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Abstract. An investigation of the Planetary Boundary Layer
(PBL) height evolution over Greece, during the solar eclipse
of 29 March 2006, is presented. Ground based observa-
tions were carried out using lidar detection and ranging de-
vices and ground meteorological instruments, to estimate the
height of the mixing layer (ML) before, during and after the
solar eclipse in northern and southern parts of Greece ex-
hibiting different sun obscuration. Data demonstrate that the
solar eclipse has induced a decrease of the PBL height, in-
dicating a suppression of turbulence activity similar to that
during the sunset hours. The changes in PBL height were
associated with a very shallow entrainment zone, indicating
a significant weakening of the penetrative convection. Heat
transfer was confined to a thinner layer above the ground.
The thickness of the entrainment zone exhibited its mini-
mum during the maximum of the eclipse, demonstrative of
turbulence mechanisms suppression at that time. Model es-
timations of the PBL evolution were additionally conducted
using the Comprehensive Air Quality Model with extensions
(CAMx) coupled with the Weather Research and Forecast-
ing model (WRF). Model-diagnosed PBL height decrease
during the solar eclipse due to vertical transport decay, in
agreement with the experimental findings; vertical profiles
of atmospheric particles and gaseous species showed an im-
portant vertical mixing attenuation.

1 Introduction

Solar eclipses provide a unique opportunity for studying var-
ious atmospheric phenomena, when the incoming solar radi-
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ation is sharply turned off and on during these events. Since
Planetary Boundary Layer (PBL) is the region closer to the
earth’s surface, where mass, energy and momentum trans-
port towards other parts of the atmosphere takes place via
turbulence process, a change in the radiative heating or cool-
ing will be felt firstly in the PBL before it reaches the free
atmosphere.

During a normal day overland, a convective atmospheric
boundary layer (CBL) develops, reaching a quasi-steady
state in the afternoon, with a mixed layer from the ground
up to the interfacial layer with the free atmosphere, a re-
gion of strong thermal inversion. Generally, the CBL after-
noon/evening transition is marked before sunset by a devel-
opment of a surface inversion related to surface cooling. The
CBL, often called the residual layer after sunset, becomes
neutral above that stable layer. After sunrise, the stable layer
is destroyed and a new mixing layer develops. These phe-
nomena have been extensively studied experimentally and
theoretically in steady state (Stull, 1988), but the evolution
during transitions is still not so well known. During a solar
eclipse, the two transition situations are reproduced, however
with time scales much shorter than those of the normal diur-
nal cycle, still providing an excellent chance for investigating
the mechanisms driving the PBL evolution.

In the few studies dealing with PBL during solar eclipses,
important findings are reported. Antonia et al. (1979), ex-
amined the velocity and temperature fluctuations during a
solar eclipse (23 October 1976) of 80% totality over Delin-
quin, Australia, to determine the Atmospheric Surface Layer
(ASL) response on the changes of ground heat-flux. It was
found that during the eclipse the surface layer turbulence ap-
proximately follows a continuum of equilibrium states in re-
sponse to stability changes brought about by the change in
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surface heat flux. This point has been also illustrated by
Eaton et al. (1997). The authors showed the eclipse effects
on the PBL over a desert site in New Mexico, USA (94% to-
tality), using data acquired near the ground and in the surface
layer with a frequency-modulated continuous wave (FMCW)
radar. They report that during the eclipse maximum, the sen-
sible heat-flux and the radiation flux were affected, the tur-
bulence was reduced and the air refractive index structure
constant decreased dramatically.

Another close study of the PBL dynamics during
the 11 August 1999 eclipse was performed with Ul-
tra High Frequency Radio Acoustic Sounding System
(UHFRASS) radar, sodar and an instrument mast by
Girard-Ardhuin et al. (2003). It was found that the eclipse
induces a clear response in the atmosphere with a time lag
of 15 to 30 min. Boundary Layer experiments conducted
over India during the total solar eclipse of 16 February 1980
(Narasimha et al., 1982; Sethuraman, 1982) and also dur-
ing the total solar eclipse of 1995 (Arulraj et al., 1998), wit-
nessed a decrease in near surface temperature, wind speed
and also the changes in atmospheric stability following the
solar eclipse.

There are also evidences of oscillations in ASL parame-
ters over India (Dolas et al., 2002) following the total eclipse
event of 11 August 1999. However, that particular event oc-
curred near sunset thus masking the absolute effects of the
eclipse on the meteorological variables. The dynamics of
the PBL during the solar eclipse of 11 August 1999, over
Bulgaria were studied with an aerosol backscatter lidar by
Kolev et al. (2005). Data used in this study demonstrate
that the solar eclipse affects the meteorological parameters
of the atmosphere near the ground, the ozone concentration
and the height of the mixing layer. During the period encom-
passed by the beginning of the solar eclipse (at 12:36 LT) and
its maximum (reached at 14:03 LT), the ML height has in-
creased from 1600 m to 1900 m; from 14:03 LT to 15:27 LT
when the eclipse ended, the ML height decreased down to
1200 m as a result of the diminished irradiation of the Earth’s
surface. This behaviour was followed by another increase in
the ML height.

The aim of this paper is to study the PBL height response
to the March 2006 solar eclipse, by analysing the aerosol
structure of the atmosphere. Two backscatter lidars, as well
as additional meteorological surface and vertical profile data
(radiosondes) are used to document and analyse the dynamic
and thermodynamic response of the lower atmosphere to the
sudden change of the incoming solar radiation. For the first
time during a solar eclipse, lidar data from two sites (where
different meteorological conditions were prevailed) are com-
bined for the study of the PBL development. The analysis
of the lidar data is complemented by numerical simulations
with the CAMx model.

2 Instrumentation and methods

2.1 Lidar systems and methodologies

The lidar system of Aristotle University of Thessaloniki –
AUTH (40.5◦ N, 22.9◦ E), is designed to perform contin-
uous measurements of suspended aerosols particles in the
PBL and the lower free troposphere. It is based on the
second and third harmonic frequency of a compact, pulsed
Nd:YAG laser, emitting simultaneously pulses of 120 and
150 mJ output energy at 355 and 532 nm, respectively, with
a 10 Hz repetition rate. The receiving telescope has a pri-
mary diameter of 500 mm and an equivalent focal length of
5000 mm. Photomultiplier tubes (PMTs) are used to detect
the received lidar signals in the analog and the photon count-
ing mode, with a corresponding raw range resolution of 7.5 m
(Balis et al., 2000; Amiridis et al., 2005).

The lidar system of National Technical University of
Athens – NTUA (37.9◦ N, 23.8◦ E), is also based on the
second and third harmonic frequency of a compact pulsed
Nd:YAG laser, which emits simultaneously pulses of 80 and
130 mJ output energy at 355 and 532 nm, respectively, with a
10 Hz repetition rate. The optical receiver is a Cassegrainian
reflecting telescope with a primary mirror of 300 mm di-
ameter and a focal length of 600 mm, directly coupled,
through an optical fiber, to the lidar signal detection box
(Papayannis and Chourdakis, 2002). The detectors are oper-
ated both in the analog and photon-counting mode and the
spatial raw resolution of the detected signals is 15 m.

Both lidar systems are equipped with a Raman chan-
nel working at 387 nm (atmospheric N2 channel) for
night-time operation. The lidar systems of AUTH
and NTUA operate within EARLINET project (European
Aerosol Lidar Network) since 2000 and both operation
and the algorithms implemented were successfully inter-
compared with other EARLINET lidar systems as reported
by Matthias et al. (2004); Boeckmann et al. (2004) and
Pappalardo et al. (2004).

Averaging time of the lidar profiles during the March 2006
solar eclipse case, was of the order of 3 min for Thessaloniki
and 1 min for Athens, corresponding to 2000 and 1000 laser
shots, respectively. The final spatial resolution of the range-
squared-corrected signal (RSCS) at both stations was 15 m.
The determination of the ML height distribution by lidar dur-
ing the eclipse is the first step in our analysis. In general, the
optical power measured by a lidar system is proportional to
the signal backscattered by particles and molecules present
in the atmosphere. Using aerosol particles as a tracer, one
can determine the top of the ML as the height where the li-
dar signal profile exhibits a discontinuity between the mixed
layer and free troposphere. The method used to retrieve the
ML height in this study is based on the detection of the drop
off in the RSCS signals at the interface between the free tro-
posphere and the mixed layer.
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Following the methods analytically presented by
Menut et al. (1999) and Flamant et al. (1997), we have
used the minimum value of the filtered first order derivative
of averaged RSCS profiles with respect to the altitude to
define the top of the mixed layer, which coincides with the
base of the entrainment zone. The depth of the entrainment
zone is defined here as the height difference between the
derivative minimum and the lowest data point defined by
that negative peak (Flamant et al., 1997). The gradient
method can be quite complicated because the minimum
cannot be well defined or several minima might exist over
an extended height range. Therefore, one should also study,
simultaneously, the temporal distribution of the aerosol
layers and of the altitude of the minima.

2.2 Modeling

The regional air quality model simulations were performed
with the Comprehensive Air quality Model with extensions
(CAMx) version 4.40. Within the scope of this campaign,
CAMx ran with coarse grid spacing over Greece, in a spatial
resolution of 10×10 km and two fine nests with higher reso-
lution (2×2 km) over Greater Athens and Thessaloniki area,
respectively. The domain’s vertical profile contained 15 lay-
ers of varying thickness. Layer 1 was 22 m deep and sub-
sequent layer depths increased with height. The uppermost
layer was 1.5 km thick and extended to about 8 km. The me-
teorological fields were derived from the Weather Research
and Forecasting (WRF version 2.1.2) Model, developed at
the National Center for Atmospheric Research (NCAR), op-
erated by the University Corporation for Atmospheric Re-
search (UCAR). The first model domain covered the Balkan
area (55×55 grid points with 30 km resolution), the sec-
ond domain covered Greece (nested domain with 121×121
grid points and 10 km resolution) and the two domains with
finer resolution (2x2 km) covered the two measuring sites
(Athens; Thessaloniki). The vertical profile contained 31
vertical layers extending to 18.5 km.

Anthropogenic and biogenic emissions were compiled for
a coarse master domain covering Greece (98×108 cells,
10×10 km) and for the two nested grids with finer resolution
(2×2 km). Emission data for gaseous pollutants (NMVOC,
NOx, CO, SO2, NH3) and particulate matter (PM10) were es-
timated for different anthropogenic emission source sectors
such as the transport, power plants, the industrial and the cen-
tral heating sector. Anthropogenic emissions of the neigh-
bouring countries (Albania, Bulgaria, Turkey) were taken
from the EMEP emission database. Diurnal biogenic emis-
sions for Greece and neighbouring countries were calculated
for every month of the year following the EMEP/CORINAIR
methodology (Poupkou et al., 2004). All emissions are
ejected in the first model level.

Three days of simulation were regarded as “spin-up” time
(26–28 March 2006) in order to eliminate the effect of initial
conditions. Initial and boundary conditions corresponded to

concentrations of clean air. The chemistry mechanism in-
voked was Carbon Bond version 4 (CB4). Photolysis rates
were derived for each grid cell as a function of five parame-
ters: solar zenith angle, altitude, total ozone column, surface
albedo, and atmospheric turbidity. Both meteorological and
chemical models have been modified accordingly to repro-
duce the eclipse event (for more details see Founda et al.,
2007; Zanis et al., 2007). In order to account for the photo-
chemical changes of the atmosphere during the eclipse, pho-
tolysis rates in the chemical model were adjusted during the
period 09:30–12:00 UTC using a space- and time-dependent
factor. Thermodynamic changes were introduced into the
chemical model with a set of eclipse-affected meteorologi-
cal input.

3 Results and discussion

With the objective of studying the changes in the PBL struc-
ture due to the sudden attenuation of radiation, field exper-
iments were conducted over Athens and Thessaloniki close
to the totality path of the solar eclipse of 29 March 2006.
During the solar eclipse, Athens and Thessaloniki experi-
enced 84% and 74% obscuration, respectively. The partial
eclipse for both sites took place between 09:36–12:04 UTC,
with the maximum phase occurring at 10:50 UTC. A
general description of the field experiments and the lo-
cal eclipse circumstances over Greece can be found in
(Gerasopoulos et al., 2007).

3.1 Lidar measurements

Figure 1 presents the time cross-section of the first deriva-
tive of the RSCS at 532 nm, measured by the backscatter li-
dars in Thessaloniki (a) and Athens (b) on 29 March 2006.
In Fig. 1a, the evolution of the ML height along with the
thickness of the entrainment zone is shown for Thessaloniki.
In the morning and until 09:30 UTC when the eclipse be-
gan, the height of the ML in Thessaloniki grew up to about
700 m. ML heights below 400 m would not been detected by
AUTH’s lidar due to laser beam and telescope field-of-view
overlap limitations (Balis et al., 2002). Between first con-
tact (09:36 UTC) and maximum of the eclipse (10:50 UTC),
74% obscuration), the ML height declined to about 550 m.
At 11:00 UTC low clouds were formed over Thessaloniki
at an altitude of approximately 250 m and remained until
11:50 UTC, inhibiting aerosol lidar measurements. During
this period, the lidar retrieved cloud base height is presented
in Fig. 1a. After 11:50 UTC, the ML height was measured
at 600 m and remained at this altitude until 12:50 UTC, fol-
lowed by a small fall of 50 m between 12:50 and 13:20 UTC.
During the above time periods, the upper boundary of the
entrainment zone exhibits similar behaviour. The entrain-
ment zone thickness ranged between 80 m and a minimum
of 20 m during the total phase. This indicates a significant
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Fig. 1. Time-height cross section of the first derivative of the range squared corrected lidar signal at 532 nm (in arbitrary units – A.U.) at
Thessaloniki(a) and Athens(b) measured on 29 March 2006. The upper and lower limits of the entrainment zone are demonstrated with the
thin and bold solid line, respectively, the latter representing the evolution of the ML height. Red triangles correspond to lidar retrieved cloud
base height. Squares represent PBL heights calculated from radiosonde meteorological profiles.

weakening of the penetrative convection, induced by the
solar eclipse. After the end of the eclipse, entrainment zone
thickness reached an almost constant value of 60 m.

In Fig. 1b, the evolution of the ML height over Athens is
shown. In this case measurements were performed within the
time interval 09:00–13:10 UTC (84% sun obscuration). ML
heights below 250 m would not been detected by NTUA’s
lidar due to laser beam and telescope field-of-view overlap
limitations (Chourdakis et al., 2002). At the beginning of the
phenomenon, the ML height over Athens was found at 800
m and the entrainment zone had a thickness of 100 m. After
a constant fall between 09:30 and 10:50 UTC, the ML height
reaches a value of 700 m at the maximum of the eclipse,
while the thickness of the entrainment zone exhibits its min-
imum value of 30 m. From 10:50 to 12:04 UTC (end of
eclipse), the ML height continued to fall, reaching a value
of 620 m, while the entrainment zone thickness increased to
60 m.

3.2 Discussion of the PBL evolution from lidar and meteo-
rological measurements

The PBL generally forms due to heating of the Earth’s sur-
face. During the solar eclipse the gradual decrease of the
Sun’s radiation influences the surface heat fluxes and the
boundary layer temperatures. In order to explain the evo-
lution of the ML height as revealed by lidar measurements,
we present time-series of the measured surface wind speed
and air temperature at Thessaloniki (a) and Athens (b), re-
spectively (Fig. 2). Figure 2a shows that relatively low
wind-speed values prevailed during the hours preceding the
eclipse. At Athens, the surface wind speed ranged between
2–6 m s−1 while at Thessaloniki between 0.5–2.5 m s−1. A
further decrease of wind speed near mid–eclipse is observed

at both sites, retaining low values until the end of the event
and recovering after. At the same time, temperatures gradu-
ally fell with the evolution of the event and rose again dur-
ing the recovery phase (Fig. 2b). In particular, at Thessa-
loniki, the surface temperature decreased by about 4◦C be-
tween the first contact and the maximum of the eclipse, while
for Athens the corresponding temperature fall was in the or-
der of 2.5◦C (Founda et al., 2007).

Additional meteorological measurements, namely analyt-
ical radiosonde data of potential temperature, relative hu-
midity (RH) and wind speed with a vertical resolution of
approximately 5 m are presented in Fig. 3. The radiosonde
data from the Macedonia Airport of Thessaloniki launched
at 11:55 UTC (Fig. 3a), indicate humid conditions with RH
between 80–90% inside the PBL. The PBL height is esti-
mated from the potential temperature profile, which indicates
a clear inversion at 350 m, coinciding with an inflection point
in the profile of the relative humidity. The wind-speed pro-
file (Fig. 3a) shows weak winds inside the PBL, in the range
2.5–4.5 m s−1. Radiosonde data available at Athens at 09:38
and 12:03 UTC (Fig. 3b) indicate less humid conditions, with
RH lower than 60% up to 1000 m. Launching times coincide
with the start and the end of the eclipse. PBL heights cal-
culated by the potential temperature profiles were approxi-
mately 400 and 220 m at 09:38 and 12:03 UTC respectively.

The PBL heights over Thessaloniki and Athens derived
from the radiosondes profiles are also presented in Fig. 1.
Radiosonde measurements in Athens were performed at
Ellinikon Airport, located nearby the coast of the city and
at a distance of 11.3 km from the lidar station (220 m a.s.l.),
thus not being representative for Athens case. For this rea-
son, the PBL height that one should expect for Athens lidar
station is also represented by red squares in Fig. 1b. This
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Fig. 2. Surface wind speed(a) and temperature(b) timeseries for Thessaloniki (black dotted line) and Athens (red dotted line).

PBL height is estimated by the radiosonde profile plus 220 m,
since the relatively gentle slope of the topographic surface
is expected to displace upwards the boundary layer (Stull,
1988). In order to explain the evolution of the ML height as
this was followed by lidar measurements, we will analyse the
lidar estimates in conjunction with the meteorological obser-
vations for both sites. At Thessaloniki, the almost clear sky
conditions and low wind-speed values (Fig. 2a, squares) pre-
vailing during the pre-eclipse hours, are expected to lead to
free convective conditions. Since the beginning of the eclipse
occurred almost at local noon, a well mixed layer is expected
to have formed by that time. After the first contact, incoming
solar radiation progressively decreases and so does surface
temperature, although with some delay due to thermal inertia
of the atmosphere-land-sea system. As already mentioned,
the amplitude of temperature drop at Thessaloniki was about
4.0◦C while the minimum temperature occurred 12 min after
the total phase of the eclipse (Founda et al., 2007). Accord-
ing to the lidar signal (Fig. 1a), at the beginning of the event,
the convective mixed layer extends up to∼700 m a.s.l. at
Thessaloniki area. At the early stages of the eclipse, radia-
tive cooling starts to take place near the surface in a similar
way that surface cools after sunset. At that time the atmo-
sphere is still mixed and temperature deficit extends from
the surface at higher levels throughout the whole boundary
layer due to turbulence mixing, resulting to the decrease of
the ML height (Vogel et al., 2001). As evident from the lidar
signal (Fig. 1a) at 10:15 UTC the ML height has decreased
by about 200 m. As eclipse approaches to the maximum
phase, a pronounced temperature deficit is observed (Fig. 2b)
and stable stratification is reached near the surface. Con-
vectional mechanism is expected to weaken and eventually
break down and heat transfer is confined to a thinner layer
above ground. Aerosol tracers injected in the atmosphere are
now dispersed between the surface and the new temperature
inversion height (200 m). Due to the stabilization of the air
at lower levels and the suppression of turbulent mechanisms,
the conditions at higher levels remain relatively unchanged
and this is also exhibited clearly in Fig. 1a, where the struc-
ture of the initial mixed layer remains almost unaltered after
10:20 UTC. This behaviour resembles the one observed dur-
ing night-time where the so called Residual Layer coexists
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Eclipse

No Eclipse

Fig. 4. PBL height as diagnosed by CAMx for Thessaloniki and
Athens. Dashed lines correspond to control runs without eclipse.

with the nocturnal boundary layer.
Another important observation that supports our argu-

ments is the variation of the amplitude of the entrainment
zone. It is obvious from Fig. 1a that the thickness of this zone
is reduced near the maximum phase of the eclipse, indicating
the suppression of turbulence mechanisms and the weaken-
ing of the penetrative convection at that time. The weakening
of the mixing processes due to the cooling of the atmosphere
is also reflected in the surface wind speed (Fig. 2a) which de-
creases near mid-eclipse and retains low values until the end
of the event. Between 11:00 and 11:50 UTC when clouds
were observed over Thessaloniki, one can see in Fig. 1a (red
triangles) that the lidar retrieved cloud base height shows
a positive trend. According to Stull (1988), in presence of
clouds, the PBL height is defined as the cloud base height.
After 11:00 UTC surface air temperature starts to recover
(Fig. 2b) although it does not recover to its pre-eclipse value,
mainly due to the time of the day and the increased cloud
cover. We indicate that for the time period between 11:00
and 11:50 UTC, the height of the inversion base is increasing
due to the surface temperature recovery and this argument is
supported by the height of the layer at 200 m on 11:00 UTC,
followed by the increase of the cloud base height. According
to radiosonde data at 11:55 UTC (Fig. 3a), the structure of the
upper part of the PBL indicates a slight stability, however it
is expected that eddies transfer heat and momentum, mixing
again the boundary layer. After 11:50 UTC when the eclipse
approximately ended, the ML height was found at 600 m and
that height was approximately retained until 12:50 UTC.

The effect of the thermal inertia of the atmosphere-land-
sea system in surface temperature response due to the eclipse
seems to be more pronounced in Athens area. According
to observations performed in the centre of Athens (Fig. 2b),
surface air temperature at 1.5 m a.s.l. retained its increas-

ing march after the beginning of the event, while the time
shift of temperature drop from the first contact was of the or-
der of 30 min (Founda et al., 2007). This is partly attributed
to the higher (compared to Thessaloniki) wind speeds which
prevailed in Athens (Fig. 2a) area resulting to the mixing of
the air and other local factors, like cloudiness that preceded
the eclipse (Founda et al., 2007). High values of incoming
short wave radiation and moderate wind speeds in Athens
contributed to the formation of a well mixed boundary layer
by the beginning of the event, as is also evident from ra-
diosonde data at 09:38 UTC (Fig. 3b, i). According to the
lidar signal (Fig. 1b) the mixed layer extends up to the height
of 800 m a.s.l. at 09:30 UTC. The delay in surface air cool-
ing observed in Athens area is reflected to the height of the
mixed layer which decreases at a slower rate compared to
Thessaloniki for about one hour after the first contact as ev-
ident in Fig. 1b. Then the height of the mixed layer starts to
decrease faster for the reasons already explained in Thessa-
loniki case. The formation of a lower stable layer extending
from the ground to the height of 410 m is also observed in
Athens for a short period near the maximum phase of the
eclipse.

The smaller amplitude of temperature drop and higher sur-
face wind speeds in Athens have possibly contributed to less
stable (compared to Thessaloniki) atmospheric conditions
near the surface. This is also supported from the radiosonde
data at the two sites near the end of the eclipse in Fig. 3a
and 3b-ii. The potential temperature gradient in the layers
23–220 m at Athens and 23–350 m at Thessaloniki were 0.6
and 0.8◦C/100 m respectively, suggesting greater stability at
Thessaloniki. Under these conditions surface temperature
deficit is transferred at higher levels resulting to the cooling
of the entire mixing layer and its depression. Finally, due to
thermal inertia of the air and the natural decrease of solar el-
evation after the eclipse, mixing layer height does not regain
its initial value for Athens.

3.3 Modeling

Figure 4 shows the PBL height as diagnosed by CAMx pro-
cess analysis in Thessaloniki and Athens (lines with mark-
ers). An additional run has been performed in order to simu-
late the atmospheric processes without eclipse (dashed lines).
At both sites the PBL height is approximately 150 m at
06:00 UTC and gradually increases to reach a maximum four
hours later. Normally, the PBL should continue to develop
in order to reach its maximum height early afternoon hours
as indicated by the dashed lines. However after 09:30 UTC
the eclipse starts to affect the PBL height. Due to vertical
turbulent mixing decay PBL decreases and reaches a local
minimum at around 11:30 UTC i.e. during the eclipse maxi-
mum. Two hours later the PBL height has almost fully recov-
ered and starts to decrease gradually again after 15:00 UTC
as the sun slowly sets. Interestingly the PBL height in
Thessaloniki is on average higher than in Athens. This is
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Fig. 5. Time slice of vertical particulate matter (PM) distribution at the two measuring stations, Thessaloniki (top panel) and Athens (bottom
panel).

also supported by the radiosonde measurements which indi-
cate that at∼12:00 UTC the PBL height at Thessaloniki is
appreciably higher than the respective over Athens. During
sunrise the PBL height in Thessaloniki reaches up to 350 m,
while in Athens only to 225 m. During the maximum of the
eclipse, the PBL height falls down to 290 m and 190 m in
Thessaloniki and Athens, respectively. If the eclipse had not
taken place the PBL heights would have reached 440 and
245 m, respectively, during the period 12:00–15:00 UTC.

Another interesting feature giving insight to the PBL evo-
lution during the eclipse is the time slice of vertical PM dis-
tribution. The vertical profile of PM concentrations is basi-
cally dominated by two factors: ground emissions and tur-
bulent mixing. As clearly depicted in Fig. 5, emissions in-
jected mostly between 06:00–12:00 UTC, control the PM
concentration levels in the first 100 m. For altitudes higher
than 100 m, vertical mixing is the dominant factor over pol-
lutant concentrations. If PM is to be used as a qualitative
index of the PBL evolution, it can be noticed that the basic
patterns observed in Fig. 4 can be also noted in Fig. 5. After
06:00 UTC particulate matter trapped in lower levels is trans-
ported upwards, a clear indication of the PBL expansion.
However vertical transport does not appear to evolve undis-
turbed by reaching a maximum at early afternoon hours, on
the contrary it decays during the eclipse. For a constant alti-
tude between 200 and 300 m at both sites, PM concentrations
are higher before and after the eclipse and fall somewhat dur-
ing the event.

We have to mention that PM10 vertical distribution is used
in this paper only as a qualitative index of the evolution of
the boundary layer therefore Fig. 5 cannot be used as a quan-
titative index of the ML height and thus cannot be directly
compared to Lidar ML height measurements. The diagnos-
tic calculation of PBL height by CAMx on the other hand
(Fig. 4), yields indeed a PBL height which is generally lower
than what is measured. According to our findings, a good
agreement between lidar measurements and model estima-

tions was found in the overall behavior of the PBL but not in
absolute numbers. Possible reason for this discrepancy is that
the lidar measures on a spot while the model averages in an
area of 4 km2. Additionally, the model produces only hourly
average data while measurements have a sampling time of
few minutes.

Finally, we use CO as an additional tracer for PBL evolu-
tion. In Fig. 6, the evolution of CO vertical profile is shown
from 08:30 to 16:30 UTC, for the non-eclipse model run (top
panel). During the early morning hours (08:30–10:30 UTC),
ground CO concentrations increase in the lower levels with
time due to increasing emissions. A negative vertical gradi-
ent above indicates that there is not sufficient turbulent mix-
ing yet to homogenize pollutant concentrations. Later, the
PBL is gradually developing and reaches up to 450 m un-
til 12:30 UTC as indicated by the constant CO mixing ra-
tios. The negative gradient remains for altitudes higher than
450 m. It is noticeable that Figs. 4 and 6 compare well con-
cerning the PBL height which is derived with two different
methods: CAMx diagnosed and indirectly using CO as a
tracer of the PBL evolution. For the three consecutive hours
(14:30–16:30 UTC) CO values remain almost unchanged to
the whole range of altitude justifying the assumption of a
well developed PBL. The bottom panel shows model results,
for a run with eclipse parameterizations. Differences are ob-
vious during the 2 h span 09:30–11:30 UTC. A negative CO
vertical gradient remains until the end of eclipse implying a
poorly developed PBL, while the 12:30 UTC curve indicate a
homogenized layer that extends only up to 200 m. The com-
parisons of CO vertical profiles after 14:30 UTC with eclipse
and no-eclipse parameterizations, which are almost identical,
imply that after two hours the atmosphere has recovered from
the eclipse “disturbance”.
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Fig. 6. Temporal evolution of modeled CO vertical profiles for the eclipse (bottom panel) and non-eclipse case (top panel) for the site in
Thessaloniki.

4 Summary and conclusions

Several effects consistent with the rapid cut-off and turn-on
of solar radiation were observed in the planetary boundary
layer during the 29 March 2006, solar eclipse at Greece by
the use of lidar backscatter methods. As expected, the eclipse
primarily influenced the surface meteorological parameters.
However, from the lidar data presented here, it becomes clear
that the influence of the eclipse is extended up to the height
of the mixing layer. The thickness of the entrainment zone
exhibits its minimum during the maximum of the eclipse in-
dicating the suppression of turbulence mechanisms at that
time. A ground layer with height of 200 m for Thessaloniki
and 410 m for Athens was formed around the maximum of
the eclipse due to the stabilization of the air at lower levels.
The elevated temperature inversion was responsible for the
suppression of convectional mixing and the formation of a
residual aerosol layer for Thessaloniki, where the inversion
was stronger.

In this study we used both CO and PM as tracers for the
PBL height. In order to further investigate the eclipse ef-
fects on the atmospheric dynamics, a second run was per-
formed, without introducing the eclipse parameterizations.
The results exhibit clear differences in PBL height and struc-
ture for both Athens and Thessaloniki. Model diagnosed
PBL height decrease during the solar eclipse due to vertical

transport decay, in agreement with the experimental findings.
Moreover, the vertical profiles of atmospheric particles and
gaseous species showed vertical mixing attenuation.
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