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Abstract. Imperfect representation of vertical mixing near
the surface in atmospheric transport models leads to uncer-
tainties in modelled tracer mixing ratios. When using the
atmosphere as an integrator to derive surface-atmosphere ex-
change from mixing ratio observations made in the atmo-
spheric boundary layer, this uncertainty has to be quantified
and taken into account. A comparison between radiosonde-
derived mixing heights and mixing heights derived from
ECMWF meteorological data during May–June 2005 in Eu-
rope revealed random discrepancies of about 40% for the
daytime with insignificant bias errors, and much larger val-
ues approaching 100% for nocturnal mixing layers with bias
errors also exceeding 50%. The Stochastic Time Inverted
Lagrangian Transport (STILT) model was used to propagate
this uncertainty into CO2 mixing ratio uncertainties, account-
ing for spatial and temporal error covariance. Average val-
ues of 3 ppm were found for the 2 month period, indicating
that this represents a large fraction of the overall uncertainty.
A pseudo data experiment shows that the error propagation
with STILT avoids biases in flux retrievals when applied in
inversions. The results indicate that flux inversions employ-
ing transport models based on current generation meteoro-
logical products have misrepresented an important part of the
model error structure likely leading to biases in the estimated
mean and uncertainties. We strongly recommend including
the solution presented in this work: better, higher resolution
atmospheric models, a proper description of correlated ran-
dom errors, and a modification of the overall sampling strat-
egy.

Correspondence to: C. Gerbig
(cgerbig@bgc-jena.mpg.de)

1 Introduction

Exchange of CO2 and other greenhouse gases between the
surface and the atmosphere leaves atmospheric signatures be-
hind that can be used to retrieve information about the sur-
face fluxes. On regional scales, at which climate anomalies
(droughts, anomalies in rainfall, temperature, etc.) as well as
human intervention (land use change) influence biosphere-
atmosphere exchange, such information is valuable for inves-
tigating biosphere-atmosphere feedback processes. Further,
regional scale quantification of greenhouse gas budgets is a
requirement for any carbon trading, such as is currently be-
ing implemented under the Kyoto protocol. Regional scale
budgets have therefore become a research focus (Dolman et
al., 2006; Lin et al., 2006; Wofsy and Harriss, 2002).

For CO2, biosphere-atmosphere fluxes can be assessed by
a range of methods – each covering specific spatial scales,
including eddy-covariance measurements (Baldocchi et al.,
2001) with flux-footprints extending over∼1 km2, remote
sensing driven diagnostic light use efficiency (LUE) models
(Lin et al., 2006; Running et al., 2004) with resolutions of
several hundred meters, more process based biosphere mod-
els covering multiple scales (Moorcroft et al., 2001; Run-
ning and Hunt Jr., 1993), but also atmospheric inversions of
measured trace gas mixing ratios (the so called top-down
method). Inversions of background stations using global
transport models are assumed to constrain fluxes on scales
of several thousands of km (Gurney et al., 2002). Measure-
ments from tall towers over continents are claimed to rep-
resent areas of roughly about 106 km2 (Gloor et al., 2001),
but this strongly depends on the spatial and temporal scales
of the flux information to be retrieved (Gerbig et al., 2006).
However, when combined with prior flux information for ex-
ample from eddy flux measurements and remote sensing, re-
gional scale inversions start to become feasible (Matross et
al., 2006).
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Fig. 1. Daytime mixing heights derived from radio soundings (left)
and from ECMWF short term forecasts (right), averaged over the
May–June 2005 period. Sounding locations are indicated by open
circles, with filled circles showing the location of high resolution
sounding data. Crosses indicate stations near coasts not selected for
further statistical analysis. Interpolation for the contour plot was
done with inverse distance weighting.

Measurements of atmospheric mixing ratios can provide
strong constraints, but this puts strong demands on the ac-
curacy of atmospheric transport modelling. In case of CO2
one is for example interested in small imbalances of oth-
erwise large fluxes of opposing sign, ecosystem respiration
R and photosynthesis GEE. During growing season the net
ecosystem exchange NEE (=R+GEE), i.e. the biosphere-
atmosphere flux, has a diurnal amplitude that is already about
an order of magnitude larger than the diurnal average, and at
least 2 orders of magnitude larger than the annual to decadal
imbalances that contain the most relevant information on the
processes involved in climate change (Goulden et al., 1996).
Thus the transport model needs to provide a very tight re-
lationship between fluxes and concentrations, with resulting
biases over the relevant timescales (annual) of only a few
percent or less of the corresponding fluxes. Similarly, strong
spatial variability in biospheric fluxes causes strong variabil-
ity in mixing ratios (Gerbig et al., 2003a; Lin et al., 2004a).
This variability has to be represented in transport models
with very little bias in order to utilize the information con-
tained in atmospheric point measurements.

This requires uncertainties in atmospheric transport to be
investigated quantitatively. So far, uncertainties in transport
have been investigated mostly through model intercompar-
ison studies such as Transcom 3 for global scale transport
(Gurney et al., 2003). However, the tempting assumption
that the spread of the model-ensemble represents the true
uncertainty in the transport is false: there are many com-
mon sources of uncertainty in different models due to the
large similarity in spatial discretisation and subgrid param-
eterizations (IPCC, 2001). Furthermore, there is the natu-
ral tendency in modelling communities to “improve” mod-
els that are outliers rather than those close to the average,
which reduces the range of the ensemble. Other meth-
ods to derive uncertainties in modelled transport use a di-
rect comparison of modelled mixing ratios with measure-
ments (Mahowald et al., 1997), however residuals between

modelled and measured values are also caused by uncertain-
ties in the surface-atmosphere fluxes themselves.

Attempts to separate the influence from transport uncer-
tainty as short time scale variability in the residuals from the
longer time scale residuals that are assumed to be caused by
uncertainties in the targeted fluxes are also questionable: co-
variance of the uncertainty in transport with variability of the
fluxes can lead to biases when aggregating to longer time
scales. A famous example for this is the so called “diurnal
rectifier effect” (Denning et al., 1996), where the overesti-
mation of mixing height during night, when CO2 is released
due to respiration, combined with little or no overestimation
of daytime mixing heights, when CO2 is taken up by pho-
tosynthesis, leads to strongly biased (underestimated) 24 h
averaged near-surface concentrations.

First attempts to directly quantify transport uncertainties
based on uncertainties in winds have been made by Lin
and Gerbig (Lin and Gerbig, 2005), where wind errors in-
cluding their spatial and temporal correlations, derived from
model - radiosonde comparisons, have been propagated us-
ing the STILT model (Lin et al., 2003) to yield uncertain-
ties in simulated CO2. The approach utilized the ability of
the Lagrangian particle dispersion model STILT to model
ensembles that correspond to not just turbulence, but also
to wind errors. These uncertainties due to advection errors
amounted to 5 ppm during a summer period with active veg-
etation, largely exceeding measurement uncertainties, which
currently are targeted at 0.1 ppm. However, this is by far not
the only uncertainty in transport modelling. As mentioned
above in reference to the rectifier effect, the imperfect rep-
resentation of vertical mixing processes near the surface can
cause significant biases. Mixing within the planetary bound-
ary layer (PBL) vertically redistributes the influence from
surface fluxes to an atmospheric column, whose thickness is
described as mixing heightzi . Uncertainties in this scale pro-
portionally affect the transport from a source at the surface to
a measurement site located within the PBL.

This paper addresses uncertainties in transport related to
this uncertainty in vertical mixing. Recently a comparison
with airborne CO2 measurements revealed that all models
used for global scale inversions, at least the ones investigated,
misrepresent vertical mixing, since none was able to simul-
taneously reproduce the annual average and the seasonal cy-
cle of measured vertical gradients (Stephens et al., 2007).
An important part of this misrepresentation is probably the
depth of the mixing layer. It has been widely discussed that
the determination of mixing heights is associated with sig-
nificant uncertainty, see for example the review by Seibert et
al. (2000).

Here, in an approach similar to Lin and Gerbig (Lin and
Gerbig, 2005), we use comparisons of model and radiosonde
derived mixing heights to investigate uncertainties and their
spatial and temporal covariances. This information is then
used to propagate the uncertainty into mixing ratio uncer-
tainties using STILT, and a pseudo data experiment is set up
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to test the usefulness of the approach for atmospheric inver-
sions. For the experiment the STILT model is set up for a do-
main covering most of Europe and for the time period May–
June 2005 that covers the CarboEurope Regional Experiment
Strategy (CERES)(Dolman et al., 2006).

The outline of this paper is as follows: the methodology
is presented in the next chapter, starting with the analysis of
mixing height uncertainties (Sect. 2.1) and spatio-temporal
covariances (2.2), followed by the error propagation using
STILT (2.3). Results as well as the application to atmo-
spheric inversions in form of a pseudo data experiment are
presented in Sect. 3, and are discussed in Sect. 4 with some
recommendations for dealing with the uncertainty in mixing.

2 Methodology

2.1 Analysis of uncertainties in mixing heights

Offline transport simulations use profiles of temperature, hu-
midity, and horizontal winds from forecasted or analyzed
meteorological fields to determine the profile of turbulent
mixing within the boundary layer, or simply to determine the
mixing height, which can be regarded as the altitude up to
which surface fluxes are mixed on short (hourly) timescales.
For a convective boundary layer this mixing height is equiv-
alent to the mixed layer height, which can be readily diag-
nosed from temperature and humidity profiles. Under sta-
ble conditions, mixing is often incomplete, making it more
difficult to derive mixing heights. A method that has been
suggested for both, stable and convective boundary layers is
the bulk Richardson number method (Vogelezang and Holt-
slag, 1996). In order to assess the quality of mixing heights
as they are use in offline transport models, we compare mix-
ing heights diagnosed from analyzed meteorological fields
with mixing heights diagnosed from radio soundings. Here
we analyze mixing heights zi(RS) derived from radiosonde
data from May and June 2005 for temperature, humidity,
and winds (http://raob.fsl.noaa.gov/) from 98 radiosonding
stations using the bulk Richardson number method with a
critical Richardson number of Ric=0.25. This radiosonde
based estimate is compared to mixing heights zi(ECMWF)
derived from short-term forecasted data from the ECMWF
(12 h and 24 h, hybrid-level output), fields which are used in
many transport simulations in order to simulate global and
regional transport. The same method was applied to both
datasets (radio soundings and ECMWF fields) to avoid any
methodological bias. This largely isolates the effect of a cho-
sen approach to derive mixing heights (which can have large
biases e.g. during night time stable conditions) from effects
due to differences in the meteorological profiles themselves
(which will cause differences in vertical mixing in offline
models, no matter how good the diagnostic method is). The
ECMWF profiles are interpolated to the location of the radio
soundings.
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Fig. 2. Left: temporally averaged daytime residuals between
ECMWF based and radio sounding based mixing heights, normal-
ized by the radio sounding based estimate. Right: standard devia-
tion of daytime residuals, normalized by the radio sounding based
estimate. Symbols are the same as in Fig. 1.

When the bulk Richardson number method did not find a sta-
ble layer starting from the surface upward, the observation
was not used. Thus only easily identifiable situations were
compared.

The general patterns of mixing heights show agreement
between radiosonde and ECMWF derived values for daytime
(between 11:00 and 17:00 GMT, mostly at 12:00 GMT), with
low mixing heights over oceans and locations with oceanic
influence, and high mixing heights for dry and hot regions
(Fig. 1). However, a closer look at the differences (Fig. 2)
shows both bias and random differences between the two
datasets. Relative biases, i.e. the mean of the differences
between mixing heights based on ECMWF fields and those
based on radio soundings normalized by the mean radiosonde
derived mixing heights,〈zi(ECMWF)–zi(RS)〉/〈zi(RS)〉, cal-
culated for each station, are in the range of±20% for most
stations in central and western Europe, except for a few sta-
tions mostly located at coastal sites. Relative random errors
stdev(zi(ECMWF)–zi(RS))/〈zi(RS)〉 are in the general range
from 25% to 50%, with some stations in coastal areas show-
ing random errors of 80% and more. Overall statistics of the
differences indicate large differences also for nighttime data
(Table 1), with biases of 50%, and standard deviations of the
residuals nearly approaching 100%. Excluding coastal sites
from the analysis has only a minor impact (see Table 1, “se-
lected”).

We need to exclude trivial causes for the observed dif-
ferences, namely insufficient vertical resolution in both, ra-
diosonde profiles and ECMWF fields. Most radiosonde pro-
files contain more than 30 levels below 3 km, i.e. the error
due to regridding can be estimated to less than 50 m. To prop-
erly test if vertical resolution of the radiosonde data poses a
problem, we compared zi(RS) based on standard radiosonde
data to zi(RShr) based to high vertical resolution (∼10 mm)
radiosonde data obtained from UKMO via the
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Table 1. Average values for relative bias and relative standard deviation between radiosonde and ECMWF derived mixing heights, separated
by day/night and by data selection (all data vs. selected data, excluding coastal locations).

Time Data used relative bias relative stdev
[%] [%]

Daytime ECMWF vs. radiosonde, –0.9 42
all

Daytime ECMWF vs. radiosonde, 6 39
selected

Daytime high resolution vs. standard radiosonde 0.2 7
standard radiosonde

Nighttime ECMWF vs. radiosonde, 58 91
all

Nighttime ECMWF vs. radiosonde, 53 83
selected

Nighttime high resolution vs. standard radiosonde 16 72
standard radiosonde

BADC database (UKMeteorologicalOffice, 2006) as well
as from Ḿet́eo-France (Joel Noilhan, personnel communica-
tion 2006) for a small subset of stations. The results (also
shown in Table 1) indicate that vertical resolution in the ra-
diosonde data can be excluded as a dominant cause for the
discrepancy between radiosonde and ECMWF data derived
mixing heights. Somewhat of an exception are nighttime ran-
dom differences, where resolution can explain about half of
the observed discrepancy. This relates to the low nighttime
mixing heights, in comparison to which the vertical spacing
and thus resolution becomes more important. Vertical reso-
lution of the ECMWF fields used for the analysis can simi-
larly be excluded as a major cause for the discrepancy, since
the profiles have about 17 levels below 3 km, with increasing
density near the surface providing a spacing that starts at less
than 50 m.

What remains as a possible cause is that the way the
weather prediction model assimilates temperatures, humid-
ity and winds measured by radiosondes does not ensure the
same shape in the vertical profile. For example, the level
at which an inversion is found in the assimilated data (and
thus also in forecasts) is not necessarily the level at which an
inversion was observed. Specific reasons are probably im-
perfection of the boundary layer scheme within the ECMWF
model, land surface model, or also soil moisture fields.

For the rest of this paper, we regard the random component
of the residuals between the more model based zi(ECMWF)
and the measurement based zi(RS) as an estimate of the rela-
tive error in mixing heights, i.e.σZi,rel=stdev(zi(ECMWF)–
zi(RS))/〈zi(RS)〉. Further, we neglect the bias component
due to its relatively small size compared to the random part.

2.2 Spatial and temporal covariances

For atmospheric transport of tracers it is not only important
to quantify the error in mixing heights at a specific location
and time, but it matters how these errors are spatially and
temporally correlated. A long correlation would cause bias
errors in the source-receptor relationship for larger regions or
for longer time periods. In order to assess the temporal and
spatial scale over which the random error in mixing height
is correlated, a variogram analysis was performed, similar to
the analysis of wind errors in (Lin and Gerbig, 2005). A var-
iogram is the variance of the difference of a spatial variable,
i.e. var(R(x)–R(x+h)) for the variableR, as a function of the
distanceh (Cressie, 1993). The variogram and the covari-
ance differ only in sign and a constant, namely the variance
of the variable itself. Here we use the variogram of the resid-
ualsR=zi(ECMWF)–zi(RS). Due to the large difference in
mixing heights a separation into day and night time was nec-
essary. As expected, the difference in residuals increases
with increasing distance for both, day and night (Fig. 3),
with smaller variogram values indicating spatial correlation
for short distances. In order to estimate the associated corre-
lation length scale, an exponential variogram model was fit-
ted. The exponential variogram is the one of several possible
variogram models that provides the best fit to the data. For
distances larger than about 1300 km the variogram estimates
start increasing, which is probably related to the fact that the
meteorological profiles are located within a different synop-
tic system. These distances were therefore excluded from
the fit to allow an estimation of the local correlation scale.
The correlation scale for daytime is about 100 km, which is
in the range of the smallest distances of the radiosonde net-
work. This scale is thus not very well constrained; however,
it is obvious that the error in mixing height is not just local.
This is supported by the enhanced variogram values at larger
distances. The correlation length scale during nighttime of
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Fig. 3. Variogram of mixing height residuals zi (ECMWF)-zi (RS) for day (left) and night (right). The lines show a fit with an exponential
variogram, for which distances larger then 1300 km where excluded.

230 km is somewhat better constrained, again indicating that
it is not just a local effect. Given that both scales are signif-
icantly larger than the horizontal resolution of the ECMWF
fields with about 35 km, we attribute the larger part of this
difference to the ECMWF model rather than to a represen-
tation error caused by small scale variability in the mixing
heights.

A similar analysis was performed to derive the temporal
covariance scale ofzi errors – i.e., the covariance of errors
over time at a particular location. The temporal covariance
scale was found to be 10 h for daytime, and 16 h for nighttime
data. Again, these scales are not well constrained due to the
lack of high frequency data within the radiosonde network;
standard sites have 2 soundings per day.

In general, the correlation scales indicate that there is no
regional coherence of several hundreds of kilometers, or a
temporal coherence of several days scale, but it is also not a
spatially and temporally local effect.

2.3 Propagating uncertainties in mixing heights into mix-
ing ratios

To propagate the uncertainty in mixing heights to derive un-
certainties in CO2 mixing ratios, we use the STILT (stochas-
tic time inverted Lagrangian transport) framework described
in (Gerbig et al., 2003b) and in (Lin et al., 2004b). STILT
was set up for a domain covering most of Europe (see Fig. 4)
and run for the Bialystok tall tower in eastern Poland as a
receptor over the period May and June 2005. The tower,
located at 53◦14′ N and 23◦01′ E at an altitude of 180 m is
an instrumented, 300 m tall tower close to the city of Bia-
lystok, and has been operated by the Max Planck Institute for
Biogeochemistry since 2005 for continuous measurement of
several biogeochemical trace gases. As meteorological in-
put for STILT we used the ECMWF fields, where the 00:00

and 12:00 UTC analysis fields are combined with short term
forecasts to provide 3-hourly fields. STILT trajectory ensem-
bles are coupled to surface fluxes on high spatial resolution (a
Cartesian grid with 1/12×1/8 grid (lat. x lon.), corresponding
to about 10×10 km2), with biosphere-atmosphere exchange
as the dominant surface flux represented with the Greatly
Simplified Biosphere model (GSB (Gerbig et al., 2003b)) as
temperature and radiation response keyed to different vege-
tation types, using the SYNMAP land cover product at 1 km
resolution (Jung et al., 2006). For simplicity only the domi-
nant vegetation classes forest and crop (Fig. 4) are used sim-
ilar to the approach in Gerbig et al. (2006), and the nonlinear
part of the light response is neglected. Thus the only parame-
ters (the elements of the state vectorλ) within the GSB used
here are four scaling factors to adjust the light response of
photosynthesis and the temperature response of respiration
for the two vegetation classes. The initial light and tempera-
ture response and their uncertainty was taken from Gerbig
et al. (2006), which resulted from a fit to eddy flux data.
Since the largest effect is expected for signals from surface-
atmosphere exchange in the near-field, i.e. near the measure-
ment site, lateral boundary conditions are neglected and only
anomalies due to regional fluxes are considered.

The approach to propagate the transport error is similar to
the one used in (Lin and Gerbig, 2005). Here we give only
give a brief description, and the reader is referred to Lin and
Gerbig (2005). We use the stochastic nature of STILT to
implement errors in mixing heights as a stochastic process
within the transport model run. Standard runs of STILT pro-
vide a distribution of mixing ratios for an ensemble of trajec-
tories, in which the different members differ in their realiza-
tion of turbulent winds, i.e. turbulence is the only stochastic
process. The widthσCO2,turb of the CO2 mixing ratio distri-
bution then reflects the combined effect of turbulence mod-
ifying the path of each trajectory and spatial variability of
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Fig. 4. Example of a footprint for the Bialystok tall Tower, cal-
culated using STILT driven by ECMWF meteorology. Inserts show
the fractional land coverage with forests (left) and croplands (right).

CO2 surface fluxes. We then run the model a second time
with an additional stochastic process to describe the effect
from errors in mixing heights: for each trajectory and each
time step a random number is drawn from a Gaussian dis-
tribution with a mean of one and a standard deviation corre-
sponding to the relative error in daytime mixing heightσZi,rel,
estimated from stdev(zi(ECMWF)-zi(RS))/〈zi(RS)〉 as 40%
(Table 1, selected data not including coastal stations). Un-
likely cases of values below zero are set to zero. This random
number is then used to rescale the footprint (local sensitivity
of mixing ratio to surface fluxes). Temporal and spatial cor-
relations are taken into account by decorrelating the random
numbers exponentially using the spatial and temporal vari-
ogram models, with a timescale of 12 h and spatial scale of
100 km as derived from the daytime mixing height residuals.

This second STILT run then provides a distribution of CO2
mixing ratios with an increased widthσCO2,turb+Zi , that re-
flects the effect of turbulence plus the effect of the error in
mixing heights. The mixing ratio error due to mixing height
uncertainty can then be calculated from the broadening of the
mixing ratio distribution, assuming statistical independence:

σ 2
CO2,Zi = σ 2

CO2,turb+Zi − σ 2
CO2,turb (1)

This uncertaintyσCO2,Zi is computed for every measurement
time, providing time dependent uncertainties that can be used
quantitatively in atmospheric inversions.

To a first order, this captures the effect of a changed
mixing height on mixing ratios within the boundary layer.
Not included with this method are secondary effects such
as changes in advection, which are expected with different
mixing heights and thus different turbulence profiles com-

bined with different wind shear. However, we regard the
modified dilution of surface fluxes into a mixing layer col-
umn with different top as the dominant effect, which provides
a lower bound for the overall error. Footprints very close to
the measurement site matter most (see e.g. Fig. 5 of Gerbig
et al., 2003), during the first day the spatially integrated foot-
print values drop by about 30%. In this near-field the foot-
print simply scales with 1/zi (1-D case), with deeper vertical
mixing causing smaller atmospheric signals given the same
surface fluxes. Here our implementation of the uncertainty
is fully appropriate. At upstream locations, one or several
days before the measurement time, the plume of influence
can be separated into two classes: a “PBL- plume” of parti-
cles that contribute to the signal from surface fluxes ( within
the mixing layer, with the chance to be mixed into the sur-
face influence zone), and particles in the residual layer or in
the free troposphere, that do not contribute (the “FT-plume”).
The PBL-plume will be diluted, thus will get less surface in-
fluence, when the mixing height is increased. This part is
correctly represented in our approach of rescaling footprints.
The FT-plume will be entrained and contribute to surface flux
signals when the mixing height is increased. This leads to
an increase of footprint values, which is not represented in
our approach. However, usually these two classes of plumes
follow different paths due to windshear at the top of the mix-
ing layer. Taking a 5m/s wind shear near the PBL top, after
6 hours the PBL-plume and the FT plume are separated by
more than 100 km, the decorrelation scale for mixing height
error. Thus these opposing effects on the “FT-plume” and the
“PBL-plume” can not really compensate each other. Thus
our simplification just neglected one additional error term
(the entrainment of formerly FT-particles), thus further un-
derestimating the final uncertainty in the modelled mixing
ratio. In the real world this is slightly more complicated
due to the strong diurnal variation of mixing height, but here
we argue that we can reasonably only treat uncertainties in
daytime mixing layer. Uncertainties in night-time mixing
heights are by far larger, and more difficult to properly con-
sider due to the much larger biases. However, this makes our
estimate of uncertainty in modelled mixing ratios due to un-
certainties in mixing heights even more a conservative one.

3 Results and application to inversions

Uncertainties for CO2 mixing ratios are calculated using the
above mentioned framework for the May–June 2005 period
(Fig. 5).σCO2,Zi was on average 3.5 ppm, or 30% of the sim-
ulated CO2 from biospheric fluxes within the near-field (up to
5 days prior to the measurements, or limited by the regional
model domain). This is expected for a relative uncertainty in
mixing heights (σZi,rel) of 40% and a decorrelation scale of
100 km that is somewhat smaller than the footprint area (see
Fig. 4), allowing the effective uncertainty in mixing ratios
to become smaller due to the aggregation over the footprint
area.
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Fig. 5. (a)Time series of the CO2 signal due to biosphere-atmosphere exchange within the model domain (“biospheric signal”) for a 2 week
period in May 2005. Pseudo data are shown as blue line (“Obs”). Simulated values are shown in black (“Model”) on top of the grey band
indicating the propagated transport error (“TransErr”). Also the prior errors are shown as green band (“PriorErr”).(b) Time series of CO2
signals due to different flux components from the different vegetation classes. Abbreviations: R denotes respiration, GEE denotes gross
ecosystem exchange.

In order to test the application of transport errors due to
uncertainties in vertical mixing to atmospheric inversions,
we make the following steps: first pseudo data are gener-
ated based on a “true” mixing height field different from the
one assumed in the standard model, then these pseudo data
are used for an inversion to retrieve the state vectorλ within
the GSB (i.e. the light and temperature responses of the bio-
spheric fluxes). The inversion is done for two cases: case
1), where the state vector is retrieved without consideration
of the propagated transport uncertainties, which corresponds
to the standard case applied in other inversions, and case 2),
where we take the transport uncertainty into account. Finally,
we compare the retrievals from both cases with the known
truth.

Pseudo data are generated using a realization of relative
errors in mixing heights that is consistent with the spatial and
temporal covariances found in the statistical analysis above.
This was used to create the “true” mixing height field, and
these fields were used by STILT to calculate pseudo data for
CO2 mixing ratios, following the equation

yps = K trueλtrue (2)

with yps as the pseudo data,K trueas the “true” Jacobian (sen-
sitivities of measurementsy with respect to the biospheric
parametersλ), and the state vectorλtrue. K true is the combi-
nation of the “true” transport operator and the operator relat-
ing biospheric parameters to fluxes (i.e. radiation and tem-
perature). As “true” fluxes we use the GSB model with all
scaling parameters set to 1. Resulting pseudo data are shown
in Fig. 5 as time series, with typical synoptic variations of
about 20 ppm.

The result of the “forward” model,

yprior = Kλprior (3)

using a JacobianK with unmodified mixing heights, and us-
ing a priori scaling factors (state vectorλprior) that are dif-
ferent from the “truth”, is also shown in Fig. 5. As a pri-
ori values forλ we use for each element a random number
taken from a Gaussian distribution with the prior uncertainty
as the width. The forward model is strongly correlated with
the true signal, but it is different due to the prior uncertainty
(here a case of a stronger biospheric fluxes) as well as due
to the transport uncertainty. The prior error is calculated as
a projection in measurement space (the product of Jacobian
K with the prior uncertainty in state space) and shown in
Fig. 5. It is obvious that during times with larger differences
between the forward model and the truth, the uncertainties
are large, while small uncertainties are usually only found
for periods with small differences.

The different components ofK show different temporal
patterns (Fig. 5b): signals due to fluxes from crop areas
usually dominate over forest signals, photosynthesis signals
dominate over respiration signals. There is a high degree of
correlation between all four signals, indicating a strong com-
mon influence through the modulation by transport. How-
ever, there are also significant differences left that allow sep-
aration of the different components in an inversion.

Now we retrieve the state vectorλ based on the pseudo ob-
servations, which are related through the measurement equa-
tion

ytrue = Kλ + εy,

with εy accounting for errors. Althoughεy is often referred
to as “measurement error”, it can incorporate errors not re-
lated to instrument errors, but in the model representation
(e.g., uncertainties inzi). The optimal estimate (Rodgers,
2000) is
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side of each graph. Retrievals without consideration of the transport
error are plotted as black lines, with posterior uncertainty as grey
band; retrievals taking into account the propagated transport error
are plotted as blue lines, with posterior uncertainty as light blue
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λ̂ =
(
KT S−1

ε K + S−1
prior

)−1 (
KT S−1

ε y + S−1
priorλprior

)
(4)

with Sε as the error covariance corresponding toεy , and
the prior error covarianceSprior. The posterior uncer-

tainty of the retrieved state vector̂λ is calculated from

Ŝλ=
(
KT S−1

ε K + S−1
prior

)−1
.

For case 1 that does not take into account any transport
error, we use a diagonal matrix with 2 ppm uncertainty as
error covarianceSε to account for uncertainties such as the
insufficient grid resolution to resolve heterogeneity in sur-
face fluxes (“representation error”). In case 2 that takes into
account the uncertainties in mixing height, we add toSε a
transport error with diagonal elements based on Eq. (1) and
with off-diagonal elements that correspond to a 12 h tempo-
ral covariance scale.

The inversion of the pseudo data was conducted on a
weekly time basis, allowing the state vector to adjust weekly
to measurements. This reflects the fact that the biosphere
model only accounts for responses to light and temperature,
with constant light and temperature response. In the real
world the light and temperature response changes for exam-
ple due to soil moisture or to changes in the phenology, which
vary on synoptic and longer timescales.

Retrieved time series of the state vector components with
their uncertainties (Fig. 6) during the May–June 2005 period
show that there is a strong reduction in uncertainty for both
cases (with and without consideration of the transport error),
with posterior uncertainties that are about an order of magni-
tude smaller than the corresponding prior uncertainties (also
shown in Fig. 6). Although for generation of the pseudo data
no temporal variation in the state vector was imposed, the re-
trievals show variations and differences from the truth. The
retrieved scaling factors for case 1 show significant differ-
ences from the truth, indicated by the fact that the range given
by the posterior uncertainty around the retrieved state (grey
bands in Fig. 6) in most cases does not include the truth value
(a scaling factor of one). Thus the retrieval for case 1 is bi-
ased. In contrast, case 2 has less deviation from the truth,
and also the truth is included in the range of posterior uncer-
tainties (Fig. 6, light blue bands) so that differences between
retrieved state and truth are not statistically significant. This
is achieved by an uncertainty for case 2 that is much larger
(by about a factor two) than for case 1), but this is the price to
pay in order to get a retrieval that is consistent with the truth.

It is important to note that the bias in the retrieved state
for case 1 depends on the combination of spatial and tempo-
ral decorrelation scales in the mixing height uncertainty and
temporal scale of the retrieved parameters that one is inter-
ested in. When aggregating parameters or fluxes to temporal
scales long compared to the decorrelation scale, the resulting
bias will diminish. However, given that the mixing height
uncertainty that was used in STILT did not account for the
much larger night time error, which included not only a ran-
dom part, but also a significant bias, the estimation of the
retrieval bias is on the low side. Inclusion of the bias error
for nocturnal mixing heights would have shown the diurnal
rectification effect (Denning et al., 1996).

4 Discussion and outlook

Since the uncertainties in mixing heights found in this study
are quite large, it is appropriate to spend some time in dis-
cussing potential reasons as well as to examine potential ap-
proaches to deal with them. As shown in this analysis, un-
certainties in mixing heights as used in atmospheric inverse
studies pose a considerable problem when interpreting mea-
surements made in the continental boundary layer. An av-
erage uncertainty of about 40% for daytime mixing heights
results in a corresponding uncertainty in mixing ratios, which
in case of CO2 amounts to several ppm during the growing
season, or to 30% of the regional biosphere-atmosphere sig-
nals. Together with the uncertainty in advection due to wind
errors (Lin and Gerbig, 2005), this is the dominant source
of uncertainty in any inverse modelling system targeted at
continental measurements (Table 2). Other sources of uncer-
tainty such as the pure measurement uncertainty are gener-
ally small compared to these transport model uncertainties.

Atmos. Chem. Phys., 8, 591–602, 2008 www.atmos-chem-phys.net/8/591/2008/



C. Gerbig et al.: Vertical mixing uncertainty in atmospheric models 599

Table 2. Typical uncertainties for boundary layer CO2 mixing ratios in an inverse modeling study.

Source of uncertainty Type or error Size Reference

Transport Model Advection ∼5 ppm Lin and Gerbig, 2005
(summertime)

PBL mixing ∼3.5 ppm This study
(summertime)

Convection No estimate –

Transport Model Grid resolution ∼1 ppm @ 200 km Gerbig et al., 2003
+ Flux Model (summertime)

Flux Model Aggregation Depending on Gerbig et al., 2006
Aggregation and Model

Measurement Precision, accuracy 0.1 ppm (targeted) WMO

It is important to keep in mind that this analysis does not ad-
dress any methodological biases that arise when the mixing
height applied in the model is different from the true mix-
ing height even when perfect knowledge of meteorological
profiles is used. It only addresses the effect of the use of
assimilated or forecasted meteorological profiles for offline
transport simulations. Especially during night-time stable
conditions methodological bias errors can be large and are
an open research question (Seibert et al., 2000).

The variogram analysis of mixing height errors (Sect. 2.2,
also Fig. 3) shows that although the error is not uncorrelated
in space, there is a significant random component that is spa-
tially uncorrelated. Spatial variations in mixing heights re-
spond in some degree to spatial variations of surface proper-
ties such as albedo and wetness, depending on wind speed
and on scale of the surface heterogeneity (Mahrt, 2000).
Scales of a few tens of km are favourable for the forma-
tion of mesoscale patterns (Chen and Avissar, 1994), so it is
not really surprising that the ECMWF model at a resolution
of around 35 km does not capture the full spatial variability.
Small scale variability in radiosonde derived mixing heights
can also be caused by broken clouds in that in-cloud and clear
air profiles of temperature etc. are different. On average, this
is represented in the ECMWF model, but since clouds re-
main unresolved there is a significant variability that is not
represented in modelled fields.

There are in general three approaches that have the poten-
tial to mitigate these problems in an inversion system: 1) to
allow for additional uncertainty by quantifying and propagat-
ing the error, 2) to improve the transport model, or 3) to use
an approach that is less sensitive to the transport error. In the
following these approaches and their benefits and limitations
are discussed.

Approach 1), as has been shown in this paper, can provide
unbiased inversion results. It can further be implemented

for other regions and times given that the statistical anal-
ysis to quantify the error covariance for the uncertainty in
mixing heights has been extended to cover these times and
locations. However, it requires running a stochastic model
such as STILT in order to propagate the mixing height er-
ror into a mixing ratio uncertainty. Further, significant care
has to be taken to ensure that the different spatial and tem-
poral scales are appropriately characterized. The simple ex-
ponential decorrelation assumed for the error covariance in
this study might not be true, and it has impact on the corre-
sponding scales in the retrieved state vector, especially when
solving for spatially explicit fluxes. Retrievals might thus
still be biased on given scales due to remaining biases in the
transport representation.

The second approach (2) means that a transport model has
to be applied that significantly better reproduces boundary
layer mixing. This could partly be achieved by using more
sophisticated boundary layer schemes and a more sophisti-
cated land surface model. However, it is probably inevitable
to use a higher spatial resolution to better represent the at-
mospheric circulation in the vicinity of the measurements
(van der Molen and Dolman, 2007). Such approaches using
mesoscale transport models embedded in inversion systems
are being implemented by different groups now, and first ex-
ploratory applications were performed in the CarboEurope
Regional Experiment Strategy (CERES) (Ahmadov et al.,
2007; Dolman et al., 2006; Sarrat et al., 2007a, 2007b). Since
there will never be a perfect model, it is obvious that also for
this approach, that seeks to reduce uncertainties by improv-
ing the model, it is obvious that a detailed validation and
analysis of the remaining uncertainties is required based on
extensive comparisons with measurements.

Approach 3) could be realized by replacing the point mea-
surements from tall towers by column observations. Column
amounts are not as sensitive to the exact height of the mixing

www.atmos-chem-phys.net/8/591/2008/ Atmos. Chem. Phys., 8, 591–602, 2008



600 C. Gerbig et al.: Vertical mixing uncertainty in atmospheric models

layer, since to first order a difference between true and mod-
elled mixing height just reshuffles air between the free tro-
posphere (FT) and the PBL, leaving the column amount con-
stant. Such column observations can be made by aircrafts or
with remote sensing techniques. A slight drawback of us-
ing column amounts is that the signature of surface fluxes
(change in tracer mixing ratio) is diluted over the atmo-
spheric column. Hence the temporal and spatial variability
of column amounts is not as large, and thus the method is
less sensitive to surface fluxes. Profile information would be
better in this regard, since then a separation of PBL and FT
remains possible and the measured vertical distribution can
be adjusted by reshuffling between PBL and FT (with con-
stant column amount) to match the thickness of the PBL in
the model. The main drawback is that column or profile mea-
surements are still limited in accuracy and precision in case
of remote sensing techniques, or are still quite expensive in
case of regular aircraft measurements. Satellite remote sens-
ing techniques are being developed further, but observations
will only become available within the next years, first with
limited quality (Crisp et al., 2004). An increasing network
of ground based FTIR measurement stations, primarily in-
tended for validation of the upcoming satellite instrument
OCO, can also be utilized for inversions, but there is sig-
nificant work to be done in improving retrieval algorithms in
order to provide accurate measurements (Washenfelder et al.,
2006).

Another way to realize approach 3) is to use additional
tracer measurements such as222Rn or SF6 that are subject to
the same transport, but for which fluxes are known. This
would allow “calibrating” the transport, and reduce errors
this way (Schmidt et al., 1996). However, this requires the
fluxes to be known at least as well as we already have knowl-
edge about the fluxes targeted in the inversion. Given the
prior knowledge of CO2 fluxes and their spatial and tempo-
ral patterns, and given the problems in properly simulating
the emanation rate of222Rn (Olivié et al., 2004), we see only
limited potential in this tracer. For SF6, the location and
strength of local emissions are often dominating variability
of measurements in the continental boundary layer (Rivier et
al., 2006). A recent study also found significant uncertainties
in the emission database (Hurst et al., 2006). Since detailed
and accurate information on these emissions is hard to come
by, this tracer is also not too promising to reduce transport
errors.

The real solution to this problem is probably a combina-
tion of the above mentioned approaches. This means that the
inversion system or data assimilation framework targeted at
surface-atmosphere exchange would combine improved and
higher spatial resolution models with quantitative informa-
tion on uncertainties. This framework would then use both,
tall tower measurements with good temporal coverage as
well as profile or column measurements with more limited
temporal but better vertical coverage.

What we regard as an indispensable addition for the obser-
vational system are devices to determine the mixing height
that are collocated with tall towers and aircraft profiling
sites. Such measurements could be made by remote sens-
ing systems such as lidars, sodars, RASS, or wind profiling
radars (Clifford et al., 1994). A relatively cheap and opera-
tionally feasible method is the use of ceilometers, where the
backscatter profile can be used to retrieve mixing heights un-
der stable and convective conditions (Eresmaa et al., 2006).
These methods give continuous mixing height information,
which is very useful to better constrain the temporal covari-
ances discussed in Sect. 2.2. Further, these data could be
used in the data assimilation framework to improve the rep-
resentation of atmospheric mixing where it is most relevant,
at the measurement site.
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