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Abstract. The Tropical Forest and Fire Emissions Exper-
iment (TROFFEE) used laboratory measurements followed
by airborne and ground based field campaigns during the
2004 Amazon dry season to quantify the emissions from
pristine tropical forest and several plantations as well as
the emissions, fuel consumption, and fire ecology of trop-
ical deforestation fires. The airborne campaign used an
Embraer 110B aircraft outfitted with whole air sampling in
canisters, mass-calibrated nephelometry, ozone by UV ab-
sorbance, Fourier transform infrared spectroscopy (FTIR),
and proton-transfer mass spectrometry (PTR-MS) to mea-
sure PM10, O3, CO2, CO, NO, NO2, HONO, HCN, NH3,
OCS, DMS, CH4, and up to 48 non-methane organic com-
pounds (NMOC). The Brazilian smoke/haze layers extended
to 2–3 km altitude, which is much lower than the 5–6 km ob-
served at the same latitude, time of year, and local time in
Africa in 2000. Emission factors (EF) were computed for
the 19 tropical deforestation fires sampled and they largely
compare well to previous work. However, the TROFFEE
EF are mostly based on a much larger number of samples
than previously available and they also include results for
significant emissions not previously reported such as: nitrous
acid, acrylonitrile, pyrrole, methylvinylketone, methacrolein,
crotonaldehyde, methylethylketone, methylpropanal, “acetol
plus methylacetate,” furaldehydes, dimethylsulfide, and C1-
C4 alkyl nitrates. Thus, we recommend these EF for all trop-
ical deforestation fires. The NMOC emissions were∼80%
reactive, oxygenated volatile organic compounds (OVOC).

Correspondence to: R. J. Yokelson
(bob.yokelson@umontana.edu)

Our EF for PM10 (17.8±4 g/kg) is∼25% higher than previ-
ously reported for tropical forest fires and may reflect a trend
towards, and sampling of, larger fires than in earlier studies.
A large fraction of the total burning for 2004 likely occurred
during a two-week period of very low humidity. The com-
bined output of these fires created a massive “mega-plume”
>500 km across that we sampled on 8 September. The mega-
plume contained high PM10 and 10–50 ppbv of many reac-
tive species such as O3, NH3, NO2, CH3OH, and organic
acids. This is an intense and globally important chemical
processing environment that is still poorly understood. The
mega-plume or “white ocean” of smoke covered a large area
in Brazil, Bolivia, and Paraguay for about one month. The
smoke was transported>2000 km to the southeast while re-
maining concentrated enough to cause a 3–4-fold increase in
aerosol loading in the S̃ao Paulo area for several days.

1 Introduction

Biomass burning and biogenic emissions are the two largest
sources of volatile organic compounds (VOC) and fine par-
ticulate carbon in the global troposphere. Tropical forests
produce about one-third of the global biogenic emissions and
tropical deforestation fires account for much of the global
biomass burning (Andreae and Merlet, 2001; Kreidenweis et
al., 1999; Guenther et al., 1995, 2006). Recent estimates of
the total amount of biomass burned globally vary from about
5 to 7 Pg C/y (Andreae and Merlet, 2001; Page et al., 2002).
The contribution of tropical deforestation fires to total global
biomass burning has been estimated as 52% (Crutzen and
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Fig. 1. The TROFFEE flight tracks and the locations of the fires
sampled.

Andreae, 1990), 34% (Hao and Liu, 1994), and 15% (An-
dreae and Merlet, 2001). Thus, factors of 2–3 uncertainty
need to be resolved, but these fires consistently emerge as
one of the three major types of burning along with savanna
fires and domestic biofuel use. A large uncertainty in the es-
timated area burned is due to uncertainties in remote sens-
ing applications. For example, it is unclear if small fires
or understory fires can be quantified from space (Brown et
al., 2006), and many fires can be missed from space due
to cloud cover, which is common over tropical forested re-
gions. Deforestation fires facilitate land-use change, which
alters the biogenic emissions. Thus, to understand regional-
global atmospheric chemistry and assess the long-term im-
pact of land-use change, we must thoroughly characterize the
smoke emissions from these fires and the different biogenic
emissions produced by the primary forest and the various an-
thropogenic “replacement” ecosystems.

The Tropical Forest and Fire Emissions Experiment
(TROFFEE) provided emissions measurements for tropical
deforestation fires and tropical vegetation. An overview of

TROFFEE follows. A laboratory experiment was carried
out before the field campaigns that intercompared proton-
transfer reaction mass spectrometry (PTR-MS), open-path
Fourier transform infrared spectroscopy (FTIR), and gas
chromatography (GC) coupled to PTR-MS (GC-PTR-MS)
on 26 fires burning tropical fuels. The laboratory work
helped plan the PTR-MS sampling protocol for the field
campaign and instrumentation was available to quantify
some particle characteristics not measured in the field. The
GC-PTR-MS measured the branching ratios for fire-emitted
species that appear on the same mass channel. The labora-
tory fire and intercomparison results are presented elsewhere
(Karl et al., 2007a; Christian et al., 2007a1).

The TROFFEE field campaigns were in Brazil since it has
the most tropical forest and the most deforestation fires. The
ground-based field campaigns included measurements of
biogenic emissions from pristine forest near Manaus (Fig. 1)
(Karl et al., 2007b). The ground campaign also included
FTIR emissions measurements on initially-unlofted plumes
from 9 biomass fires in the vicinity of Alta Floresta (Fig. 1).
These plumes were due to residual smoldering combustion at
deforestation sites or pasture maintenance burns or they were
from charcoal kilns, cooking fires, burning dung, etc. This el-
ement of TROFFEE was motivated by indications from pre-
vious field campaigns that initially, unlofted biomass burn-
ing plumes might contribute a large portion of the total re-
gional emissions (Kauffman et al., 1998; Reid et al., 1998).
The results for unlofted plumes and biofuels are described
by Christian et al. (2007b). The ground campaign fires in-
cluded a planned fire in which Brazilian researchers carried
out a “typical” deforestation burn under conditions where the
fuel consumption and other aspects of fire ecology could be
measured. The emissions from this planned fire were mea-
sured by the ground-based FTIR and in the TROFFEE air-
borne campaign (described next).

The TROFFEE airborne campaign (Fig. 1) consisted of
44.5 flight hours between 27 August and 8 September of
2004 on an Embraer Bandeirante operated by the Brazil-
ian National Institute for Space Research (Instituto Nacional
de Pesquisas Espaciais (INPE)). The major instruments de-
ployed on the aircraft included: (1) real-time ozone, con-
densation particle counter, and mass-calibrated nephelome-
try (University of S̃ao Paulo); (2) PTR-MS (National Center
for Atmospheric Research); (3) Whole air sampling in can-
isters with subsequent GC analysis using flame ionization,
mass selective, and electron capture detection (FID, MSD,
and ECD; University of California at Irvine); and (4) airborne
FTIR (University of Montana). This suite of instruments was
well suited for measuring CO2, CO, PM10, CH4, NOx, O3,

1Christian, T. J., Karl, T. G., Yokelson, R. J., Guenther, A., and
Hao, W. M.: The tropical forest and fire emissions experiment: Lab-
oratory fire measurements and synthesis of campaign data, Atmos.
Chem. Phys. Discuss., in preparation, 2007a.
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Table 1. Location and characteristics of fires sampled from the INPE Bandeirante aircraft during TROFFEE 2004 airborne campaign.

Source location

Date Lat Long time period sampled Fuels observed from aircraft
Fire name dd/mm dd.ddd dd.ddd LT LT

29 Aug Fire 1 29/08 −10.270 −52.159 13:41:54 14:17:10 slash under partial canopy
29 Aug Fire 2 29/08 −10.357 −52.019 14:30:37 14:43:30 Pasture
30 Aug Fire 1 30/08 −11.315 −54.064 12:56:51 13:00:45 grass and slash piles under partial canopy
30 Aug Fire 2 30/08 −11.459 −54.062 13:04:18 13:13:37 grass and slash piles under partial canopy
30 Aug Fire 3 30/08 −11.479 −54.088 13:20:14 13:20:55 grass and slash piles under partial canopy
30 Aug Fire 4 30/08 −11.491 −54.058 13:29:06 13:36:56 grass and slash piles under partial canopy

SC Fire 30/08 −11.488 −53.458 14:36:25 14:43:59 mixed forest fuels
31 Aug Fire 1 31/08 −11.282 −54.185 13:08:58 13:25:01 mixed forest fuels
31 Aug Fire 2 31/08 −11.183 −54.131 13:30:55 13:44:52 mixed forest fuels
3 Sept Fire 1 03/09 −9.224 −51.918 13:23:32 13:39:36 mixed forest fuels
3 Sept Fire 2 03/09 −9.167 −51.798 13:37:00 13:37:08 mixed forest fuels
3 Sept Fire 3 03/09 −9.311 −51.861 13:52:24 14:02:22 mixed forest fuels
3 Sept Fire 4 03/09 nm 14:13:48 14:14:16 source/fuels not observed from aircraft
3 Sept Fire 5 03/09 nm 13:22:41 13:22:54 source/fuels not observed from aircraft
Planned Fire 05/09 −9.969 −56.345 14:16:42 14:51:08 mixed forest fuels
7 Sept Fire 1 07/09 −3.007 −8.930 11:49:39 11:56:42 mixed forest fuels
7 Sept Fire 2 07/09 −3.011 −58.946 12:01:13 12:01:29 mixed forest fuels
7 Sept Fire 3 07/09 −3.129 −59.056 12:04:50 12:05:58 mixed forest fuels
7 Sept Fire 4 07/09 −3.137 −59.147 12:06:46 12:07:36 mixed forest fuels
Mega-plume 08/09 nm ∼11:00 ∼12:30 source/fuels not observed from aircraft

and>40 non-methane organic compounds (NMOC) includ-
ing the important biogenic emissions isoprene and methanol.

In phase 1, the aircraft was based in Alta Floresta, Mato
Grosso in the southern Amazon (9.917 S, 56.017 W, Fig. 1)
from 27 August–5 September where the local dry/burning
season was well underway. Regional haze due mostly to
diluted biomass-burning smoke of unknown age and the
nascent (minutes-old) emissions from 15 fires (mostly de-
forestation fires) were sampled in the states of Mato Grosso
and Paŕa within about one-hour flight time (∼300 km) of Alta
Floresta.

In phase 2, the aircraft was based in Manaus, Amazonas
(3.039 S, 60.050 W, Fig. 1) from 5–8 September. The lo-
cal dry season was just beginning there and the air was
much cleaner and mostly unaffected by fires; especially in
the mornings. The biogenic emissions were sampled from
forests, several plantations east of Manaus, and the pris-
tine forest at the ZF-14 tower north of Manaus. The results
are discussed and integrated with the ground-based biogenic
measurements by Karl et al. (2007b). In addition, four more
fires were sampled around noon in the Manaus region. On 8
September from 8–13◦ S we sampled a smoke plume hun-
dreds of km wide that contained the combined emissions
from a huge number of fires. These fires represented a sig-
nificant fraction of the total Amazon burning for 2004 and
they generated a “mega-plume,” which we discuss in detail
in Sect. 3.4. All the fires sampled are listed in Table 1. The

TROFFEE flight tracks and individual fires are mapped in
Fig. 1. A more detailed map of the 6–7 September flights is
given by Karl et al. (2007b).

The fire component of TROFFEE is covered in four ini-
tial papers. The lab fire results and the chemistry and im-
pact of unlofted smoke not amenable to airborne sampling
are covered in two papers (Christian et al., 2007a1, b). Karl
et al. (2007a) present the instrument intercomparison and
the emission ratios of many VOC to acetonitrile, which is
thought to be mostly emitted by biomass burning. The main
focus of this paper is to provide background on the region and
experiment and to detail the airborne measurements of fire
emission factors, which are needed as model input and for
bottom-up emissions estimates at any scale. Some aspects
of the airborne measurements in clean air (relatively unaf-
fected by fires) and haze (dilute/aged smoke) are also given
to clarify the regional atmospheric conditions and make our
fire-sampling strategy clear.

A major goal of all the TROFFEE fire research was com-
prehensive sampling of reactive species as close as possible
to the source. The rationale for this is given next. Much
of the initial interest in fires focused on the climate forc-
ing. In fact, in El-Nĩno years, the carbon added to the at-
mosphere by biomass burning may exceed that from fossil
fuels (Page et al., 2002). The CO2 due to tropical deforesta-
tion alone may cause an average annual amount of warming
that is 20–60% of that caused by the CO2 from all global
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industry (Crutzen and Andreae, 1990) and fires emit more
other greenhouse gases (GHG) per CO2 than fossil fuel use
(Christian et al., 2003). Photochemical processing of fire
emissions was shown to produce O3 (Fishman et al., 1991;
Andreae et al., 1994), an important GHG (Prather et al.,
1994). Particles emitted by fires were found to cause neg-
ative forcing both directly (Hobbs et al., 1997) and indirectly
by reducing cloud droplet sizes and increasing cloud albedo
(Kaufman and Fraser, 1997).

In recent years, the reactivity and the rapid post-emission
chemistry of smoke have attracted increasing attention. Early
laboratory and field studies of biomass burning had concen-
trated on measuring the emissions of CO2, CO, NOx, and
hydrocarbons (Lobert et al., 1991; Blake et al., 1996; Ferek
et al., 1998), but later laboratory work showed that 60–80%
of the NMOC emissions from fires were actually highly reac-
tive, oxygenated VOC (OVOC) (Yokelson et al., 1996, 1997;
Holzinger et al., 1999). The dominance of NMOC emissions
by OVOC was then confirmed for all of the major types of
biomass burning except tropical forest fires: e.g. savannas,
biofuels, agricultural waste, peat, and boreal forest (Goode et
al., 2000; Christian et al., 2003; Bertschi et al., 2003a). In ad-
dition, field measurements of rapid changes in smoke plume
chemistry became available (Goode et al., 2000; Yokelson
et al., 2003a; Hobbs et al., 2003). Detailed photochem-
ical smoke models reproduced the observed O3 formation
rate in only some cases and were unable to predict the ob-
served formation of other species such as acetone and acetic
acid (Mason et al., 2001; Jost et al., 2003; Tabazadeh et al.,
2004; Trentmann et al., 2005). Sensitivity analysis showed
that model performance was significantly enhanced by us-
ing more complete information on the initial NMOC (mostly
OVOC) emissions. About 80% of biomass burning occurs in
the tropics, which govern the oxidizing power of the global
troposphere (Crutzen and Andreae, 1990). Fires are a major
source of CO (the main sink of OH), but the large quantities
of OVOC emitted by fires, and the secondary O3, are HOx
(OH+HO2) precursors and important oxidants (Finlayson-
Pitts and Pitts 1986; Singh et al., 1995). Thus there was a
critical need for the first-ever data on OVOC emissions from
tropical deforestation fires.

2 Experimental details

2.1 Instrument details

2.1.1 Airborne FTIR (AFTIR) and whole air sampling in
canisters

The basic design and operation of the AFTIR system has
been described in detail by Yokelson et al. (1999, 2003a, b).
A summary description is given here followed by the details
of how AFTIR was used to fill canisters. The AFTIR has a
dedicated, halocarbon-wax, coated inlet that directs ram air

through a Pyrex, multipass cell. Infrared spectra of the cell
contents are acquired continuously (every 0.83 s) throughout
each flight and the flow-control valves are normally open,
which flushes the cell with outside air every 2–4 s. The fast-
acting flow control valves allow the system flow to be tem-
porarily stopped for signal averaging and improved accuracy
on “grab samples.” The IR spectra are later analyzed to quan-
tify the compounds responsible for all the major peaks. This
accounts for most of the trace gases present in the cell above
5–20 ppbv (Goode et al., 1999).

For TROFFEE, a Teflon valve was added to the AFTIR
cell that connected to two options for filling evacuated can-
isters. For a canister sample of a plume, we used a teflon-
diaphragm pump to pressurize the can with gas from the
AFTIR cell, which already contained a grab sample of the
plume. Pressurizing the cans allows more sensitive and/or a
wider variety of analyses and also prevents contamination in
the event of a slow leak. Operationally-simpler canister sam-
ples of background air were obtained by diverting a portion
of the flow through the AFTIR cell into the cans. The .635
cm outside diameter Teflon tubing connecting to the canisters
had a pressure higher than the cabin pressure and attached to
the can with Ultra-Torr® fittings. We flushed the connecting
tubing with cell air by loosening the fitting for a few min-
utes. Once the fitting was retightened the pre-evacuated can
was opened and filled to cell pressure within seconds. The
filling time of each can was shown by a sharp, (logged) pres-
sure response in the AFTIR cell. The canisters were later
analyzed at UCI using GC/FID-MSD-ECD (Colman et al.,
2001).

2.1.2 IR spectral analysis

Mixing ratios for H2O, CO2, CO, and CH4 were obtained
by multicomponent fits to sections of the IR transmission
spectra with a synthetic calibration non-linear least-squares
method (MALT 5.2) recently developed by one of the au-
thors (Griffith). To derive excess mixing ratios (1X) for the
above species in smoke plumes we took the mixing ratio of
the species “X” in the smoke plume grab sample minus the
mixing ratio of X in the closest grab sample of background
air. The use of a nearby background sample for this subtrac-
tion is important because it excludes the contribution of the
aged smoke that contributes much of the background air in
areas heavily impacted by biomass burning.

We used the same background-plume spectra pairs to gen-
erate absorbance spectra of the smoke plume samples. Ex-
cess mixing ratios are retrieved directly from the absorbance
spectra (Hanst and Hanst, 1994). Excess mixing ratios for
NO and NO2 in smoke plumes were obtained from the ab-
sorbance spectra using peak integration and a multipoint cal-
ibration. Excess mixing ratios for ethylene (C2H4), acety-
lene (C2H2), propylene (C3H6), methanol (CH3OH), formic
acid (HCOOH), acetic acid (CH3COOH), ammonia (NH3),
nitrous acid (HONO), hydrogen cyanide (HCN), and ozone

Atmos. Chem. Phys., 7, 5175–5196, 2007 www.atmos-chem-phys.net/7/5175/2007/



R. J. Yokelson et al.: Tropical forest fire emissions 5179

(O3) were retrieved from the absorbance spectra by spectral
subtraction (Yokelson et al., 1997). The spectral subtraction
routine used commercial IR reference spectra or multiple ref-
erence spectra per species that we recorded in house for NH3,
CH3OH, CH3COOH, C2H4, and C3H6. Excess mixing ra-
tios for C2H6 and HCHO were retrieved from the absorbance
spectra using MALT 5.2. For most compounds the detection
limit was 5–10 ppbv, but for NOx, HCHO, acetic acid, C3H6,
C2H6, and O3 it was∼15–20 ppbv.

The spectral analysis routines were challenged by apply-
ing them to IR spectra of over 50 flowing standard mixtures.
The routines typically returned values within 1% of the nom-
inal, delivered amount. Consideration of the accuracy of the
standards, flow meters, and other issues suggests that the ab-
solute accuracy of our mixing ratios is±1–2% for CO2, CO,
and CH4 and±5% (1σ ) or the detection limit, whichever is
larger, for the other compounds. NH3 was the only com-
pound noticeably affected by brief storage in the cell, but the
NH3 values have been corrected both for initial passivation
of the cell and slow decay during grab-sample storage as de-
scribed by Yokelson et al. (2003b) and should be accurate to
±10% or the detection limit.

2.1.3 PTR-MS

A detailed description of the PTR-MS instrument is given
elsewhere (Lindinger et al., 1998). Briefly, H3O+ ions are
used to ionize volatile organic compounds (VOC) via proton-
transfer reactions. The value for E/N (E the electric field
strength and N the buffer gas density) in the drift tube was
kept at about 123 Townsend, which is high enough to avoid
strong clustering of H3O+ ions with water and thus a hu-
midity dependent sensitivity. The sensitivity of the PTR-MS
instrument during this study was typically on the order of
70 Hz/ppbv (counts per second per ppbv) for acetone and
50 Hz/ppbv for methanol at 2.3 mbar buffer gas pressure with
a reaction time of 110µs and 3–4 MHz H3O+ ions, and thus
inferred a signal to noise ratio of 60% at a concentration of
20 pptv and a 2 s integration time. The PTR-MS sampled air
through a dedicated, rear-facing, Teflon inlet. About 17 mass
channels were monitored during flight with a measurement
period for each species of 1–20 s. Higher sampling rates were
used in the plumes. More details about the PTR-MS in this
campaign are given by Karl et al. (2007a).

2.1.4 Particle, ozone, and auxiliary measurements

A list of the instruments deployed by the University of
São Paulo and their measurement frequency follows. (1)
DataRAM4 (Thermoelectron Corp), which measures the
mass of particles with an aerodynamic diameter<10 mi-
crons (PM10) and mean particle diameter (microns) at 0.5 Hz.
(2) 3-channel nephelometer (RBG) at 0.2857 Hz. (3) 7-
channel aethalometer (Magee Scientific) measuring particle
absorbance from 950–450 nm every 2 min. (4) Ozone by UV

absorbance (1 min time resolution). (5) GPS (Garmin) mea-
suring UTC time, latitude, longitude, and altitude at 1 Hz.
Instruments 1–4 had specialized inlets located on the front
belly of the aircraft adjacent to the PTR-MS inlet. The
PM10 measurements reported here were measured by the
DataRAM4, which is a two-wavelength nephelometer with
a built in humidity correction. The instrument has been run
side by side with a TEOM (Tapered Element Oscillating Mi-
crobalance) under smoky conditions in the Amazon and good
agreement was observed.

2.1.5 Flight plans and sampling protocols

While based in Alta Floresta (27 August–5 September) back-
ground air (defined here as air not within a visible biomass
burning plume) was characterized at various altitudes (up to
3352 m). These were afternoon flights conducted to search
for and sample fires and most of the measurements were
made below the top of the (hazy) mixed layer. While based
in Manaus cleaner background air was sampled during morn-
ing flights over a similar altitude range. The Manaus flights
included both continuous-spiral and “parking-garage”-type
vertical profiles over the instrumented ZF-14 Tower and a
constant-altitude “racetrack” pattern that sampled several re-
gionally important ecosystems (undisturbed forest, flooded
forest, and various plantations) east of Manaus (Karl et al.,
2007b). When sampling background air in either region, the
PTR-MS continuously cycled through a suite of mass chan-
nels with a resulting measurement frequency for individual
species ranging from 10–20 s. Overall, twenty-one canisters
were used to “grab” background samples at key locations.
The airborne FTIR (AFTIR) was operated either continu-
ously (time resolution of 0.83 to 18 s) or to acquire 133 grab
samples of background air.

To measure the initial emissions from fires in both regions,
we sampled smoke less than several minutes old by pene-
trating the column of smoke 200–1000 m above the flame
front. The AFTIR system and cans obtained grab samples
in the plume (and paired background samples just outside
the plume). The other instruments measured their species
continuously while passing through the plume. More than
a few kilometers downwind from the source, smoke plume
samples are “chemically aged” and better for probing post-
emission chemistry than estimating initial emissions (Hobbs
et al., 2003; de Gouw et al., 2006).

2.2 Data processing and synthesis

Grab samples or profiles of an emission source can provide
excess mixing ratios (1X, see Sect. 2.1.2).1X reflect the
instantaneous dilution of the plume and the instrument re-
sponse time. Thus, a widely used, derived quantity is the
normalized excess mixing ratio where1X is compared to
a simultaneously measured plume tracer such as1CO or
1CO2. A measurement of1X/1CO or1X/1CO2 made in
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a nascent plume (seconds to a few minutes old) is an emission
ratio (ER). The ER1CO/1CO2 and the modified combus-
tion efficiency (MCE,1CO2/(1CO2+1CO)) are useful to
indicate the relative amount of flaming and smoldering com-
bustion for biomass burning. Higher1CO/1CO2 or lower
MCE indicates more smoldering (Ward and Radke, 1993).
For any carbonaceous fuel, a set of ER to CO2 for the other
major carbon emissions (i.e. CO, CH4, a suite of NMOC,
particulate carbon) can be used to calculate emission factors
(EF, g compound emitted/kg dry fuel) for all the gases quan-
tified from the source using the carbon mass-balance method
(Yokelson et al., 1996). EFs are combined with fuel con-
sumption measurements to estimate total emissions at vari-
ous scales. In this project, the primary data needed to calcu-
late EF was provided by AFTIR measurements of CO2, CO,
CH4, and many NMOC. However, the PTR-MS and canister
sampling added numerous, important NMOC that were be-
low AFTIR detection limits or not amenable to IR detection.
The PM10 data allowed inclusion of particle carbon. Next we
summarize the methods we used to calculate ER and EF and
to couple/synthesize the data from the various instruments on
the aircraft.

2.2.1 Estimation of fire-average, initial emission ratios
(ER)

The first step in our analysis was to compute molar ER to CO
and CO2 for each species detected in the AFTIR or can grab
samples; and molar ER to methanol (justified below) for each
species detected by PTR-MS. This is done for each individ-
ual fire or each group of co-located, similar fires. If there is
only one sample of a fire (as for the canisters) then the calcu-
lation is trivial and equivalent to the definition of1X given
above. For multiple AFTIR grab samples of a fire (or group
of fires) then the fire-average, initial ER were obtained from
the slope of the least-squares line (with the intercept forced
to zero) in a plot of one set of excess mixing ratios versus
another (see Figs. 2a and b). This method is justified in de-
tail by Yokelson et al. (1999). We calculated the fire-average
MCE for each fire using the fire-average1CO/1CO2 and the
equation MCE=1/((1CO/1CO2)+1).

The ER for PTR-MS compounds with respect to methanol
were obtained by similar plots except that the integrated ex-
cess mixing ratios (ppbv s) for each pass thru the plume
were used in lieu of the individual excess mixing ratios (see
Fig. 2c). Comparison of integrals provides more accurate ER
(Karl et al., 2007a). When two or more compounds appear on
the same mass channel, the signal was assigned to each com-
pound using the branching ratios measured by GC-PTR-MS
in smoke from tropical fuels burned during the lab experi-
ment. This adds additional uncertainty for these compounds
since these branching ratios typically varied by 10–20% from
fire to fire during the lab experiments (Karl et al., 2007a).

The ER to CO for the NMOC detected by PTR-MS was
derived from a simple two step process. The process is based

on the fact that we have found excellent agreement between
FTIR and PTR-MS for methanol, over a wide range of con-
centrations, in two other studies (Christian et al., 2004; Karl
et al., 2007a). An example of the process follows. The ER
for acetaldehyde to CO was taken to be the PTR-MS ER “ac-
etaldehyde/methanol” times the AFTIR ER “methanol/CO.”
Multiplying again by the AFTIR CO/CO2 ratio gave the ra-
tio of the NMOC to CO2 – as needed for the EF calcula-
tion. A slightly different approach was needed to couple the
data from the particle instruments. The DataRAM4 measures
the STP-equivalent PM10 per unit volume (µg/m3) every two
seconds while passing thru a plume. We converted the inte-
grated methanol mixing ratios to an integrated mass (STP) of
methanol and ratioed the integrated particle mass to this (see
Fig. 2d).

2.2.2 Estimation of fire-average, initial emission factors

We estimated fire-average, initial EF for PM10 and each ob-
served trace gas from our fire-average, initial ER using the
carbon mass balance method (Ward and Radke, 1993) as de-
scribed by Yokelson et al. (1999). Briefly, we assume that
all the volatilized carbon is detected and that the fuel car-
bon content is known. For purposes of the carbon mass bal-
ance we assume the particles are 60% C by mass (Ferek et
al., 1998). By ignoring unmeasured gases we are probably
inflating the emission factors by 1–2% (Andreae and Mer-
let, 2001). We assumed in our EF calculations that all the
fires burned in fuels containing 50% carbon by mass. This is
in good agreement with previous studies of tropical biomass
(Susott et al., 1996), but the actual fuel carbon percentage
may vary by±10% (2σ) of our nominal value. (Emission
factors scale linearly with assumed fuel carbon percentage.)

2.3 Overview of Brazilian fires and the fires sampled in the
airborne campaign

2.3.1 General fire characteristics relevant to sampling
strategies

Conversion of the Amazon primary forest usually starts at the
beginning of the dry season (May–July) when the biomass is
slashed and dried (Fearnside, 1993). Most of the burns oc-
cur late in the dry season (August–October) to achieve high
consumption. A typical burn is initiated by starting a line of
flame along the outer edge of the slashed area. As the flame
front propagates inward, the flame-induced convection col-
umn entrains the emissions from both flaming combustion
and any nearby smoldering combustion. These emissions
can be sampled from an aircraft. In some cases, smoldering
can continue after the convection envelope has moved too
far away to entrain the emissions or convection from the en-
tire site has ceased. When either of these conditions is met,
we term this residual smoldering combustion (RSC). RSC
emissions are not initially lofted or amenable to airborne
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Fig. 2. Examples of the plots used to derive emission ratios (ER) in this work. See Sect. 2.2.1 for details.(a) plot used to derive the
ER 1CO/1CO2 from AFTIR grab samples of the 5 September planned fire.(b) as in a for the ER1CH3OH/1CO. (c) plot for the ER
1CH3CHO/1CH3OH from integrated PTR-MS traces during plume penetrations of the 5 September fire.(d) plot used to derive the ER
1PM10/1CH3OH (mass ratio) from integrated PTR-MS and nephelometer traces during plume penetrations of the shifting cultivation fire
on 30 August.

sampling. When dry, large-diameter fuels are present RSC
may account for a large part of the total biomass consumed
(Bertschi et al., 2003b; Kauffman et al., 1998).

2.3.2 Overview of Brazilian biomass burning

This section summarizes Brazilian biomass burning to help
assess the representativeness of the fires we actually sampled.
Brazil contains∼2×106 km2 of savanna (cerrado), mostly
in southern Brazil, which is burned every 1–3 years in fires
that rapidly consume 5–10 Mg/ha of mostly fine fuels such
as grass (Coutinho, 1990; Ward et al., 1992; Kauffman et al.,
1994; Andrade et al., 1999). For estimating the emissions

from any global savanna fire, we recommend the tables for
savanna fires in Christian et al. (2003) and Andreae and Mer-
let (2001).

Brazil has ∼4×106 km2 of evergreen tropical forest
mostly in the Amazon basin, which represents∼25% of the
world’s total “rainforest.” Deforestation rates in the Amazon
since 1978 ranged from 11–29×103 km2/y (http://www.obt.
inpe.br/prodes/). About 85% of the cumulative deforested
area for 1978–2005 occurred in the rapidly developing south-
ern and eastern edges of the Amazon basin where the states
of Paŕa and Mato Grosso are located (Fig. 1). Deforesta-
tion fires involve large total aboveground biomass (TAGB)
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loading averaging∼300 Mg/ha of which∼40% is consumed
by the fires for a total fuel consumption of∼120 Mg/ha.
(Ward et al., 1992; Fearnside et al., 1993; Carvalho et al.,
1998, 2001; Guild et al., 1998).

Pastures established in previously forested areas of the
Amazon are maintained by burning every 2–3 years (Guild et
al., 1998). The TAGB can be quite large partly because resid-
ual wood debris (RWD) persists for many years. Reported
TAGB ranges from 119 Mg/ha (87% RWD) to 53 Mg/ha
(47% RWD) in pastures 4–20 years old (Barbosa and Fearn-
side, 1996; Guild et al., 1998; Kauffman et al., 1998). Large-
diameter RWD accounted for∼45% of the fuel consumption
in the above studies. Until recently, nearly all deforested ar-
eas in the Brazilian Amazon were eventually converted to
pasture and the total emissions from Brazilian pasture fires
are thought to be comparable to the total emissions from
Brazilian deforestation fires (Fearnside, 1990; Barbosa et al.,
1996; Kauffman et al., 1998). Globally, deforestation fires
associated with shifting cultivation and plantation establish-
ment dominate and pasture fires are relatively less common.

Brazil has recently seen explosive growth in large-scale,
mechanized agriculture, especially in Mato Grosso (Cardille
and Foley, 2003). Both pastures and forest are converted to
croplands for (mostly) soy. In either case, all large-diameter
fuels must be removed by the burns. Morton et al. (2006)
found that Mato Grosso accounted for 40% of the new defor-
estation in Amazonia from 2000–2004. Within Mato Grosso
from 2001–2004, pasture was still the main use following de-
forestation, but that fraction was decreasing and direct tran-
sition to large areas of cropland accounted for 23–28% of de-
forestation. Thus, we conclude that the expansion of mecha-
nized agriculture could imply an increase in both the area of
individual fires and the fuel consumed per unit area.

A few other less dominant fire-types occur in Brazil. Sec-
ondary forests are used in similar fashion to primary forests
(Fearnside, 1990, 2000). Lower intensity fires occur natu-
rally in seasonally dry forests, such as the Caatinga in eastern
Brazil and these forests are also subject to land-use change
(Kauffman et al., 1993). Selective logging promotes fire sus-
ceptibility and is increasing in the Amazon (Grainger, 1987;
Kauffman and Uhl, 1990; Cochrane et al. 1999; Laurance,
2000).

As discussed in detail by Christian et al. (2007b), RSC
could produce a large part of the Amazonian fire emissions
and this motivated our simultaneous airborne and ground
based campaigns. However, RSC likely occurs mostly on
pasture maintenance fires rather than the deforestation fires,
which were our main target.

2.3.3 Description of the fires sampled in the airborne cam-
paign

Nearly all the fires we observed in Mato Grosso and
southern Paŕa were related to the expansion of exist-
ing, large farms or ranches (Table 1). All but 3 of

these fires were located on the edge of forested areas
that were adjacent to large tracts of cleared, often culti-
vated, land. Casual examination of MODIS visible im-
ages of this region reveals that nearly all hotspots are lo-
cated at the edge of dark-green (forested) areas, adjacent to
light-green (cleared) areas (http://rapidfire.sci.gsfc.nasa.gov/
subsets/?AERONETAlta Floresta/2004252). However, the
second fire sampled on 29 August was in a grass meadow and
no large fuels were visible from the air. This was probably
a maintenance fire for an older pasture. The other exception
was two small fires observed on 31 August adjacent to the
Xingu River in the center of an indigenous reserve and far
from any visible clearings or roads. These fires were likely
due to shifting cultivation and the one we sampled is labeled
the “SC” fire in Tables 1 and 2. Complete burning of logging
slash to prepare for mechanized agriculture can be promoted
by bulldozing the fuel into long piles (“windrows”) that were
observed from the aircraft on at least one group of fires (30
August Fires 1–4). In all areas, the fires frequently occurred
in clusters.

TROFFEE supported a planned, deforestation fire on a
farm near Alta Floresta under the supervision of João Car-
valho (University of Estadual Paulista) and Ernesto Alvarado
(University of Washington). Measurements included fuel
consumption, charcoal production, propagation of smolder-
ing combustion, forest flammability adjacent to clearcuts, on-
site meteorology, fire effects on groundwater chemistry, and
recovery and regeneration of burned areas. The emissions
from this fire were sampled by ground-based FTIR (Chris-
tian et al., 2007b) and the TROFFEE aircraft (5 September
data in Tables 1 and 2). In summary, pasture fires were
undersampled relative to their importance in Brazil, but we
achieved our objective of comprehensive chemical sampling
of the emissions from deforestation fires, which are far more
significant globally.

3 Results and discussion

3.1 Characteristics of clean background air

We briefly summarize some of the data obtained in early dry
season, clean air near Manaus (see also Karl et al., 2007b).
These data are of intrinsic interest and by comparison to data
from the more active burning region further south (Sect. 3.2),
they highlight the degree to which fires can perturb back-
ground air over a large geographic area. Figure 3a shows
all the AFTIR CO grab samples from 6 and 7 September,
obtained in the Manaus region, which was not visibly im-
pacted by a biomass burning haze before noon. The CO av-
erage was 134±13 ppbv. This is a relatively narrow range.
Chou et al. (2002) measured numerous CO vertical profiles
in nearly the same location in April–May 1987. Their fig-
ures indicate that their CO values averaged about 100 ppb.
The larger values we observed could be due to a gradual
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Table 2. Initial emission factors for the fires sampled at their source during the 2004 TROFFEE airborne campaign. Effective emission
factors for the mega-plume, which was sampled downwind from source.

29 Aug 29 Aug 30 Aug 30 Aug 31 Aug 31 Aug 3 Sep 5 Sep 7 Sep 8 Sep
Fire 1 Fire 2 Fires 1–4 SC Fire Fire 1 Fire 2 Fires 1–5 Planned Fires 1–4 Study Standard Mega-Plume MPEEF-

Fire average deviation averagec

Compound EF EF EF EF EF EF EF EF EF EF EF Effective EF
formula or name g/kg g/kg g/kg g/kg g/kg g/kg g/kg g/kg g/kg g/kg g/kg g/kg # stdev’s

AFTIR species
CO2 1638 1591 1567 1579 1603 1636 1579 1679 1662 1615 40 1651 0.91
CO 95.72 112.08 133.45 124.82 110.70 93.13 110.52 59.91 72.36 101.41 23.78 87.54−0.58

MCE 0.916 0.900 0.882 0.890 0.902 0.918 0.901 0.947 0.936 0.910 0.021 0.923 0.61
NO 0.283 nmb 0.281 0.514 0.208 0.438 0.746 2.681 nm 0.74 0.877 2.297 1.78
NO2 1.979 0.930 1.157 0.509 0.738 2.216 1.393 3.441 4.120 1.83 1.245 1.899 0.05

NOx (as NO) 1.574 0.606 1.035 0.846 0.690 1.883 1.654 4.926 2.687 1.77 1.359 3.535 1.30
HONO 0.345 0.167 nm nm nm nm nm nm nm 0.26 0.126 nm nm
CH4 4.213 6.916 5.751 7.544 5.323 5.486 7.220 3.353 5.324 5.68 1.380 7.636 1.42
C2H4 0.747 1.238 0.958 1.215 0.997 0.809 1.520 0.642 0.454 0.95 0.332 0.378 −1.73
C2H2 0.094 nm 0.083 0.101 0.140 0.084 0.172 0.923 0.620 0.28 0.317 0.085 −0.61
C2H6 0.548 1.137 0.917 1.157 0.893 0.532 1.478 nm nm 0.95 0.341 nm nm
C3H6 0.452 0.728 0.424 0.606 0.462 0.317 0.509 0.091 nm 0.45 0.190 nm nm
HCHO 1.277 1.912 1.674 1.783 1.445 1.517 2.201 1.741 1.409 1.66 0.286 1.004 −2.30
CH3OH 2.077 2.874 2.724 3.371 2.294 2.331 3.002 2.252 2.165 2.57 0.445 2.550 −0.04

CH3COOH 3.134 4.172 3.635 3.590 2.643 3.232 3.190 3.579 3.704 3.43 0.436 9.242 13.33
HCOOH 0.398 0.519 0.377 0.223 0.246 0.508 0.323 0.978 1.715 0.59 0.479 3.266 5.59

NH3 1.127 1.364 1.093 1.769 0.653 0.658 1.476 1.236 0.308 1.08 0.460 1.509 0.94
HCN 0.665 0.537 0.699 0.582 0.486 0.409 0.426 2.098 0.184 0.68 0.555 0.169 −0.91

PTR-MS species and PM10
acetonitrile 0.574 0.276 0.270 0.381 0.291 0.347 0.485 0.359 0.336 0.37 0.101 nm nm

acetaldehyde 1.255 1.202 1.167 1.240 0.751 1.041 3.322 1.282 1.202 1.38 0.745 nm nm
acrylonitrile 0.051 nm 0.038 nm 0.020 0.048 nm nm nm 0.04 0.014 nm nm

acrolein nm nm nm nm 0.306 0.477 nm 0.808 0.732 0.58 0.232 nm nm
acetonea 0.429 0.525 0.645 0.673 0.235 0.506 0.803 0.694 0.590 0.57 0.167 nm nm
propanala 0.067 0.082 0.101 0.105 0.037 0.079 0.126 0.109 0.092 0.09 0.026 nm nm
isoprenea 0.236 0.366 0.402 0.396 0.271 0.296 0.625 0.378 0.386 0.37 0.112 nm nm

furana 0.207 0.320 0.352 0.347 0.237 0.259 0.547 0.331 0.338 0.33 0.098 nm nm
methylvinyl ketonea 0.166 0.499 0.340 nm 0.399 0.318 0.215 0.411 0.436 0.35 0.113 nm nm

methacroleina 0.066 0.198 0.135 nm 0.158 0.126 0.085 0.163 0.173 0.14 0.045 nm nm
crotonaldehydea 0.100 0.302 0.205 nm 0.241 0.192 0.130 0.248 0.263 0.21 0.068 nm nm

methylethyl ketonea 0.229 0.469 nm nm nm nm 0.654 nm nm 0.45 0.213 nm nm
methyl propanala 0.081 0.165 nm nm nm nm 0.230 nm nm 0.16 0.075 nm nm

acetol and methylacetate nm nm 0.649 nm 0.840 0.607 0.895 0.700 0.627 0.72 0.120 nm nm
benzenea 0.189 0.381 0.168 nm 0.538 0.176 0.234 0.261 0.172 0.26 0.131 nm nm

C6 carbonyls 0.098 0.307 0.105 nm Nm nm 0.241 0.363 0.159 0.21 0.109 nm nm
3-methylfurana 0.252 0.707 0.434 nm 0.843 0.389 0.668 0.511 0.413 0.53 0.196 nm nm
2-methylfurana 0.036 0.101 0.062 nm 0.120 0.056 0.095 0.073 0.059 0.08 0.028 nm nm

hexanala 0.006 0.017 0.010 nm 0.020 0.009 0.016 0.012 0.010 0.01 0.005 nm nm
2,3 butanedionea 0.317 0.790 0.509 nm 0.855 0.490 0.995 0.634 0.659 0.66 0.219 nm nm

2-pentanonea 0.032 0.085 0.052 nm 0.094 0.051 0.106 0.066 0.069 0.07 0.024 nm nm
3-pentanonea 0.014 0.038 0.023 nm 0.042 0.023 0.047 0.029 0.031 0.03 0.011 nm nm

toluene 0.102 0.109 0.126 nm 0.227 0.096 0.399 0.135 0.368 0.20 0.123 nm nm
phenola nm nm nm nm nm nm nm 0.406 0.282 0.34 0.088 nm nm

other substituted furans nm nm nm nm nm nm nm 1.095 1.071 1.08 0.016 nm nm
furaldehydes nm nm nm nm nm nm nm 0.255 0.256 0.26 0.001 nm nm

xylenesa 0.086 0.092 0.076 nm 0.132 0.060 0.322 0.137 0.115 0.13 0.083 nm nm
ethylbenzenea 0.053 0.084 0.047 nm 0.118 0.044 0.126 0.078 0.052 0.08 0.033 nm nm

PM10 17.61 14.43 17.94 20.18 19.81 17.27 26.41 12.53 14.28 17.83 4.121 nm nm

UCI-Canister species
OCS nm nm nm nm nm nm nm 0.0247 nm 0.0247 nm nm nm
DMS nm nm nm nm nm nm nm 0.0022 nm 0.0022 nm nm nm

CFC 12 nm nm nm nm nm nm nm 0.0028 nm 0.0028 nm nm nm
MeONO2 nm nm nm nm nm nm nm 0.0163 nm 0.0163 nm nm nm
EtONO2 nm nm nm nm nm nm nm 0.0057 nm 0.0057 nm nm nm

i-PrONO2 nm nm nm nm nm nm nm 0.0010 nm 0.0010 nm nm nm
n-PrONO2 nm nm nm nm nm nm nm 0.0003 nm 0.0003 nm nm nm
2-BuONO2 nm nm nm nm nm nm nm 0.0006 nm 0.0006 nm nm nm

C2H6 nm nm nm nm nm nm nm 0.5600 nm 0.5600 nm nm nm
1-Butene nm nm nm nm nm nm nm 0.0200 nm 0.0200 nm nm nm

trans-2-Butene nm nm nm nm nm nm nm 0.0161 nm 0.0161 nm nm nm
cis-2-Butene nm nm nm nm nm nm nm 0.0202 nm 0.0202 nm nm nm

aA branching ratio has been applied to the signal from a single mass channel as measured by Karl et al. (2007a).
bnm indicates “not measured.”
cThe mega-plume effective emission factor minus the study average emission factor given as the number of standard deviations in the
study-average emission factor.
www.atmos-chem-phys.net/7/5175/2007/ Atmos. Chem. Phys., 7, 5175–5196, 2007
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Fig. 3. Clean background air, early in the local dry season, near
Manaus on 6 and 7 September, 2004.(a) CO and water from AF-
TIR grab samples of ambient air. Air parcels with high CO above
the boundary layer were likely affected by transport from a biomass
burning region to the southeast.(b) AFTIR vertical profiles for CO2
above the ZF-14 Tower on 6 September showing progressive deple-
tion by photosynthesis of the CO2 that builds up overnight from
respiration.

increase in pollution in the area and/or the fact that our mea-
surements occurred part way into the beginning of the dry
season so that there were probably small enhancements from
biomass burning. (A few fires were sampled around noon on
7 September.) Figure 3a also shows the water mixing ratios.
The higher altitude CO samples are from above the mixed
layer and they show some of the higher mixing ratios. This
is consistent with HYSPLIT back-trajectories (Draxler and
Rolph, 2003) indicating that the air at this altitude was trans-
ported from a region to the southeast with much active burn-
ing as suggested by numerous NOAA-12 hotspots. In con-
trast, HYSPLIT back-trajectories show that the mixed layer
air came from the northeast, which was a region mostly free
of hotspots.

Figure 3b shows two CO2 vertical profiles above the ZF-
14 Tower northeast of Manaus. One is from late morning
and the other is from midday. The profiles are consistent
with the CO2 profiles observed by Chou et al. (2002) in the
same region. The morning profiles show CO2 enhancements
at lower altitudes due to nighttime respiration exceeding pho-
tosynthesis and, as the day progresses, the enhancements de-
crease as the forest “draws down” CO2. Chou et al. (2002)
actually observed a CO2 deficit at lower altitudes by after-
noon, but we did not measure afternoon vertical profiles. Our
higher altitude CO2 shows small increases in the later pro-
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Fig. 4. Regional haze due to biomass fires late in the dry season near
Alta Floresta.(a) CO from AFTIR grab samples of ambient air vs
altitude for 29 August–5 September.(b) as in a for CO and H2O for
30 and 31 August only, illustrating efficient, initial trapping of the
fire-caused haze in the mixed (boundary) layer. (The water vertical
profiles can be obtained in other units from the authors.)

file, which could also be consistent with some transport of
biomass burning emissions in the upper layer. The main dif-
ference between Chou et al. (2002) and our current measure-
ments is the obvious effect of increasing global CO2. Their
1987 CO2 values average around 350 ppm, while our 2004
average for the same region is around 380 ppm. Above the
ZF-14 tower, our PM10 ranged from∼40µg m−3 near the
surface to∼30µg m−3 near the top of the mixed layer. Our
O3 ranged from 1–10 ppbv near the surface and increased to
20–30 ppbv near the top of the profiles. Our O3 profile is
similar to that of Chou et al. (2002).

3.2 Characteristics of aged regional smoke haze

In contrast to the region near Manaus, the region near Alta
Floresta was well into the local dry season and heavily im-
pacted by numerous fires that caused a regional haze of aged
smoke sequestered in the mixed layer. (The fire emission
factors in Table 2 are derived only from smoke< a few min-
utes old that was sampled in concentrated, visually-obvious
plumes and not from smoke of unknown age that consti-
tutes the regional haze layer.) Figure 4a shows all the CO
values from AFTIR grab samples that were not in smoke
plumes in this region. The range is from 100–600 ppb with
an average and standard deviation of 328±102 ppb. Thus
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the background, mixed-layer air in this large fire-impacted
region had about 2.5 times as much CO as was found near
Manaus. This degree of impact is similar to the impact on
dry season CO observations at the same latitude in Africa
(Fig. 1b of Yokelson et al., 2003a).

Most of the lower CO values were observed above the
mixed layer as can be seen more easily in Fig. 4b. Figure 4b
shows the CO and water AFTIR grab sample data in back-
ground air for 30 and 31 August. On these days we spent
relatively more time above the boundary layer so the vertical
patterns are more apparent. The water and CO mixing ratios
dropped off with altitude in remarkable correlation. This is
consistent with our visual observation that the plumes from
active fires rarely penetrated the top of the mixed layer; a lim-
itation that was also observed during the southern African
biomass burning season (Yokelson et al., 2003a). Interest-
ingly, the smoky mixed layers in Brazil in 2004 extended to
only 2–3 km altitude; much lower than the 5–6 km altitude
observed at the same latitude, time-of-year, and local time-
of-day in Africa during 2000 (Yokelson et al., 2003a (Fig. 1);
Schmid et al., 2003 (Fig. 11)).

We can compare our airborne CO observations in the
2004 regional smoke/haze to a long record of previous air-
borne measurements in Brazil. In 1979 and 1980 Crutzen
et al. (1985) measured CO from 100–400 ppb in haze layers
over the Amazon (their Figs. 10 and 11). The 1985 study of
Andreae et al. (1988) shows Amazon dry season CO rang-
ing from 150–600 ppb (their Fig. 4). Kaufman et al. (1992)
also reported haze layer CO ranging from∼150–600 ppb in
1989 (their Fig. 4). Blake et al. (1996) observed haze layer
CO values from∼100–400 during TRACE A in 1992. In
1995 biomass burning was well above average in Brazil. The
SCAR-B mission was conducted late in the 1995 dry season
as biomass burning peaked and Reid et al. (1998) observed
much higher levels of CO than we have presented thus far.
Average CO values for flights based in several central Brazil
locations ranged from 440–760 ppb (their Table 1).

Our average PM10 values for vertical profiles in the re-
gional haze layer ranged from 70–120µg/m3 at 300–500 m
to 30–60µg/m3 near the top (∼3000 m); similar to obser-
vations in previous years (Pereira et al., 1996; Reid et al.,
1998). Ozone values were about 30 ppbv throughout these
haze layers similar to the observations in the CITE-3, Brush-
fire, and ABLE-2A studies referred to above. During SCAR-
B, however, O3 ranged from 60–100 ppb, consistent with the
more polluted boundary layer present in the late 1995 dry
season.

In summary, 2004, through 7 September, had a typical
amount of biomass burning haze based on the comparison of
our CO, PM10, and O3 measurements to other measurements
from the last 30 years. However, as discussed in Sect. 3.4,
our measurements on 8 September probed widespread, un-
usually high levels of pollutants.

It is also of interest to compare the airborne CO data
with the CO data obtained during the same time period

by the ground-based FTIR system (Christian et al., 2007b).
The ground-based samples obtained well away from visible
smoke plumes return much higher CO values. The average
for 25 afternoon samples taken within∼100 km of Alta Flo-
resta from 26 August–8 September was 1.35±1.15 ppm with
a range from 0.330 to 4.76 ppm. Gatti et al. (personal com-
munication) monitored CO levels at a pasture site in Rondo-
nia in September and October of 1999 and observed a range
of CO from 0.6 to 1.3 ppm. Thus while airborne sampling
retrieved the composition of the majority of the mixed layer,
more polluted air was found at ground level than would be
inferred from airborne measurements. At this time we don’t
know the thickness of the ground-level layer. Above the
mixed layer, the CO tends to drop off sharply to a mixing
ratio characteristic of the free troposphere. The African and
the Brazilian CO vertical profiles are not shaped like the a-
priori CO vertical profile used for MOPITT CO retrievals
(Emmons et al., 2004). We speculate that consideration of
the actual profile shapes might enhance CO retrievals from
space-based instruments.

3.3 Initial emissions from tropical deforestation fires

Since a variety of large changes can occur in smoke chem-
istry in the minutes to days after emission, segregation of
results by sample age and history (to the degree possible)
enhances interpretation of the results and comparison with
models and other measurements. Thus, only excess mixing
ratios measured<∼1 km from the fire were used to compute
our initial emission ratios and emission factors. Forty-two
plume penetrations of this type were made. In contrast to
the background-air grab samples discussed above, the excess
CO mixing ratios (above background) in the AFTIR, plume
grab samples were in the range 1–31 ppmv for∼90% of the
samples. Thus, excellent signal to noise was observed on all
instruments for each fire for numerous species.

The fire-average, initial emission factors for each com-
pound and fire, along with the fire average MCE, are listed
in Table 2. Because NO is rapidly converted to NO2 (largely
due to reaction with O3 in the entrained background air), we
also report a single EF for “NOx as NO”. We computed this
EF from the NOx/CO2 molar ER obtained as described in
Sect. 2.2.1, but it can also be estimated from Table 2 data us-
ing: EFNO+(30/46)×EFNO2. If desired, the molar ER for
each fire can be derived from the EF in Table 2 after account-
ing for any difference in molecular mass.

The timing and extent, and perhaps representativeness, of
Brazilian biomass burning in 2004 can be compared to other
years using metrics other than the regional CO, PM, and O3
values discussed in Sect. 3.2. Dating back to at least 1993
a near-continuous, regional record of aerosol optical thick-
ness (Holben et al., 1996; Echalar et al., 1998; http://aeronet.
gsfc.nasa.gov/newaeronet1.html) and deforestation rates ex-
ists. Unfortunately, the Alta Floresta sun photometer was
not operational during the peak of the 2004 burning season
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(B. Holben, personal communication). The INPE deforesta-
tion data, however, shows 2004 (27 429 km2) as the second
highest year after 1995 (29 059 km2) – the year of the SCAR-
B campaign. Thus, both TROFFEE and SCAR-B were con-
ducted in years when the deforested area was well above the
long-term average of∼20 000 km2. The number of NOAA-
12 hotspots (http://www.cptec.inpe.br/queimadas/) for 2004
(236 821) is above the 2000–2005 average of 192 569 and
just above 2002 (232 921), which was the second-biggest
year since 2000. Interestingly, 2002 was the year for another
smoke-sampling campaign termed SMOCC (Andreae et al.,
2004). While the annual totals for the NOAA-12 hotspots
are readily available, they likely underestimate the true num-
ber of fires, especially under extreme burning conditions as
discussed in Sect. 3.4. In summary, most of our fire sam-
pling was probably conducted under “average” conditions as
shown in Sect. 3.2, however, the 2004 annual burning was
above average because of intense burning beginning∼7–8
September, which was towards the end of our campaign.

3.3.1 Natural variation in emission factors

In Fig. 5 we plot the fire-average emission factors versus
MCE (data from Table 2) for selected compounds. This gives
some idea of the natural variation in emission factors that re-
sults from deforestation fires burning under a range of vege-
tative/environmental conditions and with different mixtures
of flaming and smoldering combustion. Figure 5a shows
NOx emissions which increase as MCE (and thus flaming
combustion) increases. Figures 5b–d show the pattern typ-
ical of most of the VOC we measured – the EF for these
“smoldering compounds” increased with decreasing MCE.
Figure 5e shows that EFPM10 also increases with decreas-
ing MCE. The range in EF (with MCE) for these species
is about a factor of two, which is a smaller range than we
observed for African savanna fires (Yokelson et al., 2003a).
Figure 5f shows that EFCH3CN did not have a strong depen-
dence on MCE. This is similar to the pattern observed for
HCN from savanna fires by Yokelson et al. (2003a). How-
ever, like EFHCN, the EFCH3CN did vary by∼±50%, pos-
sibly due to varying fuel N content. The use of acetonitrile
as a biomass burning indicator/tracer is discussed later in this
paper and by Karl et al. (2007a).

3.3.2 Comparison with other work

It is most meaningful to compare our study-average, initial
emission-factor measurements in nascent smoke from Brazil-
ian deforestation fires with measurements made in August-
September of 1990 using a tower-based platform by Ward
et al. (1992) during BASE-B; and in August–September of
1995 from an aircraft by Ferek et al. (1998) as part of SCAR-
B. We also compare to a widely-used compilation of EF for
tropical forests by Andreae and Merlet (2001).

The EFCO2, EFCO, and, especially, MCE all reflect the
overall mix of flaming and smoldering combustion in a fire
and thus these parameters can give some idea of the simi-
larity of the combustion characteristics of the fires we sam-
pled to fires sampled previously. This serves as one probe
of how representative our fires were of regional fires in gen-
eral. Ward et al. and Ferek et al. report individual values
for flaming and smoldering combustion and it is not always
clear if they have a recommended study-average for primary
forest fuels. However, our study-average MCE for defor-
estation fires (Table 2) indicates that they burn with roughly
equal amounts of flaming and smoldering (Yokelson et al.,
1996). Thus, when necessary, we compare to the average of
the flaming and smoldering values given in the other work in
the following discussion.

For CO2 the EF are 1614±56 (Ward et al., 1992), 1599
(Ferek et al., 1998), and 1580±90 (Andreae and Merlet).
All these values are reasonably close to each other and our
study average of 1615±40. Similarly for CO the previous
values are 110±28, 105, and 104±20 in excellent agreement
with each other and our value of 101±24. The MCE are
0.903±0.03, 0.906, 0.906, and our value of 0.910±0.021.
Thus our values are well within the range of previous mea-
surements, but seem to reflect slightly more flaming combus-
tion on average than previous work.

The research fire on 5 September, which was designed to
simulate regional fires apparently had a significantly higher
MCE than our regional average. However, the higher MCE
partly reflected that we did sample the beginning of the fire,
but could not finish sampling the full fire (smoldering con-
tributes less at the beginning of a fire) because of aircraft fuel
considerations. Our airborne samples showed that MCE ini-
tially decreased with time and then stabilized. It is also inter-
esting to note that the fires sampled later in TROFFEE tended
to have higher MCE, which could be due to the protracted
dry period after unusual rains in mid August. Finally, the
plume from the intense burning event sampled on 8 Septem-
ber (see Sect. 3.4) also had higher than study-average MCE.
Thus late-season, “higher-MCE” plumes may account for a
fair percentage of the total regional biomass burned. On the
other hand, prolonged dry spells will desiccate large diameter
logs, which tend to burn with a low MCE (∼0.788, Christian
et al., 2007b) producing initially unlofted smoke. So the real
nature of the “total regional smoke” is governed by complex
– sometimes competing – trends, which need further analy-
sis.

Rather than an exhaustive species by species comparison
with other work for the numerous other trace gases measured,
we have tried to summarize the comparison in Fig. 6 and
provide some useful guidance. Then a few comments are
made about select individual species. Many compounds ap-
pear in both our work (Table 2) and the recommendations of
Andreae and Merlet (AM). In general, our values are based
on a larger number of measurements and should probably
be preferred to those in AM who acknowledge basing many
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Fig. 5. Fire-average emission factors (EF) plotted versus fire-average modified combustion efficiency (MCE) for the indicated species (data
from Table 2). (See discussion in Sect. 3.3.1).

of their values on 1–2 less direct measurements and/or “best
guesses” due to a lack of detailed information available at
the time. On the other hand, a number of compounds appear

in the AM recommendations that we did not measure during
TROFFEE. Most of these are minor plume constituents, but
some are of major importance (e.g. SO2). We recommend
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Fig. 6. Comparison of the TROFFEE airborne study emission fac-
tors with the recommendations of Andrea and Merlet (2001) (AM)
for species in both studies. (AM PM10 is taken as 1.3×AM PM2.5.)
With 8 exceptions, the older (AM) recommendations are within a
factor of∼2 of the newer TROFFEE EF, which are usually based on
more measurements. This suggests that the AM recommendations
for species not measured in TROFFEE (e.g. SO2) are reasonable.
(a) species measured by AFTIR.(b) species measured by PTR-MS
and the nephelometer. (When the ratio exceeds the scale shown the
value of the ratio is given above the bar.)

using the AM values for compounds we did not measure
since there is reasonable agreement between our work and
theirs on most of the compounds we both address (see Fig. 6).
Finally our work includes data on a number of “new,” signif-
icant plume constituents for which information was not pre-
viously available. Included in this category are HONO, acry-
lonitrile, pyrrole, methylvinylketone, methacrolein, croton-
aldehyde, methylethylketone, methylpropanal, “acetol plus
methylacetate,” furaldehydes, dimethylsulfide, and C1–C4
alkyl nitrates (Table 2).

In early fire research it was usually assumed that most of
the NMOC were NMHC as was actually the case for indus-
trial combustion of fossil fuels. As mentioned in the in-
troduction, a key discovery of previous FTIR and PTR-MS
work was that OVOC accounted for the large majority of
NMOC emitted by the fires sampled. A goal of this project
was to verify this for tropical deforestation fires. The TROF-
FEE data show that the molar ratio OVOC/NMHC is about
4:1 – or that OVOC account for∼80% of the NMOC. With
the completion of TROFFEE, there are now reasonably com-
prehensive field measurements of the NMOC emitted by all
the major types of biomass burning. The new information

provided on the “universal dominance” of OVOC is signifi-
cant because of the huge size of the biomass burning source
and the reactive nature of OVOC (Mason et al., 2001; Trent-
mann et al., 2005).

A few comments are made about individual species we
measured. An IR signal due to HONO was observed on the
lab fires and 2 field fires, but the measurements are semi-
quantitative due to a low SNR. However, the presence of
any HONO signal is significant since even a small amount
of HONO in the initial emissions is a source of OH that
speeds up the initial plume chemistry (Trentmann et al.,
2005). Our field, study-average HONO EF (0.26±0.13 g/kg)
overlaps the other relevant HONO EF we know of (Keene et
al., 2006): 0.24 g/kg shrubs, 0.19±0.08 g/kg branches, and
0.14±0.05 g/kg grass.

As mentioned above, the EF for acetonitrile was not
strongly correlated with MCE in our field study. Thus, our
study-average EF of 0.37±0.10 g/kg seems to be a good
estimate for all tropical deforestation fires regardless of
MCE. However, our EF for acetonitrile from deforestation
fires does differ significantly from recommended EFCH3CN
for other types of burning (e.g. 0.13 g/kg for savanna fires
and 4.91 g/kg for burning Indonesian peat (Christian et al.,
2003)). In addition, acetonitrile emissions have not been
measured for cooking fires, which may be the second largest
type of biomass burning. Still, these results suggest that
(with attention to the type of fire) PTR-MS acetonitrile mea-
surements could contribute to source apportionment or esti-
mates of the amount of biomass burned using inverse model-
ing.

The particle emission factors we measured during TROF-
FEE (PM10, 17.8±4.1 g/kg) are significantly larger than in
previous work or recommendations. Ferek et al. (1998) re-
ported a range of EFPM4 from 2–21 g/kg and a study aver-
age of about 11 g/kg for Brazilian deforestation fires. The
tower-based measurements of Ward et al. (1992) returned
values for EFPM2.5 ranging from 6.8 to 10.4 g/kg with an av-
erage of about 9 g/kg for forest fuels. Ferek et al speculated
that their higher average and high end values were due to
incomplete particle formation being probed from the tower
platform. This hypothesis was supported by simultaneous
tower and airborne PM measurements on the same Brazilian
fires (Babbitt et al., 1996). In that experiment, the airborne
EFPM2.5 averaged about 11 g/kg while the EFPM2.5 mea-
sured on the same fires from towers averaged about 4 g/kg.
In any case our study average value for PM10, which in-
cludes a wider range of particle sizes than the work refer-
enced above, is significantly higher at 17.8±4.1 g/kg. For
most types of biomass burning the PM10 values might be ex-
pected to be about 30% higher than the PM2.5 or PM4 values
(AM, Ottmar, 2001). Applying this factor to the study aver-
age of Ferek et al gives a projected PM10 of about 14 g/kg –
still lower than our TROFFEE value. A major reason for the
rest of this discrepancy could be related to fire size and inten-
sity. Ferek et al. noted that their largest, most intense fire in
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Brazil had a much higher EFPM4 or PM4/CO ratio than the
other fires they sampled in SCAR-B. They cited their mea-
surements on even larger more intense fires in North Amer-
ica, which had even higher EFPM4, and proposed that EFPM
increase with fire size and combustion intensity. For example
they cited EFPM3.5 from 15–25 g/kg (implying an average
PM10 of ∼26 g/kg) for large, intense North American fires
(Radke et al., 1991; Hobbs, 1997). In our TROFFEE data,
the lowest EFPM10 (12–14 g/kg) are from our smallest fires
(5 and 7 September). Our largest EFPM10 (26.4 g/kg) was
obtained on 3 September. This plume was the largest and
most intense we encountered. Thus we speculate that our
larger study-average EFPM values for Brazil could be due to
sampling larger, more-intense fires (on average) than in pre-
vious studies in Brazil. If correct, this raises two interesting
questions: (1) what fire sizes contribute what fraction of the
regional biomass burning and (2) is there a trend in fire size
related to trends in land-use (Sect. 2.3.2).

A species by species comparison of the emissions for the
three main types of burning (savannas, cooking, and defor-
estation) is beyond the scope of this paper. Here we just
point out a few main characteristics of the 3 main types of
burning. Cooking fire emissions occur year round and are
not initially lofted. The emissions immediately impact hu-
man health (Bertschi et al., 2003a). The average MCE is
about 0.91 and HCN was not observed from cooking fires.
In contrast, savanna fires occur only in the dry season, burn
with higher MCE (∼0.94), and most of the emissions (in-
cluding ample HCN) are lofted. Tropical deforestation fires
also burn in the dry season (with MCE∼0.91) and gener-
ally feature higher smoldering compound emissions per unit
mass of fuel, higher fuel loadings, and more emissions per
unit area than savanna fires. Specifically, the emission factors
for methane, acetic acid, acetaldehyde, acetone, formalde-
hyde, ethane, methanol, ammonia, and acetonitrile were all
∼2–3 times higher for tropical deforestation fires than for
savanna fires (Christian et al., 2003). Interestingly, the EF
for carbon dioxide, ethylene, HCN, formic acid, acetylene,
and propylene were about the same for both fire types. This
could imply some value for some of these compounds to
serve as rough, global non-biofuel biomass burning tracers,
but caution is needed as there are other sources of most of
these species (Li et al., 2000; Shim et al., 2007). When
compared to savanna fires, the EF for CO is significantly
higher for tropical deforestation fires and the EF “NOx as
NO” is significantly smaller for these fires. The NMOC
are dominated by OVOC for all types of biomass burn-
ing. The smoke from outdoor fires that impacts human
health and global climate/chemistry is aged. There are two
dry seasons in the tropics:∼February–May in the North-
ern Hemisphere and∼June–October in the Southern Hemi-
sphere. Only November–January are mostly unaffected by
outdoor biomass burning emissions.

3.3.3 Regional-global bottom-up emissions estimates

About 2 million ha of tropical rain forest are burned in an
average year in Brazil and∼120 Mg/ha of fuel is consumed
in these fires (Sect. 2.3.2). Thus,∼2.4×1011 kg of biomass
are burned annually in primary deforestation fires. The last
value can be multiplied by any EF in Table 2 for a bottom-up
estimate of annual emissions from Brazilian tropical defor-
estation fires. For instance, 388 Tg and 4 Tg are crude esti-
mates of the average annual CO2 and PM10 emissions from
Brazilian deforestation fires. The amount of biomass burned
and the total emissions for each species approximately dou-
ble if pasture fires are included, although 20–50% even larger
emissions than predicted by this type of estimate are war-
ranted for several VOC to account for RSC in Brazilian pas-
ture fires (Christian et al., 2007b). The∼240 Tg of primary
forest biomass burned each year is about 20% of the total
(1330 Tg) consumed by tropical deforestation fires given by
AM. This implies that other countries (Indonesia, Congo,
Ivory Coast, etc.) have higher, national, deforestation rates.
Assuming that the emissions from Brazilian deforestation
fires are similar to those from deforestation fires elsewhere in
the tropics, we can use our EF with the AM estimate of fuel
consumption (above) to estimate global emissions from de-
forestation fires. For instance, this implies that about 2148 Tg
of CO2 and 24 Tg of PM10 are emitted by deforestation fires
globally on an annual basis. Of course it should be remem-
bered that the emissions from any contributing region are
emitted in much less than one year and that the vast majority
of these species are too reactive to be well-mixed globally.

3.4 Mega-plume

Section 3.2 showed regional CO falling within the typi-
cal range observed in haze layers in previous years until
7 September. In contrast, on 8 September, during transit
(at ∼2.0 km altitude) from Manaus to Cuiabá we encoun-
tered CO values as high as 1172 ppb from about 8.3◦ S
(∼11:00 a.m. LT) to 13◦ S (∼12:30 p.m. LT) – a distance
>500 km (Fig. 7a). Visibility was often too low to see
the ground. Thus, no fires were observed from the aircraft
during this time. On 8 September there was also a sharp
maximum in the daily NOAA-12 hotspot total for Brazil
(http://www.cptec.inpe.br/queimadas/) and a very large area
with high TOMS Earth Probe aerosol index (AI) appeared
(Figs. 7b and c). These observations suggest the presence
of either “extreme haze” or a massive plume formed from
the combined output of numerous fires. Because many rel-
atively short-lived fire emissions were still present (vide in-
fra), we prefer the latter explanation and have termed this
phenomenon a “mega-plume.” The mega-plume or “white
ocean” of smoke covered a large area in Brazil, Bolivia,
and Paraguay for about one month – draining southeast-
ward. Selected, narrated MODIS visible images of the smoke
from this “event” are archived for 6 September to 8 October
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Fig. 7. The mega-plume.(a) CO vs. latitude from the 8 September,
2004 flight showing high CO extending from 8 to 13 south.(b)
Daily NOAA-12 afternoon hotspots for Brazil from 24 August to
19 September, 2004. The maximum value occurs on 8 September.
(c) TOMS aerosol index on 8 September, 2004.

of 2004 (http://earthobservatory.nasa.gov/NaturalHazards/
naturalhazardsv2.php3?imgid=12424) and the TOMS
Earth Probe AI was elevated until late September (http://
toms.gsfc.nasa.gov/aerosols/aerosolsv8.html). The NOAA-
12 hotspots are elevated from∼3–19 September and the
hotspots during this period account for roughly one-quarter
of the total NOAA-12 hotspots for the year. This suggests
that a large fraction of the total biomass burned in 2004
may have produced smoke that was processed in this mega-
plume/smoke-ocean event. Brown et al. (2006) describe a
similar smoke event in the western Amazon occurring in the
fall of 2005. Thus mega-plumes (or smoke oceans) may be
fairly common in Brazil and other areas of the tropics when
biomass burning is peaking. Whereas smoke plumes usually

age in relative isolation from each other while diluting with
regional haze, in the mega-plume scenario, direct mixing of
fresh smoke plumes likely dominates. The two chemical pro-
cessing environments may lead to different outcomes and the
latter scenario may be the relevant processing environment
for a large part of the total regional emissions.

Only the AFTIR and GPS acquired data on this flight as
the other instrumentation had been deployed at the ZF-14
Tower (Karl et al., 2007b). The AFTIR spectra show that
the mega-plume contained 10–50 ppbv of numerous reac-
tive species such as NH3, NO2, CH3OH, and organic acids
and high PM10 (100–200µg/m3) can be inferred from the
PM10/CO ERs measured earlier. The mega-plume was not
perfectly mixed, however, all the samples showed depletion
(relative to CO) of reactive species such as HCHO, C2H4 and
C2H2. Many samples also showed incipient production of
O3 and both formic and acetic acids. To illustrate the mega-
plume chemistry and aging effects, we computed “effective
emission factors” (EEF) for the mega-plume that are shown
in Table 2. The last sample of clean air (at∼8◦ S, Fig. 7a)
was used as the background for the mega-plume samples.
The EEF were computed in the same way as EF (Sect. 2.2.2).
However, the EEF reflect the temporary composition of the
mega-plume at the unknown age that it was sampled. The
EEF are not included in the computation of the study-average
initial emission factors. Also shown in Table 2, for each
species, is the mega-plume EEF minus the study average EF,
divided by the standard deviation in the study average EF. As
seen in Table 2 the average mega-plume sample was enriched
by ∼6 and 13 standard deviations for formic and acetic acid,
respectively. This corresponds to normalized excess mix-
ing ratios relative to CO of about 5% and 1.6% for these
species respectively, which can be compared to the study-
average initial values of about 1.6 and 0.3%, respectively.
1O3/1CO in the mega-plume was most often positive and
ranged from−1 to +5%. Potentially similar post-emission
smoke chemistry can be probed by comparing the PTR-MS
data for initial emissions and the biomass-burning-induced
regional haze that we sampled from 27 August to 5 Septem-
ber (Karl et al., 2007a). The haze was less-concentrated and
of even more ambiguous age. Nevertheless, it probably had
some chemical processes in common with the mega-plume.
In the earlier regional haze, Karl et al. (2007a) observed a
∼50% increase in the acetone/acetonitrile ratio, but no evi-
dence of secondary formation of methanol or acetaldehyde
or other species.

Secondary production of ozone and organic acids in an iso-
lated smoke plume from a forest fire was previously observed
in Alaska by Goode et al. (2000). Yokelson et al. (2003a) ob-
served1O3/1CO and1CH3COOH/1CO rise to∼9% in
less than one hour in plumes from African grass fires, but no
formic acid was produced. Jost et al. (2003) observed sec-
ondary production of acetone in a savanna fire plume. Trent-
mann et al. (2005) successfully modeled many aspects of the
chemical evolution of individual smoke plumes in Africa,
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but could not account for the observed secondary produc-
tion of acetone or acetic acid. The ozone production could
only be modeled by increasing the initial VOC (to account
for unmeasured VOC) or by invoking a few possible, but un-
confirmed, heterogeneous effects. Our observation of fast
formation of acetic acid and O3 in the mega-plume and in-
creased acetone in the regional haze suggests that important,
but unknown, chemistry occurs in isolated smoke plumes,
mega-plumes, and regional haze.

It is difficult to identify what was burning to create the
mega-plume, but some insight is gained from the attempt.
The largest group of NOAA-12 hotspots (several thousand
in number) for a late-afternoon, 8 September overpass was
located near 50 W or∼22 h to the east according to HYS-
PLIT back trajectories (Draxler and Rolph, 2003). The sam-
pled air would have passed this location around 02:00 p.m.
LT on 7 September. The afternoon overpass for 7 Septem-
ber shows reduced (compared to the 8th) but very substan-
tial hotspot activity in that same area. Another, closer, large
group of NOAA-12 hotspots detected on 8 September was
located along 55W only∼4 h to the east. This is consistent
with the observation of slight aging, but would suggest that
the fires were active by∼08:00–09:00 a.m. The common as-
sumption is, however, that most fires are ignited in the after-
noon. Other possibilities are that the relevant hotspots were
undetected or that the HYSPLIT back trajectories are highly
uncertain in this remote region. To check the former hypoth-
esis we examined the MODIS visible archives available (but
hotspot numbers not tabulated) at: http://rapidfire.sci.gsfc.
nasa.gov/subsets/?AERONETAlta Floresta/2004252. Per-
haps surprisingly, even the∼10:30 a.m. LT Aqua overpass
shows hundreds of hotspots along the 55W line and>100
closer hotspots (not seen on NOAA-12 images) that over-
lap our flight track (approximately along 56 W). This sug-
gests several important things: (1) numerous fires were ig-
nited in the morning on 8 September, (2) much of the smoke
we sampled was likely∼0–4 h old, and (3) the NOAA-12
hotspots sometimes miss significant areas of active burning
(at least under extreme conditions). In any case, the mega-
plume samples likely probed smoke that was mostly less than
1 day old.

Christian et al. (2007b) observed a study-average MCE for
RSC of ∼.788 in the ground-based campaign. The mega-
plume had a higher MCE of 0.923 suggesting that the bulk
of the emissions we sampled were not produced by RSC. The
mega-plume MCE is also above our study average MCE of
0.91. This suggests that the smoke we happened to sample
from this major burning episode originated from relatively
more flaming combustion than in the fires we sampled ear-
lier (except for the planned fire). The humidity during the
8 September flight was also by far the lowest we encoun-
tered. By 11:00 a.m. LT the water vapor had dropped below
1% as compared to 1.5–2.5% for afternoon lows on earlier
flights. The low humidity and the higher MCE could explain
the peak in the hotspots by indicating a strong preference for
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Fig. 8. (a)TOMS aerosol index (AI) on 16 September, 2004 show-
ing concentrated biomass burning emissions (AI∼ 3.5) approach-
ing S̃ao Paulo.(b) TOMS AI on 17 September, 2004 showing the
most concentrated emissions (AI∼ 3.5) just past S̃ao Paulo.(c) São
Paulo AERONET aerosol optical thickness for September 2004.
The peak (near AOT 3) is in good absolute and temporal agreement
with the TOMS AI data.

Brazilian farmers to burn under conditions that promote both
flaming and high fuel consumption. In a non-technical sum-
mary; landholders wait until conditions are ideal and then do
much of their annual burning in the next few days (including
burning in the mornings) creating a mega-plume or “white
ocean” of smoke that passes over southern Brazil and into
the south Atlantic.
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There is evidence that the mega-plume had a brief, but ma-
jor impact on the air quality of S̃ao Paulo, which is∼1500 km
south of the main burning region. During most of Septem-
ber, the mega-plume exited South America well south of São
Paulo (e.g. Fig. 7c). However, the TOMS aerosol index (AI)
images for 16 and 17 September show the mega-plume (with
AI ∼3.5) exiting South America over São Paulo (Figs. 8a
and b). Simultaneously, the São Paulo AERONET station
recorded a factor of 3–4 increase in aerosol optical thickness
above the normal, high value (∼1) for this large urban area
(Fig. 8c). This incident dramatically illustrates the amount
of material transported from Amazonian fires and how long
it remains in a concentrated (altered) processing regime.

4 Conclusions

The TROFFEE 2004 airborne campaign in the Brazilian
Amazon successfully obtained the first comprehensive emis-
sions data for tropical deforestation fires. It was found that
reactive OVOC accounted for about 80% of the NMOC emis-
sions. We recommend emission factors for most of the major
species produced by deforestation fires globally. Dry sea-
son haze layers in Brazil, due largely to biomass burning,
extend to only about one-half the altitudes observed for dry-
season smoke layers in Africa. This may have implications
for global remote sensing of CO. Very large geographic ar-
eas were covered by the type of reactive smoke mixture that
has proved hard to handle in photochemical models. Thus,
the detailed effects this smoke had when it impacted areas
>1000 km to the south would be difficult to predict. Larger
fires may emit more particles per unit mass of fuel burned
and larger fires may be becoming more common in the Ama-
zon basin (Sect. 2.3.2). Fire emission factors for acetonitrile
differ substantially by ecosystem, but could be used with at-
tention to fire type for source apportionment and with inverse
modeling to estimate the amount of biomass burned.

The TROFFEE airborne campaign also completed an ini-
tial survey of the major fire theatres of the world using new
technology and a consistent sampling strategy. The initial
emissions from temperate and boreal forest fires and the
chemical evolution of two plumes were sampled in 1997 and
recommended EF were developed (Yokelson et al., 1999;
Goode et al., 2000). In 2000, the chemical evolution of 4
dry plumes and one cloud-processed plume was measured
(Yokelson et al., 2003a; Hobbs et al., 2003; Jost et al., 2003)
as well as the initial emissions from the two largest types
of global biomass burning; savanna fires (Yokelson et al.,
2003a) and cooking fires (Bertschi et al., 2003a). In 2001 and
2003, PTR-MS was co-deployed with FTIR and whole air
sampling on laboratory fires in savanna, Indonesian, boreal,
tropical forest, and temperate fuels and recommended EF for
an expanded suite of compounds were produced (Christian et
al., 2003; 2004; 2007a1; Karl et al., 2007a).

We now know the top∼20–50 emissions from each main
fire type and have quantified at best∼70% of the NMOC.
Of those NMOC, about 70–80% are reactive OVOC and
the NMHC are quickly converted to a series of short-lived
OVOC intermediates. Rapid, very large changes in smoke
composition, that are subgrid for global models, normally
occur immediately after emission and there is no evidence
for a fixed smoke age at which the chemical composition or
rate of change is reproducible. For instance some plumes are
characterized by high OH (Goode et al., 2000; Hobbs et al.,
2003) and others by low OH (de Gouw et al., 2006). Detailed
box models of the initial fast changes have relied on logical
assumptions about unmeasured emissions; or proposed pos-
sible, but unconfirmed, heterogeneous processes to achieve
partial agreement with observations (Tabazadeh et al., 2004;
Trentmann et al., 2005).

More biomass burning research is needed including:
(1) Airborne plume evolution studies, especially in smoky
clouds, with enough instrumentation to constrain models and
probe heterogeneous effects, (2) Development and/or de-
ployment of instrumentation to quantify the unknown 30%
of NMOC and species like HONO, which evidently strongly
impact plume chemistry, (3) Development of well-validated
high resolution, smoke chemistry models that can be confi-
dently applied to different regional fire density and smoke
transport scenarios and guide the parameterizations needed
for global models, (4) Cooking fires are the second largest
type of biomass burning, but a fairly large suite of emis-
sions has only been measured on 4 of them: more cook-
ing fires need to be sampled and more species need to be
quantified such as acetonitrile and particles, (5) Better under-
standing of the environmental driving factors for RSC glob-
ally, (6) Better knowledge of the fuels that burn in southeast
Asia, (7) Validation of space-based fire-related products such
as hotspots, burned area, CO, aerosol loading, etc., and (8)
Stronger integration of biomass burning measurements into
campaigns focused on other issues.
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