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Abstract. The data assimilation of stratospheric constituentsertheless, there has been substantial progress over the last
is reviewed. Several data assimilation methods are intro415 years, with the field evolving from initial efforts to test
duced, with particular consideration to their application to the methodology to later efforts focusing on products for
stratospheric constituent measurements. Differences froormonitoring ozone and other constituents. More recently,
meteorological data assimilation are outlined. Historically, the production of ozone forecasts by a number of opera-
two approaches have been used to carry out constituent asonal centres (e.g. the European Centre for Medium-range
similation. One approach has carried constituent assimilaWeather Forecasts, ECMWF, Dethof, 2003) has become rou-
tion out as part of a Numerical Weather Prediction system;tine. A notable feature of the application of the data assimi-
the other has carried it out in a standalone chemical modellation methodology to stratospheric constituents has been the
often with a more sophisticated representation of chemicaktrong interaction between the NWP and research communi-
processes. Whereas the aim of the Numerical Weather Prdies, for example, in the EU-fundesSSETproject (Lahoz et
diction approach has been to improve weather forecasts, thal., 2007).

aims of the chemical model approach have included provid- The main aims for assimilating ozone in the stratosphere
ing chemical forecasts and analyses of chemical constituentsnclude the development of ozone and UV-forecasting capa-
A range of constituent assimilation systems developed inpilities; the need to monitor stratospheric ozone to track the
these two areas is presented and strengths and weaknessg&®|ution of the stratospheric composition, mainly ozone and
discussed. The use of stratospheric constituent data assimihe gases that destroy it (WMO, 2006), and assess compli-
lation to evaluate models, observations and analyses, and tance with the Montreal protocol; the need to evaluate the per-
provide analyses of constituents, monitor ozone, and makéormance of instruments measuring ozone, especially those
ozone forecasts is discussed. Finally, the current state of afproviding long-term datasets (e.g. TOMS, GOME); and im-
fairs is assessed, future directions are discussed, and poteproving skill in the stratosphere, chiefly through a better rep-
tial key drivers identified. resentation of stratospheric winds and temperature as a re-
sult of an improved representation of the stratospheric ozone
distribution. The assimilation of ozone is also important for
technical reasons, including: the constraints ozone observa-
tions provide on other constituents; the use of assimilation
techniques to evaluate models and ozone observations; the
development of computer code to assimilate instrument radi-

tion (N\WP) community, the data assimilation methodology ances sensitive to temperature and constituents; and the dy-

(e.g. Kalnay, 2003) began to be applied to constituents (in_namical information provided by ozone tracer distributions.
cIlIJd.ing aero,sol), with a strong focus on stratospheric ozondother §tratpspheric c_onstituents besides ozone that are of in-
(Rood, 2003, 2005). Because of its comparatively later ap_terest in this regard include2®, N2O, CHy, NOz, HNG;,

plication, constituent data assimilation is less mature thanCIO' BrO and aerosol (see IGACO, 2004 for a more com-

1 Introduction

In the 1990s, following years of development of meteoro-
logical data assimilation by the Numerical Weather Predic-

meteorological data (henceforth NWP) assimilation. Nev-Plete lisp). . o . .

In NWP, the main motivation for stratospheric constituent
Correspondence tdV. A. Lahoz assimilation has been the use of constituent information (in
(wal@nilu.no) particular, water vapour and stratospheric ozone) to improve
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the weather forecast. Historically, two approaches have beemodelspace), such as a (discretized) numerical model rep-
used for stratospheric constituent data assimilation. Oneesentation of the stratosphere. Although the models avail-
has done assimilation as part of an NWP system, used foable for this mapping vary in their complexity, all models to
operational weather forecasting; the other has done assinsome extent embody the physical laws that govern the ob-
ilation in a standalone chemical model, either a chemicalserved system. Often, the model itself is said to embody
transport model (CTM) or a photochemical box model, of- the prior orbackgroundnformation on the observed system;
ten with a more sophisticated representation of chemical prohowever, the prior information can also represent a prior or
cesses. Whereas the aim of the NWP approach has been background estimate of the observed system. The data assim-
improve weather forecasts, the aims of the chemical modeilation (DA) problem aims to fill the “information gaps” in an
approach are broader, and include providing chemical fore-optimal way; it can be stated, in non-mathematical terms, as:
casts and analyses of chemical constituents. In this reviewrind the best representation of the state of an evolving sys-
paper we will focus on these two approaches and comparéem given measurements made and prior information on the
their strengths and weaknesses. lllustrative examples of eacdystem, taking account of errors in the measurements and the
approach will be provided. prior information

Table 1 provides a summary of stratospheric chemistry The observation operatortransforms from the model
satellite observations for the period 1978 to the present, thaspace to the measurement space. It involves a mapping from
have been assimilated by NWP-based or chemical modegeophysical inputs in model space (e.g. temperatures, con-
data assimilation systems. References describing the sate$tituent amounts) to simulate an instrument measurement in
lites/instruments are provided. measurement space (e.g. radiances), taking into account the

The increasing maturity of data assimilation applied to physics of the measurement and the characteristics of the in-
stratospheric constituents, and increasing use of the methogtrument. The DA problem involves a minimization of the
ology by the scientific community, means that a review of misfit between the model and the observations, and between
the field is timely. This review complements and builds on the model and prior information to produce a solution re-
the recent review by Rood (2005) by focusing on two ap-ferred to as thenalysis The role of themodel operatar
proaches to assimilate stratospheric constituents, NWP mod@r the forward model, depends on the data assimilation ap-
els and chemical models, providing examples and comparingproach (see Sect. 2.2). In teequentiaBpproach, the model
and contrasting the two approaches. It also takes into acoperator maps the analysis forward in time to give a back-
count recent developments concerning in particular the usground state for a subsequent assimilation cycle; irvére
of data assimilation to evaluate the quality of observationsationalapproach, the model operator may be part of the anal-
and models associated with ozone and water vapour. This reysis process.
view summarizes in one publication and puts in context these In general the number of measuremenis different (and
later results. usually smaller than) the dimensiorof the state space, mak-

In the remaining sections of this review we discuss theing the DA problem ill-posed. Prior or background informa-
elements of data assimilation, with particular considerationtion is used to correct the ill-posed nature of the DA problem.
to constituent data assimilation (Sect. 2). We then discuss Although Bayesian estimation (Rodgers, 2000) defines a
NWP-based approaches to data assimilation (Sect. 3) anglystematic and rigorous approach to data assimilation, its
chemical model approaches to data assimilation (Sect. 4)f_ull-scale implementation in constituent data assimilation is
We then discuss the evaluation of models, observations antipossible, chiefly due to the size of the problem. However,
analyses (Sect. 5), and provide examples of applications ofhe Bayesian approach is still useful in that it provides gen-
stratospheric constituent data assimilation (Sect. 6). Finallyeral guidelines for developing a DA system and evaluating
we assess the current state of affairs, discuss future directiorits results. Nevertheless, in many practical applications it is
and identify potential key drivers (Sect. 7). An Appendix necessary to make drastic simplifying assumptions to the DA

lists acronyms used in this paper. algorithm. Two main lines have been followed: gtatistical
linear estimationand (ii) ensemblassimilation (Talagrand,
2003a).

2 Elements of data assimilation Most standard DA algorithms, such agtimal interpola-
tion, the Kalman filterand smoothey andvariational meth-

2.1 Introduction ods, are built on statistical linear estimation. Another algo-

rithm used,nudging is an empirical forcing of the model
Information on a system from observations based on geofields toward the observed values, and can be described as an
physical measurements (tlobserved systenis discrete in  extremely simplified form of the Kalman filter. Bouttier and
both space and time, so that there are “information gaps”Courtier (1999) provide details of these algorithms.
However, many applications require fully-specified geophys-  Statistical linear estimation achieves Bayesian estimation
ical fields. Thus, information needs to be mapped frosa-  when the system inear and the errors ar&aussian In
surement spacr observational spageo astate spacé€or particular, statistical linear estimation provides a way of
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Table 1. Summary of assimilated stratospheric chemistry satellite observations, 1978—present.

Satellite/Instrument Availability

Constituents

TOMS (several satellites) (McPeters et al., 1998)
SBUV/2 (several satellites) (Miller et al., 2002)
HIRS channel 9 (several satellites) (Joiner et al., 1998)

LIMS (Gille and Russell, 1984) 1978-1979
UARS CLAES (Roche et al., 1993) 1991-1993
UARS MLS (Waters, 1998) 1991-1997
UARS HALOE (Russell et al., 1993) 1991-2005

ATMOS (four space shuttle missions)
(Gunson et al., 1996)

CRISTA (two space shuttle missions)
(Offermann et al., 1999)

ERS-2 GOME (Burrows et al., 1999)
POAM Il (Lucke et al., 1999)

ODIN SMR (Murtagh et al., 2002)
Envisat MIPAS (Fischer et al., 2000)

1998-2005

Envisat SCIAMACHY (Bovensmann et al., 1999)
Envisat GOMOS (Bertaux et al., 2000)

ADEOS ILAS-II (Nakajima et al., 2006)

MSG SEVIRI
(http://lwww.eumetsat.int/Home/Main/Whsl¥e_Do/
Satellites/MeteosabecondGeneration/index.htm)
EOS Aqua AIRS (Susskind et al., 2006)

2002-2003
2002—present

EOS Aura MLS (Waters et al., 2006)
EOS Aura OMI (Levelt et al., 2006)
Metop IASI (http://smsc.cnes.fr)

1978-present
1978—present
1978-present

April 1985; March 1992;
April 1993; November 1994

November 1994; August 1997
1995—present
2001—present

2002—present

2002—present
2002—present

2002—present

2004—present
2004—present
2006—present

Total column ozone
Ozone layers
Radiances sensitive to ozone
Ozone HNO3 and NG profiles
LMNO, profiles
Ozone profiles
Ozone\CHy, H>O, HCI profiles
O3, NO, NOp, NpOs5, HNO3, HOoNOo,
HCN, CIONG,, HCI, H,0, CO, CQ, CHy,
and NO profiles
Ozone, gH N>O, CFC-11,
CIONG, and N,Og profiles
Total column ozone anddtOne profiles
Ozone profiles
Ozone ap@ rofiles
Ozon®) , HNO,, HNO3, N2O, and CH,
profiles; radiances sensitive to humidity and
ozone
Total column ozone, ozone profiles
Ozone, NO3 profiles
Ozone profiles
Total column ozone (synthetic data)

HNQ,

Ozone anp® Hbrofiles; étajner et
al. (2007) have used AIRS radiances to
detect ice PSCs

Ozone profiles

Total column ozone

Relative humidity and ozone profiles (syn-
thetic data); IASI radiances (sensitive to hu-
midity and ozone) are used operationally at
ECMWF from June 2007 (E. Andersson,
personal communication, 2007)

estimating theBest Linear Unbiased Estimat8LUE (Ta-

There are differences between NWP and stratospheric con-

lagrand, 2003a). Independently of the notion of statisticalstituent data assimilation that affect the way the assimilation
estimation, there exist two broad classes of numerical algois set up in the latter. These are:

rithms for data assimilation: variational and sequential (see
Sect. 2.2). In the context of statistical linear estimation, these —
algorithms take respectively the form of the 4-D variational
method 4D-Var), or theKalman filter (If the time dimen-

sion is omitted, the 4D-Var method becomes the 3-d varia-
tional method 3D-Var.) These are two different algorithms

for determining the BLUE, and they are equivalent under the
only condition oflinearity.

Ensemble assimilation is a form &fonte-Carlo approx-
imation which attempts to estimate probability distribution
functions (PDFs) from the spread of the ensemble. In present —
applications (e.g. théensemble Kalman filter Evensen,
2003), the size of the analysed ensembles typically lies be-
tween a few tens to a few hundreds of model states.

www.atmos-chem-phys.net/7/5745/2007/

Stratospheric constituent data assimilation is less ma-
ture than NWP data assimilation. An example of this
concerns parametrizations of ozone chemistry due to
Cariolle and 2qLe (1986). They have been used to as-
similate ozone in the last 5 years or so, but it is only
very recently that the performance of these schemes,
and their associated errors, has been assessed in the data
assimilation context (Geer et al., 2007).

NWP is primarily an initial value problem. Strato-
spheric constituent data assimilation is commonly
posed as an initial value problem, but sources and sinks
may need to be considered.

Atmos. Chem. Phys., 7, 5745-5773, 2007
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— Improvements in NWP can be achieved by more accu- grid point, as compared to under a dozen variables for a
rate specification of dynamical variables such as tem- NWP model.

pgrature, wt|)nds e:cnd humldlty.b Forhstratcc)isti)hﬁrlt:: COQ' One important difference between NWP and constituent
stituents, a better forecast can be achieved both by a befya, ggsimilation is worth emphasizing. In principle, given

ter description of dynamical variables (and hence trans'accurate initial conditions, sources and sinks and accurate

port of the COF‘S““‘?””' a_nd by a beter description of dynamics, it would be possible to model constituent distri-
sources and sinks (if applicable). butions many months without constituent data assimilation.
— The time-scales relevant for NWP are order of days. ForFurthermore, in stratospheric chemistry, many situations can
stratospheric chemistry, there is a very wide range ofbe modelled as a relaxation to an equilibrium state. This is
time-scales, from decades (e.g. for carbon dioxide) tovery different to the chaotic system involved in dynamical
seconds for very short-lived species. data assimilation.
. . o . This does not mean that constituent data assimilation is
B Che”.“ca' eguauon systgms a8, i.e., they include unnecessary. Constituent data assimilation is needed to:
rgac'uons \.N'th raFes varying by seve'rall orders of mgg-(i) infer the constituent’s initial conditions (we can only
.thde' Th's requires the use of sophlsnpated numerlcaEver get these, imperfectly, from observations); (ii) correct
Integration _schemes, calletitf solv_ers Stifiness Man-  for imperfectly known reaction rates; (iii) correct for im-
ifests itself in strong error c_orrelanons_ between Species erfectly modelled chemistry (e.g. not enough species, not
and can cause error covariance mgtrlces to_become SlrE’nough reactions described, or approximate parametrizations
gglar. Constituent data assimilation algorithms MUstyre needed); (iv) correct for unknown source terms (e.g. tro-
aim to account for these features. pospheric pollution, troposphere-stratosphere transport); and
— The availability of useful satellite observations of strato- (v) most importantly of all at the moment, correct for errors
spheric composition is still relatively limited compared in constituent transport, such as excessive Brewer-Dobson
to the availability of observations of dynamical vari- circulations in analysed wind fields, or errors in temperature
ables for NWP. Retrieval algorithms for stratospheric fields. Constituent data assimilation can thus be regarded as
constituents are, however, reasonably well establisheda way of providing accurate initial conditions (point (i), and
especially in comparison with the situation for tropo- as a way of confronting models with observations in order to
spheric constituents. evaluate them and, in particular, correct model bias (points
) . (ii)—(v)). The latter objective shows that constituent data as-
— The Global Observing System for NWP is more ma- similation is a different kind of problem compared to NWP

ture than for copstltugnts. This is reflected in that theredata assimilation, where the goal is to get accurate initial con-
are less operational instruments for constituents tharbitions

for NWP. Many satellite constituent observations are

classed as “research” or “pre-operational”, which meansp 2 Algorithms for constituent data assimilation

that, compared to operational NWP observations, they

are usually not available in near-real-time; the reliabil- The representation of errors is fundamental to the formula-

ity of data supply is often less robust; and observationaltion of constituent DA algorithms. At its simplest one needs

errors may be larger, or less well understood and charto consider the errors in the observations and the errors in

acterized. the background information. Following Ide et al. (199R),

is the observation error covariance matrix. Typicalyjs

assumed to be diagonal; although this is not always justi-

models is of order 1§ while the number of observa- fied (e.g. different elementg of a retrieved profile are likely
to have correlated errorsiR includes the errors of the mea-

tions available over 24 h is currently of orderfa0’. .
: . surements themselvek, and errors of representativeness,
For stratospheric constituents, the number of data as-

- ; . F; R=E+F. F includes errors in the observation operator,
similated is generally an order of magnitude less than - SR
. .. and errors arising because the assimilation model does not
for NWP because fewer instruments are used, with

fully resolve the scales measured by the observations (Cohn,

fewer ndin r instrument. In h how- . . .

ewer sound gs pe .St ument both cases, ho .1997). B is the background error covariance matrix. Its off-

ever, the large dimension of the problem causes practi-,. : ; o
e o . RO .~ diagonal elements determine how information is spread spa-

cal difficulties, influencing the practical implementation

L tially from observation locations. If the background errors
of assimilation systems. . . .
of one variable are uncorrelated with any other variable, then
— The dimensionality of the state of stratospheric chemi-the analysis is termeghivariate but if the errors in different
cal models is much higher than that of the NWP mod- variables are correlated, the analysis is ternmedtivariate
els. Assuming the same number of grid points, strato-If B is multivariate, it can provide statistical links between
spheric constituent models typically need to follow be- dynamical variables, for example, geostrophic coupling, or
tween 20 and 100 different species, i.e., variables, petinks between dynamical and chemical variables or different

— For NWP the numerical dimension of the problem is
extremely large; the typical dimension of current NWP

Atmos. Chem. Phys., 7, 5745-5773, 2007 www.atmos-chem-phys.net/7/5745/2007/
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constituents. It is generally assumed tBatndR are uncor-  penalty function,/:
related. . 1

In general, in data assimilation, errors (for the observations/ = =[x — x*1"B ! [x —x*1 + Z[y - H®I"R Yy - H®)1. (1)

. 2 2

and the background or model) are assumed tGaeassian
The most fundamental justification for assuming GaussianThe first term on the right-hand-sidé,§ quantifies the misfit
errors, which is entirely pragmatic, is the relative simplic- to the background term and the second tedp) (s the mis-
ity and ease of implementation of statistical linear estimationfit to the observations. Extra terms incorporating dynamical
under these conditions. Because Gaussian PDFs are fully deonstraints (.) are also added in some implementations of
termined by their mean and their variance, the solution of the3D-Var. The observation operatéf maps the model state
DA problem becomes computationally practical. Another ar-x to the measurement space, whereesides. If the obser-
gument for the choice of Gaussian errors is that of all possivation operator is linear (writtefl), the penalty function,
ble PDFs with given mean and variance, the Gaussian distriJ/, is quadratic and is guaranteed to have a unique minimum.
bution has maximum entropy (Rodgers, 2000). Among recent publications, Bouttier and Courtier (1999) dis-

Typically, there are biases between different observationguss the solution of Eq. (1).
types, and between the observations and the model. These Because of the large number of variables involved, vari-
biases are spatially and temporally varying, and it is a majorational DA schemes do not perform the minimizationJof
challenge to estimate and correct them. Despite this, andh the model space but, instead, usesasformedor control
mainly for pragmatic reasons, in stratospheric constituenspace. The elements of this control space areohrol vari-
data assimilation it is often assumed that the errors in theables A frequent choice of control variable for constituents
observations and the background or modeliarigiased For  is the logarithm of a normalized mixing ratio — this avoids
NWP, however, many assimilation schemes now incorporateéinphysical negative values. It also means that errors can
a bias correction, which from the point of view of general be specified as a proportion of the background value, rather
estimation theory is the proper way to deal with biased datathan absolute concentrations, which is often more convenient
For example, various techniques have been developed to cosince mixing ratios can vary by several orders of magnitude.
rect observations to remove biases (e.g. Dee and da Silvdjowever, such transformations can make the observation op-
1998). Dee (2005) reviews the treatment of biases in DAerator complex and non-linear, for example if the model state
systems. consists of local concentrations of a constituent while what is

As described in Rood (2005), the data assimilation methodbbserved is an integral of concentrations along an instrument
adds an additional forcing to the equations of the model.line of sight. Note that once a logarithm of the concentration
Because of this, there is no reason to expect that correds taken, the observation operator becomes non-linear, and
geophysical/chemical balances are represented in an assirthat if one assumes Gaussian error statistics for concentra-
ilated product. The products obtained from the model cantions, logarithms of concentrations will have non-Gaussian
be divided intaprimary andderivedproducts. Primary prod-  error statistics. It would also be possible to specify Gaussian
ucts are quantities such as wind, temperature, water vapotgrrors of the logarithm of the concentrations.
and ozone, i.e., parameters most often explicitly modelled. B is generally built up by a series of control variable pa-
Derived products are often functional relationships betweerrameter and spatial transforms (Parrish and Derber, 1992;
the primary products, e.g., unobserved constituents. As distorenc et al., 2004). The control variables are chosen so that
cussed by Rood (2005), in a good DA system primary prod-the structure oB is simplified, i.e., choosing control vari-
ucts tend to be well estimated. By contrast, derived prod-ables whose errors are (assumed to be) uncorrelated leads to
ucts are likely to be physically or chemically inconsistent be-a block diagonal matrix. Conversel, can be set up in a
cause of the forcing added by the DA method. Neverthelessway that explicitly couples constituent and dynamical fields
as shown later in this review, the DA method can provide where their errors are correlated, thus allowing the possibility
reasonable estimates of derived products such as unobserveflusing tracer information to correct wind fields.
constituents. Molod et al. (1996) and Kistler et al. (2001) The 3D-Var algorithm assumes that all observations are
discuss the characteristics of errors associated with primaryalid at the same time, even though they are generally dis-
and derived products in DA systems. tributed over a time-window (of perhaps 6 h). In 3D-FGAT

We now describe variational and sequential methods in(First Guess at the Appropriate Time), a variant of 3D-Var,
the context of constituent data assimilation, and then discusthe J, term is calculated by comparing observations with the
some further aspects of the treatment of errors and observdsackground at the relevant observation times.
tions. 4-dimensional variational (4D-Var) assimilation is a de-

Variational methods. In the 3-d variational (3D-Var) velopment of 3D-Var in which the temporal dimension is in-
method a minimization algorithm is used to find a model cluded (e.g. Bouttier and Courtier, 1999). The minimization
state,x, that minimizes the misfit betweenand the back- s carried out over a time window that is typically 6 or 12 h,
ground stater”, and also between and the observations. although longer time windows have been used. The natural
In 3D-Var, we seek the minimum with respect.toof the length of the time window for diurnally varying species is

www.atmos-chem-phys.net/7/5745/2007/ Atmos. Chem. Phys., 7, 5745-5773, 2007
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24 h. In 4D-Var, observations are used at their correct time. The Physical-space Statistical Analysis Schel8AS
Experiments at ECMWF suggest this is the main reason fo(Cohn et al., 1998) consists in numerically solving Eq. (2¢)
the improved performance in 4D-Var, as compared to 3D-by first computing the terrw=[R+HP/H”]~1[ y—Hx/] (we
Var (Fisher and Andersson, 2001). Experiments at the Metrop the subscript) in observation space, and then multi-
Office also indicate improved forecast skill for 4D-Var com- plying w by P/H”, and adding the result te/. This ap-
pared to an equivalent 3D-Var configuration (Rawlins et al., proach can be used to perform the updating step of the KF in
2007). Thus, some of the benefit of 4D-Var can be obtainedeq. (2c). PSAS (in its original 3-D form) can also be consid-
using the 3D-FGAT approach. ered as thelual of 3D-Var, in which the analysis equation is
4D-Var has two new features compared to 3D-Var. First, itsolved in observation space, and then mapped to state space.
includes a model operata¥/, that carries out the evolution The observation-space approach of PSAS is cheaper than the
forward in time. The first derivative, or differential, af, conventional model-space approach if the number of obser-
M, is thetangent linear mod€(if M is linear, represented by vationsp is much smaller than the dimension of the model
M, its derivative isM). The transpose of the tangent linear state space; this applies to many constituent assimilation
model operatorM 7, integrates thedjoint variablesback-  applications. However, the relatively large valuepoin op-
ward in time. The tangent linear model is only defined undererational NWP systems means that the PSAS approach is less
the condition that the functiod defined by Eg. (1) be dif- competitive than 3D-Var.
ferentiable — this is théangent linear hypothesisee Bout- The KF can be generalized to non-lingdrand M opera-
tier and Courtier, 1999, for further details). Secodd¢can  tors, although in this case neither the optimality of the anal-
include an extra term in which the model errors associated/sis nor the equivalence with 4D-Var holds. The resulting
with the model’s temporal evolution are accounted for. Forequations are known as thextended Kalman filte(EKF,
example, in the formulation of Zupanski (1997) an analogousBouttier and Courtier, 1999). The cost of the KF or EKF
term involvingQ~1 is included inJ, whereQ is the model is much larger than that of 4D-Var, even with small mod-
error covariance. els. This is a consequence of the explicit calculatioPbf
The properties of thadjoint methodallow it to play two  and necessary storage costs. Consequently, development of
important roles in 4D-Var: coupling different elements of the KF technigues for constituent DA has tended to focus on ap-
algorithm, and computing gradients associated with the minproximate methods.
imization of the penalty function (Talagrand, 2003b). The The Ensemble Kalman filter, EnKF, uses a Monte-Carlo
first property allows unobserved regions to be constrained byensemble of short-range forecasts to estinidte The es-
observed regions, this property being extended to unobservetimation becomes more accurate as the ensemble size in-
species that chemically interact with modelled species thatreases. The EnKF is more general than the EKF to the
are observed; the second property allows efficient computaextent that it does not require validity of the tangent lin-
tion of the gradient of the penalty function. ear hypothesis. Evensen (2003) provides a comprehensive
Sequential methods.In the Kalman filter (KF), a recur- review of the theory and numerical implementation of the
sive sequential algorithm is applied to evolve a forecast, EnKF. Pham (2001) compares the EnKF andghsicle fil-
and an analysisc?, as well as their respective error covari- ter. Recent advances include thquare-root filter(Ander-
ance matrices?’ andP“. The KF equations are (subscripts son, 2001) andocal Ensemble Kalman filteringOtt et al.,

denote the timestep): 2004). To our knowledge, the EnKF is not currently used for
f . stratospheric constituent assimilation. Note, however, that it
Xp = Mau-1x,_g; (28)  has been used for tropospheric constituent data assimilation:
;o pa T _ 2b for example, van Loon et al. (.2000) have used it to assimilate
Pi = My-1P, 1M, 3 + Qu—1: (2b) ground-level ozone observations.

Treatment of errors. Many DA systems use the so-called
National Meteorological Center, NMC, meth@darrish and
K Derber, 1992) to estimate the background error covariance

n (2d) . o .

matrix B; this is based on the premise that forecast errors are
Pt = [l — Kan]P;f. (2e) similar to the differences between pairs of forecasts that ver-
ify at the same time. Polavarapu et al. (2005a) implement a

Equation (2a) represents the forecast of the model fields fronvariation on the NMC method in whicB is estimated from
time-stepn—1 to n, while (2b) calculates the forecast er- successive 6 h differences from an extended model run. An
ror covariance from the analysis error covariaRéeand the  alternative approach (Fisher, 2003) uses the spread from an
model error covarianc€. Equations (2c) and (2e) are the ensemble of DA systems to estim@eTo simplify the DA
analysis steps, using th€éalman gaindefined in Eq. (2d). system and make it easier to assess the quality of observa-
Q andP? are assumed to be uncorrelated (e.g. Bouttier andions, a simple approach is sometimes used with chemical
Courtier, 1999). For optimality, all errors must be uncorre- models. As an example, Errera and Fonteyn (2001) assume
lated in time. a diagonaB (which is not valid) and increase the diagonal

x4 =x} + K[y, — Huxi 1: (2c)

= P/HT[R, + H,P/HT]L;
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terms to compensate for the neglect of the off-diagonal terms. Treatment of observations. Observations are commonly
To account for anisotropic atmospheric flow, flow depen-divided into conventional observations (e.g. ground-based
dence can be included B (Riishgjgaard, 1998; Weaver and measurements and radiosondes) and satellite observations.
Courtier, 2001). Because anisotropy can impact tracer disWhereas conventional observations are o$moptic mean-
tributions, a flow-dependei is sometimes used for the as- ing that all observations are taken at the same time, most
similation of stratospheric constituents: methane (Auger andbservations of stratospheric constituents are from satellites,
Tangborn, 2004); ozonéS(ajner et al., 2001; Segers et al., and areasynoptic It is common in NWP (and relevant to
2005). In the Auger and Tangborn set-up, the error covari-constituent data assimilation) to reduce the amount of satel-
ances are evolved as a truncated set of wavelet coefficientdite data prior to assimilation. This process is calleihning
the truncation is carried out in such a way that the resolutionand is done for two main reasons: to reduce computational
of the error covariance is reduced only in the zonal direc-cost and to ensure the density of data assimilated is consistent
tion, where methane gradients are smaller. Inémﬁner et  with the model length scales. The thinning of satellite obser-
al. set-up, the correlation lengths are longer in the longitudi-vations also has the effect of reducing the spatial correlation
nal than in the meridional direction, to match the distribution in observation errors.
of SBUV/2 and TOMS ozone observations. In the Segers et Satellites do not measure directly constituents; instead
al. set-up, the anisotropy is in all spatial directions, accountthey measure photon counte\el Odata). Radiative transfer
ing for different correlation lengths for ozone with respect to algorithms then transform level 0 data into radiandesg(
height, latitude and longitude. 1 data). Subsequently, using inverse modelling techniques
Theoretical work by Cohn (1993) demonstrated that back-(Rodgers, 2000), height-resolved data or total column data of
ground errors evolve according to advective dynamics. Swin-geophysical quantitiedevel 2data) are inferred from level
bank et al. (2000) used this property to specify backgroundl data. Level 2 data are often termedrievals A recent
errors using a series of Lagrangian back trajectories ending atevelopment in inferring constituent retrievals has been the
the analysis time; the error correlations are specified in termsise oftomographictechniques to get a 2-D slice of the at-
of the distance between trajectories 24 h earlier, so reflectingnosphere, as opposed to the 1-D column provided by earlier
anisotropy developed over the previous day. Recent worknethods (Carlotti et al. 2001).
by I. Stajner and colleagues at the Global Modeling and As-  Generally, constituent data are assimilated as retrievals. A
similation Office (GMAO) (l.Stajner, personal communica- recent development in the assimilation of constituents has
tion, 2006) has developed the technique further and demonbeen the assimilation of radiances sensitive to humidity and
strated small improvements in the areas not strongly conozone from limb-sounding instruments measuring in the in-
strained by observations or chemistry: lower stratospherefrared (Bormann et al., 2005, 2007; Bormann and Healy,
near polar night, and troposphere. Another approach used i2006; Bormann and ®paut, 2006). Other efforts involving
to implement a flow-dependeBtbased on the conservation the assimilation of radiances sensitive to ozone include the
properties of potential vorticity (Fierli et al., 2002). use of HIRS channel 9 radiances at the Met Office (Jackson
Error covariance matrices in KF methods are parametrizechnd Saunders, 2002; Jackson 2004), and the use of SBUV/2
in constituent DA to reduce cost; this approach to approxi-radiances at the GMAO (Mler et al., 2004).
mate the KF is referred to variously as tieeluced subop-
timal or modified Kalman filter. P/ can be constructed by
computing the diagonal elements and parametrizing the off3 NWP-based approaches
diagonal elements using adjustable parameters for the cor-
relation lengths (Mnard et al., 2000; Bhard and Chang, 3.1 Introduction
2000; Khattatov et al., 2000)Q can be specified by assum-
ing that diagonal elements are proportional to the modelledAn NWP model is a complex numerical model designed
field itself; they are used to update the diagonal elements ofo simulate the evolution of the atmospheric state over the
P/. This approach results in substantial savings, and allowsength of a weather forecast (typically for a few hours up to
the off-diagonal elements to be computed using a simple retwo weeks into the future). The dynamical core of the model
lation. is concerned with solving the Navier-Stokes equations (or
In both KF methods and 4D-Var, all model fields (dynam- an approximation thereto) that govern the evolution of atmo-
ical and chemical) are implicitly coupled via the model op- spheric winds, temperature and mass fields. The NWP dy-
eratorM. This coupling is irrespective of whether the back- namical core must solve for humidity, as the Navier-Stokes
ground erroB (or forecast erroiP/) is formulated inamul-  equations are formulated with moisture terms included. This
tivariate or univariate manner. In DA schemes the ozone conmeans that mature humidity DA code has already been devel-
trol variable is often univariate (Errera and Fonteyn, 2001;oped in operational NWP systems. Additional stratospheric
Struthers et al., 2002), but it is still possible for constituent humidity DA efforts must build on this code without un-
data to affect dynamical fields v in 4D-Var and KF meth-  duly interfering with the assimilation of tropospheric humid-
ods, although the coupling may be weak. ity data. Details are provided in Sect. 3.2.
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The equations are typically solved using finite differencethe stratosphere is very dry; while condensation of water
or spectral methods. Numerical models include parametrizavapour is commonplace in the troposphere, clouds (PSCs)
tions of a range of atmospheric physical processes, includingnly form in the stratosphere in the polar night, where ex-
the formation of clouds, production of rainfall, interactions tremely cold temperatures occur. Throughout the tropo-
of the flow with orography and radiative transfer processessphere and the stratosphere, the water vapour mixing ratio
and, increasingly, chemistry. varies by many orders of magnitude, from a few percent (by

There is a strong common heritage linking NWP modelsmass) in the tropical lower troposphere to a few parts per mil-
with general circulation models (GCMs) used for global cli- lion (by mass or volume) in the stratosphere. In the strato-
mate simulations (e.g. Trenberth, 1992). In some cases, thephere itself, the water vapour mixing ratio varies little, from
same basic model is run in different configurations for both~2 parts per million by volume near the tropopause-i®
NWP and climate simulations (e.g. the Met Office Unified parts per million by volume near the stratopause.

Model; Davies et al., 2005). The most complex atmospheric - A second key issue is the available observations of wa-
GCMs are coupled with sophisticated models of the oceaner vapour. The primary source of moisture measurements
and land surface, to forfarth System Models is the radiosonde network. Radiosondes carry sensors that
Examples of NWP models used for constituent data assimare primarily designed to measure the high relative humidity
ilation include the National Centers Environmental Predic- (RH) typical of the lower and middle troposphere. Where
tion, NCEP, system (see later); the ECMWF model, wherethe humidity is low and temperature cold, as in the strato-
ozone has been assimilated for analyses and forecasts (Dgphere, the measurements become less accurate (relatively,
thof, 2003) and re-analyses (Dethof andlid, 2004), and  if not absolutely). Thus, routine radiosonde humidity mea-
where research has been done on the assimilation of limb insurements are of little or no use in the stratosphere, even if
frared radiances sensitive to ozone and humidity (Bormanrthe sondes reach that level. More recently, satellite data have
et al., 2005, 2007; Bormann and Healy, 2006; Bormann anthecome more widely available, and are now used as an in-
Thepaut, 2007); and the Met Office model, where ozone hasegral part of the operational assimilation of moisture infor-
been assimilated for research (Jackson and Saunders, 200&ation (e.g. ATOVS and SSM/I). However, the operational
Struthers et al., 2002; Jackson, 2004, 2007; Lahoz et alpadir soundings have relatively poor vertical resolution.
2005, 2007; Geer et al., 2006a, b, 2007). Polavarapu et The large variation in humidity between the surface and

osphere mOd%e stratopause, together with different priorities in the tro-
(CMAM), discuss the role of dynamics on analysed strato- P 109 P

X . . . . ; osphere (description of precipitation and identification of
spheric constituents, including ozone. As will be dlscussedp P ( P precip

in Sect. 3.3, in the NWP-based approach the use Ofsimpliﬁe(ﬁlouds) and the stratosphere (description of tracer distribu-

hemistry is th A tion is the CMAM model ons), means that it is difficult to specify a control variable
chemistry 1S the norm. An exception Is the & MOGEL, syitable for use throughout the domain of models that span
where full chemistry is used. The other main stratospheri

Sthis region.
constituent that has been assimilated into NWP models is 9

water vapour (e.g. Lahoz et al., 2007). Table 2 provides a D€€ and da Silva (2003) introducepaeudo-relative hu-

summary of selected data assimilation experiments based diidity (RH*), defined by scaling the mixing ratip by the
NWP models and GCMs. saturation mixing ratio of the background field. An advan-

Hereafter we discuss the assimilation of stratospheric wal@9€ Of this approach is that a univariate RH* analysis pre-

ter vapour, and the stratospheric constituent that has receivetfVes7 in the absence of moisture observations. By con-
most attention over the past decade, ozone (Rood, 2p03rast, using unmodified RH as a control variable implies a

2005) change in scaling if the temperature is changed, leading to
' changes ing in the absence of moisture observations. In
3.2 Assimilation of humidity the presence of multivariate observations, this approach pro-

duces analysed humidity values that are close to those pro-

Water vapour is assimilated in the troposphere by NWP cenduced by a RH analysis.
tres, but only now is it starting to be assimilated in the strato- In a parallel development,im et al. (2002) introduced a
sphere. This is chiefly due to its important role in the radi- normalized RH control variable, in which RH is divided by
ation budget of the atmosphere, especially in the upper trofan approximation of) the background variability. The new
posphere/lower stratosphere (UTLS) region, because it proeontrol variable has background errors that are more nearly
vides information on the atmospheric circulation, because itGaussian and homogeneous. Relating the normalization term
is a source of HQ (=OH+HO,, involved in the catalytic de- of the new control variable to analysed RH, as opposed to
struction of ozone), and because it is a constituent of the Pobackground RH, also removes most of the skewness in the
lar Stratospheric Clouds (PSCs) involved in polar ozone lossackground errors seen for very dry or near-saturated air. Us-
(Dessler, 2000). ing normalized RH, the assimilation scheme also takes better
In this section, we highlight some of the key issues con-account of the large variability in the background error co-
cerning the assimilation of stratospheric water vapour. Firstyariance matrix. This should improve the interpretation of
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Table 2. Summary of selected NWP- and GCM-based data assimilation experiments.

References Method Assimilated constituent dataset Chemistry

Caplan etal., 1997; Derber et al., 1998 Spectral statistical Ozone a prognostic variable to improveNone

Derber and Wu, 1998; NCEP; this sys-interpolation assimilation of radiances

tem became operational in 1997

Struthers et al., 2002; DARC/Met Of- Analysis correction  Ozone profiles (UARS MLS); total col-Ozone parametrization; no cold tracer
fice umn ozone (GOME)

Jackson and Saunders, 2002; JacksoD-Var
2004, 2007; Met Office

Dethof, 2003; ECMWF; this system 4D-Var
became operational in 2002

Ozone layers (SBUV/2); SBUV/2 and Ozone parametrization with cold tracer
ozone profiles (EOS MLS) in Jackson,(no cold tracer in Jackson and Saun-
2007 ders, 2002; Jackson, 2007)

Ozone profiles (MIPAS); ozone lay- Ozone parametrization with heteroge-

ers (SBUV/2); total column ozone neous chemistry term

(GOME)

MIPAS limb infrared radiances sensi-Ozone parametrization with heteroge-
tive to ozone and humidity neous chemistry term

Bormann et al., 2005, 2007; Bor-4D-Var
mann and Healy, 2006; Bormann and
Thépaut, 2007; ECMWF

Dethof and Hbim, 2004; ECMWF 3D-Var Ozone layers (SBUV/2); total columrDzone parametrization with heteroge-

ozone (TOMS) neous chemistry term

Polavarapu et al., 2005a; Met Service3D-Var Simulated ozone tested within the as€Comprehensive stratospheric chem-

Canada similation system istry; gas-phase and heterogeneous re-
actions
Lahoz et al., 2005; DARC/Met Office 3D-Var Simulated ozone profiles (SWIFQzone parametrization; no cold tracer

IASI, GOME-2)
Lahoz et al., 2007; DARC/Met Office 3D-Var Ozone and humidity profiles (MIPAS)  Ozone parametrization with cold tracer
Geer et al., 2006a, b, 2007; DARC/Met3D-Var Ozone profiles (MIPAS); HIRS 9 (in Ozone parametrization with cold tracer
Office Geer et al., 2006b) (no cold tracer in Geer et al., 2006b)

humidity data, and the mapping of information from radi- gies (e.g. Fortuin and Kelder, 1998). An estimate of the true
ances into temperature and humidity fields. ozone distribution is likely to improve these calculations.
Further developments are currently under way at a num- _ _ _
ber of NWP centres (e.g. ECMWF, Met Office), with the aim At ECMWF, ozone is already included in the forward
of developing an approach to moisture assimilation that peredelling of satellite radiances. Experiments at ECMWF,
forms well in both troposphere and stratosphere. usmg.anal.ysed ozone in heating rate calculatlo_ns, found that
variations in ozone amounts ef10% could result in changes
in analysed UTLS temperatures of 2K-4K (Cariolle and
Morcrette, 2006). Model runs with comprehensive chem-
istry and fully interactive ozone show significant temperature
The main motivation for the inclusion of ozone data assimi- differences of up to 3K in the upper stratosphere and lower
lation in Operational NWP has been to take better account Ofnesosphere’ Compared with those with C|imato|ogica| ozone
ozone (in particular stratospheric ozone) when assimilatingsass;i et al., 2005). A prognostic ozone field allows the mod-
satellite radiance data, mainly from nadir sounding instru-e"ing of feedbacks between radiation, chemistry and dynam-
ments. Radiance assimilation has been shown to improvges, and this is expected to improve forecasts, especially over
the overall skill of weather forecasts (Saunders et al., 1999|0nger timescales. However' work by Morcrette (2003) sug-
McNally et al., 2006). Many of the channels used for atmo- gests that coupling of the analysed ozone with the radiation
spheric temperature sounding are at least partially sensitivgcheme does not always bring improvement, and Cariolle and
to ozone, so improvements in the accuracy of ozone profilegyorcrette (2006) state that in order to adequately represent
can lead to more accurate temperature inversions. the ozone radiative heating in the UTLS, ozone profiles with
At the same time, the assimilated ozone data can be useal vertical resolution of-1 km need to be assimilated. Recent
by the model radiation scheme, potentially leading to bet-experiments at the Met Office have shown that the inclusion
ter radiative forcing of the model. Model radiation schemesof ozone-radiation feedbacks leads to an increase in the qual-
take into account the absorption and emission of both shortity of tropospheric temperature, wind and geopotential height
wave (visible and near-UV) and long-wave (infrared) radia- forecasts (Mathison et al., 2007). However, these changes are
tion by a number of atmospheric constituents. In the stratosmall and as yet not well understood, and the greatest impact
sphere, ozone is the dominant contributor to radiative heatof the ozone-radiation feedback is on analysed and forecast
ing, but the values are generally taken from ozone climatolotemperatures near the stratopause.

3.3 Assimilation of ozone
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An additional motivation for ozone assimilation is that the developments have incorporated simple linear parametriza-
motion of ozone in the atmosphere could give useful dynam-+ions of the chemical sources and sinks of ozone, typi-
ical information. Daley (1995) pointed out the feasibility cally known as Cariolle schemes (Cariolle angldpe, 1986;
of estimating the wind field from constituent observations, McLinden et al., 2000; McCormack et al., 2004, 2006; Cari-
given sufficiently dense, frequent and accurate measureelle and Teysadre, 2007).
ments. Riishgjgaard (1996) demonstrated the use of ozone In the Cariolle scheme, the rate of change of ozone due to
measurements to reconstruct the flow field in a barotropigophotochemistry €) is written as a first-order Taylor series
vorticity equation model. Peuch et al. (2000) demonstratedexpansion:
the dynamical impact of total ozone column observations in
Observing System Simulation Experiments (OSSES) using & =aFbl=x0) +el=To)+d(® = o). (3)
4D-Var data assimilation system. However, the use of ozonél'he first term in Eq. (3)g, is the equilibrium production
data to infer dynamical information is not without its prob- minus loss, at the appropriate level and latitude. The sec-
lems. An inappropriately specified background error covari-ond term accounts for differences between the current ozone
ance matrix can lead to unrealistic impacts of ozone meaamounty and its equilibrium value, and the third for differ-
surements on the wind fields. So, in practice, many ozonesnces in the temperatufe. The last term allows for solar
assimilation systems treat ozone as a univariate variable. radiation by considering the effect of the total ozone column

A further motivation for ozone assimilation is UV fore- & above the point under consideration. The coefficients
casting. Burrows et al. (1994) set up a system for operationab, ¢ andd in Eq. (3), as well as the equilibrium values, are
UV forecasts in Canada. First, a field of total column ozonederived from a full chemistry model (usually a 2-D model),
over the northern hemisphere is calculated using climatologso the parametrized photochemistry is highly dependent on
ical total ozone column data, modified using regression relathe particular model used. Geer et al. (2007) compare results
tionships with a range of meteorological forecast fields (in-from a range of linear chemistry ozone parametrizations and
cluding vorticity, temperature and geopotential height) in thehighlight some large differences.
upper troposphere and stratosphere. Second, the total columnThe Cariolle schemes, contrary to some perceptions that
ozone is corrected to fit ozone measurements over Canadéhey are non-rigorous, are actually based on sound photo-
Finally, the clear-sky UV index is calculated using the solar chemical arguments (see McCormack et al., 2006, for more
zenith angle and day of the year. Other operational centresdetails). Equation (3) springs directly from a linearized ex-
have developed similar systems (Austin et al., 1994, for thepansion of the fundamental odd-oxygen photochemical pro-
Met Office). An operational ozone DA system could be usedduction and loss rate equations. This was done initially
to replace the first two steps of the procedure, with poten-for pure oxygen (Chapman) photochemistry (Lindzen and
tially better accuracy. The Australian Bureau of Meteorol- Goody, 1965), and subsequently extended to reactions in-
ogy already does something similar (Lemus-Deschamps etolving nitrogen, hydrogen and chlorine species (Blake and
al., 2005), using a simplified analysis and forecast of TOVSLindzen, 1973; Stolarski and Douglass, 1985).
total column ozone. This system, and that used at NCEP The scheme described by Eq. (3) does not take into ac-
(Long, 2003) have the benefit of using a radiative transfercount heterogeneous ozone chemistry, which is dominant un-
model to calculate the surface UV, rather than the empiricalder ozone hole conditions (Dessler, 2000). To remedy this
methods used in Canada and the UK. shortcoming, the approach expressed in Eqg. (3) can be mod-

In the stratosphere, ozone has a life-time ranging fromified to include acold tracerto parametrize ozone loss due
~100 days (lower stratosphere) to less than 1 day (uppeto heterogeneous processes (Hadjinicolau et al., 1997; Eskes
stratosphere) (Dessler, 2000). Except in the upper stratoet al., 2003). The cold tracer approach is not the only means
sphere, these timescales for ozone are relatively long comby which heterogeneous ozone loss is represented in ozone
pared to the length of a typical weather forecast, which isdata assimilation. Cariolle and Teysise (2007) describe a
of the order of days. So, in that context, the full treatmentversion of the Cariolle scheme that represents this ozone loss
of chemical sources and sinks of ozone has not been a priwithout using a cold tracer, and ECMWF uses a version with
ority. Indeed, the use of a complex representation of ozoneghis approach, too (Dethof, 2003).
chemistry in an NWP system would be judged an unjustified The relaxation rate=—1/b corresponds directly to the
overhead. Instead, the usual approach has been to implemeotone photochemical lifetime. As shown by Geer et
simplified representations of ozone production and loss proal. (2006a, 2007), the values ofconfirm that in the lower
cesses. stratospherer(~100 days) the photochemistry could be ne-

In early data assimilation systems, any representation ofjlected, butin the upper stratosphere-0.5 days) the photo-
chemistry was omitted and ozone was treated as a passivehemistry is very important. But, it follows that, if the photo-
tracer. Because ozone behaves as a passive tracer in the longtremical coefficients and equilibrium values are not realistic,
stratosphere (except under ozone hole conditions), this apthe ozone data will quickly relax to an incorrect value, ignor-
proach can provide useful information on the stratospheridng information from observations. In such circumstances,
ozone distribution (Polavarapu et al., 2005a). More recenthe parametrized chemistry scheme will seriously degrade
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the assimilated ozone fields in the upper stratosphere, anc{a
it may be preferable to omit the chemistry.

Results reported in thASSET analysis intercomparison
project (Geer et al., 2006a) where ozone analyses from sev-
eral GCMs and CTMs are compared for a fixed time period,
show that, for current ozone data assimilation systems, with =
good ozone observations and no chemistry one can get a -
good representation of the ozone field even when the pho- |
tochemistry timescales are fast. However, above 0.5hPa,
where the ozone diurnal cycle is no longer negligible, only
analyses with a detailed representation of mesospheric chem(
istry capture it. Finally, provided that there are no observa-
tional gaps, the complexity of the chemical scheme tends to
have little effect on the quality of the ozone analyses. How-
ever, these results also show that observational gaps can se- i\
riously degrade the ozone analyses. Arguably, in the up-
per stratosphere (fast chemical time-scales), a better solution
than omitting chemistry would be to bias correct the Cariolle
scheme (see, e.g., Coy et al., 2007). :

The first implementation of an ozone assimilation sys- ()
tem for operational NWP was at the NCEP (Caplan et al.,
1997; Derber et al., 1998). A univariate ozone assimilation
was included in the operational ECMWF 4D-Var system in
April 2002, and was also part of the 3D-Var system for the
ERA-40 re-analysis (Dethof anddtn, 2004; Uppala et al.,
2005). ECMWEF also currently provide analyses and fore-
casts of ozone (Dethof, 2003). Of necessity, 0zone assimila- ¢
tion systems for NWP are limited to using measurements that
are available close to real time. This effectively means data

from SBUV/2 (retrievals) and HIRS (channel 9 radiances), ig. 1. Total column ozone on 26 September 2002 (Dobson Units,
both carried by the NOAA polar-orbiter satellites. However, py) from (a) the 12:00 UT troposphere-stratosphere Met Office
ozone data from research satellites can also be available isnalysis with the column ozone below 200 hPa replaced by an ozone
close to real time: ECMWEF have assimilated operationally climatology;(b) TOMS; (c) GOME. Based on Geer et al. (2006b).
ozone profile data from MIPAS and total column ozone data®© Royal Meteorological Society.
from GOME, and at the time of writing (October 2007) are
assimilating total column ozone data from SCIAMACHY
(R. Dragani, personal communication, 2007). TOMS to- lite data (e.g. SBUV/2, HIRS channel 9 radiances). In this
tal column ozone data have been assimilated for re-analysesase both nadir and limb sounders are used, with the latter
(Dethof and Hlm, 2004). Some of these satellite instru- providing better vertical resolution because of their view-
ments give only restricted vertical coverage; for example,ing geometry. There is recent evidence that adding height-
HIRS channel 9 is most sensitive to the lower-stratosphergesolved ozone data improves ozone analyses in an NWP sys-
ozone maximum, while SBUV/2 retrievals give some profile tem. In the intercomparison of ozone analyses described by
information above the ozone peak in the mid stratosphere. Geer et al. (2006a), it is shown that assimilation of height-
Ozone assimilation has also been developed at the Metesolved MIPAS ozone data improves the ECMWF NWP
Office, first using the analysis correction scheme (Connewpzone analyses. This improvement is attributed to the benefit
1999; Struthers et al., 2002), and later 3D-Var (Jacksoncoming from the relatively high vertical resolution of MI-
2004, 2007; Geer et al., 2006b) — see Fig. 1. Other NWPPAS, and the fact that before this only limited ozone data
centres, e.g., GMAO and the Royal Netherlands Meteorologwere assimilated (namely, SBUV/2 ozone layers and GOME
ical Institute (KNMI) have taken the approach of developing total column ozone). A similar improvement is seen in the
an ozone analysis in a CTM driven by assimilated wind andMet Office system, where assimilation of height-resolved
temperature data (see Sect. 4). EOS MLS ozone data reduces analyses errors compared to
For non-operational systems (and, increasingly, operathe situation when only SBUV/2 ozone layers are assimi-
tional systems such as that of ECMWEF) that assimilate redated (Jackson, 2007). These results suggest a way forward
search satellite data from platforms such as ESAs Envisatioward improved use of ozone data in NWP systems. Along
the situation is better than with traditional operational satel-these lines, benefit could be expected from the assimilation of
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height-resolved ozone data from the Metop IASI instrument,tem focuses on reactive, i.e., short-lived species (chemistry
and from the AIRS instrument on the EOS Aqua platform timescales« transport timescales), e.g. N@n the strato-
(see Table 1). sphere, then explicit calculation of the chemical interactions
While ozone assimilation systems have focused almost exis generally necessary. The first two cases are cheaper in

clusively on satellite data, it would also be possible to usecomputer time than the third one. The cost of computer time
ground based ozone measurements. The main reasons wig/another important factor to consider in constituent assimi-
they are not generally used is first their scarcity and seciation.
ond that they have not been routinely exchanged alongside In general, there is more variability in the data assimila-
other meteorological data. Ozonesondes are expensive ton set-up of chemical model systems than in that for NWP
make — much more expensive than radiosondes, themselvasodel systems. This is also reflected in the number of ap-
under economic pressure. As a result, ozonesondes tend wications of the former. Currently, chemical model assim-
be flown routinely once a week from a very limited number ilation systems are used to: (i) derive information on unob-
of stations, plus during certain research campaigns, such agerved species (Errera and Fonteyn, 2001; Lary et al., 2003);
MATCH (Streibel et al., 2006). While the scarcity of ground- (ii) test chemical theories (Lary et al., 2003; Marchand et al.,
based ozone data means that it is not worthwhile assimilat2003); (iii) design constituent measurement strategies (Khat-
ing them routinely, they are a very valuable data set for thetatov et al., 2001); (iv) provide analyses of tropospheric pol-
validation of ozone assimilation systems. There are a largelution (Elbern et al., 2007); (v) support the evaluation of
number of Dobson measurements of total column ozone, busatellite instruments (Marchand et al., 2004; Vigouroux et
these have no profile information, as well as being sparsel., 2007); (vi) monitor stratospheric ozone (Levelt et al.,
compared to satellite measurements. 1998; El Serafy et al., 2002; Eskes et al., 2088ajner et

al., 2004;§tajner and Wargan, 2004; Massart et al., 2004;

Segers et al., 2005; Wargan et al., 2005s&vall et al.,
4 Chemical model approaches 2007a, b); (vii) monitor stratospheric chemical species other

than ozone, e.g., N CHg, N2O, and aerosol (Khattatov et
For constituent assimilation, there are several good reasonsl., 2000; Menard et al., 2000; Ehard and Chang, 2000;
for avoiding the use of NWP models, and instead using whatCollins et al., 2001; Errera and Fonteyn, 2001; Fonteyn et
we refer to as the chemical model approach. First, NWPal., 2001; Chipperfield et al., 2002; El Amraoui et al., 2004);
models are complex and generally expensive in terms ofand (viii) forecast stratospheric ozone: at KNMI (Eskes et
computer resources. Second, they tend to focus on the dyal., 2002, 2005; El Serafy and Kelder, 2003), at the GMAO
namics of the atmosphere, so that, typically, only constituentgRiishgjgaard et al., 200Cétajner et al., 2001), and at the
that interact with the dynamics are represented. This is théBelgian Institute for Space Aeronomy, BIRA-IASBt{p:/
case for ozone and water vapour (see Sect. 3). In NWP modaww.bascoe.oma.be/). BIRA-IASB also have provided fore-
els, chemistry is commonly parametrized to simplify the sys-casts of PSC surface area density, £{@CIO+2*Cl,0,),
tem, so that in some cases (to be discussed later) this set-ujO, HNOz and CIONGQ. Recent reviews of data assimi-
can be inappropriate. lation using chemical models include those by Lary (1999),

If the goal is not to improve the weather forecast, otherWang et al. (2001) and Khattatov (2003). Table 3 provides

types of model are more appropriate for constituent assimi-a summary of selected chemical model data assimilation ex-
lation. In particular, (i) photochemical box models along an periments.
air parcel trajectory, and (ii) three dimensional CTMs. In  To attain the broader goals of data assimilation using
both these cases, the dynamical problem is simplified bec€hemical models, several data assimilation methods are used:
cause the dynamical fields are pre-calculated from a NWPsuccessive correction; optimal interpolation (Ol), the KF and
based system. In the first case, the trajectory and the atmorariants thereof; variational methods (3D- and 4D-Var); and
spheric conditions (temperature, pressure) along it are givei?SAS BD-PSASthe dual of 3D-Var, is, to our knowledge,
and a photochemical box model is used to calculate the evothe only form of PSAS to have been used so far on strato-
lution of the composition in the transported air parcel. In spheric constituent assimilation). By contrast, most current
the second case, wind and temperature fields are prescribedWP systems are based on variational methods.
and used to advect the constituents in the model. The chem- In the following part of this section, we review the differ-
ical scheme used by CTMs varies in complexity and de-ent methods and systems used in constituent data assimila-
pends on the final application. If the assimilation systemtion with chemical models. We will also point out the major
focuses on long-lived species (chemistry timescgldsans-  differences between these systems and the systems based on
port timescales), e.g. methane angNin the lower strato- NWP models. For example, CTM-based systems tend to not
sphere, chemistry can generally be neglected. If the assimeonsider radiance assimilation, which is generally the case
ilation system focuses on ozone, where both chemistry andh operational NWP systems (This is not due to a fundamen-
transport can be important in the stratosphere, a parametrizetdl limitation of CTMs, which can theoretically be used with
chemical scheme can be sufficient. If the assimilation sys-complicated observation operators — see, e.gillév et al.,
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Table 3. Summary of selected chemical model data assimilation experiments.

References Method Assimilated constituent dataset Chemistry
Austin, 1992 Nudging Ozone, 40, HNO3 and NG pro- CTM: extended family approach
files (LIMS)
Fisher and Lary, 1995 4D-Var Ozone (UARS MLS) and NO Trajectory box model: reduced
(UARS CLAES) profiles; synthetic stratospheric chemistry
data
Levelt et al., 1998 Sequential statistical Ozone profiles (UARS MLS) CTM: extensive photochemical
interpolation scheme; heterogeneous chem-
istry
Khattatov et al., 1999 4D-Var and Ozone, HNQ@, NO,, CIONO,, Photochemical box model: gas-
Kalman filter N>O and CH, (UARS CLAES); phase chemistry
ClO and BHO (UARS MLS)
Khattatov et al., 2000 Kalman filter Ozone profiles (UARS MLS) CTM: extensive set of photo-

chemical reactions; heteroge-
neous processes

Ménard et al., 2000; Kalman filter CH, profiles (UARS CLAES and CTM: no chemistry

Ménard and Chang, 2000 HALOE)

Errera and Fonteyn, 2001; BIRA- 4D-Var Ozone, CH, NyO, CFC-11, CTM: detailed chemical scheme

IASB system was operational 2002— HNO3, CIONG, and NOg profiles

2004 (CRISTA)

Fonteyn et al., 2001 4D-Var Aerosol (SAGE-II) Simple aerosol model

Chipperfield et al. (2002) Kalman filter 4 CHy, H>0, and HCI profiles CTM: detailed gas-phase strato-
(UARS HALOE) spheric chemistry; CHl oxida-

tion scheme; long-lived tracers
Kull et al., 2002 Nudging Ozone, GCH NyO, HNO;, CTM: detailed chemical scheme

CIONO,, NO, and NOg pro- and aerosol parametrization
files (CRISTA)

2004.). For CTM-based systems, the observations are prevtypically 24 h for chemical models, while the CTM time step
ously inverted to provide profiles or total column. In the caseis of the order of 30 min or less. This allows more observa-
of profiles, the observation operator is reduced to the spatialions to constrain the system and, considering satellite cover-
interpolation of the model values at the observation location.age, increases the geographical area influenced by the data.
In the case of columns, the model values are integrated ovefor non-linear systems (as is generally the case for the at-
the model layers before performing the spatial interpolation.mosphere), this feature of 4D-Var, together with the non-

A second important point concerns the case where CTMs usdiagonal nature of the adjoint operator which transfers in-
a full photochemical scheme. In this case, the number offormation from observed regions to unobserved regions, re-
constituent control variables is much greater than in an NWRduces the weight of the background error covariance matrix
system. To give an example, a modern stratospheric CTMn the final 4D-Var analysis compared to the KF analysis (for
includes~50 chemical species while the current ECMWF linear systems, the general equivalence between 4D-Var and
NWP system includes only two constituents (humidity andthe KF implies that the same weight is given to all data in
ozone). both systems). In the case of constituent assimilation where
A full photochemistry scheme is considered, the properties
of the adjoint operator allow unobserved species to be con-
strained by observed species. This constraint can be expected
erally involving parametrizations of the error covariances),When observed and unobserved species chemically interact

and PSAS (which can be viewed as an approach to solv&ith a time scale of the order of the assimilation window
the Kalman filter, or as the dual of 3D-Var). Each of these ©" €SS: A special property of the 4D-Var analysis is that in
methods has advantages and disadvantages. The feasibiliffj® Middie of the assimilation window it uses all of the ob-
of 4D-Var has been demonstrated in NWP systems. Its mai ervations simultaneously, not just those before the analysis.
advantage is that it considers observations over a time winB€¢ause of this, 4D-Var is said to besmoothing algorithm
dow that is generally much longer than the model time step:

Three methods are commonly used in constituent data a
similation with chemical models (see Sect. 2.2 for an intro-
duction): 4D-Var, approximations to the Kalman Filter (gen-
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Table 3. Continued.

Eskes et al., 2002, 2003, 2005;Kalman filter Total column ozone (GOME); CTM: ozone parametrization;
Segers et al., 2005; KNMI system ozone profiles (GOME) in Segers etcold tracer

became operational in 2000 al.

Lary et al., 2003 Kalman filter Ozone, NO, NON»Os, HNO3, Stacked photochemical box

HO,NO,, HCN, CIONO,, HCI, models: comprehensive chem-
H5>0, CO, CQ, CHg, and NO pro- istry
files (ATMOS)

Marchand et al., 2003, 2004 4D-Var on a Ozone, N@Q, NOj profiles (GO- Photochemical box model: gas-
box model MOS) phase chemistry; hetereogenous
processes
étajner et al., 2001, 2004, 2006;PSAS Total column ozone (TOMS); ozoneCTM: o0zone parametrization;
étajner and Wargan, 2004; Wargan layers (SBUV/2); ozone profiles no chemistry Stajner et al.,
et al., 2005; GMAO system became (POAM-III). A prototype for assim- 2001); ozone transport imple-
operational in 1999 ilating SBUV/2 radiances has beenmented with the GEOS-4 GCM
tested (Miller et al., 2004) (Stajner et al., 2006)
El Amraoui et al., 2004 Sequential statisticalOzone, NO profiles (ODIN SMR)  CTM: comprehensive gas-phase
interpolation chemistry and heterogeneous re-
actions
Massart et al., 2004 3D-FGAT Ozone profiles (GOME) CTM: detailed photochemistry
Baier et al., 2005 ol Ozone, 4D, NOy, CHy, N2O and CTM: detailed gas phase chem-
HCI profiles (MIPAS) istry and heterogeneous pro-
cesses on sulphuric acid aerosols
Coy et al., 2007 PSAS Ozone layers (SBUV/2) CTM data assimilation scheme

(Stajner et al., 2006) coupled to
a GCM: ozone parametrization
(some experiments do not have
chemistry). The Coy et al. study
suggests this set-up fits some-
where between the NWP- and
CTM-based approaches; it was
a first step toward developing a
full NWP-based approach using
3D-Var (S. Eckermann, personal
communication, 2007)
Rosevall et al., 2007a, b Kalman filter Ozone profiles (ODIN/SMR) i€TM: no chemistry

Rosevall et al. (2007a); ozone

profiles (MIPAS, ODIN/SMR) in

Rosevall et al. (2007b)

In contrast with the above advantages of 4D-Var, threein both CPU and memory). Finally, in contrast with NWP
weaknesses must be mentioned. First, its numerical cost i¢D-Var systems, past assimilation experiments using CTMs
very high compared to approximate versions of the KF, andhave not been based on the incremental method (Bouttier and
to 3D-PSAS, so that, in general, its implementation requiresCourtier, 1999) and thus cannot take advantage of its bene-
a supercomputer. The cost 4D-PSAS(the dual of 4D- fits, e.g., solving the analysis at a reduced resolution, thereby
Var), like the cost of 4D-Var, is determined by the cost of the reducing the computational cost.
repeated integrations of the assimilating model and its ad-
joint (see, e.g., Courtier, 1997; Louvel, 2001); thus, its cost The first assimilation study of constituent observations
(if implemented for stratospheric constituent data assimila-Pased on 4D-Var was presented by Fisher and Lary (1995).
tion) would not be significantly lower compared to that of They used a trajectory box model with a reduced strato-
4D-Var. Second, its formalism cannot determine the analysissPheric chemistry scheme involvingzs0O, NO, NG and
error directly; rather it has to be computed from the inverseN20s. They assimilated ®and NG data from the MLS

of the Hessian matrix (again, this procedure is prohibitiveand CLAES instruments on board NASAs Upper Atmo-
sphere Research Satellite (UARS). They also performed an
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assimilation experiment using synthetic, i.e., simulated, datavhen the changes in concentration for some species are most
that showed ozone observations were able to constrain theapid.

other species. This study also introduced the concept of the Lyster et al. (1997) developed a Kalman filter system for a
influence functiorwhich, with the help of the adjoint model, two-dimensional advection model on an isentropic surface.
measures the influence of an observed species atrtime  Although particular effort was made to optimize the CPU
on other modelled species at the initial timg, time, such a system was not found to be practical due to the

Errera and Fonteyn (2001) built a 4D-Var assimilation sys-arge computer resources requiredendrd et al. (2000), us-
tem for stratospheric chemical observations. This system i4"d the same model as Lyster etal. (1997) for the assimilation
based on a three-dimensional CTM with a detailed chemicaPf CHs data, found that the standard KF formalism propa-
scheme including 41 species and 144 reactions. ObservAdlated the analysis covariance matrix inaccurately, with rapid
tions are taken from the CRISTA instrument. These includel0ss of variance and an increase in the error correlations. To
long-lived species (Ck N»O and CFC-11) and species with remedy this shortcoming, they formulated an alternative for-
relatively shorter lifetimes (§ HNOs, CIONO, and N-Os) malism to the KF system. This alternative formalism, de-
in comparison to the time-scale of the assimilation window Scribed in companion papers by&dard et al. (2000) and
(24h). Comparison with independent observations showdvénard and Chang (2000), estimates model parameters us-
good agreement for observed species (e.g. 7% for ozon8d arobust method based gR diagnostics which compares
against HALOE; less than 15% for HN@gainst ATMOS), the observation minus forecast (OmF) residuals with those
and for NG, (=NO+NOy) and HCI, two constituents that are calculated by the Kalman filter (see also Sect. 5). The method
not observed by CRISTA (in both cases less than 25% againdg Used to estimate three covariance parameters (representa-

HALOE). It was also shown that the HCI field is influenced tiveness error, model error, and initial error). Because cor-
by the assimilation of CION@observations. relation length-scale parameters are found to be insensitive

to the x 2 diagnostics, they are estimated using a maximum-

X . . . ﬁ'kelihood method. They? diagnostics have been used in
chemistry of short-lived species such as:Nabd NG, their other studies to estimate data assimilation system parame-

variability could provide information on temperature. One i - : .
. U ers; statistics from the OmF time series are also used to es-
possible application is the use of temperature as a controﬁ.
. . ) : timate these parameters.
variable in a chemical DA system. Along these lines, the 5 & . .
o : Khattatov et al. (2000) used the“ diagnostics with a
variational system built by Marchand et al. (2003, 2004) has . . e
. . three-dimensional CTM that assimilated ozone data. The
been used to extract temperature information from GOMOS - .
. multi-dimensional nature of the problem meant that some
NOj3 observations (Lahoz et al., 2007). Lo . o .
) simplification was required to comply with limitations in
The two other methods commonly used for constituentcomputer resources, both in terms of CPU and memory.
data assimilation are approximate versions of the KF, andpattatov et al. (2000) also showed that the valug dpri-
PSAS. The KF method is formulated so that the analysesnarily depends on the value of the error growth and not on
uncertainties are determined directly and can be propagateghe correlation distance. The same authors also found that
to the next assimilation time step. The PSAS set-up at thgne root-mean-square of the OmF differences is mainly sen-
GMAQ includes a method to compute an approximation ofsjtive to the correlation length in the case where the spatial
Approximate versions of the KF, and PSAS, are based on The x? diagnostics methodology has been applied suc-
the hypothesis of model linearity. Thus, the time window cessfully in stratospheric data assimilation (e.g. Chipper-
over which observations can be considered should be chosdfield et al., 2002; Fierli et al.,, 2002; Lary et al., 2003
carefully to ensure that the linearity hypothesis is satisfied.and, with some modifications, by EI Amraoui et al., 2004
Khattatov et al. (1999) provided evidence that for a strato-and Baier et al., 2005). Chipperfield et al. (2002) also
spheric photochemical box model, the linear approximationintroduced a method to constrain unobserved long-lived
essential to applicability of the EKF and 4D-Var is valid up species (e.g. pD), in which an observed long-lived species
to ~10 days. This behaviour is explained as the combination(e.g. CH,) is used to preserve a compact tracer-tracer re-
of two factors: (i) concentrations of many modelled short- lationship between both constituents. Finally, Eskes et
lived constituents are largely determined by concentrationsal. (2003) developed a KF approach to produce near-real-
of a few relatively long-lived constituents such as ozone, andime ozone analyses and five-day forecasts. To comply with
parameters such as total active chlorine or nitrogen; and (iiJimited computer resources and the constraints of an opera-
within the data assimilation set-up, linear approximations aretional service, Eskes et al. (2003) introduced several approx-
generated at every solver time step and the matrices corrémations in the KF method. For example, they used observa-
sponding to such linear transformations are multiplied to ob-tion minus forecast (OmF) statistics to estimate the horizon-
tain a matrix approximating the evolution of the system overtal error correlations, the observation errors and the forecast
a 10-day period. Due to the nature of the stiff solvers, theseerrors.
time steps vary by orders of magnitude and get very small

Because of the strong temperature-dependence of th
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As can be seen from the above examples, approximat® Evaluation of models, observations and analyses
versions of Kalman filter methods are very popular for con-
stituent assimilation. This popularity is due to their low de- Both NWP-based and chemical model data assimilation ap-
mand for computer resources in comparison to 4D-Var, agroaches (see Sects. 3 and 4) are used to evaluate models and
well as no requirements for an adjoint model. An alterna-observations, in particular concerning ozone (&@jner et
tive to approximate versions of the KF is the PSAS methodal., 2004; Geer et al., 2006a, b, 2007; Coy et al., 2007).
used at the GMAO. It has the advantage that it solves théData assimilation not only corrects weaknesses in models,
analysis in the observation space, which, for constituent asbut also identifies model deficiencies such as biases (e.g. be-
similation, is typically much smaller in size than the model tween model and observations; between different observa-
space. It thus reduces the computer resources needed. THisns), which as Rood (2005) states is likely the greatest cur-
approach is used by the Goddard Earth Observation Sysrent challenge in data assimilation. In this Sect. we provide
tem (GEOS) ozone data assimilation syst&tejner et al., further details.
2001). This system, based on a three-dimensional CTM A crucial element of data assimilation is the evaluation of
with parametrized ozone chemistry, also usestRaliag-  the quality of the observations, the model and the analyses,
nostics to estimate the system parameters. The system hasd the test of several assumptions built into data assimila-
been operational since 1999, providing stratospheric ozongon algorithms, e.g., Gaussian errors; unbiased observations
analyses using SBUV/2 and TOMStgjner et al., 2001). and models. Several diagnostics have been developed to do
Other combinations of ozone datasets have been assimilatetis (Talagrand, 2003c). Broadly speaking, these consist of:
in experimental versions of the GMAO system: SBUV/2 and self-consistency tests, and independent tests. We first discuss
POAM-III (Stajner and Wargan, 2004), SBUV/2 and MIPAS self-consistency and independent tests in general. We then
(Wargan et al., 2005); and SBUV/2, POAM-IIl and ILAS-II  provide illustrative examples of how constituent data assimi-
(Stajner et al., 2006). lation can be used to evaluate satellite instruments.
Finally, as well as considering the performance of the
NWP-based and chemical model approaches, one also neefisl  Self-consistency tests
to address the relative costs. While cost differences depend
on the complexity of different model components, one canSelf-consistency tests provide useful information for evalu-
still highlight some key factors. ating the quality of the data assimilation ingredients and the
First, it is significantly cheaper to use a transport modelassumptions built into assimilation algorithms. Histograms
than a coupled chemistry/dynamics model, if dynamicalof OmA (observation minus analysis) and OmF (observa-
fields are available already. In a test with the Met Office Uni- tion minus forecast) differences are computed for a range of
fied Model, the dynamics took25% of the total model time,  spatial and temporal scales to test whether the observations,
while advection of three tracers took 6% (A. Malcolm, per- forecast and analysis fields, and their errors, are consistent
sonal communication, 2005). The advection of a single tracewith each other. For example, the OmA histogram should
is relatively simple and cheap compared with the sophisti-be more peaked than that for OmF, as the analyses should be
cation required by the dynamics of the Met Office model. closer to the assimilated observations than the forecast. Fur-
Similarly, the cost of the univariate assimilation of a single thermore, the OmF histogram should be Gaussian, if both
constituent will be simpler and cheaper than the proportion-the observation and forecast are assumed to have Gaussian
ate cost of a dynamical variable that is treated multivariately.errors. Time averages of the standard deviation of OmA can
Furthermore, the smaller data volume of constituent observaalso be used to test whether the assimilation system is consis-
tions makes constituent data assimilation relatively cheapetent with the concept of the Best Linear Unbiased Estimate,
than data assimilation of dynamical variables (e.g. temperaBLUE (Talagrand, 2003a), introduced in Sect. 2.1. Other
ture, winds, humidity). tests check whether there are biases between observation and
On the other hand, costs of the constituent DA include theforecast, or between observation and analysis. Application of
cost of the required chemistry model. While this could be these tests is discussed in Errera and Fonteyn (28@djner
simple (or even non-existent for long-lived constituents suchet al. (2001), Struthers et al. (2002) and Segers et al. (2005).
as methane in the lower stratosphere), a complex chemicabee Fig. 2 for an example. Tests for Gaussian errors can also
model is likely to be a major component of a sophisticatedinclude tests of skewness and kurtosis (Geer et al. 2006b).
chemical DA system. While we have outlined a range of cost Time series of OmA and OmF differences test whether the
considerations, it is worth stressing that the costs are highlybservation, forecast and analysis fields, and their errors, are
dependent on the type of DA method, transport model, ancconsistent with each other. A well-behaved data assimilation
chemistry employed. system will have time series with mean OmA and OmF val-
ues that are close to zero and do not vary much over time.
If this is not true, a bias between the model and the data
(or a subset of the data) is present. Also, if the standard
deviation about the mean of the OmA time series is larger
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than the observational error, this indicates that the system - - 1 —
is not properly set up. For example, the observation and ®* ) . ’
background error covariance matricBsandB, respectively, % T o '

could be poorly characterized. Desroziers et al. (2005) sug-°2 oz
gest a simple method to evalu®eandB separately; Chap- °- 0 s U

nik et al. (2006) describe a way of quantifying errors and bi- 1

CH, N0

ases of both model and observations in the process of tunin¢*® -
a DA scheme for internal consistency. o A 0 o
Time series of OmA and OmF differences can also be usede= illll 0z %ﬁﬂh\
to monitor the performance of satellite instruments; changes * 0 5 5 0
in their values can indicate a change in the instrument al- - 1
gorithm, or a degradation of the instrument. For example, °® os "
Stajner et al. (2004) uses the OmF time series provided by the., -
GEOS ozone data assimilation system to validate the NOAA- o2 ‘ H‘ 02 li
14 SBUV/2 retrieval algorithm. Furthermore, at the start of % o s % ra— s

a data assimilation experiment, it can take some time for the
system tospin-up this spin-up time is shown by the time Fig. 2. Evaluation of analyses using histograms of OmF differences
it takes for OmA or OmF differences to converge towards a(normalized by the observation error) averaged for the stratosphere,
constant value (Struthers et al., 2002) the globe and August 2003 for six stratospheric constituents: O
. R A, . top left), H,O (top right), CH; (middle left), N,O (middle right),
Without chemistry it is difficult to identify instrument drift ( . :
using OmF and OmA differences, as drifts in the 0bserva-HNO3 (bottom left) and NQ (bottom right). The constituent ob-

. . di he f d | Zfrvations are from ESA MIPAS off-line retrievals. The frequency
tions are incorporated Into the forecasts and analyses, an the histograms is normalized by the observations, so that the sum

the differences do not change much as both forecasts ang the histogram values is 1. The black line is a Gaussian fit to the

analyses incorporate the instrument drift. With chemistry, histograms; the red line is a Gaussian fit from a model run without

however, this can be remedied as the model pulls the biasegssimilation. The results support the assumption of Gaussian er-

observations toward a more typical state (e.g. the equilibriunrors in the observations and the forecast, and show the analyses are

reference state in Eq. (3) for ozone). closer to the observations than simulations from the model run with-
Regardless of the inclusion of chemisty, instrument drifts out assimilation. The experiments were performed at BIRA-IASB

can be identified if at the same time as the assimilation is(http:/www.bascoe.oma.be).

performed, the system is monitored with independent data.

This instrument drift could be monitored with a free-running

model, but in this case it would be difficult to attribute the long-lived tracers are assimilated, the quality of the analyses

source of the drift. can be assessed through the consistency of the tracer-tracer
If the OmF differences have a Gaussian distribution, its in-correlations.

ner product normalized by its covariance is a random variable

that has g2 distribution with p degrees of freedom, where 5.2 Independent tests

p is the number of observations. This result can be used to

test whether the OmF differences are consistent with assumpFhese tests involve comparison of analyses with data that are

tions made in the assimilation algorithm, and to monitor theindependent from the analyses, i.e., data not assimilated to

observations (Mnard et al., 2000; Ehard and Chang, 2000; provide the analyses. Independent datasets used to evalu-

Stajner et al., 2004). ate ozone analyses include ozonesondes (Logan, 1999) or
If the data (observation and background) errors are Gaussatellite data which are not commonly assimilated (e.g. the

sian, the minimum of the penalty functiafyin, follows ay? UARS HALOE instrument, Russell et al., 1993). Indepen-

distribution withp degrees of freedom, and must be equal ondent data can provide information on whether the analyses

average t/2. This last result is also true if the errors are not are realistic and can help attribute biases to observations,

Gaussian, but the assimilation scheme remains linear. Thudprecast and analysis; note that self-consistency tests cannot

in these cases/min/p should on average be 0.5 (Talagrand, be used to perform this attribution. Estimating the bias in

2003c). In practice Jmin/p is often significantly different the analyses by comparison against independent data is only

from 0.5. This discrepancy can arise from an incorrect esti-possible when the error characteristics of the latter are well

mate ofB or R (mainly the representativeness error in the known. Application of these tests is discussed in Khattatov

case oR). et al. (2000), Struthers et al. (2002) and Segers et al. (2005).
Several robust correlations between pairs of long-livedSee Fig. 3 for an example.

tracers have been observed in the atmosphere (Plumb and When analyses are compared against independent data it

Ko, 1992). A particular example is the correlation betweenis important to take account of the observation characteristics

CH4 and NO (Chipperfield et al., 2002). When two or more of each dataset. This can be accomplished by making use of
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below 30% are included. The isentropic levels included in the aver-
Fig. 3. Evaluation of ozone analyses using independent data at foup9€ are 735, 900, 990, 1100, 1210, 1350 and 1510K. The standard
locations:(a) Ny Alesund (78.9 N, 11.9° E) on 27 April 1997(b) ~deviations of the isentropic means of GOMOS N&nd of mean
Payerne (463N, 7.0° E) on 25 April 1997;(c) Lauder (45.08S, a_malyseo_l NG@ are_ln(_jlcated by vertical and horizontal lines, respec-
169.7 E) on 16 April 1997; andd) South Pole (99S) on 18 April tively. With permission from Marchand et al. (2004).
1997; all plots at 12:00 UT. The analyses (stars) are compared
against ozonesonde data (line) that have not been used in the assim-
ilation. The ozone data used to initialize the assimilation are shown
as diamonds. The results show reasonable agreement between the
analyses and the ozonesondes, and the lack of influence of the ini-
tial ozone conditions after the spin-up period. Units are mPa. Withstrongly coupled to @ and NGQ. Marchand et al. (2004)
permission from Struthers et al. (2002). have assimilated GOMOS {0and NG in a photochemi-
cal box model using a variational approach. Showing good
agreement between NGrom GOMOS and the analyses,
averaging kerneinformation, which accounts for the infor- Marchand et al. (2004) validate the self-consistency of GO-
mation content, including the vertical resolution, of the ob- MOS Oz, NO, and NG measurements (see Fig. 4). Itis also
servations (Migliorini et al., 2004). This is difficult in prac- found that these GOMOS measurements are consistent with
tice, as the averaging kernel information is not always readilyour current understanding of night-time NChemistry.
supplied by the measuring instrument specifications.

In general, comparison against independent data is much wijthin the validation effort for MIPAS, Vigouroux et
more significant than comparison against the assimilated obg|. (2007) have compared MIPAS,® and HNQG with
servations. Thus, independent data are the ultimate arbiter Qfround based FTIR measurements for 2003. They use a co-
the quality of analyses. In Sect. 6.1 we discuss the qualitylocation criterion of 1000 km around ground-based stations
of humidity and ozone analyses from NWP- and CTM-basedyjithin a time interval of£3 h. In order to increase the num-
assimilation systems, based on the intercomparison of anaher of co-locations, they also use MIPAS® and HNG
yses between themselves and against independent data. @alyses produced by the Belgian Assimilation System for
also mention briefly early efforts to carry out these intercom-Chemical Observations from Envisat, BASCOE. The stan-

parisons for other stratospheric constituents dard deviation and bias between the co-located BASCOE
. analyses and FTIR observations are reduced from those be-
5.3 lllustrative examples tween the co-located MIPAS and FTIR observations. This

paper also discusses under what conditions these analyses

The use of constituent data assimilation to evaluate instrucan be considered a good proxy for MIPAS observations. In
ments is numerous. In the two examples below, data assimthe case of MO, the agreement between BASCOE analyses
ilation has been used to evaluate two scientific instrumentsind the MIPAS and FTIR data is excellent. Comparison with
onboard Envisat: GOMOS and MIPAS. FTIR shows a bias ranging from5% to +1%, and standard

GOMOS is a stellar occultation instrument that measuresdeviations ranging from 2% to 7%. Compared to the MIPAS
among other species, stratospheric night-time profileszpf O random errors (Raspollini et al., 2006), these values are not
NO, and, for the first time, N@ This last species has a significant. BASCOE appears to have more difficulty in pro-
very short life-time. During the day-time, its concentration ducing proxies for MIPAS HN®@ profiles but the estimated
is close to zero because it is photolysed in the presence dftandard deviations, less than 10% between BASCOE and
sunlight. During the night, its chemistry is very simple and FTIR, appear reasonable.
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6 Applications

In this section we provide examples of the application of
data assimilation to evaluate analyses of stratospheric con:
stituents; monitor the stratosphere; and provide ozone fore-
casts in near-real-time.

Pressure, bPa

6.1 Evaluation of analyses

B
specific humidity ppmy

Objective evaluation of analyses can be obtained by the in-
tercomparison of analyses produced using different data as
similation systems. If the systems assimilate a common ob-
servational dataset, differences between the analyses can t
attributed to differences in the models and/or the data as-
similation system. Furthermore, by confronting these anal-
yses against others and against independent data (i.e., nc
assimilated) it is possible to both gain an understanding of "% E = T

their strengths and weaknesses, and to make new develop-

ments. Finally, these intercomparisons provide more infor-Fig. 5. Monthly zonal mean specific humidity analyses for Septem-

mation (and faster) than if each participant assessed their owher 2003 for BASCOE (upper plot) and ECMWF (lower plot). MI-

system independently. PAS water vapour profiles hg\(e been qssimilated in both cases. Blue
In this section we use the analyses intercomparison apgenote§ relatlve_ly low s_pgcmc humidity _values; red denpt_es rela-

proach to assess the accuracies of humidity analyses in tht vely high specific humidity values. Units: parts per million by

stratosphere-mesosphere, Sect. 6.1.1 (Lahoz et al., 2007\5?|ume’ ppmyv. Based on Lahoz et al. (2007).

and the accuracy of ozone analyses in the stratosphere-

mesosphere, Sect. 6.1.2 (Geer et al. 2006a). Intercomparison

of analyses of stratospheric constituents other than humidity Between the tropopause-100 hPa) and 1 hPa, the zonal

and ozone are currently underway. For example, Errera emean monthly analyses for the BASCOE and ECMWF sys-

al. (2007) discusses the performance of NfDalyses using tems are reasonably similar. The BASCOE analyses show a

the BASCOE chemical model and observations from MIPASdrier UTLS region at most latitudes, whereas the ECMWF

Pressue, hPa

and GOMOS. analyses show a more distinct dry tropical tropopause re-
gion. Consequently, the vertical gradient in specific hu-
6.1.1 Accuracy of humidity analyses midity in the lower stratosphere is stronger in the BASCOE

analyses. The southern hemisphere polar vortex is drier in
The humidity analyses considered in some detail by Lahozhe BASCOE analyses. For levels above 1hPa the zonal
etal. (2007): BASCOE (CTM-based), and ECMWF and Met mean specific humidity fields vary quite considerably be-
Office (NWP-based), have varying accuracies that depend otween the two systems. In this region, the ECMWF analy-
the assimilation system, the altitude and the latitude. Fig-ses are~2ppmv (parts per million by volume) moister than
ure 5 shows the monthly mean zonal water vapour analysethe BASCOE analyses. The BASCOE analyses appear more
for September 2003 for the ECMWF and BASCOE systems realistic when compared to the UARS reference atmosphere.

The monthly mean analyses show good agreemenBASCOE analyses are5% lower than MIPAS data in the

with the UARS reference atmosphere for Septemberdower mesosphere, but the corresponding ECMWF analy-
(http://code916.gsfc.nasa.gov/Public/Analysis/lUARS/urap/ ses are~10% higher. However, the ECMWF analyses are
home.html). A number of well-known features can be seen25%—-30% too low compared to the uppermost MIPAS layer
in the stratospheric analyses from BASCOE and ECMWF.at 0.2hPa—0.1hPa. It appears that the ECMWF analyses
These include a relatively dry region above the tropicalaim to find a compromise between these conflicting biases,
tropopause and dehydration of the Antarctic winter polaras we might expect given that a vertical smoothing is im-
vortex (SPARC, 2000). The role of the Brewer-Dobson posed by the background error correlations. Most of the
circulation on the distribution of water vapour is reflected in differences between the two analyses in the upper strato-
the upward and poleward propagation of the dry air enteringsphere/mesosphere and lower stratosphere can be explained
the stratosphere through the tropical tropopause. Methanby the fact that BASCOE does not assimilate any MIPAS
oxidation is responsible for the relatively moist upper data for levels below 95 hPa and above 0.2 hPa (data outside
stratosphere and lower mesosphere (see, e.g., LeTexier et ahese regions are model generated). Influences from the tro-
1988). The Brewer-Dobson circulation transports this moistposphere and mesosphere are therefore excluded in the BAS-
air downwards within the winter hemisphere polar vortex. COE model.
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Fig. 6. Top: Mean of analysis minus HALOE differences (in percent), normalized by climatology, for the period 18 August—-30 November
2003. Bottom: Colour key for top part of figure. The numbers in brackets indicate the HALOE/analysis coincidences within each latitude
bin. Based on Geer et al. (2006a).

The Met Office has investigated the impact of varying the with the normalized specific humidity control variable has
control variable in the assimilation of MIPAS humidity data. a more reasonable lower mesospheric specific humidity, but
The objective is to develop a humidity control variable that is still too dry when compared to the MIPAS observations.
has the desirable properties that it is usable in both the troThese results are still under study.
posphere and the stratosphere; it has approximately Gaus-
sian background errors; that temperature and humidity incre6.1.2  Accuracy of ozone analyses
ments are decoupled; and that allows realistic vertical error
correlations. To achieve this, the Met Office have combinedThe accuracy of ozone analyses from NWP- and CTM-
the ideas of Dee and da Silva (2003) andlid et al. (2002), based systems is discussed in detail in the intercomparison
and defined aormalized relative humidity variable by Geer et al. (2006a). It is shown that the best perform-

ing analyses are capable of producing very good agreement

Lahoz et al. (2007) describe three different experiments bywith ozonesonde, HALOE and MIPAS ozone data. From
the Met Office where the humidity control variable is either the lower stratosphere to the lower mesosphere (100 hPa to
relative humidity (RH), normalized RH or normalized spe- 0.5 hPa), these analyses show biases lessiti@fo with re-
cific humidity. All three experiments show fairly reasonable spect to HALOE ozone data and ozonesondes. Standard de-
specific humidity profiles for levels below 5 hPa. However, at viations can be less than 10% above 50 hPa and less than 20%
higher levels the fit to the MIPAS observations is less good,in the lower stratosphere (100 hPa to 50 hPa). This shows
with the analyses being consistently too dry. The experimenthat current assimilation techniques are capable of producing
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ozone analyses that have good agreement with independei#t thought to have helped reduce the analysed strength of the
data (see Fig. 6). These results are contingent upon the god8rewer-Dobson circulation.
quality of the assimilated ozone dataset: Dethof (2003) and Finally, several papers (Levelt et al., 1998; Chipperfield
Wargan et al. (2005) have already shown the benefits of Ml-et al., 2002; Juckes, 2006, to name a few) show analysed
PAS ozone over operational observations such as SBUV/2. constituent datasets that are closer to independent data than
The enhanced skill of the best performing analyses carthe assimilated observations or the simulated fields, thereby
usually be attributed to better modelling of ozone chem-providing evidence that the DA method can add value to
istry or transport processes. The worse performing Systemgonstituent information, either from observations or from
could often be easily improved by following similar mod- @ model. Jackson (2007) shows that assimilation of EOS
elling techniques. For example, this can apply to regionsMLS ozone data reduces mean analyses errors in the lower
where there are limitations with the ozone data assimilatedStratosphere.  Compared to control simulations where no
where as shown by Geer et al. (2006a), CTMs and GCMsPZone data are assimilated, mean errors (evaluated against
with chemistry generally do better. The intercomparison HALOE ozone data) dropped by 5%-25% in the South-
finds few differences that can be attributed to the assimila€rn Hemisphere extra-tropics, and $¥10% in the North-
tion technique or the model used (GCM or CTM). It would €rn Hemisphere extra-tropics; mean errors (evaluated against
require focused experiments, rather than an intercomparisorfzonesondes) dropped b¥%0% in the tropical UTLS.
to reveal such differences. Overall, the study by Geer et Along these lines, Struthers et al. (2002) demonstrate that
al. (2006a) shows that the first priority for ozone data assimihe combined assimilation of UARS MLS ozone profiles
ilation systems is to improve the modelling of ozone chem-and GOME total column ozone gives analysed constituent
istry and transport. datasets that are closer to independent data than either of the
analyses derived from the assimilation of UARS MLS ozone

analyses has highlighted the importance of observational anaroﬁlgs, or of GOME total column ozone. Thus, n this case,
model bias in DA. Besides providing information on obser- combined assimilation has added value to the single assim-

vational bias, DA can provide information on, and be af“fected'lat'On of these ozone datasets. Note, _howev_er, ‘h"?“ th.'s IS
by, model bias. For example, Geer et al. (2006b) usingnot always the case, as there could be inconsistencies in the

the Met Office Unified Model, found that vertical transport assimilation system, for instance in the treatment of biases
of ozone in the tropical pipe, and transport in the Brewer-(FéOOd’ 2.005)2 Thus, Fhere 'g‘ Scope for_l|m_provmg the use of
Dobson circulation, is much too fast as a result of known® servations in constituent data assimitation.

problems in the tracer transport scheme. This was manifesteg
in that ozone forecasts above the ozone peak (10 hPa) tended

to be biased high against the MIPAS values (negative OmFMonitoring the stratosphere is done routinely by satellite in-

values)z and ozone fqrecasts around the ozone pgak tend%gruments in order to track the evolution of the stratospheric
to be biased low against the MIPAS values (positive Ochomposition mainly ozone and the gases that destroy it

values). (WMO, 2006). Currently, products from different data as-
The Brewer-Dobson circulation is also degraded by prob-sjmilation groups are used to help this monitoring effort and
lems with the assimilation of dynamical variables (Douglassassess protocols.
et al., 2003; Schoeberl et al., 2003; Tan et al., 2004). This EcMWE use their NWP operational system to monitor
reflects that it is very hard for DA to handle slow processes,gateliite 0zone data by passive data assimilation, i.e., the
on timescales much longer than typical assimilation cyclesg,one data are passed through the assimilation system and
Problems with stratospheric tracer transport are seen in Manyyaluated, but are not allowed to affect the analyses. For
DA systems (Oikonomou and O'Neill, 2006), and this re- example, Dethof (2004) describes the monitoring of ozone
mains a major focus of investigation. profiles from the MIPAS and GOMOS instruments, and to-
Work by Monge-Sanz et al. (2007) shows that ECMWF tal column ozone from the SCIAMACHY instrument. As of
ERA interim re-analyses (ECMWF 2007) can be used toOctober 2007, ECMWEF assimilate operationally total ozone
provide realistic stratospheric transport over multi-annualcolumns from SCIAMACHY and partial ozone columns
timescales with an off-line CTM; in particular, the CTM’s from SBUV/2 on NOAA-16 (R. Dragani, personal communi-
age of airagrees reasonably well with observations. The im-cation, 2007). In an experimental suite, they also actively as-
provement, in comparison with forcing the CTM with ERA- similate partial columns of ozone from SBUV/2 on NOAA-
40 reanalyses or troposphere-stratosphere analyses from tig and NOAA-18, and monitor passively OMI total column
Met Office, is attributed mainly to the use of 4D-Var (which ozone, GOMOS ozone profiles, and total column ozone from
uses observations at their correct time) and an improved balthe 9.7 micron channel of SEVIRI on MSG-9 (R. Dragani,
ance operator, together leading to more balanced flow angiersonal communication, 2007). If the monitored data prove
reduced mixing in the subtropics. In addition, an improved satisfactory, they are moved to active assimilation into the
implementation of the bias correction of satellite radiancesECMWF operational system, and thus are allowed to affect

The work of Geer et al. (2006a, b) on the quality of ozone

2 Stratospheric Ozone Monitoring
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the meteorological analyses (as well as the ozone analysedal column ozone measurements from the ESA instruments
For example, it is expected that once the evaluation of re-GOME and SCIAMACHY, and the NASA instrument OMI.
sults from this experimental suite is satisfactory, ECMWF GMAO products are based on TOMS total column ozone
will start to assimilate operationally partial ozone columnsand SBUV/2 partial column ozone measurements. The
from SBUV/2 on NOAA-17 and NOAA-18. ECMWEF system is based on its NWP system, and includes
NCEP have set up an operational ozone monitoring andgparametrized ozone chemistry. The KNMI and GMAO sys-
forecasting system within the NCEP Global Forecasting Systems are based on CTMs with parametrized ozone chemistry
tem (GFS). They use the CHEM2D-OPP chemistry moduleforced by off-line winds and temperature from, respectively,
(McCormack et al., 2006). As of September 2007, the systhe ECMWF and GEOS models. Ozone forecasts are pro-
tem assimilated several ozone products, including SBUV/2duced using the wind and temperature forecasts from the
partial ozone columns from NOAA-16 and NOAA-17, and ECMWF and GEOS models.
total column ozone from OMI (Long et al., 2007). BIRA-IASB also set up an ozone forecasting service us-
Since 2000, KNMI produce near real time total ozone as-ing the BASCOE system (http://www.bascoe.oma.be). The
similation (Eskes et al., 2003). This system is constrainedsystem is based on a CTM with full chemistry and a scheme
by total ozone observations provided by a variety of satellitethat explicitly calculates the microphysics of PSCs. The con-
instruments (GOME, SCIAMACHY or OMI, depending on straining observations are MIPAS near real time ozone pro-
the time period) and has delivered global maps of total ozondiles as well as five other chemical species gN®INOs,
since August 1995 (http://www.temis.nl). This database isN20, CHs and H0). In addition to ozone ten-day forecasts,
being used to evaluate the change of total ozone since ththis service also produced forecasts of GIQI>0, HNO;
1960s (WMO, 2006). and CIONG volume mixing ratio, and PSC surface area den-
Stratospheric constituent assimilation using a full chem-sity. This service was operational for one and a half years,
istry model and 4D-Var is underway at DLR and BIRA- and ended in March 2004 when delivery of MIPAS near real
IASB. In the framework of the ESA-funde®@ROMOTE  time profiles was interrupted due to problems with the MI-
project, these two institutions will provide re-analyses of PAS instrument. This difficulty with the MIPAS instrument
stratospheric ozone from 1992 (i.e., soon after the launch ohighlights the weakness of using near real time products from
the UARS satellite) to the present, using ozone data from diffesearch instruments for operational services.
ferent sensors (see tiiratospheric Ozone Profile Record  Eskes et al. (2002) estimate that useful ozone forecasts
project, http://www.gse-promote.org for more details). In can be obtained up to about one week for the extra-tropics
addition to ozone, they expect to provide analyses of sevwith the KNMI system. In the tropics, the forecast skill is
eral parameters related to ozone chemistry: ,CI®O,,  less good (useful forecasts outt® days) due, mainly, to
PSCs, ozone depletion rate and, Qlotal available chlo-  the lack of tropospheric chemistry in the KNMI CTM. Two
rine). These re-analyses and analyses will be used by inexamples illustrate the skill of the KNMI system. The first
ternational organizations such as SPARC (Stratospheric Prgsoncerns low ozone events that are observed during winter
cesses And their Role in Climate) in the framework of the over the Atlantic and Northern Europe, and last for 1-2 days
Chemistry-Climate Model Validation (CCMVal) and WMO- (Orsolini and Nikulin, 2006). These events are due to dy-
GAW (World Meteorological Organization - Global Atmo- namical transport of low ozone from the subtropics to the
spheric Watch) projects to assist in the evaluation of compli-€xtra-tropics. For these events, five-day ozone forecasts are

ance with the Montreal protocol. found to be qualitatively good; three-day forecasts are found
to be quantitatively equivalent to the analyses, the latter being
6.3 Ozone forecasting close to the observations (GOME total column ozone). The

second example concerns the Antarctic polar vortex split of
Ozone forecasts are useful for predicting high UV-flux September 2002. During this unprecedented event, associ-
events. They can be used to warn populations near thated with a stratospheric warming (Eskes et al., 2005), the
Antarctic when the ozone hole moves above these areas afortex split into two parts before decaying. As a result of
to warn populations near the Arctic when low ozone eventsthis, the ozone hole also split into two parts. Figure 7 shows
(also known as ozone mini-holes) occur above these areashe ozone total column on 26 September over Antarctica cal-
They can also be used to plan observation campaigns. Ozorsulated by the KNMI analysis and 5-day, 7-day and 9-day
forecasts are operational at ECMWF since 2002 (Dethofforecasts of the total ozone column. The analysis for this
2003), and operational at KNMI and GMAQ since, respec-day shows the ozone hole split with two distinct regions of
tively, 2000 (Eskes et al., 2003) and 199%gjner et al., low total column ozone (values less than 200 DU). For this
2001). event, forecasts out to seven days perform well, and differ-
The ECMWF products have been based on different ozonences from the analyses are small. The nine-day forecast
datasets, depending on their availability (see Sect. 6.2 focaptures elements of the ozone hole split.
the status of operational ozone assimilation at ECMWF These two cases highlight the maturity of the KNMI ozone
on October 2007). The KNMI products are based on to-forecast service. However, the high accuracy of the fore-

Atmos. Chem. Phys., 7, 5745-5773, 2007 www.atmos-chem-phys.net/7/5745/2007/


http://www.temis.nl
http://www.gse-promote.org
http://www.bascoe.oma.be

W. A. Lahoz et al.: Stratospheric constituent data assimilation 5767

= °6 Sep 2002
D+9

26 Sep 2002
+5

Fig. 7. Total column ozone on 26 September 2002, provided by the KNMI operational ozone assimilation system. From left to right: 9-day,
7-day, 5-day forecasts, and the corresponding analysis. With permission from Eskes et al. (2005).

casts would not have been possible without high quality dy-the PROMOTE project (http://www.gse-promote.org), one

namical fields, in this case from ECMWF. The success ofof the GMES service elements set up by ESA. PROMOTE

the KNMI forecasts shows that the underlying dynamicalis a user-oriented project, which aims to use the assimila-

processes were well captured by the ECMWF NWP systention of constituent data to provide services on global ozone,
(Simmons et al., 2005). greenhouse gases and air quality.

Another area of increasing importance will be the relation-

o ship between chemistry and climate. While this is naturally

7 Future directions mainly the focus of coupled chemistry-climate GCMs (see

. . S yring et al., 2006, and references therein), it does increase
Stratospheric constituent data assimilation has developed’ . S Y .
. ” e importance of the compilation of assimilated constituent
enormously during the last 15 years to a position where

incorporation of constituents in NWP (especially 0zone) data for the study of recent climate variations and evalua-
. Pe P ] y gon of climate simulations; climate/chemistry interactions
is routine. Two approaches have been used: GCM-base

NP models and Shemical modsis, ever CTs or pho- 15 1 S7e 1 i Svers o e deveopment
tochemical box models. Recently, the NWP and CTM ap P d y :

A “inclusion of in th ERA-40 re-analysis (Dethof
proaches have started to be combined in coupled NWP/CTI\)InC usion ol ozone In the recent_ 0 re-analysis (Det 0
dat milation in collaboration between Environm ntand Holm, 2004) illustrates the importance of these consid-
ata assimriation, €.9., In cotlaboration betwee ONMEN% rations. The EC and ESA initiative on GMES illustrates the

Canada, other Canadian partners and BIRA-IASB, where

. i perceived importance on more general environmental mon-
the Canadian GEM-strato GCM is coupled to the BASCOE .. _ . . .
CTM: early results are promising @hard et al., 2007). itoring. The ECMWF-ledGEMS project (Hollingsworth,

The CMAM data assimilation set-up at Met Service Canadazoos)’ part of GMES, illustrates the widening scope of data

(MSC) described by Polavarapu et al. (2005, b) uses aGCI\7’ilssimilation to include not just atmospheric dynamics but a

. : ; idening range of atmospheric constituents.
\év;tsrlefrl:]" chemistry and can also be described as a coupledN In developing further constituent data assimilation for the

. . ._stratosphere, choices will have to be made concerning issues
These approaches to stratospheric constituent data assimi- P g

. : X : h h f model, th mplexity of the chemistr
lation have benefited from collaboration between operatmnaF'uc ast e.type of model, the co Piex ty'o the chemistry
L . . ; ; .. component in the model and the assimilation set-up. These
and research institutions to identify shortcomings in the dif- __ . . o
L ol choices will depend on the application (Lahoz, 2006). Chal-
ferent assimilation approaches, for example within the EU-

. lenges concerning issues such as bias, what datasets to as-
funded_ ASSET pro_Ject (LahOZ et al., 2007) and the ASSI.ETsimiIate, the need for ancillary datasets (e.g. aerosol infor-
ozone intercomparison project (Geer et al., 2006a). The im-

NPT . .__mation), representation of the model physics and chemistry,
portance of maintaining and developing these collaborat|on§he suitability of the NWP approach. and the nature and evo-
has been noted (McLaughlin et al., 2005). Y bp '

Key drivers in constituent data assimilation for the future lution of the Global Observing System will have to be tack-
Y . . . led. Insights gained in stratospheric constituent data assim-
are likely to include the need to monitor the environment

(e.g. stratospheric ozone: tropospheric pollution); the neeélation will also help inform the challenges in tropospheric
9 phel 1, troposp P ' constituent data assimilation (Eskes, 2006).
to comply with international treaties such as the Montreal

protocol; and the need to comply with environmental leg-
islation concerning, e.g., air quality. This is illustrated by
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Appendix A

Definition of acronyms

ADEOS:
AIRS:
ASSET:
ATMOS:
ATOVS:
BASCOE:

BIRA-
IASB:

BLUE:
CCMVal:
CLAES:
CMAM:
CRISTA:

CTM:
DA:
DARC:
DLR:
DU:

EC:
ECMWEF:

EKF:
EnKF:
EOS:
EOS MLS:
ERA:
ESA:
FGAT:
FTIR:
GCM:
GEOS:
GEMS:

GEM-
strato:
GMAO:
GMES:
GOME and
GOME-2:
GOMOS:
HALOE:
HIRS:
IASI:
IGACO:

ILAS:
KF:
KNMI:
LIMS:
MIPAS:

MLS:
MSC:
MSG:
NASA:
NCAR:
NCEP:

ADvanced Earth Observing Satellite
Atmospheric InfraRed Sounder

ASSimilation of Envisat daTa

Atmospheric Trace MOlecule Spectroscopy
Advanced TOVS

Belgian Assimilation System for Chemical Obser-
vations from Envisat

Belgisch Instituut voor Rimte

Aeronomie — Institut d'/&ronomie Spatiale de
Belgique

Best Linear Unbiased Estimate
Chemistry-Climate Model Validation

Cryogenic Limb Array Etalon Spectrometer
Canadian Middle Atmosphere Model

CRyogenic Infrared Spectrometers and Tele-
scopes for the Atmosphere

Chemistry-Transport Model

Data Assimilation

Data Assimilation Research Centre, UK
Deutsches zentruniif Luft-und Raumfahrt
Dobson Units

European Commission

European Centre for Medium-range Weather
Forecasts

Extended KF

Ensemble KF

Earth Observing System

EOS Microwave Limb Sounder

ECMWEF Re-Analysis

European Space Agency

First Guess at the Appropriate Time

Fourier Transform InfraRed

General Circulation Model

Goddard Earth Observing System

Global Earth system Monitoring using Space and
in-situ data

Global Environmental Multiscale (this model in-
corporates the stratosphere)

Global Modeling and Assimilation Office

Global Monitoring for Environment and Security
Global Ozone Monitoring Experiment

Global Ozone Monitoring by Occultation of Stars
HALogen Occultation Experiment

High resolution Infrared Radiation Sounder
Infrared Atmospheric Sounding Interferometer
Integrated Global Atmospheric Chemistry Obser-
vations

Improved Limb Atmospheric Spectrometer
Kalman Filter
Koninklijk Nederlaands Meteorologisch Instituut
Limb Infrared Monitor of the Stratosphere
Michelson Interferometer for Passive Atmo-
spheric Sounding

Microwave Limb Sounder

Met Service Canada

Meteosat Second Generation

National Aeronautics and Space Administration
National Center for Atmospheric Research
National Centers for Environmental Prediction
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NCEP GFS: NCEP Global Forecasting System

NMC: National Meteorological Center

NOAA: National Oceanic and Atmospheric Administra-
tion

NWP: Numerical Weather Prediction

Ol: Optimal Interpolation

OmA: Observation minus Analysis

OmF: Observation minus Forecast

OMI: Ozone Monitoring Instrument

OSSE: Observing System Simulation Experiment

POAM: Polar Ozone and Aerosol Measurement

PROMOTE: PROtocol MOniToring for the GMES service El-
ement

PSAS: Physical-space Statistical Analysis Scheme

PSC: Polar Stratospheric Cloud

RH: Relative Humidity

RT: Radiative Transfer

SBUV/2: Solar Backscatter Ultra-Violet/2

SCIAMACHY: Scanning Imaging Absorption spectrometer for
Atmospheric CHartographY

SEVIRI: Spinning Enhanced Visible and InfraRed Imager

SMR: Sub-Millimeter Radiometer

SPARC: Stratospheric Processes And their Role in Cli-
mate

SSMII: Special Sensor Microwave/lmager

TIROS: Television InfraRed Observation Satellite

TOMS: Total Ozone Mapping Spectrometer

TOVS: TIROS Operational Vertical Sounder

UARS: Upper Atmosphere Research Satellite

UKMO: UK Meteorological Office

UTLS: Upper Troposphere/Lower Stratosphere

uv: UltraViolet

Var: Variational

WMO-GAW: World Meteorological Organization — Global At-

mospheric Watch
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