytical solution of the stochastic collection equation (SCE) atwheren(x, t) is the droplet mass distribution andis the
t=700s. as a function of size. droplet mass. The evolution d#f, with time for kernels
containing terms of the formy diverge as a consequence

) o of the fact that the KCE are valid only for systems with large
Drake and Wright (1972) for approximations of the hydro- nymper of particles in large volumes. This assumption is ad-
dynamic kernel given by the polynomials: equate for most kinetic processes, but the neglect of small
population corrections in the KCE causes unrealistic behav-

flxy)=A4 (133) iors as the total population of particles become small. Lau-
FO,y) = A+Bx+y) (13b) renzi and Diamond (2003) studied the case withyaker-
nel with a Monte Carlo method and demonstrated tHat
fx,y) = Cxy (13c) shows a rapid but finite increase and a rigorous conservation
of mass.
f(x,y) = A+ B(x+y)+ Cxy (13d) Drake (1972) calculated the analytical solutions of the

KCE for polynomials of the forny (x, y)=Cxy. In this case
Long (1974) calculated the coefficients for the polynomi- the second moment evolution is given by
als (13) approximating the collection kernel (10) when the M(to)
radius of the largest colliding drops is smaller tharu.s0. Ma(v) = 1= CMotoe (15)
The results are displayed in Table 1. Other studies (e.g., 2(lo)7
Scott, 1968) used coefficients up to an order of magnitudéNote that when
larger. _ 1
Analytical size distributions of the KCE for the constant, v = [CM2(0)] (16)
sum and product kernels, are displayed in Table 2, and Taa/, is undefined. Then for—t a single macroparticle re-
ble 3 shows the results for total concentration. For themains andM»(z)—oc. The time pointz=t when the de-
stochastic collection equation (SCE), the true stochastic avterministic KCE predicts a divergence bf; and a decrease
erages calculated from analytical solutions (Eq. 3) for theof M (first moment, liquid water content) is called the gel
sum and product kernel are shown in Table 4 (Tanaka angoint.
Nakazawa, 1994). We have calculated for an initial monodisperse dis-
We have tested the numerical code against the exiribution of 100 droplets of 14m in radius (droplet
act size distribution of the SCE reported in Tanakamass 1.1494108g). The volume of the cloud was set
and Nakazawa (1994) for the sum kernel caseequal to 1cm. Using the value ofC from Table 1
(K (x, y)=B(x+y), B=8.83x10°cm*g~ts™1). The com- (C=5.49x10°cm3g—?s™1), thenr in (Eq. 16) is 1378.7 s.
parison was made for an initial concentrati¥g=100 cnm3 For the same type of kerneCfy), by using analytical
and an excellent agreement was founded (see Fig. 1). methods, Tanaka and Nakazawa (1994) concluded that the

Atmos. Chem. Phys., 8, 969-982, 2008 www.atmos-chem-phys.net/8/969/2008/
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Table 1. Polynomials approximating the actual collection kerkél, y) for R<50u m (Long, 1974). Herer andy denote the masses of
the colliding droplets.

Approximating Polynomialf (x, y)  Coefficients Units of coefficents
fl,y) =4 A=1.20x10~% cmPs1
fx,y)=A+ Bk +y) A=Q, cmPst

B=8.83x10? cmigls?

fx,y)=Cxy C=5.49x1010 cmPg2s!

f(x,y) =A+ B(x +y)+Cxy A=4.41x10"7 cm3s1
A= B?/C B=1.36x10? cmigls?
C=4.18x1010 cmig—2s71

fx,y)=A+ B(x +y) + Cxy A=0 cnPs1
B=4.16x10? cmigls?
C=2.24x1010 cm3g2s1

Table 2. Analytical size distributions of the kinetic collection equation calculated with monodisperse initial conditions (Laurenzi and
Diamond, 1999).

K(xj, xj) N(@,t)
CNi—1
B(xj +x;) No(l—¢) ?d?ﬂ) exp(—i¢) ¢ = 1 — exp(—BNovgt)
Cx; X x)) No% exp(—iT) T = CNovdt
(ry—* _
A 4Ng T2 T = ANgt

Note: Parameterd, B andC are constantsNg is the initial concentration and is the initial volume of droplets. The indéxepresents
the bin number. Here; andx; denote the masses of the colliding droplets for biaad;.

KCE described well the coalescence process as long as tHargest and second largest droplets for this particular case is
mass of the largest droplet was smaller thaff®, where ~ shown in Fig. 2.
M7 is the total mass of the droplet population. Inaba et al. (1999), by using a statistical model, found
When the coalescence growth is described by the KCE, théhat the stochastic property of the system changes around
mass spectrum is continuous, as shown by the near-equalifj’® Stage when the largest droplet mass is in the order of
of the mass of the largest and second largest droplets. Howd;~. By using a statistical code for modeling planetary
ever, as the mass of the largest droplet grows, the number giccretion, they calculated the ratio of the standard devia-
droplets inevitably decreases and the KCE becomes unabléon for the largest particle mass over all the realizations, to
to describe the coalescence process. This larger droplet aghe averaged value evaluated from 1000 numerical simula-
quires a mass much larger than the rest of the particles, antions M1 s=STD(M1)/M1. The standard deviation for
becomes detached from the smooth spectrum (Lee, 2000). the largest droplet mass is calculated for each time by using
We have calculated the ensemble mean of the largest ani€ expression:
second largest droplet8f; 1 and Mo The ensemble mean N
is given by the expression: STD(Mp1) = (Z (M}, — ML1)2> (18)
i=1

r

M, = i iMlL 17) whereM 1 is the ensemblg mean'of the mass of the largest
N = droplet over all the realizations (given by Eq. 1R), is the
number of realizations of the Monte Carlo algorithm and
where N, is the number of realizations of the Monte Carlo M4 is the largest droplet for each realization.
process, and/’ is the droplet mass in the-realization of Inaba et al. (1999) found thaf, 1 s was maximum in the
the stochastic algorithm. The average time evolution of thevicinity of MLl/Mi/Szl. This reinforce the possibility of

www.atmos-chem-phys.net/8/969/2008/ Atmos. Chem. Phys., 8, 969-982, 2008



974 L. Alfonso et al.: The validity of the kinetic collection equation

Table 3. Analytical solutions of the kinetic collection equation for total concentration calculated with monodisperse initial conditions (Scott,
1968).

K (xj, xj) N(@)
B(xi+xj) N@)=No(l—T) T =1—exp—BNovot)
Cli xx)) N =No(1-3T) T = CNgv2t

A N@) = 29 T = ANot

Note: Parameterg, B andC are constantsVy is the initial concentration and is the initial volume of droplets.

60 == 0.6 ==

Polynomial Cxy
Largest Droplet (ML1)
----- Second Largest (ML2)

40 = 0.4 =

DROPLET MASS
1
STD(MIZ)/ML1

20 = 0.2 =

————
o~ Cmena,
-
-

-
-
pegeepeleg

0 ] I ] I ] I ] I ] I 0 ] I ] I ] I ] I ] I
0 1200 1600 2000 0 400 800 1200 1600 2000
TIME (SEC) TIME (SEC)

Fig. 2. Average time evolution for 1000 simulations versus time Fig. 3. The ratio of the standard deviation to expectation value of
(No=100) of the largest and second largest droplets for the kernethe largest droplet ST@/,.1)/M 1 as a function of time.
Cxy (C=5.49x1019cm3 g—2s71).

_ _ _ _ o the initial 14,m droplet. By evaluating this mass in the con-
using this magnitude in order to calculate the validity time of y;iion MLl/M72~/3 avalue of 0.86 was obtained, which is very

the KCE. i close to 1 (Fig. 4.), in agreement with the analytical findings
In order to check when the largest droplet acquires asf Tanaka and Nakazawa (1994).

mass much larger than the rest of the droplets, and be-
comes detached from the continuous spectrum, we have ¢
culated the behavior a¥f; 1 s evaluated from 1000 realiza-
tions (V,=1000) of the Monte Carlo algorithm. The results
are displayed in Fig. 3. The maximum#f 1 s was obtained
for 1=1315s, very similar to the analytical estimation from be estimated
Eq. (16) ¢=1388). The ratio STDM1)/Mr1 Seems to be . ' ) .
a very reliable way for estimating the breakdown time of the 10 illustrate this procedure, the coefficien
KCE. Around this time {=1388), the growth oM, » (second 1N Mpa/Mp~1  was calculated for the  kemel
largest droplet) stops whilgf; 1 (largest droplet) continues K (x;, x;)=min(x;, xj)x(xt.l/s—i-xl./s)x(xi-i-xj), (where
to grow rapidly (see Fig. 2). After thad/;» decreases with x;andx;are the masses of the colliding droplets). As in the
time because large droplets first coalesce Withy and its ~ previous cases, we have estimated the validity time for an
mass approaches the total mass gradually. initial mono-disperse distribution of 100 droplets of A

The maximum of the statisti#/; 1 s was obtained when in radius (droplet mass 1.149408g). For this functional
the largest droplet was about 20 times larger (in volume) tharform of the kernel, the maximum of STDB{; 1)/ M1 was

As pointed out by Inaba et al. (1999), the time of the max-
mum depends on the functional form of the collisional ker-
nel. For other type of kernels the maximum will be obtained
for different exponents of the total mass of the systémn

(in the vicinity of MLl/M§=1), here the parametgr has to

Atmos. Chem. Phys., 8, 969-982, 2008 www.atmos-chem-phys.net/8/969/2008/
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0.6 == 0.025 ==
T 0.02 =
. 4
0.4 = I
& 0.015 —
g g
- >
=3 &
[a] w
5 Z 001 —
2
o
12}
0.2 = -
0.005 =
° — 1 r 1 T T ° 1
0 v | v | v | v | v | 0 400 0 0 1600 2000
0 0.5 1 15 2 25 TIME (SEC)
My, /M3
- ) ) . NY—N\2
) ) o ) Fig. 5. Time evolution of the square relative er & ) asa
Fig. 4. The ratio of the standard deviation to expectation value of . .
2/3 function of time for the product kernel.

the largest droplet STG/ 1)/ M as a function oM 1/ M7~

.1.2 Comparison of the solutions of the KCE and SCE for

. o 4
obtained at 505s. At this time, the ensemble mean of Cxy kemnel. Results for the size distribution.

the largest droplet is 16.91 times larger than the initial
14um droplets. Then, the parametgrcan be estimated as
B=IN(M_1) /In(M7)=In(16.91) /In(100=0.6141, which is
almost equal to 3/5. Then, the KCE is valid until the stage

in which the mass of the largest drople¥{;) becomes
3/5

The problem of the size distributions was studied by
Bayewitz et al. (1974) for constant kernel solutions of the
kinetic and stochastic collection equations. They found that
. in systems of small population, or in a system partitioned
comparable or largep;. For this same kernel, In-aba eF into small compartments, the results of the KCE and SCE
al. (1999) estimated a_nalytlcally that the KEE remains valid may differ substantially, particularly in the long-term tail of
before the largest particl/.1) becomeseM; ™. the distribution. The same situation was observed by Wang
i , et al. (2006) while comparing the size distributions of the
4.1.1  Comparison of the solutions of the KCE and SCE for cg and size distributions from the stochastically complete
Cxy kemels. Results for total concentration equation. According to Tanaka and Nakazawa (1994), for
product kernel, the solutions of the KCE;) and the SCE
ﬁ<ni >) agree with each other if the conditian/M§/3<<1 is
ulfilled (herex; denotes the droplet mass in bin The cor-

The degree of accuracy of the solution of the kinetic collec-
tion equation is measured by the square relative error, define

by responding condition for the sum kernel case;isgMr<«1.
(N) = N 2 Here M7 is the total mass of the droplet population.
SE(N) = (T) (19) The size distributions obtained from our MC calculations

are presented in Figs. 6 and 7, for two different times:
where (N) are the true stochastic averages calculated fron=1000 s and=1600. This times correspond to values of
the MC andN the averages from the KCE. As can be ob- MLl/Mi/?’ equal to 0.49 and 1.39 respectively. At earlier
served in Fig. 5, the square relative error shows a sharp intimes, whenM;1/M>3=0.49, the KCE size distributions
crease afteMLl/Mz/Szl (t~1300 s). That means that the match quite well the SCE size distributions. In contrast, after
expected values calculated according to the KCE will differ 1600s (Fig. 7), the size distributions differ substantially for
from the true averages calculated from the Monte Carlo al-bin numbers larger than 7.
gorithm. After that time, the KCE breaks down. According to Tanaka and Nakazawa (1994) for sufficiently
For earlier times #(<1300s) and valueMLl/M$/3<<1, small massy;, the solutionn; of the stochastic collection
the Monte Carlo technique produces averages for total conequation agrees with that of the KCE equation even in the
centration that are almost equal to the solution of the KCE. late stage.
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Table 4. True stochastic averages calculated from analytical solutions of the stochastic collection equation with monodisperse initial condi-
tions for the sum and product kernels (Tanaka and Nakazawa, 1994).

K(xi, %)) (n(i, 1)

N . No—i—1 i-1
B(x; +xj) CZ.N0 <NL0> {1— leo (1— eT)} X (l— e_T) e T T= B Ngugt
Cx; x xj) Voo~ iNo=DT £, (T) T = CNovdt

Note: ParameterBandC are constantsVy is the initial concentration angpis the initial volume of dropletsC,iv0 is the binomial coefficient.
; N iy
Functionsf (T) can be found by solving successively the equati%%f@ = % > ijsiﬂykkcie*”’f,-(t)fj (r) for monodisperse initial
i,j=1
conditions.

K(xy)=Cxy
t=1600
Analytical Solution KCE

——==—— Monte Carlo

K(x,y)=Cxy
t=1000 sec
Analytical Solution KCE

——=—— Monte Carlo

0.1 0.1

0.01

RELATIVE CONCENTRATION (N/N,)
RELATIVE CONCENTRATION (N/Ng)
o
o
=

0.001 0.001

0.0001 0.0001
| | ! | ! | ! | ! | ! |

8 12 16 20 0 4 8 12 16 20
BIN NUMBER BIN NUMBER

Fig. 6. Size distributions obtained from the KCE and the stochasticFig. 7. Size distributions obtained from the KCE and the stochastic
approach at=1000 s for the product kernel. approach at=1600 s for the product kernel.

As Fig. 8 shows, for the product kernel, the KCE and the ) o ]
SCE solutions start to differ far=5. Whenr>1300s, there Then, the results displayed in Fig. 10 are in agreement
is no agreement between the analytical and the Monte Carl®ith the less restrictive condition for the sum kernel, that
solutions for bin numbers as small as 5, a fact that explainedh® KCE @:) and the SCE (¢;)) solutions agree with each
the marked differences observed in Fig. 7. The disagreemerfither if the conditiony; /M7 <1 is fulfilled. According to

increases as we move to the large end of the distribution anfP'ake (1972), whei (x, y)=B(x-+y), Ma(r) will exponen-
time advances. tially increase with time but still be finite at any time. For

Tanaka and Nakazawa (1994), the KCE is valid until a drop
with mass comparable withl; appears, i.e., almost until the
limit of complete aggregation, when a single macroparticle
remains.

4.2 Validity of the KCE for polynomials of the form
B(x+y)

For K (x, y)=B(x+y), the analytical solution of the stochas-  We have analyzed this problem by calculating the statis-
tic collection equation can be calculated easily (see Table 4)tics STD(M1)/M1. Surprisingly, there is a maximum at
and there is no need to use the Monte Carlo integration. Ag=1320s (Fig. 11), indicating that the liquid water content
seen in Fig. 10, both analytical solutions for the KCE and theis no longer conserved after 1320s. We have calculated the
SCE are in excellent agreement even for bin sizes as large aasolution of the liquid water content by using the analytical
10. solution of the KCE for monodisperse initial conditions dis-
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Fig. 8. Time evolution (bin sizes 2,5,7 and 10) for a system modeled by the product kernel, as a function of time. The solid lines are the
analytical solution of the KCE.

played in Table 2 according to: tic approach can predict the behavior of the coalescence pro-
cess for all times.
My(r) = im(z’)N(z’, ) (20) The results f_rom Fig. 11 con_tradic_:t the ger_1era|ized idea
= that the KCE with a sum kernel is valid for all times (Drake,

1972). Actually, after some time, the total mass is no longer
At the same time, we have calculatéfy by using (Eg. 22) conserved. After 2000 s we have 82% of the initial mass. The
and the true averagé#/(i, r)) from the SCE (See Table 3). total mass for the product kernel is also plotted indicating that
The results are shown in Fig. 12. After1300s the total after 2000s. the remaining mass is only 45% of the initial
mass calculated with the KCE, starts to decrease, while thenass. The smaller reduction in total mass for the sum kernel
total mass calculated with the true averages from the SCE igxplains the better agreement between the size distributions
conserved all the time. This reflects the fact that the stochasfFig. 10) for the sum kernel.
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Fig. 9. The ratio of the standard deviation to expectation value of the largest dropletM&ThD/ M, as a function ofMLl/M§/3for
approximating polynomial&) A+B(x+y)+Cxy and(b) B(x+y)+Cxy.

4.3 Other approximating polynomials containingyaterm

For polynomials of the formA+B(x+y)+Cxy where
A=B?/C the KCE is valid until the time (Drake, 1972):

t=[CMa(10)+BL] ! (21)

tainedr=1508.5s. From the MC calculations, the maximum
of STD(M1)/Mp1 was 0.504 reached at=1310s and the
ratio MLl/Mi/3 was found equal to 0.96 (see Fig. 9a and b).
The above mentioned results support the fact that the cri-
terium proposed by Tanaka and Nakazawa (1994) for the
product kernel in general works well for polynomial kernels

where L is the initial liquid water content of the droplets containing ancy term.
(M1(0)) . In evaluatingr the values ofA, B andC calcu-  gimylations with monodisperse initial distributions with
lated by Long (1974) and displayed in Table 1. The liquid he mentioned above kernels, are not very realistic in the

water contgnt (firs; moment of the distribution) was equal t0¢|q,d physics context, but they are the only way to rigorously
1.149<107°g cm~ (we consider a cloud initially contain-  -heck the accuracy of the statistics proposed.
ing 100 droplets of 14m in diameter in 1crf). The an-

alytically predictedr for this polynomial form of the kernel
was 1134 s while the numerically evaluated value was 1260 S5 Discussion and conclusions

and the ratioMLl/Mi/gzl.OS. In Tanaka and Nakazawa

(1994) the condition that the KCE is valid um:lilLl/Mi/3 In this study we have represented the kernels for the continu-
is smaller than unity was deduced for kernels of the formous case by a series of polynomials and used a MC algorithm
Cxy. Nevertheless, it seems to work quiet well in general forto obtain the solutions of the SCE. The solution of the KCE

kernels containing amy term.

To further study this trendz was also estimated nu-

merically for polynomials of the formB(x + y) +
Cxy.
nel for small droplets areA=0, B=4.16x10°cm?g s,
C=2.24x10"%m3 g=?s~1). The analytical expression far

is given by (Drake, 1972; Long, 1974):
t=In[14+2BL/CM>2(t9)] /2BL (22)

where L is the initial liquid water contentd1(0)) . For

for polynomials containing amy term predicts an infinite
value of M, for t=t. For kernels of the fornB(x+y), there
is a no conservation of the total mass, but a less pronounce

The coefficients that better approximate the ker-divergence than for the product kernel.

A frequently-encountered process in many fields of sci-
ence is the random coalescence of small bodies into larger
ones, conserving total mass. In astrophysics, the non-
conservation of mass after the breakdown of the KCE is usu-
ally interpreted to mean that a runaway planet has formed,
also known as a gel because of applications in physical chem-

L=1.149%10 5g cm 3, from expression (Eq. 24) was ob- istry. Astrophysical examples include the coalescence of

Atmos. Chem. Phys., 8, 969-982, 2008

www.atmos-chem-phys.net/8/969/2008/



L. Alfonso et al.: The validity of the kinetic collection equation 979

i=2 Analytical KCE i=5 Analytical KCE
012 = ——+—— i=2 Analytical SCE 0.016 = — = i=5 Analytical SCE

0.012 =

0.08 =1

0.008 =

0.04 =

RELATIVE CONCENTRATION (N/NO)
1
RELATIVE CONCENTRATION (N/NO)

0.004 =

0 400 800 1200 1600 0 400 800 1200 1600
TIME TIME

0.008 =

i=7 Analytical KCE 0.003 = i=10 Analitycal KCE
———— i=7 Analytical SCE ——+—— =10 Analytical SCE

0.006 ==

0.002 =

0.004 =

0.001 =4

RELATIVE CONCENTRATION (N/NO)
RELATIVE CONCENTRATION (N/NO)
1

0.002 =

— o
L ) I T I T I T I LI B B B I T I T I T I

0 400 800 1200 1600 0 400 800 1200 1600

TIME(S) TIME (S)

Fig. 10. Time evolution (bin sizes 2,5,7 and 10) for a system modeled by the sum kernel, as a function of time. The solid lines are the
analytical solution of the KCE, the symbols are the analytical solutions of the SCE.

planetesimals into planets and of stars into black holes (Leethen called the sol part. For astronomers, the non conser-
1987), but the largest application area is Physical Chemistryation of the first moment aftef,, is usually interpreted to
(aerosols, polymerization, phase separation in mixtures). mean that a runaway particle (planet) has formed.

Since this problem is important in other branches of phys- | reajity, the KCE describes the continuous mass droplet

ical sciences, itis usefu! tp look at (-:iiffer.ent approgches. I:Orspectrum (without the gel part or the largest droplet) all the
condensed matter physicists, the situation that arises for ket 1o \When a single droplet is detached from this spectrum
nels containing arry term is a phase transition, typically e we have a continuous spectrum plus a massive droplet.

called gelation in the context of coalescence models. Theny, f,rther study this trend, we can analyze the time evolu-
when gelation occurs, the mass conservation is expected iy, of the Jiquid water content for a polynomial of the form
break down in finite time i.e.: there existJa called gela-

o Cxy for monodisperse initial conditions (see Fig. 12). Af-
tion time such that ter t~1300, the liquid water content starts to decrease. As
mentioned above, the neglect of small population corrections
causes unrealistic behavior as the total concentration of par-
ticles becomes small.

M1(t)=M1(0) for t<T, (23a)

and
When the gel is formed the largest droplet is detached

M1 (t)<Mq(0) for 1>T, (23p)  from the continuous spectrum, the KCE describes only the
continuous droplet spectrum (sol part). For example, for
The physical interpretation is that after gelation, some mass=1700s, the largest droplet mass is in average 36.52 times
is lost under the form of a particle of infinite size, with mass larger than the initial 1&m droplet. Then its mass is equal
M1(0)—M1 (1), called gel part. The rest of the particles are to 4.197% 10 ’g. At this time, the total mass calculated from
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Fig. 12. Time evolution of the liquid water content (first moment

of the distribution) for the sum kernek{((x, y)=B(x + y)), calcu-
lated from size distributions of the KCE and true averages from the
SCE, and for product kernek{(x, y)=Cxy), calculated from the
analytical solution of the KCE.

Fig. 11. The ratio of the standard deviation to expecta-
tion value of the largest droplet ST®Y;1)/M;1 as a func-
tion of time for the approximating polynomid (x, y)=B(x+y),
(B=8.82x10%cmig~1s 1.

This expression reflects the fact that the “missing mass” actu-

. 7 . .
the KCE is 7.43%10""g. On the other hand, the initial water ally is transferred to the largest droplet that becomes isolated

content for our simulations wad(0)=1.149410°g cm 3. for ti . oy

B o or times larger tharr. The non conservation of the initial
~ The physical interpretation is that aftefz, Some mass 555 when the largest droplet becomes separated from the
is lost under the form of a particle of big size, with mass .,niinuous spectrum(i, 1) predicted by the KCE, explain

M1(0)—Ma(z), the gel part which is not represented by the 0 gitferences between the KCE and SCE size distributions
KCE. The gel mass in this example is afterr>t (Figs. 6, 7 and 8), and the underestimation of the

M1(0)—M1(1700=1.1494¢10©g-7.43210 g concentration for bin sizes larger than 5. The underestima-
=4.1x10""g tion in this case is a consequence of non conservation of the

which is almost equal to the mass of the largest dropletliquid water content for the continuous spectrum, when mass
calculated with the MC algorithm (4.197.0~’g). is constantly transferred to the largest droplet (gel part).

The former analysis confirms the fact that forr the Wang et al. (2006) also observed marked differences be-

KCE actually models the evolution of the continuous sizetween size distributions predicted by the KCE and the SCE
of the spectrum. As the largest droplet continue to grow(Fig. 7 of Wang et al., 2006). In fact the mass predicted by
by accretion of smaller droplets, the mass of the continuoushe KCE is smaller then the mass predicted by the SCE (True
spectrum will decrease, together with the liquid water con-Stochastic Collection Equation) for bin numbers smaller than
tent predicted by the KCE. The values of the total water con-80.
tent for the continuous spectrum and the largest droplet (gel The numerical criteria STOM;1)/M;1 described in this
part) for several times are shown and the total water contenjyork could be used for calculating in the general case,
calculated as the sum of the continuous spectrum total watefhen there is no analytical solutions for the KCE or SCE.
content and the largest droplet mass are shown in Table 5. One interesting question that arises is the validity of the KCE
Note that the missing mas$/((0)—M(¢)) calculated when turbulence or electrical processes influence the collec-
from the KCE is equal (within a 90% accuracy) to the masstion process. In these situations, the Monte Carlo algorithm
of the largest droplet detached from the continuous spectrunand the already analyzed statistics S¥0D.1)/M; 1for the
for r>t, and estimated from the Monte Carlo algorithm ac- largest droplet will be useful in the evaluation of the validity
cording to expression (Eq. 17). Then, forr, the mass con-  of calculations made with the KCE. The alternative, is to use

servation can be formulated in the form the Monte Carlo algorithm instead of the deterministic tool
(Eq. 1).
Mrota=McontinuousSpectruniKCE) +MLargest Droplet (24b) Another question is the possibility of existence of such
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Table5. Total water content calculated as the sum of the smooth spectrum total water content and largest droplet mass (gel part).

Time (seconds) Ma(1) (g cm3) M\ argestDroplet (9 e 3 My + M\ argestDroplet M1(0)
(Smooth spectrum Largest droplet mass (gem (gcm3)
liquid water content, from the MC (gel part) (Initial liquid water content)
calculated according to the KCE)
1600 8.4%10°7 3.56x10~7 1.19x 107 1.14x10~7
1700 7.4%10°7 4.20x10°7 1.16x107 1.14x10°7
1800 6.56¢107 4.71x10°7 1.12x10~7 1.14x10~7
1900 5.8%10° 7 5.32x10°7 1.11x10°7 1.14x10°7

large drops, since the collisional and spontaneous breakupords, by choosing this piecewise approximation, the break-
modes will tend to fragment them. In our particular situa- down of the KCE will be avoided for longer times, since the
tion the answer is positive, because the collisional and sponKCE solutions for kernels of the typ@(x+y) are valid until
tanoeus breakup mechanisms will act for larger sizes. Fothe largest droplet has a mass the limit of complete aggrega-
example, atr=1315s (calculated for a kernel of the form tion (i.e., for all times).
Cxy), the largest droplet (gel) has a radius of theru8& According to (Eqg. 12), the time interval for droplets to
At r=2000 s the radius of the largest droplet radius ig.B2 grow from 20um to 100um in radius will be in the order
When simulations are performed for larger volumes, theof an hour (Pruppacher and Klett, 1997). Nevertheless, for
KCE remains valid before a droplet or a number of dropletssmaller dropletsC.xy approximates quite well the collection
grow to the mass comparable to the total mass of the syskernel. Then, one open question is the possibility of inclu-
tem. To further clarify this question, a Monte Carlo simula- sion of xy terms in approximations ok (x, y) when small
tion was run for a 100 times larger cloud volume (108gm  scale turbulence or other processes are present, in order to
and an initial monodisperse distribution of 10000 dropletspredict a faster growth of smaller droplets. From this point
of 14um in radius (droplet mass 1.14940°8g). In the  of view, precipitation formation could be interpreted as a sol-
simulation, the product kernel was used. The maximum ofgel transition. Several mechanisms have been proposed in the
STD(My1)/ M1 was obtained at the same time that in the past (entrainment, presence of giant nuclei, supersaturation
simulation with the cloud volume of 1 cina fact that con-  fluctuations, and effects of air turbulence in concentration
firms that the validity time is the same for the two cases.fluctuations and collision efficiencies). More recently, a new
Despite the differences in the initial number of droplets andmodel of raindrop growth (McGraw and Liu, 2003; McGraw
cloud volumes, the largest droplets (runaway droplets) haveand Liu, 2004) shows how small drops can form and explains
a similar size (between 40-5%0n in radius). Then, for larger some of the differences between continental and maritime
cloud volumes the KCE is no longer valid after the formation clouds. They attacked the problem by extending the theory
of relatively large droplets that grow faster than the rest. of statistical crossing of a kinetic barrier to the processes of
From the theoretical point of view it will be interesting condensation and collection. But despite all efforts, a con-
to check whether the phase transition approach adopted bglusive answer is still absent.
condensed matter physicists and astronomers could work in
a cloud physics context. Long (1974) demonstrated thaf’\cknowledgements. This study was funded through grant from
K (x, y) increases as? for small droplets (R50,.m) and CQNACyT (#52212_). We are grateful to two reviewers who helped
asx for larger ones. He concluded that for typical continen- ©© improve the quality of the paper.
tal and maritime clouds, the evolution of the raindrop dis-
tribution is closely described if the kernel has the piecewise
approximation:
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