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Abstract. The data assimilation of stratospheric constituents
is reviewed. Several data assimilation methods are intro-
duced, with particular consideration to their application to
stratospheric constituent measurements. Differences from
meteorological data assimilation are outlined. Historically,
two approaches have been used to carry out constituent as-
similation. One approach has carried constituent assimila-
tion out as part of a Numerical Weather Prediction system;
the other has carried it out in a standalone chemical model,
often with a more sophisticated representation of chemical
processes. Whereas the aim of the Numerical Weather Pre-
diction approach has been to improve weather forecasts, the
aims of the chemical model approach have included provid-
ing chemical forecasts and analyses of chemical constituents.
A range of constituent assimilation systems developed in
these two areas is presented and strengths and weaknesses
discussed. The use of stratospheric constituent data assimi-
lation to evaluate models, observations and analyses, and to
provide analyses of constituents, monitor ozone, and make
ozone forecasts is discussed. Finally, the current state of af-
fairs is assessed, future directions are discussed, and poten-
tial key drivers identified.

1 Introduction

In the 1990s, following years of development of meteoro-
logical data assimilation by the Numerical Weather Predic-
tion (NWP) community, the data assimilation methodology
(e.g. Kalnay, 2003) began to be applied to constituents (in-
cluding aerosol), with a strong focus on stratospheric ozone
(Rood, 2003, 2005). Because of its comparatively later ap-
plication, constituent data assimilation is less mature than
meteorological data (henceforth NWP) assimilation. Nev-
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ertheless, there has been substantial progress over the last
15 years, with the field evolving from initial efforts to test
the methodology to later efforts focusing on products for
monitoring ozone and other constituents. More recently,
the production of ozone forecasts by a number of opera-
tional centres (e.g. the European Centre for Medium-range
Weather Forecasts, ECMWF, Dethof, 2003) has become rou-
tine. A notable feature of the application of the data assimi-
lation methodology to stratospheric constituents has been the
strong interaction between the NWP and research communi-
ties, for example, in the EU-fundedASSETproject (Lahoz et
al., 2007).

The main aims for assimilating ozone in the stratosphere
include the development of ozone and UV-forecasting capa-
bilities; the need to monitor stratospheric ozone to track the
evolution of the stratospheric composition, mainly ozone and
the gases that destroy it (WMO, 2006), and assess compli-
ance with the Montreal protocol; the need to evaluate the per-
formance of instruments measuring ozone, especially those
providing long-term datasets (e.g. TOMS, GOME); and im-
proving skill in the stratosphere, chiefly through a better rep-
resentation of stratospheric winds and temperature as a re-
sult of an improved representation of the stratospheric ozone
distribution. The assimilation of ozone is also important for
technical reasons, including: the constraints ozone observa-
tions provide on other constituents; the use of assimilation
techniques to evaluate models and ozone observations; the
development of computer code to assimilate instrument radi-
ances sensitive to temperature and constituents; and the dy-
namical information provided by ozone tracer distributions.
Other stratospheric constituents besides ozone that are of in-
terest in this regard include H2O, N2O, CH4, NO2, HNO3,
ClO, BrO and aerosol (see IGACO, 2004 for a more com-
plete list).

In NWP, the main motivation for stratospheric constituent
assimilation has been the use of constituent information (in
particular, water vapour and stratospheric ozone) to improve
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the weather forecast. Historically, two approaches have been
used for stratospheric constituent data assimilation. One
has done assimilation as part of an NWP system, used for
operational weather forecasting; the other has done assim-
ilation in a standalone chemical model, either a chemical
transport model (CTM) or a photochemical box model, of-
ten with a more sophisticated representation of chemical pro-
cesses. Whereas the aim of the NWP approach has been to
improve weather forecasts, the aims of the chemical model
approach are broader, and include providing chemical fore-
casts and analyses of chemical constituents. In this review
paper we will focus on these two approaches and compare
their strengths and weaknesses. Illustrative examples of each
approach will be provided.

Table 1 provides a summary of stratospheric chemistry
satellite observations for the period 1978 to the present, that
have been assimilated by NWP-based or chemical model
data assimilation systems. References describing the satel-
lites/instruments are provided.

The increasing maturity of data assimilation applied to
stratospheric constituents, and increasing use of the method-
ology by the scientific community, means that a review of
the field is timely. This review complements and builds on
the recent review by Rood (2005) by focusing on two ap-
proaches to assimilate stratospheric constituents, NWP mod-
els and chemical models, providing examples and comparing
and contrasting the two approaches. It also takes into ac-
count recent developments concerning in particular the use
of data assimilation to evaluate the quality of observations
and models associated with ozone and water vapour. This re-
view summarizes in one publication and puts in context these
later results.

In the remaining sections of this review we discuss the
elements of data assimilation, with particular consideration
to constituent data assimilation (Sect. 2). We then discuss
NWP-based approaches to data assimilation (Sect. 3) and
chemical model approaches to data assimilation (Sect. 4).
We then discuss the evaluation of models, observations and
analyses (Sect. 5), and provide examples of applications of
stratospheric constituent data assimilation (Sect. 6). Finally,
we assess the current state of affairs, discuss future directions
and identify potential key drivers (Sect. 7). An Appendix
lists acronyms used in this paper.

2 Elements of data assimilation

2.1 Introduction

Information on a system from observations based on geo-
physical measurements (theobserved system) is discrete in
both space and time, so that there are “information gaps”.
However, many applications require fully-specified geophys-
ical fields. Thus, information needs to be mapped frommea-
surement space(or observational space) to astate space(or

modelspace), such as a (discretized) numerical model rep-
resentation of the stratosphere. Although the models avail-
able for this mapping vary in their complexity, all models to
some extent embody the physical laws that govern the ob-
served system. Often, the model itself is said to embody
the prior orbackgroundinformation on the observed system;
however, the prior information can also represent a prior or
background estimate of the observed system. The data assim-
ilation (DA) problem aims to fill the “information gaps” in an
optimal way; it can be stated, in non-mathematical terms, as:
Find the best representation of the state of an evolving sys-
tem given measurements made and prior information on the
system, taking account of errors in the measurements and the
prior information.

The observation operatortransforms from the model
space to the measurement space. It involves a mapping from
geophysical inputs in model space (e.g. temperatures, con-
stituent amounts) to simulate an instrument measurement in
measurement space (e.g. radiances), taking into account the
physics of the measurement and the characteristics of the in-
strument. The DA problem involves a minimization of the
misfit between the model and the observations, and between
the model and prior information to produce a solution re-
ferred to as theanalysis. The role of themodel operator,
or the forward model, depends on the data assimilation ap-
proach (see Sect. 2.2). In thesequentialapproach, the model
operator maps the analysis forward in time to give a back-
ground state for a subsequent assimilation cycle; in thevari-
ationalapproach, the model operator may be part of the anal-
ysis process.

In general the number of measurementsp is different (and
usually smaller than) the dimensionn of the state space, mak-
ing the DA problem ill-posed. Prior or background informa-
tion is used to correct the ill-posed nature of the DA problem.

Although Bayesian estimation (Rodgers, 2000) defines a
systematic and rigorous approach to data assimilation, its
full-scale implementation in constituent data assimilation is
impossible, chiefly due to the size of the problem. However,
the Bayesian approach is still useful in that it provides gen-
eral guidelines for developing a DA system and evaluating
its results. Nevertheless, in many practical applications it is
necessary to make drastic simplifying assumptions to the DA
algorithm. Two main lines have been followed: (i)statistical
linear estimation, and (ii)ensembleassimilation (Talagrand,
2003a).

Most standard DA algorithms, such asoptimal interpola-
tion, theKalman filterandsmoother, andvariational meth-
ods, are built on statistical linear estimation. Another algo-
rithm used,nudging, is an empirical forcing of the model
fields toward the observed values, and can be described as an
extremely simplified form of the Kalman filter. Bouttier and
Courtier (1999) provide details of these algorithms.

Statistical linear estimation achieves Bayesian estimation
when the system islinear and the errors areGaussian. In
particular, statistical linear estimation provides a way of
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Table 1. Summary of assimilated stratospheric chemistry satellite observations, 1978–present.

Satellite/Instrument Availability Constituents

TOMS (several satellites) (McPeters et al., 1998) 1978-present Total column ozone
SBUV/2 (several satellites) (Miller et al., 2002) 1978–present Ozone layers
HIRS channel 9 (several satellites) (Joiner et al., 1998) 1978–present Radiances sensitive to ozone
LIMS (Gille and Russell, 1984) 1978–1979 Ozone, H2O, HNO3 and NO2 profiles
UARS CLAES (Roche et al., 1993) 1991–1993 CH4, NO2 profiles
UARS MLS (Waters, 1998) 1991–1997 Ozone profiles
UARS HALOE (Russell et al., 1993) 1991–2005 Ozone, N2O, CH4, H2O, HCl profiles
ATMOS (four space shuttle missions)
(Gunson et al., 1996)

April 1985; March 1992;
April 1993; November 1994

O3, NO, NO2, N2O5, HNO3, HO2NO2,
HCN, ClONO2, HCl, H2O, CO, CO2, CH4,
and N2O profiles

CRISTA (two space shuttle missions)
(Offermann et al., 1999)

November 1994; August 1997 Ozone, CH4, N2O, CFC-11, HNO3,
ClONO2 and N2O5 profiles

ERS-2 GOME (Burrows et al., 1999) 1995–present Total column ozone and NO2, ozone profiles
POAM III (Lucke et al., 1999) 1998–2005 Ozone profiles
ODIN SMR (Murtagh et al., 2002) 2001–present Ozone and N2O profiles
Envisat MIPAS (Fischer et al., 2000) 2002–present Ozone, H2O, NO2, HNO3, N2O, and CH4

profiles; radiances sensitive to humidity and
ozone

Envisat SCIAMACHY (Bovensmann et al., 1999) 2002–present Total column ozone, ozone profiles
Envisat GOMOS (Bertaux et al., 2000) 2002–present Ozone, NO2, NO3 profiles
ADEOS ILAS-II (Nakajima et al., 2006) 2002–2003 Ozone profiles
MSG SEVIRI
(http://www.eumetsat.int/Home/Main/WhatWe Do/
Satellites/MeteosatSecondGeneration/index.htm)

2002–present Total column ozone (synthetic data)

EOS Aqua AIRS (Susskind et al., 2006) 2002–present Ozone and H2O profiles; Štajner et
al. (2007) have used AIRS radiances to
detect ice PSCs

EOS Aura MLS (Waters et al., 2006) 2004–present Ozone profiles
EOS Aura OMI (Levelt et al., 2006) 2004–present Total column ozone
Metop IASI (http://smsc.cnes.fr) 2006–present Relative humidity and ozone profiles (syn-

thetic data); IASI radiances (sensitive to hu-
midity and ozone) are used operationally at
ECMWF from June 2007 (E. Andersson,
personal communication, 2007)

estimating theBest Linear Unbiased Estimate, BLUE (Ta-
lagrand, 2003a). Independently of the notion of statistical
estimation, there exist two broad classes of numerical algo-
rithms for data assimilation: variational and sequential (see
Sect. 2.2). In the context of statistical linear estimation, these
algorithms take respectively the form of the 4-D variational
method (4D-Var), or theKalman filter. (If the time dimen-
sion is omitted, the 4D-Var method becomes the 3-d varia-
tional method,3D-Var.) These are two different algorithms
for determining the BLUE, and they are equivalent under the
only condition oflinearity.

Ensemble assimilation is a form ofMonte-Carlo approx-
imation which attempts to estimate probability distribution
functions (PDFs) from the spread of the ensemble. In present
applications (e.g. theEnsemble Kalman filter, Evensen,
2003), the size of the analysed ensembles typically lies be-
tween a few tens to a few hundreds of model states.

There are differences between NWP and stratospheric con-
stituent data assimilation that affect the way the assimilation
is set up in the latter. These are:

– Stratospheric constituent data assimilation is less ma-
ture than NWP data assimilation. An example of this
concerns parametrizations of ozone chemistry due to
Cariolle and D́eqúe (1986). They have been used to as-
similate ozone in the last 5 years or so, but it is only
very recently that the performance of these schemes,
and their associated errors, has been assessed in the data
assimilation context (Geer et al., 2007).

– NWP is primarily an initial value problem. Strato-
spheric constituent data assimilation is commonly
posed as an initial value problem, but sources and sinks
may need to be considered.
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– Improvements in NWP can be achieved by more accu-
rate specification of dynamical variables such as tem-
perature, winds and humidity. For stratospheric con-
stituents, a better forecast can be achieved both by a bet-
ter description of dynamical variables (and hence trans-
port of the constituent), and by a better description of
sources and sinks (if applicable).

– The time-scales relevant for NWP are order of days. For
stratospheric chemistry, there is a very wide range of
time-scales, from decades (e.g. for carbon dioxide) to
seconds for very short-lived species.

– Chemical equation systems arestiff, i.e., they include
reactions with rates varying by several orders of mag-
nitude. This requires the use of sophisticated numerical
integration schemes, calledstiff solvers. Stiffness man-
ifests itself in strong error correlations between species,
and can cause error covariance matrices to become sin-
gular. Constituent data assimilation algorithms must
aim to account for these features.

– The availability of useful satellite observations of strato-
spheric composition is still relatively limited compared
to the availability of observations of dynamical vari-
ables for NWP. Retrieval algorithms for stratospheric
constituents are, however, reasonably well established,
especially in comparison with the situation for tropo-
spheric constituents.

– The Global Observing System for NWP is more ma-
ture than for constituents. This is reflected in that there
are less operational instruments for constituents than
for NWP. Many satellite constituent observations are
classed as “research” or “pre-operational”, which means
that, compared to operational NWP observations, they
are usually not available in near-real-time; the reliabil-
ity of data supply is often less robust; and observational
errors may be larger, or less well understood and char-
acterized.

– For NWP the numerical dimension of the problem is
extremely large; the typical dimension of current NWP
models is of order 107, while the number of observa-
tions available over 24 h is currently of order 106–107.
For stratospheric constituents, the number of data as-
similated is generally an order of magnitude less than
for NWP because fewer instruments are used, with
fewer soundings per instrument. In both cases, how-
ever, the large dimension of the problem causes practi-
cal difficulties, influencing the practical implementation
of assimilation systems.

– The dimensionality of the state of stratospheric chemi-
cal models is much higher than that of the NWP mod-
els. Assuming the same number of grid points, strato-
spheric constituent models typically need to follow be-
tween 20 and 100 different species, i.e., variables, per

grid point, as compared to under a dozen variables for a
NWP model.

One important difference between NWP and constituent
data assimilation is worth emphasizing. In principle, given
accurate initial conditions, sources and sinks and accurate
dynamics, it would be possible to model constituent distri-
butions many months without constituent data assimilation.
Furthermore, in stratospheric chemistry, many situations can
be modelled as a relaxation to an equilibrium state. This is
very different to the chaotic system involved in dynamical
data assimilation.

This does not mean that constituent data assimilation is
unnecessary. Constituent data assimilation is needed to:
(i) infer the constituent’s initial conditions (we can only
ever get these, imperfectly, from observations); (ii) correct
for imperfectly known reaction rates; (iii) correct for im-
perfectly modelled chemistry (e.g. not enough species, not
enough reactions described, or approximate parametrizations
are needed); (iv) correct for unknown source terms (e.g. tro-
pospheric pollution, troposphere-stratosphere transport); and
(v) most importantly of all at the moment, correct for errors
in constituent transport, such as excessive Brewer-Dobson
circulations in analysed wind fields, or errors in temperature
fields. Constituent data assimilation can thus be regarded as
a way of providing accurate initial conditions (point (i)), and
as a way of confronting models with observations in order to
evaluate them and, in particular, correct model bias (points
(ii)–(v)). The latter objective shows that constituent data as-
similation is a different kind of problem compared to NWP
data assimilation, where the goal is to get accurate initial con-
ditions.

2.2 Algorithms for constituent data assimilation

The representation of errors is fundamental to the formula-
tion of constituent DA algorithms. At its simplest one needs
to consider the errors in the observations and the errors in
the background information. Following Ide et al. (1997),R
is the observation error covariance matrix. Typically,R is
assumed to be diagonal; although this is not always justi-
fied (e.g. different elements of a retrieved profile are likely
to have correlated errors).R includes the errors of the mea-
surements themselves,E, and errors of representativeness,
F; R=E+F. F includes errors in the observation operator,
and errors arising because the assimilation model does not
fully resolve the scales measured by the observations (Cohn,
1997). B is the background error covariance matrix. Its off-
diagonal elements determine how information is spread spa-
tially from observation locations. If the background errors
of one variable are uncorrelated with any other variable, then
the analysis is termedunivariate, but if the errors in different
variables are correlated, the analysis is termedmultivariate.
If B is multivariate, it can provide statistical links between
dynamical variables, for example, geostrophic coupling, or
links between dynamical and chemical variables or different
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constituents. It is generally assumed thatB andR are uncor-
related.

In general, in data assimilation, errors (for the observations
and the background or model) are assumed to beGaussian.
The most fundamental justification for assuming Gaussian
errors, which is entirely pragmatic, is the relative simplic-
ity and ease of implementation of statistical linear estimation
under these conditions. Because Gaussian PDFs are fully de-
termined by their mean and their variance, the solution of the
DA problem becomes computationally practical. Another ar-
gument for the choice of Gaussian errors is that of all possi-
ble PDFs with given mean and variance, the Gaussian distri-
bution has maximum entropy (Rodgers, 2000).

Typically, there are biases between different observations
types, and between the observations and the model. These
biases are spatially and temporally varying, and it is a major
challenge to estimate and correct them. Despite this, and
mainly for pragmatic reasons, in stratospheric constituent
data assimilation it is often assumed that the errors in the
observations and the background or model areunbiased. For
NWP, however, many assimilation schemes now incorporate
a bias correction, which from the point of view of general
estimation theory is the proper way to deal with biased data.
For example, various techniques have been developed to cor-
rect observations to remove biases (e.g. Dee and da Silva,
1998). Dee (2005) reviews the treatment of biases in DA
systems.

As described in Rood (2005), the data assimilation method
adds an additional forcing to the equations of the model.
Because of this, there is no reason to expect that correct
geophysical/chemical balances are represented in an assim-
ilated product. The products obtained from the model can
be divided intoprimaryandderivedproducts. Primary prod-
ucts are quantities such as wind, temperature, water vapour
and ozone, i.e., parameters most often explicitly modelled.
Derived products are often functional relationships between
the primary products, e.g., unobserved constituents. As dis-
cussed by Rood (2005), in a good DA system primary prod-
ucts tend to be well estimated. By contrast, derived prod-
ucts are likely to be physically or chemically inconsistent be-
cause of the forcing added by the DA method. Nevertheless,
as shown later in this review, the DA method can provide
reasonable estimates of derived products such as unobserved
constituents. Molod et al. (1996) and Kistler et al. (2001)
discuss the characteristics of errors associated with primary
and derived products in DA systems.

We now describe variational and sequential methods in
the context of constituent data assimilation, and then discuss
some further aspects of the treatment of errors and observa-
tions.

Variational methods. In the 3-d variational (3D-Var)
method a minimization algorithm is used to find a model
state,x, that minimizes the misfit betweenx and the back-
ground statexb, and also betweenx and the observationsy.
In 3D-Var, we seek the minimum with respect tox of the

penalty function,J :

J =
1

2
[x − x

b
]
T B−1

[x − x
b
] +

1

2
[y − H(x)]T R−1

[y − H(x)]. (1)

The first term on the right-hand-side (Jb) quantifies the misfit
to the background term and the second term (Jo) is the mis-
fit to the observations. Extra terms incorporating dynamical
constraints (Jc) are also added in some implementations of
3D-Var. The observation operatorH maps the model state
x to the measurement space, wherey resides. If the obser-
vation operator is linear (writtenH), the penalty function,
J , is quadratic and is guaranteed to have a unique minimum.
Among recent publications, Bouttier and Courtier (1999) dis-
cuss the solution of Eq. (1).

Because of the large number of variables involved, vari-
ational DA schemes do not perform the minimization ofJ

in the model space but, instead, use atransformedor control
space. The elements of this control space are thecontrol vari-
ables. A frequent choice of control variable for constituents
is the logarithm of a normalized mixing ratio – this avoids
unphysical negative values. It also means that errors can
be specified as a proportion of the background value, rather
than absolute concentrations, which is often more convenient
since mixing ratios can vary by several orders of magnitude.
However, such transformations can make the observation op-
erator complex and non-linear, for example if the model state
consists of local concentrations of a constituent while what is
observed is an integral of concentrations along an instrument
line of sight. Note that once a logarithm of the concentration
is taken, the observation operator becomes non-linear, and
that if one assumes Gaussian error statistics for concentra-
tions, logarithms of concentrations will have non-Gaussian
error statistics. It would also be possible to specify Gaussian
errors of the logarithm of the concentrations.

B is generally built up by a series of control variable pa-
rameter and spatial transforms (Parrish and Derber, 1992;
Lorenc et al., 2004). The control variables are chosen so that
the structure ofB is simplified, i.e., choosing control vari-
ables whose errors are (assumed to be) uncorrelated leads to
a block diagonal matrix. Conversely,B can be set up in a
way that explicitly couples constituent and dynamical fields
where their errors are correlated, thus allowing the possibility
of using tracer information to correct wind fields.

The 3D-Var algorithm assumes that all observations are
valid at the same time, even though they are generally dis-
tributed over a time-window (of perhaps 6 h). In 3D-FGAT
(First Guess at the Appropriate Time), a variant of 3D-Var,
theJo term is calculated by comparing observations with the
background at the relevant observation times.

4-dimensional variational (4D-Var) assimilation is a de-
velopment of 3D-Var in which the temporal dimension is in-
cluded (e.g. Bouttier and Courtier, 1999). The minimization
is carried out over a time window that is typically 6 or 12 h,
although longer time windows have been used. The natural
length of the time window for diurnally varying species is
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24 h. In 4D-Var, observations are used at their correct time.
Experiments at ECMWF suggest this is the main reason for
the improved performance in 4D-Var, as compared to 3D-
Var (Fisher and Andersson, 2001). Experiments at the Met
Office also indicate improved forecast skill for 4D-Var com-
pared to an equivalent 3D-Var configuration (Rawlins et al.,
2007). Thus, some of the benefit of 4D-Var can be obtained
using the 3D-FGAT approach.

4D-Var has two new features compared to 3D-Var. First, it
includes a model operator,M, that carries out the evolution
forward in time. The first derivative, or differential, ofM,
M , is thetangent linear model(if M is linear, represented by
M , its derivative isM ). The transpose of the tangent linear
model operator,MT , integrates theadjoint variablesback-
ward in time. The tangent linear model is only defined under
the condition that the functionJ defined by Eq. (1) be dif-
ferentiable – this is thetangent linear hypothesis(see Bout-
tier and Courtier, 1999, for further details). Second,J can
include an extra term in which the model errors associated
with the model’s temporal evolution are accounted for. For
example, in the formulation of Zupanski (1997) an analogous
term involvingQ−1 is included inJ , whereQ is the model
error covariance.

The properties of theadjoint methodallow it to play two
important roles in 4D-Var: coupling different elements of the
algorithm, and computing gradients associated with the min-
imization of the penalty function (Talagrand, 2003b). The
first property allows unobserved regions to be constrained by
observed regions, this property being extended to unobserved
species that chemically interact with modelled species that
are observed; the second property allows efficient computa-
tion of the gradient of the penalty function.

Sequential methods.In the Kalman filter (KF), a recur-
sive sequential algorithm is applied to evolve a forecast,x

f ,
and an analysis,xa , as well as their respective error covari-
ance matrices,Pf andPa . The KF equations are (subscripts
denote the timestep):

x
f
n = Mn−1x

a
n−1; (2a)

Pf
n = Mn−1Pa

n−1MT
n−1 + Qn−1; (2b)

x
a
n = x

f
n + Kn[yn − Hnx

f
n ]; (2c)

Kn = Pf
n HT

n [Rn + HnPf
n HT

n ]
−1

; (2d)

Pa
n = [I − KnHn]P

f
n . (2e)

Equation (2a) represents the forecast of the model fields from
time-stepn−1 to n, while (2b) calculates the forecast er-
ror covariance from the analysis error covariancePa and the
model error covarianceQ. Equations (2c) and (2e) are the
analysis steps, using theKalman gaindefined in Eq. (2d).
Q andPa are assumed to be uncorrelated (e.g. Bouttier and
Courtier, 1999). For optimality, all errors must be uncorre-
lated in time.

The Physical-space Statistical Analysis Scheme,PSAS
(Cohn et al., 1998) consists in numerically solving Eq. (2c)
by first computing the termw=[R+HPf HT ]−1[y–Hxf ] (we
drop the subscriptn) in observation space, and then multi-
plying w by Pf HT , and adding the result toxf . This ap-
proach can be used to perform the updating step of the KF in
Eq. (2c). PSAS (in its original 3-D form) can also be consid-
ered as thedual of 3D-Var, in which the analysis equation is
solved in observation space, and then mapped to state space.
The observation-space approach of PSAS is cheaper than the
conventional model-space approach if the number of obser-
vationsp is much smaller than the dimension of the model
state spacen; this applies to many constituent assimilation
applications. However, the relatively large value ofp in op-
erational NWP systems means that the PSAS approach is less
competitive than 3D-Var.

The KF can be generalized to non-linearH andM opera-
tors, although in this case neither the optimality of the anal-
ysis nor the equivalence with 4D-Var holds. The resulting
equations are known as theExtended Kalman filter(EKF,
Bouttier and Courtier, 1999). The cost of the KF or EKF
is much larger than that of 4D-Var, even with small mod-
els. This is a consequence of the explicit calculation ofPf ,
and necessary storage costs. Consequently, development of
KF techniques for constituent DA has tended to focus on ap-
proximate methods.

The Ensemble Kalman filter, EnKF, uses a Monte-Carlo
ensemble of short-range forecasts to estimatePf . The es-
timation becomes more accurate as the ensemble size in-
creases. The EnKF is more general than the EKF to the
extent that it does not require validity of the tangent lin-
ear hypothesis. Evensen (2003) provides a comprehensive
review of the theory and numerical implementation of the
EnKF. Pham (2001) compares the EnKF and theparticle fil-
ter. Recent advances include thesquare-root filter(Ander-
son, 2001) andlocal Ensemble Kalman filtering(Ott et al.,
2004). To our knowledge, the EnKF is not currently used for
stratospheric constituent assimilation. Note, however, that it
has been used for tropospheric constituent data assimilation:
for example, van Loon et al. (2000) have used it to assimilate
ground-level ozone observations.

Treatment of errors. Many DA systems use the so-called
National Meteorological Center, NMC, method(Parrish and
Derber, 1992) to estimate the background error covariance
matrixB; this is based on the premise that forecast errors are
similar to the differences between pairs of forecasts that ver-
ify at the same time. Polavarapu et al. (2005a) implement a
variation on the NMC method in whichB is estimated from
successive 6 h differences from an extended model run. An
alternative approach (Fisher, 2003) uses the spread from an
ensemble of DA systems to estimateB. To simplify the DA
system and make it easier to assess the quality of observa-
tions, a simple approach is sometimes used with chemical
models. As an example, Errera and Fonteyn (2001) assume
a diagonalB (which is not valid) and increase the diagonal
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terms to compensate for the neglect of the off-diagonal terms.
To account for anisotropic atmospheric flow, flow depen-

dence can be included inB (Riishøjgaard, 1998; Weaver and
Courtier, 2001). Because anisotropy can impact tracer dis-
tributions, a flow-dependentB is sometimes used for the as-
similation of stratospheric constituents: methane (Auger and
Tangborn, 2004); ozone (Štajner et al., 2001; Segers et al.,
2005). In the Auger and Tangborn set-up, the error covari-
ances are evolved as a truncated set of wavelet coefficients;
the truncation is carried out in such a way that the resolution
of the error covariance is reduced only in the zonal direc-
tion, where methane gradients are smaller. In theŠtajner et
al. set-up, the correlation lengths are longer in the longitudi-
nal than in the meridional direction, to match the distribution
of SBUV/2 and TOMS ozone observations. In the Segers et
al. set-up, the anisotropy is in all spatial directions, account-
ing for different correlation lengths for ozone with respect to
height, latitude and longitude.

Theoretical work by Cohn (1993) demonstrated that back-
ground errors evolve according to advective dynamics. Swin-
bank et al. (2000) used this property to specify background
errors using a series of Lagrangian back trajectories ending at
the analysis time; the error correlations are specified in terms
of the distance between trajectories 24 h earlier, so reflecting
anisotropy developed over the previous day. Recent work
by I. Štajner and colleagues at the Global Modeling and As-
similation Office (GMAO) (I.Štajner, personal communica-
tion, 2006) has developed the technique further and demon-
strated small improvements in the areas not strongly con-
strained by observations or chemistry: lower stratosphere,
near polar night, and troposphere. Another approach used is
to implement a flow-dependentB based on the conservation
properties of potential vorticity (Fierli et al., 2002).

Error covariance matrices in KF methods are parametrized
in constituent DA to reduce cost; this approach to approxi-
mate the KF is referred to variously as thereduced, subop-
timal or modified Kalman filter. Pf can be constructed by
computing the diagonal elements and parametrizing the off-
diagonal elements using adjustable parameters for the cor-
relation lengths (Ḿenard et al., 2000; Ḿenard and Chang,
2000; Khattatov et al., 2000).Q can be specified by assum-
ing that diagonal elements are proportional to the modelled
field itself; they are used to update the diagonal elements of
Pf . This approach results in substantial savings, and allows
the off-diagonal elements to be computed using a simple re-
lation.

In both KF methods and 4D-Var, all model fields (dynam-
ical and chemical) are implicitly coupled via the model op-
eratorM . This coupling is irrespective of whether the back-
ground errorB (or forecast errorPf ) is formulated in a mul-
tivariate or univariate manner. In DA schemes the ozone con-
trol variable is often univariate (Errera and Fonteyn, 2001;
Struthers et al., 2002), but it is still possible for constituent
data to affect dynamical fields viaM in 4D-Var and KF meth-
ods, although the coupling may be weak.

Treatment of observations.Observations are commonly
divided into conventional observations (e.g. ground-based
measurements and radiosondes) and satellite observations.
Whereas conventional observations are oftensynoptic, mean-
ing that all observations are taken at the same time, most
observations of stratospheric constituents are from satellites,
and areasynoptic. It is common in NWP (and relevant to
constituent data assimilation) to reduce the amount of satel-
lite data prior to assimilation. This process is calledthinning
and is done for two main reasons: to reduce computational
cost and to ensure the density of data assimilated is consistent
with the model length scales. The thinning of satellite obser-
vations also has the effect of reducing the spatial correlation
in observation errors.

Satellites do not measure directly constituents; instead
they measure photon counts (level 0data). Radiative transfer
algorithms then transform level 0 data into radiances (level
1 data). Subsequently, using inverse modelling techniques
(Rodgers, 2000), height-resolved data or total column data of
geophysical quantities (level 2data) are inferred from level
1 data. Level 2 data are often termedretrievals. A recent
development in inferring constituent retrievals has been the
use oftomographictechniques to get a 2-D slice of the at-
mosphere, as opposed to the 1-D column provided by earlier
methods (Carlotti et al. 2001).

Generally, constituent data are assimilated as retrievals. A
recent development in the assimilation of constituents has
been the assimilation of radiances sensitive to humidity and
ozone from limb-sounding instruments measuring in the in-
frared (Bormann et al., 2005, 2007; Bormann and Healy,
2006; Bormann and Th́epaut, 2006). Other efforts involving
the assimilation of radiances sensitive to ozone include the
use of HIRS channel 9 radiances at the Met Office (Jackson
and Saunders, 2002; Jackson 2004), and the use of SBUV/2
radiances at the GMAO (M̈uller et al., 2004).

3 NWP-based approaches

3.1 Introduction

An NWP model is a complex numerical model designed
to simulate the evolution of the atmospheric state over the
length of a weather forecast (typically for a few hours up to
two weeks into the future). The dynamical core of the model
is concerned with solving the Navier-Stokes equations (or
an approximation thereto) that govern the evolution of atmo-
spheric winds, temperature and mass fields. The NWP dy-
namical core must solve for humidity, as the Navier-Stokes
equations are formulated with moisture terms included. This
means that mature humidity DA code has already been devel-
oped in operational NWP systems. Additional stratospheric
humidity DA efforts must build on this code without un-
duly interfering with the assimilation of tropospheric humid-
ity data. Details are provided in Sect. 3.2.
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The equations are typically solved using finite difference
or spectral methods. Numerical models include parametriza-
tions of a range of atmospheric physical processes, including
the formation of clouds, production of rainfall, interactions
of the flow with orography and radiative transfer processes,
and, increasingly, chemistry.

There is a strong common heritage linking NWP models
with general circulation models (GCMs) used for global cli-
mate simulations (e.g. Trenberth, 1992). In some cases, the
same basic model is run in different configurations for both
NWP and climate simulations (e.g. the Met Office Unified
Model; Davies et al., 2005). The most complex atmospheric
GCMs are coupled with sophisticated models of the ocean
and land surface, to formEarth System Models.

Examples of NWP models used for constituent data assim-
ilation include the National Centers Environmental Predic-
tion, NCEP, system (see later); the ECMWF model, where
ozone has been assimilated for analyses and forecasts (De-
thof, 2003) and re-analyses (Dethof and Hólm, 2004), and
where research has been done on the assimilation of limb in-
frared radiances sensitive to ozone and humidity (Bormann
et al., 2005, 2007; Bormann and Healy, 2006; Bormann and
Thépaut, 2007); and the Met Office model, where ozone has
been assimilated for research (Jackson and Saunders, 2002;
Struthers et al., 2002; Jackson, 2004, 2007; Lahoz et al.,
2005, 2007; Geer et al., 2006a, b, 2007). Polavarapu et
al. (2005a, b), using the Canadian middle atmosphere model
(CMAM), discuss the role of dynamics on analysed strato-
spheric constituents, including ozone. As will be discussed
in Sect. 3.3, in the NWP-based approach the use of simplified
chemistry is the norm. An exception is the CMAM model,
where full chemistry is used. The other main stratospheric
constituent that has been assimilated into NWP models is
water vapour (e.g. Lahoz et al., 2007). Table 2 provides a
summary of selected data assimilation experiments based on
NWP models and GCMs.

Hereafter we discuss the assimilation of stratospheric wa-
ter vapour, and the stratospheric constituent that has received
most attention over the past decade, ozone (Rood, 2003,
2005).

3.2 Assimilation of humidity

Water vapour is assimilated in the troposphere by NWP cen-
tres, but only now is it starting to be assimilated in the strato-
sphere. This is chiefly due to its important role in the radi-
ation budget of the atmosphere, especially in the upper tro-
posphere/lower stratosphere (UTLS) region, because it pro-
vides information on the atmospheric circulation, because it
is a source of HOx (=OH+HO2, involved in the catalytic de-
struction of ozone), and because it is a constituent of the Po-
lar Stratospheric Clouds (PSCs) involved in polar ozone loss
(Dessler, 2000).

In this section, we highlight some of the key issues con-
cerning the assimilation of stratospheric water vapour. First,

the stratosphere is very dry; while condensation of water
vapour is commonplace in the troposphere, clouds (PSCs)
only form in the stratosphere in the polar night, where ex-
tremely cold temperatures occur. Throughout the tropo-
sphere and the stratosphere, the water vapour mixing ratio
varies by many orders of magnitude, from a few percent (by
mass) in the tropical lower troposphere to a few parts per mil-
lion (by mass or volume) in the stratosphere. In the strato-
sphere itself, the water vapour mixing ratio varies little, from
∼2 parts per million by volume near the tropopause to∼8
parts per million by volume near the stratopause.

A second key issue is the available observations of wa-
ter vapour. The primary source of moisture measurements
is the radiosonde network. Radiosondes carry sensors that
are primarily designed to measure the high relative humidity
(RH) typical of the lower and middle troposphere. Where
the humidity is low and temperature cold, as in the strato-
sphere, the measurements become less accurate (relatively,
if not absolutely). Thus, routine radiosonde humidity mea-
surements are of little or no use in the stratosphere, even if
the sondes reach that level. More recently, satellite data have
become more widely available, and are now used as an in-
tegral part of the operational assimilation of moisture infor-
mation (e.g. ATOVS and SSM/I). However, the operational
nadir soundings have relatively poor vertical resolution.

The large variation in humidity between the surface and
the stratopause, together with different priorities in the tro-
posphere (description of precipitation and identification of
clouds) and the stratosphere (description of tracer distribu-
tions), means that it is difficult to specify a control variable
suitable for use throughout the domain of models that span
this region.

Dee and da Silva (2003) introduce apseudo-relative hu-
midity (RH*), defined by scaling the mixing ratioq by the
saturation mixing ratio of the background field. An advan-
tage of this approach is that a univariate RH* analysis pre-
servesq in the absence of moisture observations. By con-
trast, using unmodified RH as a control variable implies a
change in scaling if the temperature is changed, leading to
changes inq in the absence of moisture observations. In
the presence of multivariate observations, this approach pro-
duces analysed humidity values that are close to those pro-
duced by a RH analysis.

In a parallel development, H́olm et al. (2002) introduced a
normalized RH control variable, in which RH is divided by
(an approximation of) the background variability. The new
control variable has background errors that are more nearly
Gaussian and homogeneous. Relating the normalization term
of the new control variable to analysed RH, as opposed to
background RH, also removes most of the skewness in the
background errors seen for very dry or near-saturated air. Us-
ing normalized RH, the assimilation scheme also takes better
account of the large variability in the background error co-
variance matrix. This should improve the interpretation of
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Table 2. Summary of selected NWP- and GCM-based data assimilation experiments.

References Method Assimilated constituent dataset Chemistry

Caplan et al., 1997; Derber et al., 1998;
Derber and Wu, 1998; NCEP; this sys-
tem became operational in 1997

Spectral statistical
interpolation

Ozone a prognostic variable to improve
assimilation of radiances

None

Struthers et al., 2002; DARC/Met Of-
fice

Analysis correction Ozone profiles (UARS MLS); total col-
umn ozone (GOME)

Ozone parametrization; no cold tracer

Jackson and Saunders, 2002; Jackson,
2004, 2007; Met Office

3D-Var Ozone layers (SBUV/2); SBUV/2 and
ozone profiles (EOS MLS) in Jackson,
2007

Ozone parametrization with cold tracer
(no cold tracer in Jackson and Saun-
ders, 2002; Jackson, 2007)

Dethof, 2003; ECMWF; this system
became operational in 2002

4D-Var Ozone profiles (MIPAS); ozone lay-
ers (SBUV/2); total column ozone
(GOME)

Ozone parametrization with heteroge-
neous chemistry term

Bormann et al., 2005, 2007; Bor-
mann and Healy, 2006; Bormann and
Thépaut, 2007; ECMWF

4D-Var MIPAS limb infrared radiances sensi-
tive to ozone and humidity

Ozone parametrization with heteroge-
neous chemistry term

Dethof and H́olm, 2004; ECMWF 3D-Var Ozone layers (SBUV/2); total column
ozone (TOMS)

Ozone parametrization with heteroge-
neous chemistry term

Polavarapu et al., 2005a; Met Service
Canada

3D-Var Simulated ozone tested within the as-
similation system

Comprehensive stratospheric chem-
istry; gas-phase and heterogeneous re-
actions

Lahoz et al., 2005; DARC/Met Office 3D-Var Simulated ozone profiles (SWIFT,
IASI, GOME-2)

Ozone parametrization; no cold tracer

Lahoz et al., 2007; DARC/Met Office 3D-Var Ozone and humidity profiles (MIPAS) Ozone parametrization with cold tracer
Geer et al., 2006a, b, 2007; DARC/Met
Office

3D-Var Ozone profiles (MIPAS); HIRS 9 (in
Geer et al., 2006b)

Ozone parametrization with cold tracer
(no cold tracer in Geer et al., 2006b)

humidity data, and the mapping of information from radi-
ances into temperature and humidity fields.

Further developments are currently under way at a num-
ber of NWP centres (e.g. ECMWF, Met Office), with the aim
of developing an approach to moisture assimilation that per-
forms well in both troposphere and stratosphere.

3.3 Assimilation of ozone

The main motivation for the inclusion of ozone data assimi-
lation in operational NWP has been to take better account of
ozone (in particular stratospheric ozone) when assimilating
satellite radiance data, mainly from nadir sounding instru-
ments. Radiance assimilation has been shown to improve
the overall skill of weather forecasts (Saunders et al., 1999;
McNally et al., 2006). Many of the channels used for atmo-
spheric temperature sounding are at least partially sensitive
to ozone, so improvements in the accuracy of ozone profiles
can lead to more accurate temperature inversions.

At the same time, the assimilated ozone data can be used
by the model radiation scheme, potentially leading to bet-
ter radiative forcing of the model. Model radiation schemes
take into account the absorption and emission of both short-
wave (visible and near-UV) and long-wave (infrared) radia-
tion by a number of atmospheric constituents. In the strato-
sphere, ozone is the dominant contributor to radiative heat-
ing, but the values are generally taken from ozone climatolo-

gies (e.g. Fortuin and Kelder, 1998). An estimate of the true
ozone distribution is likely to improve these calculations.

At ECMWF, ozone is already included in the forward
modelling of satellite radiances. Experiments at ECMWF,
using analysed ozone in heating rate calculations, found that
variations in ozone amounts of∼10% could result in changes
in analysed UTLS temperatures of 2 K–4 K (Cariolle and
Morcrette, 2006). Model runs with comprehensive chem-
istry and fully interactive ozone show significant temperature
differences of up to 3 K in the upper stratosphere and lower
mesosphere, compared with those with climatological ozone
(Sassi et al., 2005). A prognostic ozone field allows the mod-
elling of feedbacks between radiation, chemistry and dynam-
ics, and this is expected to improve forecasts, especially over
longer timescales. However, work by Morcrette (2003) sug-
gests that coupling of the analysed ozone with the radiation
scheme does not always bring improvement, and Cariolle and
Morcrette (2006) state that in order to adequately represent
the ozone radiative heating in the UTLS, ozone profiles with
a vertical resolution of∼1 km need to be assimilated. Recent
experiments at the Met Office have shown that the inclusion
of ozone-radiation feedbacks leads to an increase in the qual-
ity of tropospheric temperature, wind and geopotential height
forecasts (Mathison et al., 2007). However, these changes are
small and as yet not well understood, and the greatest impact
of the ozone-radiation feedback is on analysed and forecast
temperatures near the stratopause.
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An additional motivation for ozone assimilation is that the
motion of ozone in the atmosphere could give useful dynam-
ical information. Daley (1995) pointed out the feasibility
of estimating the wind field from constituent observations,
given sufficiently dense, frequent and accurate measure-
ments. Riishøjgaard (1996) demonstrated the use of ozone
measurements to reconstruct the flow field in a barotropic
vorticity equation model. Peuch et al. (2000) demonstrated
the dynamical impact of total ozone column observations in
Observing System Simulation Experiments (OSSEs) using a
4D-Var data assimilation system. However, the use of ozone
data to infer dynamical information is not without its prob-
lems. An inappropriately specified background error covari-
ance matrix can lead to unrealistic impacts of ozone mea-
surements on the wind fields. So, in practice, many ozone
assimilation systems treat ozone as a univariate variable.

A further motivation for ozone assimilation is UV fore-
casting. Burrows et al. (1994) set up a system for operational
UV forecasts in Canada. First, a field of total column ozone
over the northern hemisphere is calculated using climatolog-
ical total ozone column data, modified using regression rela-
tionships with a range of meteorological forecast fields (in-
cluding vorticity, temperature and geopotential height) in the
upper troposphere and stratosphere. Second, the total column
ozone is corrected to fit ozone measurements over Canada.
Finally, the clear-sky UV index is calculated using the solar
zenith angle and day of the year. Other operational centres
have developed similar systems (Austin et al., 1994, for the
Met Office). An operational ozone DA system could be used
to replace the first two steps of the procedure, with poten-
tially better accuracy. The Australian Bureau of Meteorol-
ogy already does something similar (Lemus-Deschamps et
al., 2005), using a simplified analysis and forecast of TOVS
total column ozone. This system, and that used at NCEP
(Long, 2003) have the benefit of using a radiative transfer
model to calculate the surface UV, rather than the empirical
methods used in Canada and the UK.

In the stratosphere, ozone has a life-time ranging from
∼100 days (lower stratosphere) to less than 1 day (upper
stratosphere) (Dessler, 2000). Except in the upper strato-
sphere, these timescales for ozone are relatively long com-
pared to the length of a typical weather forecast, which is
of the order of days. So, in that context, the full treatment
of chemical sources and sinks of ozone has not been a pri-
ority. Indeed, the use of a complex representation of ozone
chemistry in an NWP system would be judged an unjustified
overhead. Instead, the usual approach has been to implement
simplified representations of ozone production and loss pro-
cesses.

In early data assimilation systems, any representation of
chemistry was omitted and ozone was treated as a passive
tracer. Because ozone behaves as a passive tracer in the lower
stratosphere (except under ozone hole conditions), this ap-
proach can provide useful information on the stratospheric
ozone distribution (Polavarapu et al., 2005a). More recent

developments have incorporated simple linear parametriza-
tions of the chemical sources and sinks of ozone, typi-
cally known as Cariolle schemes (Cariolle and Déqúe, 1986;
McLinden et al., 2000; McCormack et al., 2004, 2006; Cari-
olle and Teyss̀edre, 2007).

In the Cariolle scheme, the rate of change of ozone due to
photochemistry (C) is written as a first-order Taylor series
expansion:

C = a + b(χ − χ0) + c(T − T0) + d(8 − 80). (3)

The first term in Eq. (3),a, is the equilibrium production
minus loss, at the appropriate level and latitude. The sec-
ond term accounts for differences between the current ozone
amountχ and its equilibrium value, and the third for differ-
ences in the temperatureT . The last term allows for solar
radiation by considering the effect of the total ozone column
8 above the point under consideration. The coefficientsa,
b, c andd in Eq. (3), as well as the equilibrium values, are
derived from a full chemistry model (usually a 2-D model),
so the parametrized photochemistry is highly dependent on
the particular model used. Geer et al. (2007) compare results
from a range of linear chemistry ozone parametrizations and
highlight some large differences.

The Cariolle schemes, contrary to some perceptions that
they are non-rigorous, are actually based on sound photo-
chemical arguments (see McCormack et al., 2006, for more
details). Equation (3) springs directly from a linearized ex-
pansion of the fundamental odd-oxygen photochemical pro-
duction and loss rate equations. This was done initially
for pure oxygen (Chapman) photochemistry (Lindzen and
Goody, 1965), and subsequently extended to reactions in-
volving nitrogen, hydrogen and chlorine species (Blake and
Lindzen, 1973; Stolarski and Douglass, 1985).

The scheme described by Eq. (3) does not take into ac-
count heterogeneous ozone chemistry, which is dominant un-
der ozone hole conditions (Dessler, 2000). To remedy this
shortcoming, the approach expressed in Eq. (3) can be mod-
ified to include acold tracer to parametrize ozone loss due
to heterogeneous processes (Hadjinicolau et al., 1997; Eskes
et al., 2003). The cold tracer approach is not the only means
by which heterogeneous ozone loss is represented in ozone
data assimilation. Cariolle and Teyssèdre (2007) describe a
version of the Cariolle scheme that represents this ozone loss
without using a cold tracer, and ECMWF uses a version with
this approach, too (Dethof, 2003).

The relaxation rateτ=−1/b corresponds directly to the
ozone photochemical lifetime. As shown by Geer et
al. (2006a, 2007), the values ofτ confirm that in the lower
stratosphere (τ∼100 days) the photochemistry could be ne-
glected, but in the upper stratosphere (τ∼0.5 days) the photo-
chemistry is very important. But, it follows that, if the photo-
chemical coefficients and equilibrium values are not realistic,
the ozone data will quickly relax to an incorrect value, ignor-
ing information from observations. In such circumstances,
the parametrized chemistry scheme will seriously degrade
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the assimilated ozone fields in the upper stratosphere, and
it may be preferable to omit the chemistry.

Results reported in theASSET analysis intercomparison
project (Geer et al., 2006a) where ozone analyses from sev-
eral GCMs and CTMs are compared for a fixed time period,
show that, for current ozone data assimilation systems, with
good ozone observations and no chemistry one can get a
good representation of the ozone field even when the pho-
tochemistry timescales are fast. However, above 0.5 hPa,
where the ozone diurnal cycle is no longer negligible, only
analyses with a detailed representation of mesospheric chem-
istry capture it. Finally, provided that there are no observa-
tional gaps, the complexity of the chemical scheme tends to
have little effect on the quality of the ozone analyses. How-
ever, these results also show that observational gaps can se-
riously degrade the ozone analyses. Arguably, in the up-
per stratosphere (fast chemical time-scales), a better solution
than omitting chemistry would be to bias correct the Cariolle
scheme (see, e.g., Coy et al., 2007).

The first implementation of an ozone assimilation sys-
tem for operational NWP was at the NCEP (Caplan et al.,
1997; Derber et al., 1998). A univariate ozone assimilation
was included in the operational ECMWF 4D-Var system in
April 2002, and was also part of the 3D-Var system for the
ERA-40 re-analysis (Dethof and Hólm, 2004; Uppala et al.,
2005). ECMWF also currently provide analyses and fore-
casts of ozone (Dethof, 2003). Of necessity, ozone assimila-
tion systems for NWP are limited to using measurements that
are available close to real time. This effectively means data
from SBUV/2 (retrievals) and HIRS (channel 9 radiances),
both carried by the NOAA polar-orbiter satellites. However,
ozone data from research satellites can also be available in
close to real time: ECMWF have assimilated operationally
ozone profile data from MIPAS and total column ozone data
from GOME, and at the time of writing (October 2007) are
assimilating total column ozone data from SCIAMACHY
(R. Dragani, personal communication, 2007). TOMS to-
tal column ozone data have been assimilated for re-analyses
(Dethof and H́olm, 2004). Some of these satellite instru-
ments give only restricted vertical coverage; for example,
HIRS channel 9 is most sensitive to the lower-stratosphere
ozone maximum, while SBUV/2 retrievals give some profile
information above the ozone peak in the mid stratosphere.

Ozone assimilation has also been developed at the Met
Office, first using the analysis correction scheme (Connew,
1999; Struthers et al., 2002), and later 3D-Var (Jackson,
2004, 2007; Geer et al., 2006b) – see Fig. 1. Other NWP
centres, e.g., GMAO and the Royal Netherlands Meteorolog-
ical Institute (KNMI) have taken the approach of developing
an ozone analysis in a CTM driven by assimilated wind and
temperature data (see Sect. 4).

For non-operational systems (and, increasingly, opera-
tional systems such as that of ECMWF) that assimilate re-
search satellite data from platforms such as ESA’s Envisat,
the situation is better than with traditional operational satel-
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Fig. 1. Total column ozone on 26 September 2002 (Dobson Units,
DU) from (a) the 12:00 UT troposphere-stratosphere Met Office
analysis with the column ozone below 200 hPa replaced by an ozone
climatology;(b) TOMS; (c) GOME. Based on Geer et al. (2006b).
© Royal Meteorological Society.

lite data (e.g. SBUV/2, HIRS channel 9 radiances). In this
case both nadir and limb sounders are used, with the latter
providing better vertical resolution because of their view-
ing geometry. There is recent evidence that adding height-
resolved ozone data improves ozone analyses in an NWP sys-
tem. In the intercomparison of ozone analyses described by
Geer et al. (2006a), it is shown that assimilation of height-
resolved MIPAS ozone data improves the ECMWF NWP
ozone analyses. This improvement is attributed to the benefit
coming from the relatively high vertical resolution of MI-
PAS, and the fact that before this only limited ozone data
were assimilated (namely, SBUV/2 ozone layers and GOME
total column ozone). A similar improvement is seen in the
Met Office system, where assimilation of height-resolved
EOS MLS ozone data reduces analyses errors compared to
the situation when only SBUV/2 ozone layers are assimi-
lated (Jackson, 2007). These results suggest a way forward
toward improved use of ozone data in NWP systems. Along
these lines, benefit could be expected from the assimilation of
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height-resolved ozone data from the Metop IASI instrument,
and from the AIRS instrument on the EOS Aqua platform
(see Table 1).

While ozone assimilation systems have focused almost ex-
clusively on satellite data, it would also be possible to use
ground based ozone measurements. The main reasons why
they are not generally used is first their scarcity and sec-
ond that they have not been routinely exchanged alongside
other meteorological data. Ozonesondes are expensive to
make – much more expensive than radiosondes, themselves
under economic pressure. As a result, ozonesondes tend to
be flown routinely once a week from a very limited number
of stations, plus during certain research campaigns, such as
MATCH(Streibel et al., 2006). While the scarcity of ground-
based ozone data means that it is not worthwhile assimilat-
ing them routinely, they are a very valuable data set for the
validation of ozone assimilation systems. There are a larger
number of Dobson measurements of total column ozone, but
these have no profile information, as well as being sparse
compared to satellite measurements.

4 Chemical model approaches

For constituent assimilation, there are several good reasons
for avoiding the use of NWP models, and instead using what
we refer to as the chemical model approach. First, NWP
models are complex and generally expensive in terms of
computer resources. Second, they tend to focus on the dy-
namics of the atmosphere, so that, typically, only constituents
that interact with the dynamics are represented. This is the
case for ozone and water vapour (see Sect. 3). In NWP mod-
els, chemistry is commonly parametrized to simplify the sys-
tem, so that in some cases (to be discussed later) this set-up
can be inappropriate.

If the goal is not to improve the weather forecast, other
types of model are more appropriate for constituent assimi-
lation. In particular, (i) photochemical box models along an
air parcel trajectory, and (ii) three dimensional CTMs. In
both these cases, the dynamical problem is simplified be-
cause the dynamical fields are pre-calculated from a NWP-
based system. In the first case, the trajectory and the atmo-
spheric conditions (temperature, pressure) along it are given
and a photochemical box model is used to calculate the evo-
lution of the composition in the transported air parcel. In
the second case, wind and temperature fields are prescribed
and used to advect the constituents in the model. The chem-
ical scheme used by CTMs varies in complexity and de-
pends on the final application. If the assimilation system
focuses on long-lived species (chemistry timescales≫ trans-
port timescales), e.g. methane and N2O in the lower strato-
sphere, chemistry can generally be neglected. If the assim-
ilation system focuses on ozone, where both chemistry and
transport can be important in the stratosphere, a parametrized
chemical scheme can be sufficient. If the assimilation sys-

tem focuses on reactive, i.e., short-lived species (chemistry
timescales≪ transport timescales), e.g. NO2 in the strato-
sphere, then explicit calculation of the chemical interactions
is generally necessary. The first two cases are cheaper in
computer time than the third one. The cost of computer time
is another important factor to consider in constituent assimi-
lation.

In general, there is more variability in the data assimila-
tion set-up of chemical model systems than in that for NWP
model systems. This is also reflected in the number of ap-
plications of the former. Currently, chemical model assim-
ilation systems are used to: (i) derive information on unob-
served species (Errera and Fonteyn, 2001; Lary et al., 2003);
(ii) test chemical theories (Lary et al., 2003; Marchand et al.,
2003); (iii) design constituent measurement strategies (Khat-
tatov et al., 2001); (iv) provide analyses of tropospheric pol-
lution (Elbern et al., 2007); (v) support the evaluation of
satellite instruments (Marchand et al., 2004; Vigouroux et
al., 2007); (vi) monitor stratospheric ozone (Levelt et al.,
1998; El Serafy et al., 2002; Eskes et al., 2003;Štajner et
al., 2004;Štajner and Wargan, 2004; Massart et al., 2004;
Segers et al., 2005; Wargan et al., 2005; Rösevall et al.,
2007a, b); (vii) monitor stratospheric chemical species other
than ozone, e.g., NO2, CH4, N2O, and aerosol (Khattatov et
al., 2000; Ḿenard et al., 2000; Ḿenard and Chang, 2000;
Collins et al., 2001; Errera and Fonteyn, 2001; Fonteyn et
al., 2001; Chipperfield et al., 2002; El Amraoui et al., 2004);
and (viii) forecast stratospheric ozone: at KNMI (Eskes et
al., 2002, 2005; El Serafy and Kelder, 2003), at the GMAO
(Riishøjgaard et al., 2000;̌Stajner et al., 2001), and at the
Belgian Institute for Space Aeronomy, BIRA-IASB (http://
www.bascoe.oma.be/). BIRA-IASB also have provided fore-
casts of PSC surface area density, ClOx (=ClO+2*Cl2O2),
N2O, HNO3 and ClONO2. Recent reviews of data assimi-
lation using chemical models include those by Lary (1999),
Wang et al. (2001) and Khattatov (2003). Table 3 provides
a summary of selected chemical model data assimilation ex-
periments.

To attain the broader goals of data assimilation using
chemical models, several data assimilation methods are used:
successive correction; optimal interpolation (OI), the KF and
variants thereof; variational methods (3D- and 4D-Var); and
PSAS (3D-PSAS, the dual of 3D-Var, is, to our knowledge,
the only form of PSAS to have been used so far on strato-
spheric constituent assimilation). By contrast, most current
NWP systems are based on variational methods.

In the following part of this section, we review the differ-
ent methods and systems used in constituent data assimila-
tion with chemical models. We will also point out the major
differences between these systems and the systems based on
NWP models. For example, CTM-based systems tend to not
consider radiance assimilation, which is generally the case
in operational NWP systems (This is not due to a fundamen-
tal limitation of CTMs, which can theoretically be used with
complicated observation operators – see, e.g., Müller et al.,

Atmos. Chem. Phys., 7, 5745–5773, 2007 www.atmos-chem-phys.net/7/5745/2007/

http://www.bascoe.oma.be/
http://www.bascoe.oma.be/


W. A. Lahoz et al.: Stratospheric constituent data assimilation 5757

Table 3. Summary of selected chemical model data assimilation experiments.

References Method Assimilated constituent dataset Chemistry

Austin, 1992 Nudging Ozone, H2O, HNO3 and NO2 pro-
files (LIMS)

CTM: extended family approach

Fisher and Lary, 1995 4D-Var Ozone (UARS MLS) and NO2
(UARS CLAES) profiles; synthetic
data

Trajectory box model: reduced
stratospheric chemistry

Levelt et al., 1998 Sequential statistical
interpolation

Ozone profiles (UARS MLS) CTM: extensive photochemical
scheme; heterogeneous chem-
istry

Khattatov et al., 1999 4D-Var and
Kalman filter

Ozone, HNO3, NO2, ClONO2,
N2O and CH4 (UARS CLAES);
ClO and H2O (UARS MLS)

Photochemical box model: gas-
phase chemistry

Khattatov et al., 2000 Kalman filter Ozone profiles (UARS MLS) CTM: extensive set of photo-
chemical reactions; heteroge-
neous processes

Ménard et al., 2000;
Ménard and Chang, 2000

Kalman filter CH4 profiles (UARS CLAES and
HALOE)

CTM: no chemistry

Errera and Fonteyn, 2001; BIRA-
IASB system was operational 2002–
2004

4D-Var Ozone, CH4, N2O, CFC-11,
HNO3, ClONO2 and N2O5 profiles
(CRISTA)

CTM: detailed chemical scheme

Fonteyn et al., 2001 4D-Var Aerosol (SAGE-II) Simple aerosol model
Chipperfield et al. (2002) Kalman filter O3, CH4, H2O, and HCl profiles

(UARS HALOE)
CTM: detailed gas-phase strato-
spheric chemistry; CH4 oxida-
tion scheme; long-lived tracers

Küll et al., 2002 Nudging Ozone, CH4, N2O, HNO3,
ClONO2, NO2 and N2O5 pro-
files (CRISTA)

CTM: detailed chemical scheme
and aerosol parametrization

2004.). For CTM-based systems, the observations are previ-
ously inverted to provide profiles or total column. In the case
of profiles, the observation operator is reduced to the spatial
interpolation of the model values at the observation location.
In the case of columns, the model values are integrated over
the model layers before performing the spatial interpolation.
A second important point concerns the case where CTMs use
a full photochemical scheme. In this case, the number of
constituent control variables is much greater than in an NWP
system. To give an example, a modern stratospheric CTM
includes∼50 chemical species while the current ECMWF
NWP system includes only two constituents (humidity and
ozone).

Three methods are commonly used in constituent data as-
similation with chemical models (see Sect. 2.2 for an intro-
duction): 4D-Var, approximations to the Kalman Filter (gen-
erally involving parametrizations of the error covariances),
and PSAS (which can be viewed as an approach to solve
the Kalman filter, or as the dual of 3D-Var). Each of these
methods has advantages and disadvantages. The feasibility
of 4D-Var has been demonstrated in NWP systems. Its main
advantage is that it considers observations over a time win-
dow that is generally much longer than the model time step:

typically 24 h for chemical models, while the CTM time step
is of the order of 30 min or less. This allows more observa-
tions to constrain the system and, considering satellite cover-
age, increases the geographical area influenced by the data.
For non-linear systems (as is generally the case for the at-
mosphere), this feature of 4D-Var, together with the non-
diagonal nature of the adjoint operator which transfers in-
formation from observed regions to unobserved regions, re-
duces the weight of the background error covariance matrix
in the final 4D-Var analysis compared to the KF analysis (for
linear systems, the general equivalence between 4D-Var and
the KF implies that the same weight is given to all data in
both systems). In the case of constituent assimilation where
a full photochemistry scheme is considered, the properties
of the adjoint operator allow unobserved species to be con-
strained by observed species. This constraint can be expected
when observed and unobserved species chemically interact
with a time scale of the order of the assimilation window
or less. A special property of the 4D-Var analysis is that in
the middle of the assimilation window it uses all of the ob-
servations simultaneously, not just those before the analysis.
Because of this, 4D-Var is said to be asmoothing algorithm.
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Table 3. Continued.

Eskes et al., 2002, 2003, 2005;
Segers et al., 2005; KNMI system
became operational in 2000

Kalman filter Total column ozone (GOME);
ozone profiles (GOME) in Segers et
al.

CTM: ozone parametrization;
cold tracer

Lary et al., 2003 Kalman filter Ozone, NO, NO2, N2O5, HNO3,
HO2NO2, HCN, ClONO2, HCl,
H2O, CO, CO2, CH4, and N2O pro-
files (ATMOS)

Stacked photochemical box
models: comprehensive chem-
istry

Marchand et al., 2003, 2004 4D-Var on a
box model

Ozone, NO2, NO3 profiles (GO-
MOS)

Photochemical box model: gas-
phase chemistry; hetereogenous
processes

Štajner et al., 2001, 2004, 2006;
Štajner and Wargan, 2004; Wargan
et al., 2005; GMAO system became
operational in 1999

PSAS Total column ozone (TOMS); ozone
layers (SBUV/2); ozone profiles
(POAM-III). A prototype for assim-
ilating SBUV/2 radiances has been
tested (M̈uller et al., 2004)

CTM: ozone parametrization;
no chemistry (̌Stajner et al.,
2001); ozone transport imple-
mented with the GEOS-4 GCM
(Štajner et al., 2006)

El Amraoui et al., 2004 Sequential statistical
interpolation

Ozone, N2O profiles (ODIN SMR) CTM: comprehensive gas-phase
chemistry and heterogeneous re-
actions

Massart et al., 2004 3D-FGAT Ozone profiles (GOME) CTM: detailed photochemistry
Baier et al., 2005 OI Ozone, H2O, NO2, CH4, N2O and

HCl profiles (MIPAS)
CTM: detailed gas phase chem-
istry and heterogeneous pro-
cesses on sulphuric acid aerosols

Coy et al., 2007 PSAS Ozone layers (SBUV/2) CTM data assimilation scheme
(Štajner et al., 2006) coupled to
a GCM: ozone parametrization
(some experiments do not have
chemistry). The Coy et al. study
suggests this set-up fits some-
where between the NWP- and
CTM-based approaches; it was
a first step toward developing a
full NWP-based approach using
3D-Var (S. Eckermann, personal
communication, 2007)

Rösevall et al., 2007a, b Kalman filter Ozone profiles (ODIN/SMR) in
Rösevall et al. (2007a); ozone
profiles (MIPAS, ODIN/SMR) in
Rösevall et al. (2007b)

CTM: no chemistry

In contrast with the above advantages of 4D-Var, three
weaknesses must be mentioned. First, its numerical cost is
very high compared to approximate versions of the KF, and
to 3D-PSAS, so that, in general, its implementation requires
a supercomputer. The cost of4D-PSAS(the dual of 4D-
Var), like the cost of 4D-Var, is determined by the cost of the
repeated integrations of the assimilating model and its ad-
joint (see, e.g., Courtier, 1997; Louvel, 2001); thus, its cost
(if implemented for stratospheric constituent data assimila-
tion) would not be significantly lower compared to that of
4D-Var. Second, its formalism cannot determine the analysis
error directly; rather it has to be computed from the inverse
of the Hessian matrix (again, this procedure is prohibitive

in both CPU and memory). Finally, in contrast with NWP
4D-Var systems, past assimilation experiments using CTMs
have not been based on the incremental method (Bouttier and
Courtier, 1999) and thus cannot take advantage of its bene-
fits, e.g., solving the analysis at a reduced resolution, thereby
reducing the computational cost.

The first assimilation study of constituent observations
based on 4D-Var was presented by Fisher and Lary (1995).
They used a trajectory box model with a reduced strato-
spheric chemistry scheme involving O3, O, NO, NO2 and
N2O5. They assimilated O3 and NO2 data from the MLS
and CLAES instruments on board NASA’s Upper Atmo-
sphere Research Satellite (UARS). They also performed an
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assimilation experiment using synthetic, i.e., simulated, data
that showed ozone observations were able to constrain the
other species. This study also introduced the concept of the
influence functionwhich, with the help of the adjoint model,
measures the influence of an observed species at timet>t0
on other modelled species at the initial time,t0.

Errera and Fonteyn (2001) built a 4D-Var assimilation sys-
tem for stratospheric chemical observations. This system is
based on a three-dimensional CTM with a detailed chemical
scheme including 41 species and 144 reactions. Observa-
tions are taken from the CRISTA instrument. These include
long-lived species (CH4, N2O and CFC-11) and species with
relatively shorter lifetimes (O3, HNO3, ClONO2 and N2O5)

in comparison to the time-scale of the assimilation window
(24 h). Comparison with independent observations shows
good agreement for observed species (e.g. 7% for ozone
against HALOE; less than 15% for HNO3 against ATMOS),
and for NOx (=NO+NO2) and HCl, two constituents that are
not observed by CRISTA (in both cases less than 25% against
HALOE). It was also shown that the HCl field is influenced
by the assimilation of ClONO2 observations.

Because of the strong temperature-dependence of the
chemistry of short-lived species such as NO2 and NO3, their
variability could provide information on temperature. One
possible application is the use of temperature as a control
variable in a chemical DA system. Along these lines, the
variational system built by Marchand et al. (2003, 2004) has
been used to extract temperature information from GOMOS
NO3 observations (Lahoz et al., 2007).

The two other methods commonly used for constituent
data assimilation are approximate versions of the KF, and
PSAS. The KF method is formulated so that the analyses
uncertainties are determined directly and can be propagated
to the next assimilation time step. The PSAS set-up at the
GMAO includes a method to compute an approximation of
the forecast error covariance matrix.

Approximate versions of the KF, and PSAS, are based on
the hypothesis of model linearity. Thus, the time window
over which observations can be considered should be chosen
carefully to ensure that the linearity hypothesis is satisfied.
Khattatov et al. (1999) provided evidence that for a strato-
spheric photochemical box model, the linear approximation
essential to applicability of the EKF and 4D-Var is valid up
to ∼10 days. This behaviour is explained as the combination
of two factors: (i) concentrations of many modelled short-
lived constituents are largely determined by concentrations
of a few relatively long-lived constituents such as ozone, and
parameters such as total active chlorine or nitrogen; and (ii)
within the data assimilation set-up, linear approximations are
generated at every solver time step and the matrices corre-
sponding to such linear transformations are multiplied to ob-
tain a matrix approximating the evolution of the system over
a 10-day period. Due to the nature of the stiff solvers, these
time steps vary by orders of magnitude and get very small

when the changes in concentration for some species are most
rapid.

Lyster et al. (1997) developed a Kalman filter system for a
two-dimensional advection model on an isentropic surface.
Although particular effort was made to optimize the CPU
time, such a system was not found to be practical due to the
large computer resources required. Ménard et al. (2000), us-
ing the same model as Lyster et al. (1997) for the assimilation
of CH4 data, found that the standard KF formalism propa-
gated the analysis covariance matrix inaccurately, with rapid
loss of variance and an increase in the error correlations. To
remedy this shortcoming, they formulated an alternative for-
malism to the KF system. This alternative formalism, de-
scribed in companion papers by Ménard et al. (2000) and
Ménard and Chang (2000), estimates model parameters us-
ing a robust method based onχ2 diagnostics which compares
the observation minus forecast (OmF) residuals with those
calculated by the Kalman filter (see also Sect. 5). The method
is used to estimate three covariance parameters (representa-
tiveness error, model error, and initial error). Because cor-
relation length-scale parameters are found to be insensitive
to theχ2 diagnostics, they are estimated using a maximum-
likelihood method. Theχ2 diagnostics have been used in
other studies to estimate data assimilation system parame-
ters; statistics from the OmF time series are also used to es-
timate these parameters.

Khattatov et al. (2000) used theχ2 diagnostics with a
three-dimensional CTM that assimilated ozone data. The
multi-dimensional nature of the problem meant that some
simplification was required to comply with limitations in
computer resources, both in terms of CPU and memory.
Khattatov et al. (2000) also showed that the value ofχ2 pri-
marily depends on the value of the error growth and not on
the correlation distance. The same authors also found that
the root-mean-square of the OmF differences is mainly sen-
sitive to the correlation length in the case where the spatial
density of observations is high.

The χ2 diagnostics methodology has been applied suc-
cessfully in stratospheric data assimilation (e.g. Chipper-
field et al., 2002; Fierli et al., 2002; Lary et al., 2003
and, with some modifications, by El Amraoui et al., 2004
and Baier et al., 2005). Chipperfield et al. (2002) also
introduced a method to constrain unobserved long-lived
species (e.g. N2O), in which an observed long-lived species
(e.g. CH4) is used to preserve a compact tracer-tracer re-
lationship between both constituents. Finally, Eskes et
al. (2003) developed a KF approach to produce near-real-
time ozone analyses and five-day forecasts. To comply with
limited computer resources and the constraints of an opera-
tional service, Eskes et al. (2003) introduced several approx-
imations in the KF method. For example, they used observa-
tion minus forecast (OmF) statistics to estimate the horizon-
tal error correlations, the observation errors and the forecast
errors.
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As can be seen from the above examples, approximate
versions of Kalman filter methods are very popular for con-
stituent assimilation. This popularity is due to their low de-
mand for computer resources in comparison to 4D-Var, as
well as no requirements for an adjoint model. An alterna-
tive to approximate versions of the KF is the PSAS method
used at the GMAO. It has the advantage that it solves the
analysis in the observation space, which, for constituent as-
similation, is typically much smaller in size than the model
space. It thus reduces the computer resources needed. This
approach is used by the Goddard Earth Observation Sys-
tem (GEOS) ozone data assimilation system (Štajner et al.,
2001). This system, based on a three-dimensional CTM
with parametrized ozone chemistry, also uses theχ2 diag-
nostics to estimate the system parameters. The system has
been operational since 1999, providing stratospheric ozone
analyses using SBUV/2 and TOMS (Štajner et al., 2001).
Other combinations of ozone datasets have been assimilated
in experimental versions of the GMAO system: SBUV/2 and
POAM-III ( Štajner and Wargan, 2004), SBUV/2 and MIPAS
(Wargan et al., 2005); and SBUV/2, POAM-III and ILAS-II
(Štajner et al., 2006).

Finally, as well as considering the performance of the
NWP-based and chemical model approaches, one also needs
to address the relative costs. While cost differences depend
on the complexity of different model components, one can
still highlight some key factors.

First, it is significantly cheaper to use a transport model
than a coupled chemistry/dynamics model, if dynamical
fields are available already. In a test with the Met Office Uni-
fied Model, the dynamics took∼25% of the total model time,
while advection of three tracers took 6% (A. Malcolm, per-
sonal communication, 2005). The advection of a single tracer
is relatively simple and cheap compared with the sophisti-
cation required by the dynamics of the Met Office model.
Similarly, the cost of the univariate assimilation of a single
constituent will be simpler and cheaper than the proportion-
ate cost of a dynamical variable that is treated multivariately.
Furthermore, the smaller data volume of constituent observa-
tions makes constituent data assimilation relatively cheaper
than data assimilation of dynamical variables (e.g. tempera-
ture, winds, humidity).

On the other hand, costs of the constituent DA include the
cost of the required chemistry model. While this could be
simple (or even non-existent for long-lived constituents such
as methane in the lower stratosphere), a complex chemical
model is likely to be a major component of a sophisticated
chemical DA system. While we have outlined a range of cost
considerations, it is worth stressing that the costs are highly
dependent on the type of DA method, transport model, and
chemistry employed.

5 Evaluation of models, observations and analyses

Both NWP-based and chemical model data assimilation ap-
proaches (see Sects. 3 and 4) are used to evaluate models and
observations, in particular concerning ozone (e.g.Štajner et
al., 2004; Geer et al., 2006a, b, 2007; Coy et al., 2007).
Data assimilation not only corrects weaknesses in models,
but also identifies model deficiencies such as biases (e.g. be-
tween model and observations; between different observa-
tions), which as Rood (2005) states is likely the greatest cur-
rent challenge in data assimilation. In this Sect. we provide
further details.

A crucial element of data assimilation is the evaluation of
the quality of the observations, the model and the analyses,
and the test of several assumptions built into data assimila-
tion algorithms, e.g., Gaussian errors; unbiased observations
and models. Several diagnostics have been developed to do
this (Talagrand, 2003c). Broadly speaking, these consist of:
self-consistency tests, and independent tests. We first discuss
self-consistency and independent tests in general. We then
provide illustrative examples of how constituent data assimi-
lation can be used to evaluate satellite instruments.

5.1 Self-consistency tests

Self-consistency tests provide useful information for evalu-
ating the quality of the data assimilation ingredients and the
assumptions built into assimilation algorithms. Histograms
of OmA (observation minus analysis) and OmF (observa-
tion minus forecast) differences are computed for a range of
spatial and temporal scales to test whether the observations,
forecast and analysis fields, and their errors, are consistent
with each other. For example, the OmA histogram should
be more peaked than that for OmF, as the analyses should be
closer to the assimilated observations than the forecast. Fur-
thermore, the OmF histogram should be Gaussian, if both
the observation and forecast are assumed to have Gaussian
errors. Time averages of the standard deviation of OmA can
also be used to test whether the assimilation system is consis-
tent with the concept of the Best Linear Unbiased Estimate,
BLUE (Talagrand, 2003a), introduced in Sect. 2.1. Other
tests check whether there are biases between observation and
forecast, or between observation and analysis. Application of
these tests is discussed in Errera and Fonteyn (2001),Štajner
et al. (2001), Struthers et al. (2002) and Segers et al. (2005).
See Fig. 2 for an example. Tests for Gaussian errors can also
include tests of skewness and kurtosis (Geer et al. 2006b).

Time series of OmA and OmF differences test whether the
observation, forecast and analysis fields, and their errors, are
consistent with each other. A well-behaved data assimilation
system will have time series with mean OmA and OmF val-
ues that are close to zero and do not vary much over time.
If this is not true, a bias between the model and the data
(or a subset of the data) is present. Also, if the standard
deviation about the mean of the OmA time series is larger
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than the observational error, this indicates that the system
is not properly set up. For example, the observation and
background error covariance matrices,R andB, respectively,
could be poorly characterized. Desroziers et al. (2005) sug-
gest a simple method to evaluateR andB separately; Chap-
nik et al. (2006) describe a way of quantifying errors and bi-
ases of both model and observations in the process of tuning
a DA scheme for internal consistency.

Time series of OmA and OmF differences can also be used
to monitor the performance of satellite instruments; changes
in their values can indicate a change in the instrument al-
gorithm, or a degradation of the instrument. For example,
Štajner et al. (2004) uses the OmF time series provided by the
GEOS ozone data assimilation system to validate the NOAA-
14 SBUV/2 retrieval algorithm. Furthermore, at the start of
a data assimilation experiment, it can take some time for the
system tospin-up; this spin-up time is shown by the time
it takes for OmA or OmF differences to converge towards a
constant value (Struthers et al., 2002).

Without chemistry it is difficult to identify instrument drift
using OmF and OmA differences, as drifts in the observa-
tions are incorporated into the forecasts and analyses, and
the differences do not change much as both forecasts and
analyses incorporate the instrument drift. With chemistry,
however, this can be remedied as the model pulls the biased
observations toward a more typical state (e.g. the equilibrium
reference state in Eq. (3) for ozone).

Regardless of the inclusion of chemisty, instrument drifts
can be identified if at the same time as the assimilation is
performed, the system is monitored with independent data.
This instrument drift could be monitored with a free-running
model, but in this case it would be difficult to attribute the
source of the drift.

If the OmF differences have a Gaussian distribution, its in-
ner product normalized by its covariance is a random variable
that has aχ2 distribution withp degrees of freedom, where
p is the number of observations. This result can be used to
test whether the OmF differences are consistent with assump-
tions made in the assimilation algorithm, and to monitor the
observations (Ḿenard et al., 2000; Ḿenard and Chang, 2000;
Štajner et al., 2004).

If the data (observation and background) errors are Gaus-
sian, the minimum of the penalty function,Jmin, follows aχ2

distribution withp degrees of freedom, and must be equal on
average top/2. This last result is also true if the errors are not
Gaussian, but the assimilation scheme remains linear. Thus,
in these cases,Jmin/p should on average be 0.5 (Talagrand,
2003c). In practice,Jmin/p is often significantly different
from 0.5. This discrepancy can arise from an incorrect esti-
mate ofB or R (mainly the representativeness error in the
case ofR).

Several robust correlations between pairs of long-lived
tracers have been observed in the atmosphere (Plumb and
Ko, 1992). A particular example is the correlation between
CH4 and N2O (Chipperfield et al., 2002). When two or more

Fig. 2. Evaluation of analyses using histograms of OmF differences
(normalized by the observation error) averaged for the stratosphere,
the globe and August 2003 for six stratospheric constituents: O3
(top left), H2O (top right), CH4 (middle left), N2O (middle right),
HNO3 (bottom left) and NO2 (bottom right). The constituent ob-
servations are from ESA MIPAS off-line retrievals. The frequency
of the histograms is normalized by the observations, so that the sum
of the histogram values is 1. The black line is a Gaussian fit to the
histograms; the red line is a Gaussian fit from a model run without
assimilation. The results support the assumption of Gaussian er-
rors in the observations and the forecast, and show the analyses are
closer to the observations than simulations from the model run with-
out assimilation. The experiments were performed at BIRA-IASB
(http://www.bascoe.oma.be).

long-lived tracers are assimilated, the quality of the analyses
can be assessed through the consistency of the tracer-tracer
correlations.

5.2 Independent tests

These tests involve comparison of analyses with data that are
independent from the analyses, i.e., data not assimilated to
provide the analyses. Independent datasets used to evalu-
ate ozone analyses include ozonesondes (Logan, 1999) or
satellite data which are not commonly assimilated (e.g. the
UARS HALOE instrument, Russell et al., 1993). Indepen-
dent data can provide information on whether the analyses
are realistic and can help attribute biases to observations,
forecast and analysis; note that self-consistency tests cannot
be used to perform this attribution. Estimating the bias in
the analyses by comparison against independent data is only
possible when the error characteristics of the latter are well
known. Application of these tests is discussed in Khattatov
et al. (2000), Struthers et al. (2002) and Segers et al. (2005).
See Fig. 3 for an example.

When analyses are compared against independent data it
is important to take account of the observation characteristics
of each dataset. This can be accomplished by making use of
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Fig. 3. Evaluation of ozone analyses using independent data at four
locations:(a) Ny Alesund (78.9◦ N, 11.9◦ E) on 27 April 1997;(b)
Payerne (46.8◦ N, 7.0◦ E) on 25 April 1997;(c) Lauder (45.05◦ S,
169.7◦ E) on 16 April 1997; and(d) South Pole (90◦ S) on 18 April
1997; all plots at 12:00 UT. The analyses (stars) are compared
against ozonesonde data (line) that have not been used in the assim-
ilation. The ozone data used to initialize the assimilation are shown
as diamonds. The results show reasonable agreement between the
analyses and the ozonesondes, and the lack of influence of the ini-
tial ozone conditions after the spin-up period. Units are mPa. With
permission from Struthers et al. (2002).

averaging kernelinformation, which accounts for the infor-
mation content, including the vertical resolution, of the ob-
servations (Migliorini et al., 2004). This is difficult in prac-
tice, as the averaging kernel information is not always readily
supplied by the measuring instrument specifications.

In general, comparison against independent data is much
more significant than comparison against the assimilated ob-
servations. Thus, independent data are the ultimate arbiter of
the quality of analyses. In Sect. 6.1 we discuss the quality
of humidity and ozone analyses from NWP- and CTM-based
assimilation systems, based on the intercomparison of anal-
yses between themselves and against independent data. We
also mention briefly early efforts to carry out these intercom-
parisons for other stratospheric constituents

5.3 Illustrative examples

The use of constituent data assimilation to evaluate instru-
ments is numerous. In the two examples below, data assim-
ilation has been used to evaluate two scientific instruments
onboard Envisat: GOMOS and MIPAS.

GOMOS is a stellar occultation instrument that measures,
among other species, stratospheric night-time profiles of O3,
NO2 and, for the first time, NO3. This last species has a
very short life-time. During the day-time, its concentration
is close to zero because it is photolysed in the presence of
sunlight. During the night, its chemistry is very simple and

Fig. 4. GOMOS NO3 measurement and analysed NO3 averaged
over isentropic levels; only data where the GOMOS NO2 error is
below 30% are included. The isentropic levels included in the aver-
age are 735, 900, 990, 1100, 1210, 1350 and 1510 K. The standard
deviations of the isentropic means of GOMOS NO3 and of mean
analysed NO3 are indicated by vertical and horizontal lines, respec-
tively. With permission from Marchand et al. (2004).

strongly coupled to O3 and NO2. Marchand et al. (2004)
have assimilated GOMOS O3 and NO2 in a photochemi-
cal box model using a variational approach. Showing good
agreement between NO3 from GOMOS and the analyses,
Marchand et al. (2004) validate the self-consistency of GO-
MOS O3, NO2 and NO3 measurements (see Fig. 4). It is also
found that these GOMOS measurements are consistent with
our current understanding of night-time NO3 chemistry.

Within the validation effort for MIPAS, Vigouroux et
al. (2007) have compared MIPAS N2O and HNO3 with
ground based FTIR measurements for 2003. They use a co-
location criterion of 1000 km around ground-based stations
within a time interval of±3 h. In order to increase the num-
ber of co-locations, they also use MIPAS N2O and HNO3
analyses produced by the Belgian Assimilation System for
Chemical Observations from Envisat, BASCOE. The stan-
dard deviation and bias between the co-located BASCOE
analyses and FTIR observations are reduced from those be-
tween the co-located MIPAS and FTIR observations. This
paper also discusses under what conditions these analyses
can be considered a good proxy for MIPAS observations. In
the case of N2O, the agreement between BASCOE analyses
and the MIPAS and FTIR data is excellent. Comparison with
FTIR shows a bias ranging from−5% to +1%, and standard
deviations ranging from 2% to 7%. Compared to the MIPAS
random errors (Raspollini et al., 2006), these values are not
significant. BASCOE appears to have more difficulty in pro-
ducing proxies for MIPAS HNO3 profiles but the estimated
standard deviations, less than 10% between BASCOE and
FTIR, appear reasonable.
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6 Applications

In this section we provide examples of the application of
data assimilation to evaluate analyses of stratospheric con-
stituents; monitor the stratosphere; and provide ozone fore-
casts in near-real-time.

6.1 Evaluation of analyses

Objective evaluation of analyses can be obtained by the in-
tercomparison of analyses produced using different data as-
similation systems. If the systems assimilate a common ob-
servational dataset, differences between the analyses can be
attributed to differences in the models and/or the data as-
similation system. Furthermore, by confronting these anal-
yses against others and against independent data (i.e., not
assimilated) it is possible to both gain an understanding of
their strengths and weaknesses, and to make new develop-
ments. Finally, these intercomparisons provide more infor-
mation (and faster) than if each participant assessed their own
system independently.

In this section we use the analyses intercomparison ap-
proach to assess the accuracies of humidity analyses in the
stratosphere-mesosphere, Sect. 6.1.1 (Lahoz et al., 2007),
and the accuracy of ozone analyses in the stratosphere-
mesosphere, Sect. 6.1.2 (Geer et al. 2006a). Intercomparison
of analyses of stratospheric constituents other than humidity
and ozone are currently underway. For example, Errera et
al. (2007) discusses the performance of NO2 analyses using
the BASCOE chemical model and observations from MIPAS
and GOMOS.

6.1.1 Accuracy of humidity analyses

The humidity analyses considered in some detail by Lahoz
et al. (2007): BASCOE (CTM-based), and ECMWF and Met
Office (NWP-based), have varying accuracies that depend on
the assimilation system, the altitude and the latitude. Fig-
ure 5 shows the monthly mean zonal water vapour analyses
for September 2003 for the ECMWF and BASCOE systems.

The monthly mean analyses show good agreement
with the UARS reference atmosphere for September
(http://code916.gsfc.nasa.gov/Public/Analysis/UARS/urap/
home.html). A number of well-known features can be seen
in the stratospheric analyses from BASCOE and ECMWF.
These include a relatively dry region above the tropical
tropopause and dehydration of the Antarctic winter polar
vortex (SPARC, 2000). The role of the Brewer-Dobson
circulation on the distribution of water vapour is reflected in
the upward and poleward propagation of the dry air entering
the stratosphere through the tropical tropopause. Methane
oxidation is responsible for the relatively moist upper
stratosphere and lower mesosphere (see, e.g., LeTexier et al.,
1988). The Brewer-Dobson circulation transports this moist
air downwards within the winter hemisphere polar vortex.

Fig. 5. Monthly zonal mean specific humidity analyses for Septem-
ber 2003 for BASCOE (upper plot) and ECMWF (lower plot). MI-
PAS water vapour profiles have been assimilated in both cases. Blue
denotes relatively low specific humidity values; red denotes rela-
tively high specific humidity values. Units: parts per million by
volume, ppmv. Based on Lahoz et al. (2007).

Between the tropopause (∼100 hPa) and 1 hPa, the zonal
mean monthly analyses for the BASCOE and ECMWF sys-
tems are reasonably similar. The BASCOE analyses show a
drier UTLS region at most latitudes, whereas the ECMWF
analyses show a more distinct dry tropical tropopause re-
gion. Consequently, the vertical gradient in specific hu-
midity in the lower stratosphere is stronger in the BASCOE
analyses. The southern hemisphere polar vortex is drier in
the BASCOE analyses. For levels above 1 hPa the zonal
mean specific humidity fields vary quite considerably be-
tween the two systems. In this region, the ECMWF analy-
ses are∼2 ppmv (parts per million by volume) moister than
the BASCOE analyses. The BASCOE analyses appear more
realistic when compared to the UARS reference atmosphere.
BASCOE analyses are∼5% lower than MIPAS data in the
lower mesosphere, but the corresponding ECMWF analy-
ses are∼10% higher. However, the ECMWF analyses are
25%–30% too low compared to the uppermost MIPAS layer
at 0.2 hPa–0.1 hPa. It appears that the ECMWF analyses
aim to find a compromise between these conflicting biases,
as we might expect given that a vertical smoothing is im-
posed by the background error correlations. Most of the
differences between the two analyses in the upper strato-
sphere/mesosphere and lower stratosphere can be explained
by the fact that BASCOE does not assimilate any MIPAS
data for levels below 95 hPa and above 0.2 hPa (data outside
these regions are model generated). Influences from the tro-
posphere and mesosphere are therefore excluded in the BAS-
COE model.
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Fig. 6. Top: Mean of analysis minus HALOE differences (in percent), normalized by climatology, for the period 18 August–30 November
2003. Bottom: Colour key for top part of figure. The numbers in brackets indicate the HALOE/analysis coincidences within each latitude
bin. Based on Geer et al. (2006a).

The Met Office has investigated the impact of varying the
control variable in the assimilation of MIPAS humidity data.
The objective is to develop a humidity control variable that
has the desirable properties that it is usable in both the tro-
posphere and the stratosphere; it has approximately Gaus-
sian background errors; that temperature and humidity incre-
ments are decoupled; and that allows realistic vertical error
correlations. To achieve this, the Met Office have combined
the ideas of Dee and da Silva (2003) and Hólm et al. (2002),
and defined anormalized relative humidity variable.

Lahoz et al. (2007) describe three different experiments by
the Met Office where the humidity control variable is either
relative humidity (RH), normalized RH or normalized spe-
cific humidity. All three experiments show fairly reasonable
specific humidity profiles for levels below 5 hPa. However, at
higher levels the fit to the MIPAS observations is less good,
with the analyses being consistently too dry. The experiment

with the normalized specific humidity control variable has
a more reasonable lower mesospheric specific humidity, but
is still too dry when compared to the MIPAS observations.
These results are still under study.

6.1.2 Accuracy of ozone analyses

The accuracy of ozone analyses from NWP- and CTM-
based systems is discussed in detail in the intercomparison
by Geer et al. (2006a). It is shown that the best perform-
ing analyses are capable of producing very good agreement
with ozonesonde, HALOE and MIPAS ozone data. From
the lower stratosphere to the lower mesosphere (100 hPa to
0.5 hPa), these analyses show biases less than±10% with re-
spect to HALOE ozone data and ozonesondes. Standard de-
viations can be less than 10% above 50 hPa and less than 20%
in the lower stratosphere (100 hPa to 50 hPa). This shows
that current assimilation techniques are capable of producing
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ozone analyses that have good agreement with independent
data (see Fig. 6). These results are contingent upon the good
quality of the assimilated ozone dataset: Dethof (2003) and
Wargan et al. (2005) have already shown the benefits of MI-
PAS ozone over operational observations such as SBUV/2.

The enhanced skill of the best performing analyses can
usually be attributed to better modelling of ozone chem-
istry or transport processes. The worse performing systems
could often be easily improved by following similar mod-
elling techniques. For example, this can apply to regions
where there are limitations with the ozone data assimilated,
where as shown by Geer et al. (2006a), CTMs and GCMs
with chemistry generally do better. The intercomparison
finds few differences that can be attributed to the assimila-
tion technique or the model used (GCM or CTM). It would
require focused experiments, rather than an intercomparison,
to reveal such differences. Overall, the study by Geer et
al. (2006a) shows that the first priority for ozone data assim-
ilation systems is to improve the modelling of ozone chem-
istry and transport.

The work of Geer et al. (2006a, b) on the quality of ozone
analyses has highlighted the importance of observational and
model bias in DA. Besides providing information on obser-
vational bias, DA can provide information on, and be affected
by, model bias. For example, Geer et al. (2006b), using
the Met Office Unified Model, found that vertical transport
of ozone in the tropical pipe, and transport in the Brewer-
Dobson circulation, is much too fast as a result of known
problems in the tracer transport scheme. This was manifested
in that ozone forecasts above the ozone peak (10 hPa) tended
to be biased high against the MIPAS values (negative OmF
values), and ozone forecasts around the ozone peak tended
to be biased low against the MIPAS values (positive OmF
values).

The Brewer-Dobson circulation is also degraded by prob-
lems with the assimilation of dynamical variables (Douglass
et al., 2003; Schoeberl et al., 2003; Tan et al., 2004). This
reflects that it is very hard for DA to handle slow processes,
on timescales much longer than typical assimilation cycles.
Problems with stratospheric tracer transport are seen in many
DA systems (Oikonomou and O’Neill, 2006), and this re-
mains a major focus of investigation.

Work by Monge-Sanz et al. (2007) shows that ECMWF
ERA interim re-analyses (ECMWF 2007) can be used to
provide realistic stratospheric transport over multi-annual
timescales with an off-line CTM; in particular, the CTM’s
age of airagrees reasonably well with observations. The im-
provement, in comparison with forcing the CTM with ERA-
40 reanalyses or troposphere-stratosphere analyses from the
Met Office, is attributed mainly to the use of 4D-Var (which
uses observations at their correct time) and an improved bal-
ance operator, together leading to more balanced flow and
reduced mixing in the subtropics. In addition, an improved
implementation of the bias correction of satellite radiances

is thought to have helped reduce the analysed strength of the
Brewer-Dobson circulation.

Finally, several papers (Levelt et al., 1998; Chipperfield
et al., 2002; Juckes, 2006, to name a few) show analysed
constituent datasets that are closer to independent data than
the assimilated observations or the simulated fields, thereby
providing evidence that the DA method can add value to
constituent information, either from observations or from
a model. Jackson (2007) shows that assimilation of EOS
MLS ozone data reduces mean analyses errors in the lower
stratosphere. Compared to control simulations where no
ozone data are assimilated, mean errors (evaluated against
HALOE ozone data) dropped by 5%–25% in the South-
ern Hemisphere extra-tropics, and by∼10% in the North-
ern Hemisphere extra-tropics; mean errors (evaluated against
ozonesondes) dropped by∼50% in the tropical UTLS.

Along these lines, Struthers et al. (2002) demonstrate that
the combined assimilation of UARS MLS ozone profiles
and GOME total column ozone gives analysed constituent
datasets that are closer to independent data than either of the
analyses derived from the assimilation of UARS MLS ozone
profiles, or of GOME total column ozone. Thus, in this case,
combined assimilation has added value to the single assim-
ilation of these ozone datasets. Note, however, that this is
not always the case, as there could be inconsistencies in the
assimilation system, for instance in the treatment of biases
(Rood, 2005). Thus, there is scope for improving the use of
observations in constituent data assimilation.

6.2 Stratospheric Ozone Monitoring

Monitoring the stratosphere is done routinely by satellite in-
struments in order to track the evolution of the stratospheric
composition, mainly ozone and the gases that destroy it
(WMO, 2006). Currently, products from different data as-
similation groups are used to help this monitoring effort and
assess protocols.

ECMWF use their NWP operational system to monitor
satellite ozone data by passive data assimilation, i.e., the
ozone data are passed through the assimilation system and
evaluated, but are not allowed to affect the analyses. For
example, Dethof (2004) describes the monitoring of ozone
profiles from the MIPAS and GOMOS instruments, and to-
tal column ozone from the SCIAMACHY instrument. As of
October 2007, ECMWF assimilate operationally total ozone
columns from SCIAMACHY and partial ozone columns
from SBUV/2 on NOAA-16 (R. Dragani, personal communi-
cation, 2007). In an experimental suite, they also actively as-
similate partial columns of ozone from SBUV/2 on NOAA-
17 and NOAA-18, and monitor passively OMI total column
ozone, GOMOS ozone profiles, and total column ozone from
the 9.7 micron channel of SEVIRI on MSG-9 (R. Dragani,
personal communication, 2007). If the monitored data prove
satisfactory, they are moved to active assimilation into the
ECMWF operational system, and thus are allowed to affect
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the meteorological analyses (as well as the ozone analyses).
For example, it is expected that once the evaluation of re-
sults from this experimental suite is satisfactory, ECMWF
will start to assimilate operationally partial ozone columns
from SBUV/2 on NOAA-17 and NOAA-18.

NCEP have set up an operational ozone monitoring and
forecasting system within the NCEP Global Forecasting Sys-
tem (GFS). They use the CHEM2D-OPP chemistry module
(McCormack et al., 2006). As of September 2007, the sys-
tem assimilated several ozone products, including SBUV/2
partial ozone columns from NOAA-16 and NOAA-17, and
total column ozone from OMI (Long et al., 2007).

Since 2000, KNMI produce near real time total ozone as-
similation (Eskes et al., 2003). This system is constrained
by total ozone observations provided by a variety of satellite
instruments (GOME, SCIAMACHY or OMI, depending on
the time period) and has delivered global maps of total ozone
since August 1995 (http://www.temis.nl). This database is
being used to evaluate the change of total ozone since the
1960s (WMO, 2006).

Stratospheric constituent assimilation using a full chem-
istry model and 4D-Var is underway at DLR and BIRA-
IASB. In the framework of the ESA-fundedPROMOTE
project, these two institutions will provide re-analyses of
stratospheric ozone from 1992 (i.e., soon after the launch of
the UARS satellite) to the present, using ozone data from dif-
ferent sensors (see theStratospheric Ozone Profile Record
project, http://www.gse-promote.org for more details). In
addition to ozone, they expect to provide analyses of sev-
eral parameters related to ozone chemistry: ClOx, NOx,
PSCs, ozone depletion rate and Cly (total available chlo-
rine). These re-analyses and analyses will be used by in-
ternational organizations such as SPARC (Stratospheric Pro-
cesses And their Role in Climate) in the framework of the
Chemistry-Climate Model Validation (CCMVal) and WMO-
GAW (World Meteorological Organization - Global Atmo-
spheric Watch) projects to assist in the evaluation of compli-
ance with the Montreal protocol.

6.3 Ozone forecasting

Ozone forecasts are useful for predicting high UV-flux
events. They can be used to warn populations near the
Antarctic when the ozone hole moves above these areas or
to warn populations near the Arctic when low ozone events
(also known as ozone mini-holes) occur above these areas.
They can also be used to plan observation campaigns. Ozone
forecasts are operational at ECMWF since 2002 (Dethof,
2003), and operational at KNMI and GMAO since, respec-
tively, 2000 (Eskes et al., 2003) and 1999 (Štajner et al.,
2001).

The ECMWF products have been based on different ozone
datasets, depending on their availability (see Sect. 6.2 for
the status of operational ozone assimilation at ECMWF
on October 2007). The KNMI products are based on to-

tal column ozone measurements from the ESA instruments
GOME and SCIAMACHY, and the NASA instrument OMI.
GMAO products are based on TOMS total column ozone
and SBUV/2 partial column ozone measurements. The
ECMWF system is based on its NWP system, and includes
parametrized ozone chemistry. The KNMI and GMAO sys-
tems are based on CTMs with parametrized ozone chemistry
forced by off-line winds and temperature from, respectively,
the ECMWF and GEOS models. Ozone forecasts are pro-
duced using the wind and temperature forecasts from the
ECMWF and GEOS models.

BIRA-IASB also set up an ozone forecasting service us-
ing the BASCOE system (http://www.bascoe.oma.be). The
system is based on a CTM with full chemistry and a scheme
that explicitly calculates the microphysics of PSCs. The con-
straining observations are MIPAS near real time ozone pro-
files as well as five other chemical species (NO2, HNO3,
N2O, CH4 and H2O). In addition to ozone ten-day forecasts,
this service also produced forecasts of ClOx, N2O, HNO3
and ClONO2 volume mixing ratio, and PSC surface area den-
sity. This service was operational for one and a half years,
and ended in March 2004 when delivery of MIPAS near real
time profiles was interrupted due to problems with the MI-
PAS instrument. This difficulty with the MIPAS instrument
highlights the weakness of using near real time products from
research instruments for operational services.

Eskes et al. (2002) estimate that useful ozone forecasts
can be obtained up to about one week for the extra-tropics
with the KNMI system. In the tropics, the forecast skill is
less good (useful forecasts out to∼2 days) due, mainly, to
the lack of tropospheric chemistry in the KNMI CTM. Two
examples illustrate the skill of the KNMI system. The first
concerns low ozone events that are observed during winter
over the Atlantic and Northern Europe, and last for 1–2 days
(Orsolini and Nikulin, 2006). These events are due to dy-
namical transport of low ozone from the subtropics to the
extra-tropics. For these events, five-day ozone forecasts are
found to be qualitatively good; three-day forecasts are found
to be quantitatively equivalent to the analyses, the latter being
close to the observations (GOME total column ozone). The
second example concerns the Antarctic polar vortex split of
September 2002. During this unprecedented event, associ-
ated with a stratospheric warming (Eskes et al., 2005), the
vortex split into two parts before decaying. As a result of
this, the ozone hole also split into two parts. Figure 7 shows
the ozone total column on 26 September over Antarctica cal-
culated by the KNMI analysis and 5-day, 7-day and 9-day
forecasts of the total ozone column. The analysis for this
day shows the ozone hole split with two distinct regions of
low total column ozone (values less than 200 DU). For this
event, forecasts out to seven days perform well, and differ-
ences from the analyses are small. The nine-day forecast
captures elements of the ozone hole split.

These two cases highlight the maturity of the KNMI ozone
forecast service. However, the high accuracy of the fore-
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Fig. 7. Total column ozone on 26 September 2002, provided by the KNMI operational ozone assimilation system. From left to right: 9-day,
7-day, 5-day forecasts, and the corresponding analysis. With permission from Eskes et al. (2005).

casts would not have been possible without high quality dy-
namical fields, in this case from ECMWF. The success of
the KNMI forecasts shows that the underlying dynamical
processes were well captured by the ECMWF NWP system
(Simmons et al., 2005).

7 Future directions

Stratospheric constituent data assimilation has developed
enormously during the last 15 years to a position where
incorporation of constituents in NWP (especially ozone)
is routine. Two approaches have been used: GCM-based
NWP models and chemical models, either CTMs or pho-
tochemical box models. Recently, the NWP and CTM ap-
proaches have started to be combined in coupled NWP/CTM
data assimilation, e.g., in collaboration between Environment
Canada, other Canadian partners and BIRA-IASB, where
the Canadian GEM-strato GCM is coupled to the BASCOE
CTM; early results are promising (Ḿenard et al., 2007).
The CMAM data assimilation set-up at Met Service Canada
(MSC) described by Polavarapu et al. (2005a, b) uses a GCM
with full chemistry and can also be described as a coupled
system.

These approaches to stratospheric constituent data assimi-
lation have benefited from collaboration between operational
and research institutions to identify shortcomings in the dif-
ferent assimilation approaches, for example within the EU-
funded ASSET project (Lahoz et al., 2007) and the ASSET
ozone intercomparison project (Geer et al., 2006a). The im-
portance of maintaining and developing these collaborations
has been noted (McLaughlin et al., 2005).

Key drivers in constituent data assimilation for the future
are likely to include the need to monitor the environment
(e.g. stratospheric ozone; tropospheric pollution); the need
to comply with international treaties such as the Montreal
protocol; and the need to comply with environmental leg-
islation concerning, e.g., air quality. This is illustrated by

the PROMOTE project (http://www.gse-promote.org), one
of the GMES service elements set up by ESA. PROMOTE
is a user-oriented project, which aims to use the assimila-
tion of constituent data to provide services on global ozone,
greenhouse gases and air quality.

Another area of increasing importance will be the relation-
ship between chemistry and climate. While this is naturally
mainly the focus of coupled chemistry-climate GCMs (see
Eyring et al., 2006, and references therein), it does increase
the importance of the compilation of assimilated constituent
data for the study of recent climate variations and evalua-
tion of climate simulations; climate/chemistry interactions
will thus be one of the leading drivers for the development
of coupled chemistry/dynamics assimilation systems. The
inclusion of ozone in the recent ERA-40 re-analysis (Dethof
and H́olm, 2004) illustrates the importance of these consid-
erations. The EC and ESA initiative on GMES illustrates the
perceived importance on more general environmental mon-
itoring. The ECMWF-ledGEMS project (Hollingsworth,
2005), part of GMES, illustrates the widening scope of data
assimilation to include not just atmospheric dynamics but a
widening range of atmospheric constituents.

In developing further constituent data assimilation for the
stratosphere, choices will have to be made concerning issues
such as the type of model, the complexity of the chemistry
component in the model and the assimilation set-up. These
choices will depend on the application (Lahoz, 2006). Chal-
lenges concerning issues such as bias, what datasets to as-
similate, the need for ancillary datasets (e.g. aerosol infor-
mation), representation of the model physics and chemistry,
the suitability of the NWP approach, and the nature and evo-
lution of the Global Observing System will have to be tack-
led. Insights gained in stratospheric constituent data assim-
ilation will also help inform the challenges in tropospheric
constituent data assimilation (Eskes, 2006).
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Appendix A

Definition of acronyms

ADEOS: ADvanced Earth Observing Satellite
AIRS: Atmospheric InfraRed Sounder
ASSET: ASSimilation of Envisat daTa
ATMOS: Atmospheric Trace MOlecule Spectroscopy
ATOVS: Advanced TOVS
BASCOE: Belgian Assimilation System for Chemical Obser-

vations from Envisat
BIRA-
IASB:

Belgisch Instituut voor R̈uimte

Aeronomie – Institut d’Áeronomie Spatiale de
Belgique

BLUE: Best Linear Unbiased Estimate
CCMVal: Chemistry-Climate Model Validation
CLAES: Cryogenic Limb Array Etalon Spectrometer
CMAM: Canadian Middle Atmosphere Model
CRISTA: CRyogenic Infrared Spectrometers and Tele-

scopes for the Atmosphere
CTM: Chemistry-Transport Model
DA: Data Assimilation
DARC: Data Assimilation Research Centre, UK
DLR: Deutsches zentrum für Luft-und Raumfahrt
DU: Dobson Units
EC: European Commission
ECMWF: European Centre for Medium-range Weather

Forecasts
EKF: Extended KF
EnKF: Ensemble KF
EOS: Earth Observing System
EOS MLS: EOS Microwave Limb Sounder
ERA: ECMWF Re-Analysis
ESA: European Space Agency
FGAT: First Guess at the Appropriate Time
FTIR: Fourier Transform InfraRed
GCM: General Circulation Model
GEOS: Goddard Earth Observing System
GEMS: Global Earth system Monitoring using Space and

in-situ data
GEM-
strato:

Global Environmental Multiscale (this model in-
corporates the stratosphere)

GMAO: Global Modeling and Assimilation Office
GMES: Global Monitoring for Environment and Security
GOME and
GOME-2:

Global Ozone Monitoring Experiment

GOMOS: Global Ozone Monitoring by Occultation of Stars
HALOE: HALogen Occultation Experiment
HIRS: High resolution Infrared Radiation Sounder
IASI: Infrared Atmospheric Sounding Interferometer
IGACO: Integrated Global Atmospheric Chemistry Obser-

vations
ILAS: Improved Limb Atmospheric Spectrometer
KF: Kalman Filter
KNMI: Koninklijk Nederlaands Meteorologisch Instituut
LIMS: Limb Infrared Monitor of the Stratosphere
MIPAS: Michelson Interferometer for Passive Atmo-

spheric Sounding
MLS: Microwave Limb Sounder
MSC: Met Service Canada
MSG: Meteosat Second Generation
NASA: National Aeronautics and Space Administration
NCAR: National Center for Atmospheric Research
NCEP: National Centers for Environmental Prediction

NCEP GFS: NCEP Global Forecasting System
NMC: National Meteorological Center
NOAA: National Oceanic and Atmospheric Administra-

tion
NWP: Numerical Weather Prediction
OI: Optimal Interpolation
OmA: Observation minus Analysis
OmF: Observation minus Forecast
OMI: Ozone Monitoring Instrument
OSSE: Observing System Simulation Experiment
POAM: Polar Ozone and Aerosol Measurement
PROMOTE: PROtocol MOniToring for the GMES service El-

ement
PSAS: Physical-space Statistical Analysis Scheme
PSC: Polar Stratospheric Cloud
RH: Relative Humidity
RT: Radiative Transfer
SBUV/2: Solar Backscatter Ultra-Violet/2
SCIAMACHY: Scanning Imaging Absorption spectrometer for

Atmospheric CHartographY
SEVIRI: Spinning Enhanced Visible and InfraRed Imager
SMR: Sub-Millimeter Radiometer
SPARC: Stratospheric Processes And their Role in Cli-

mate
SSM/I: Special Sensor Microwave/Imager
TIROS: Television InfraRed Observation Satellite
TOMS: Total Ozone Mapping Spectrometer
TOVS: TIROS Operational Vertical Sounder
UARS: Upper Atmosphere Research Satellite
UKMO: UK Meteorological Office
UTLS: Upper Troposphere/Lower Stratosphere
UV: UltraViolet
Var: Variational
WMO-GAW: World Meteorological Organization – Global At-

mospheric Watch
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Hólm, E., Andersson, E., Beljaars, A., et al.: Assimilation and mod-
elling of the hydrological cycle: ECMWF’s status and plans,
ECMWF Tech Memo 383, 2002.

Ide, K., Courtier, P., Ghil, M., and Lorenc, A.: Unified notation
for data assimilation: Operational sequential and variational, J.
Meteorol. Soc. Jpn., 75, 181–189, 1997.

IGACO: The Changing Atmosphere. An Integrated Global Atmo-
spheric Chemistry Observation theme for the IGOS partner-
ship, ESA SP-1282, Report GAW No. 159 (WMO TD No.
1235), September 2004, Implementation up-date, December
2004, available from: http://www.igospartners.org/docsTHEM.
htm, 2004.

Jackson, D. R.: Improvements in data assimilation at the Met Of-
fice. Forecasting Research Technical Report No. 454, Met Office,

Atmos. Chem. Phys., 7, 5745–5773, 2007 www.atmos-chem-phys.net/7/5745/2007/

http://www.ecmwf.int
http://www.atmos-chem-phys.net/7/3749/2007/
http://www.atmos-chem-phys.net/2/271/2002/
http://www.ecmwf.int
http://www.ecmwf.int
http://www.atmos-chem-phys.net/7/939/2007/
http://www.ecmwf.int
http://www.igospartners.org/docsTHEM.htm
http://www.igospartners.org/docsTHEM.htm


W. A. Lahoz et al.: Stratospheric constituent data assimilation 5771

2004.
Jackson, D. R.: Assimilation of EOS MLS ozone observations in

the Met Office Data Assimilation System, Q. J. Roy. Meteor.
Soc., 133, 1771–1788, 2007.

Jackson, D. R. and Saunders, R.: Ozone data assimilation: Prelim-
inary system, Forecasting Research Technical Report No. 394,
Met Office, 2002.

Joiner, J., Lee, H.-T., Strow, L. L., et al.: Radiative transfer in the
9.6µm HIRS ozone channel using collocated SBUV-determined
ozone abundances, J. Geophys. Res., 103, 19 213–19 230, 1998.

Juckes, M. N.: Evaluation of MIPAS ozone fields assimilated using
a new algorithm constrained by isentropic tracer advection, At-
mos. Chem. Phys., 6, 1549–1565, 2006,
http://www.atmos-chem-phys.net/6/1549/2006/.

Kalnay, E.: Atmospheric Modeling, Data Assimilation and Pre-
dictability, Cambridge University Press, 341 pp., 2003.

Khattatov, B. V.: Multivariate chemical data assimilation, in: Data
Assimilation for the Earth System, NATO ASI Series, edited by:
Swinbank, R., Shutyaev, V. and Lahoz, W. A., Kluwer, 279–288,
2003.

Khattatov, B. V., Gille, J. C., Lyjak, L. V., et al.: Assimilation
of photochemically active species and a case analysis of UARS
data, J. Geophys. Res., 104, 18 715–18 737, 1999.

Khattatov, B. V., Lamarque, J.-F., Lyjak, L. V., et al.: Assim-
ilation of satellite observations of long-lived chemical species
in global chemistry transport models, J. Geophys. Res., 105,
29 135–29 144, 2000.

Khattatov, B., Lyjak, L., and Gille, J.: On applications of photo-
chemical models to the design of measurement strategies, Geo-
phys. Res. Lett., 28, 2377–2380, 2001.

Kistler, R., Kalnay, E., Collins, W., et al.: The NCEP-NCAR 50-
year reanalysis: Monthly means CD-ROM and documentation,
B. Am. Meteorol. Soc., 82, 247–267, 2001.
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