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Abstract. This study aims at providing experimental ev-
idence, to support the hypothesis according to which the
movement of the moon’s shadow sweeping the ozone layer
at supersonic speed, during a solar eclipse, creates gravity
waves in the atmosphere. An experiment was conducted
to study eclipse induced thermal fluctuations in the ozone
layer (via measurements of total ozone column, ozone pho-
tolysis rates and UV irradiance), the ionosphere (Ionosonde
Total Electron Content – ITEC, peak electron density height
– hmF2), and the troposphere (temperature, relative humid-
ity), before, during and after the total solar eclipse of 29
March 2006. We found the existence of eclipse induced
dominant oscillations in the parameters related to the ozone
layer and the ionosphere, with periods ranging between 30–
40 min. Cross-spectrum analyses resulted to statistically
significant square coherences between the observed oscilla-
tions, strengthening thermal stratospheric ozone forcing as
the main mechanism for GWs. Additional support for a
source below the ionosphere was provided by the amplitude
of the oscillations in the ionospheric electron density, which
increased upwards from 160 to 220 km height. Even though
similar oscillations were shown in surface temperature and
relative humidity data, no clear evidence for tropospheric in-
fluence could be derived from this study, due to the modest
amplitude of these waves and the manifold rationale inside
the boundary layer.

Correspondence to: C. Zerefos
(zerefos@geol.uoa.gr)

1 Introduction

Gravity waves (GWs) constitute an essential motion com-
ponent of the atmospheric circulation due to their impor-
tant contribution in the momentum and energy budget and
in the wind systems of the atmosphere (Fritts and Alexan-
der, 2003). Their role in weather, climate and atmospheric
chemistry is very important. In particular, they can trans-
port energy and momentum between different atmospheric
regions and disturb the balanced state or initiate and modu-
late convection and subsequent hydrological processes (e.g.
Mapes, 1993). The initiated by GWs convection, can result
to formation of clouds (e.g. orographic cirrus, polar strato-
spheric and mesospheric; Dörnbrack et al., 2002), modify
chemistry, and trigger numerous processes (e.g. Voigt et al.,
2000). During their dissipation phase, they contribute to the
vertical transport and mixing of chemical species and influ-
ence momentum and energy in the upper troposphere/lower
stratosphere and in the mesosphere and lower thermosphere
(e.g. Hays et al., 2003).

A varying number of sources are believed to generate GWs
at lower levels of the atmosphere including topography, con-
vective and frontal activity, wind shear and geostrophic ad-
justment, while at greater heights their sources include non-
linear wave-wave interactions, auroral currents, ion drag and
Joule heating but also the differential heating of the atmo-
sphere at dawn and dusk terminator and during solar eclipses
(Fritts and Luo, 1993 and references therein).

Chimonas and Hines (1970) were the first to suggest that
during a solar eclipse the disturbance of the heat balance
along the supersonic travel of the trajectory of the moon’s
shadow could generate GWs. The source of these waves was
assumed to be either at higher altitudes e.g. at around 90 km
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where molecular oxygen heating begins (Chimonas, 1970),
or at lower altitude e.g. water vapor IR absorption (Lamb
waves) and the ground cooling (Chimonas and Hines, 1971;
Chimonas, 1973). Morover, in both Chimonas (1970) and its
subsequent follow on study of Firtts and Luo (1993), ther-
mal cooling of the stratospheric ozone layer as the forcing
function of GWs during a solar eclipse was considered. Eck-
ermann et al. (2007), with their high-altitude global numeri-
cal weather prediction model, recently simulated an induced
radiative cooling rate in the stratosphere, 2–3 times larger
than assumed in these earlier stratospheric bow wave models.
In all cases, the source ambiguity makes subsequent experi-
mental studies seeking evidence of eclipse-generated gravity
waves, particularly complicated.

There have been a number of attempts to detect ground
level atmospheric pressure waves resulting from solar
eclipses. The periods of such waves range from the order of
1 min to 1 h or so, the decay times range from half the wave
period upwards, and the ground level amplitude is unlikely
to exceed 0.1 hPa, and is typically far less (Jones, 1999). In
only few cases does the balance probability lie in favour of
a detection of such waves (Jones, 1999; references therein).
Anderson et al. (1972) reported on surface pressure fluctua-
tions in the range 15–150 min and Seykora et al. (1985) found
a surface pressure response with a period of about 4 h and
a speed of 320 m s−1. The amplitudes of these waves were
larger than those predicted by Chimonas (1970), but agree
well with the 0.1–0.5 hPa range modelled recently by Ecker-
mann et al. (2007).

A limited number of attempts to detect GW signals on total
ozone have been made. Mims and Mims (1993) identified a
sequence of 4–5 nearly uniformly spaced fluctuations, how-
ever with small periods (4.5–7.2 min), on total ozone series,
using a TOPS (Total Ozone Portable Spectrophotometer), but
the linkage with eclipse induced GWs appears weak. Zerefos
et al. (2000), deploying power spectral analysis on erythe-
mal irradiance, revealed a significant oscillation in the ozone
layer with a period of about 20 min.

In the ionosphere, waves with a period of 10–40 min have
been measured at more than 500 km from the zone of total-
ity (Singh et al., 1989), traveling at subsonic (Davis and da
Rosa, 1970) or supersonic velocities (Hanuise et al., 1982).
Lastly, a source location has been identified in the thermo-
sphere at 170 km altitude due to reduced heating by absorp-
tion of extreme ultraviolet solar radiation, based on the anal-
ysis of ionosonde measurements (Liu et al., 1998; Altadill et
al., 2001; Sauli et al., 2006), while larger periods of about
1 h have also been reported (Altadill et al., 2001). Prior to
those observations, the idea of an in-situ thermospheric wave
source was highlighted by various modeling studies (Ridley
et al., 1984; Roble et al., 1986; M̈uller-Wodarg et al., 1998).

Despite decades of research, observational evidence for
a characteristic bow-wave response of the atmosphere to
eclipse passages remains equivocal (Eckermann et al., 2007).
In this work, an attempt to shed light on the generation of

GWs during solar eclipses is made, with measurements at
the three critical layers in the atmosphere namely the tropo-
sphere, the stratosphere and the ionosphere. The main goal
is to provide experimental evidence supporting the initial hy-
pothesis that the cooling of the ozone layer in the stratosphere
by the moon shadow travelling at supersonic speed during
the eclipse, constitutes a source of gravity waves propagat-
ing both upwards and downwards.

2 Instrumentation

Ultraviolet direct and global solar spectral measurements
were performed at Kastelorizo (36◦09′ N, 29◦35′ E), Thessa-
loniki (40◦38′ N, 22◦57′ E) and Athens (38◦03′ N, 23◦52′ E)
using Brewer spectroradiometers (MKIII, MKII and MKIV,
respectively). A map with the location of the above stations
with regard to eclipse path and circumstances can be found
in Gerasopoulos et al. (2007)1. The characteristics of the in-
strument and details about their calibration procedures are
described in detail by Bais et al. (1996). The three instru-
ments followed the same measuring schedule on the eclipse
day (29 March) and on the previous day. For this study the
operating software of the instrument was modified to allow
the alternating measurement (every 30 s) of global and direct
spectral irradiance at 6 wavelengths between 302 and 320 nm
that are used for measuring total column ozone and columnar
SO2. These measurements were performed from 07:30 UTC
until 14:30 UTC. More details are given by Blumthaler et
al. (2006) and Kazadzis et al. (2007).

Ozone photolysis frequencies (JO1D) have been also cal-
culated from the Brewer spectroradiometer global irradi-
ance measurements following the methodology described in
Kazandzis et al. (2004). JO1D measurements have been also
conducted at Finokalia, with a filter radiometer – Meteo-
rologie Consult, Germany (Gerasopoulos et al., 2006). We
have also used UV measurements from the Greek UV moni-
toring network (http://www.uvnet.gr), equipped with NILU-
UV multi-channel radiometers, providing UV irradiance at
five wavelength bands centered at 305, 312, 320, 340 and
380 nm (Kazantzidis et al., 2007). Meteorological measure-
ments at a number of sites including Kastelorizo and Fi-
nokalia have been also conducted during the eclipse, as de-
scribed by Founda et al. (2007).

Ionospheric observations from the National Observatory
of Athens Digisonde (http://www.iono.noa.gr) were used for
the investigation of the ionospheric response to the solar
eclipse of 29 March 2006 over Athens (38◦00′ N, 23◦30′ E).
In particular, calculations of electron density profiles up to
1000 km, obtained under a vertical incidence ionospheric
sounding campaign, were used for the derivation of the peak
electron density height, hmF2, and the estimation of the

1Gerasopoulos, E., Zerefos, C. S., Tsagouri, I., et al.: The To-
tal Solar Eclipse of March 2006: Overview, Atmos. Chem. Phys.
Discuss., in preparation, 2007.
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Ionosonde Total Electron Density, ITEC., (Gerasopoulos et
al., 20071). In addition, the electron densities at fixed iono-
spheric altitudes zones were calculated, enabling the study of
electron density variations as a function of time and altitude
(Altadill et al., 2001).

3 Analysis and results

3.1 Methodology

Observations from various atmospheric layers were analyzed
deploying Spectral Fourier Analysis, in an effort to investi-
gate the possible detection of GWs propagating in different
atmospheric heights during the 29 March 2006 Total Solar
Eclipse. In this study we have used the following param-
eters: i. total ozone over Kastelorizo, Athens and Thessa-
loniki, mainly as an index of the disturbance in the strato-
spheric ozone layer, additionally supported by ozone photol-
ysis rates JO1D and UV (305 nm) irradiance measurements,
ii. the Ionosonde Total Electron Content (ITEC) as an indi-
cator for the total ionosheric ionization disturbances, and the
peak density height of the F2 layer (hmF2) as a first indicator
for the propagation of wave-like motions in the ionosphere,
iii. ground measurements of temperature and relative humid-
ity at Kastelorizo and Finokalia.

As input data for the spectral analysis, we have used the
residual time series of the above parameters. Residuals have
been calculated by applying polynomial fittings to the ini-
tial time series, to remove the combined effect of the eclipse
and the diurnal variability of each parameter. We have cho-
sen the maximum period during the eclipse that almost cloud
free conditions were encountered at all sites, so that the same
period would be used for all parameters (10:00–11:52 UTC).
Short-time contamination by light and temporary cloudiness
or a very few cases of aircraft contrails (evidenced mainly
on actinometric data) at each site, has been also removed by
substituting the respective residual values with zeroes. For all
parameters except for the ionospheric, 1 min time resolution
data were available. Ionospheric parameters were available
with a 4 min time resolution.

Because of the short duration of the investigated period,
we have used the zero-padding method which consists in
adding zeros at the end of the time series, to improve fre-
quency resolution of the resulting power spectra, thus en-
hancing our ability to estimate the signal’s period more ac-
curately and discriminate close periodicities.

3.2 Investigation of observed oscillations in the ozone layer

For the period between 10:00 and 13:00 UTC, the total ozone
column at Kastelorizo was changing on the day before the
eclipse from about 335 DU down to about 325 DU, and on
the day of the eclipse it was increasing from about 290 DU to
305 DU (Kazadzis et al., 2007). An increase of total ozone

by the end of the eclipse in the range 5–24 DU is also re-
confirmed from the NILU-UV measurements in a number
of stations (Kazantzidis et al., 2007). During the course of
the eclipse, a gradual decrease in total ozone at Kastelorizo,
followed by an almost symmetric increase after the totality
is observed (Fig. 1a, upper graph). This effect has been re-
ported earlier by Zerefos et al. (2000), and it was attributed
partly to the limb darkening effect and partly to the in-
creasing influence of direct irradiance by the diffuse radi-
ance entering the field of view of the total ozone instru-
ments. Blumthaler et al. (2006), confirmed this finding by
calculating a correction for total ozone due to limb darken-
ing. This correction was found to be very small (less than
0.01%). Therefore the most possible reason for the reduced
total ozone values during the eclipse is the contamination
of direct irradiance measurements by the diffuse radiation
(Kazadzis et al. 2007).

Total ozone residuals at Kastelorizo are shown in Fig. 1a
(lower graph). A Savitzky-Golay smoothing (2nd order mov-
ing polynomial, 10 points) is also used for the better visual-
ization of the lower frequency fluctuations. The two vertical
lines in Fig. 1a correspond to sun coverage by the moon of
more than 70%, corresponding roughly to a reduction in di-
rect irradiance measurements (under normal conditions) at
airmass factors of more than 3, which are usually discarded
in the standard Brewer total ozone measurements (Kazadzis
et al., 2007). This effect results in a smooth continuous re-
duction of the ozone values, which is removed by the applied
polynomial fit, thus the eclipse induced oscillations in the
total ozone data are added on top of this smooth reduction
of total ozone. The peak-to-peak amplitude of the residuals
is about 2–3.5% of the total ozone averaged over the same
period, and three main oscillations were observed starting
30 min after the first contact. Cloud development a little be-
fore last contact prevented the further capture of the evolution
of the waves.

Since these oscillations are observed mainly during the
measurement interval influenced by the diffuse radiation, we
have used two additional parameters to express total ozone
variability and confirm the existence of the oscillations, the
photolysis rate of the reaction of O3 to O(1D), JO1D and UV
irradiance at 305 nm. JO1D is mainly sensitive to the total
column ozone, but also to the total aerosol optical depth,
aerosol growth with relative humidity and by clouds depend-
ing on the optical depth of the cloud (Ruggaber et al., 1994).
Moreover, UV irradiance at 305 nm exhibits maximum ozone
absorption compared to higher wavelengths provided by the
NILU-UV radiometers (Kazantzidis et al., 2007). It should
be noted that the effect of diffuse irradiance that was regarded
as the reason for the biased total ozone measurements during
the eclipse, has no influence on the Brewer irradiance mea-
surements, and consequently on the derived JO1D data.

JO1D measurements at Kastelorizo and Finokalia are
shown in Figs. 1b and c (upper graphs) with the respec-
tive polynomial fittings. JO1D residuals are presented in the

www.atmos-chem-phys.net/7/4943/2007/ Atmos. Chem. Phys., 7, 4943–4951, 2007
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Fig. 1. (a) Upper: total ozone over Kastelorizo during the eclipse
and second order polynomials fitted on the data, Lower: total ozone
residuals and a Savitzky-Golay (2nd order moving polynomial, 10
points) smoothing line. The two vertical lines correspond to sun
coverage by the moon of more than 70% and residuals and smooth-
ing line during this period are presented by dot and thin (red, contin-
uous) lines, respectively,(b) Upper: JO1D at Kastelorizo (KAST)
during the eclipse and a third order polynomial fitted on the data,
Lower: JO1D residuals and a Savitzky-Golay smoothing line, and
(c) Upper: JO1D at Finokalia (FIN) during the eclipse and second
order polynomials fitted on the data, Lower: JO1D residuals and a
Savitzky-Golay smoothing line. Time in UTC.
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Fig. 2. Power Spectrum Analysis applied on the residuals of vari-
ous atmospheric parameters during the eclipse (10:00–11:52 UTC,
29 March 2006); Y-axes correspond to the spectral estimates for the
following parameters:(a) total ozone at Kastelorizo (KAST),(b)
JO1D at Kastelorizo (blue line + circles) and Finokalia (FIN, red
line + triangles),(c) UV (302 nm) at Heraklion (HER, red line +
triangles), Lefkosia (LEF, blue line + circles) and Ioannina (IOA,
green line + triangles reversed). Similarly colored dash lines rep-
resent the 95% confidence limits of each spectrum. Axes in (c) are
divided by 105.

lower graph of Figs. 1b and c, and the smoothing line reveals
oscillations with similar characteristics. Indeed, the main os-
cillations found in total ozone at Kastelorizo are reproduced
with a certain lag in JO1D at the same station, but also in dis-
tance from totality, at Finokalia. The average peak-to-peak
amplitude of the residuals is about 8% and 10% of the JO1D
over the same period, at Kastelorizo and Finokalia, respec-
tively, however corresponding to almost half amplitudes for
the more distant from totality station (Finokalia), given the
different levels of JO1D at the two sites.

The oscillations are further investigated with Spectral
Fourier Analysis (Fig. 2). The power spectrum of total ozone
over Kastelorizo reveals a significant oscillation (99% con-
fidence level, not shown) with a period in the range 28–
38 min (Fig. 2a). A secondary oscillation is found at peri-
ods 12–13 min which approaches the 95% confidence level.

Atmos. Chem. Phys., 7, 4943–4951, 2007 www.atmos-chem-phys.net/7/4943/2007/
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Fig. 3. Hourly records ofDst index (http://swdcwww.kugi.kyoto-u.
ac.jp/dstdir/index.html), as indicator of the geomagnetic activity
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ac.jp/aedir/index.html) indicating the level of the auroral electrojets
intensity (bottom panel) for the time interval 27–31 March 2006.
The blue dash lines represent indicative thresholds for the identifi-
cation of considerable geomagnetic/magnetospheric disturbances.

The same process was applied on the total ozone time series
at Thessaloniki (not shown). A significant oscillation (95%
confidence level) with a period of 28–32 min was found, de-
noting the spatial extent of the ozone layer perturbation. The
amplitude of the residuals was found to be in the order of 3–
4% of the total ozone, averaged over the same period. The
influence of clouds was much more extended on total ozone
over Athens, thus hindering the attribution of fluctuations to
GWs. The discussed range of periodicities could not be iden-
tified on the previous and next day spectra of the total ozone
series over all sites (for the same time interval; not shown).

The power spectrum of JO1D at Kastelorizo reveals the
same features with total ozone at the same station, allow-
ing its use as a proxy for total ozone variability. The same
spectrum is also revealed when 4-min averages are first ex-
tracted (not shown). The latter ensures that no bias is im-
posed on the cross-spectrum between the 4 min averages of
total ozone and the ionospheric parameters (Sect. 3.3). The
power spectrum of JO1D at Finokalia shows a peak at 32–
45 min (99% significance level, not shown), while the UV ir-
radiance at 305 nm spectrum at Heraklion, reveals two peaks
at 28–45 min and 17–23 min. Similar oscillations were found
in UV irradiance at distant stations from the peak eclipse,
namely Ioannina and Nicosia (Kazantzidis et al., 2007).

Overall, a main oscillation with period in the range 30–
40 min is found at a number of stations with independent
measurements of total ozone column and its proxies JO1D
and UV irradiance, denoting an extended thermal strato-
spheric ozone disturbance.

3.3 Investigation of observed oscillations in the ionosphere

This solar eclipse took place under low geomagnetic and
magnetospheric activities, providing clear advantage for the
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Fig. 4. (a)Ionosonde TEC and hmF2 residuals,(b) Spectrum Anal-
ysis applied on the residuals; Y-axes correspond to the spectral es-
timates of the parameters and similarly colored dash lines represent
the 95% confidence limits of each spectrum,(c) Cross Spectrum
Analysis between JO1D at Kastelorizo and ionospheric parameters;
Y-axes correspond to the amplitude of the cross-spectrum for the
following pairs: JO1D vs Ionosonde TEC (blue line + circles) and
JO1D vs hmF2 (red line + triangles).

identification of signals from solar eclipse induced GWs in
the ionosphere (Fig. 3). In particular, the geomagnetic activ-
ity remained low, since the Dst index values ranged above
−30 nT during the whole week (27–31 March 2006), and
the same holds for the magnetosheric activity. Some moder-
ate excursions in AE index (Mayaud, 1980) recorded in very
early morning or very late evening hours the days prior to the
eclipse day, cannot impose an effect in the ionosphere over
Athens at the local time of the eclipse occurrence (Prölss,
1995).

The complete evolution of ionospheric parameters dur-
ing the eclipse is thoroughly discussed by Gerasopoulos et
al. (2007)1. Here we focus on the oscillations observed in
ITEC and hmF2 presented in Fig. 4a. Three main oscil-
lations are found almost in coincidence with those of total
ozone, however the lower time resolution of these measure-
ments and the complexity of the exact GWs source (in the
horizontal and the vertical), does not allow the estimation of
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a reliable propagation velocity. The peak-to-peak amplitude
of the ITEC residuals is 10–15% of the ITEC averaged over
the eclipse period, while for hmF2 it is about 2%. The power
spectra of ITEC and hmF2 are shown in Fig. 4b. Signifi-
cant oscillations (95% confidence level) in the range 34–43
and 34–38 min are revealed for ITEC and hmF2, respectively.
An additional peak is observed on the ITEC spectrum at 18–
20 min. Power spectra were also calculated for all “quiet”
geomagnetic conditions on days between 27 and 31 March
2006, and no significant fluctuations were found, denoting
that the 29 March periodicities were indeed related to solar
eclipse effects.

Cross-Spectrum Analysis has been applied between JO1D
at Kastelorizo and the ionospheric parameters. The ampli-
tude of the cross spectra for the pairs JO1D vs ITEC and
JO1D vs hmF2 is shown in Fig. 4c. A very distinct co-
variance between the frequency components corresponding
to the∼40 min periodicity is found in both spectra. Signifi-
cantly high square coherences were calculated, 0.93 and 0.96
for JO1D vs ITEC and JO1D vs hmF2, respectively, demon-
strating that the ionospheric oscillations are probably driven
by GWs initially formed in the stratosphere.

Variation of electron density amplitudes with height: Elec-
tron density variations at fixed ionospheric altitude zones
of 20 km depth were additionally used to further speculate
on the main source of GWs that have reached ionospheric
heights. Consistent fluctuations with maximum amplitude in
the altitude range of 200–220 km were observed during the
first phase of the eclipse (Gerasopoulos et al., 20071). Such

oscillations were previously reported in the literate and are
attributed to solar eclipse induced GWs during or after the
solar eclipse (Altadill et al., 2001; Sauli et al., 2006). In
this case, the fluctuations were considerably attenuated dur-
ing the solar reappearance phase. The spectrum analysis (not
shown) depicted a dominant periodicity of 15–18 min, coin-
ciding with the higher frequency oscillations in total ozone
and ITEC.

The change in the amplitude of these oscillations was used
to speculate on the location of the GWs source responsible
for the ionospheric signal. The amplitude of these oscil-
lations was calculated as the difference between successive
minima and maxima of the electron densities at the fixed alti-
tude zones. These oscillations were clearly present in the alti-
tude range 140–220 km. However, the 140–160 km zone was
not included in our discussion here in order to keep the E-
layer conditions clearly out of the analysis, since the electron
concentration is very low and the detection of oscillations
is ambiguous. Moreover, no such analysis was performed
above 220 km since the main response of the ionosphere to
the eclipse was gradually diminished from that height up
(Gerasopoulos et al., 20071).

The amplitude of each of the four oscillations that can be
identified with relative good precision, as well as the aver-
age amplitude per altitude is presented in Fig. 5. A tendency
of increasing amplitude with altitude is clearly evidenced
in both raw and standardized amplitudes, a result consistent
with the effect of density decrease with height on the ampli-
tude of a vertically propagating wave (Fritts and Luo, 1993).

In summary, taking into account that the observed oscil-
lations i) are clearly present in the ionospheric height range
140–220 km, ii) are well attenuated above 220 km, iii) they
have the same period at each height, iv) they have an impor-
tant vertical propagation component, with increasing ampli-
tude with height and v) are not of auroral origin, one could ar-
gue that they seem to originate from below the studied iono-
spheric heights. The above characteristics lie in favour of
propagating waves attributed to the movement of the cooled
spot produced by the moon’s shadow in the ozone layer.

3.4 Investigation of observed oscillations in the tropo-
sphere

The identification of GWs in the troposphere is a much more
difficult task. Especially inside the boundary layer (BL), any
fluctuations are subject to multiple rationales and increased
uncertainty, related to meteorological or other local scale fac-
tors that may well mask the signal imposed by the propaga-
tion of GWs down to the surface.

We have used the temperature record at Kastelorizo to de-
tect any fluctuations from GWs near the surface. The temper-
ature drop of 2.3◦C at Kastelorizo is shown in Fig. 6a (upper
graph) accompanied by a polynomial fitting. Temperature
residuals were calculated and are presented in Fig. 6a. (lower
graph). The three oscillations seen in total ozone are also ob-
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Fig. 6. (a) Upper panel: Temperature at Kastelorizo during the
eclipse (open circles) and a third order polynomial fitted on the data
(dash red line),(b) Upper panel: The same for RH at Kastelorizo.
Lower panels in (a) and (b): Residuals of each parameter (blue
line-dots) and a Savitzky-Golay (2nd order moving polynomial, 10
points) smoothing line (continuous red line). Time in UTC.

served in surface temperature with a 5–10 min lag, however
the peak-to-peak amplitude of the residuals is rather small
∼0.1◦C or 0.6% of the temperature averaged over the eclipse
period, which is same order of magnitude with the sensors
accuracy (±0.1◦C; Founda et al., 2007). This amplitude is
one order of magnitude lower than that predicted by Ecker-
mann et al. (2007).

To exclude relation of this signal to instrumental noise and
overcome a possible lack of confidence in the temperature
oscillations we have repeated the same analysis with rela-
tive humidity, RH (Fig. 6b). The residuals shown in Fig. 6b
(lower graph) once more reveal the three dominant oscilla-
tions and the peak-to-peak amplitude is∼1% (absolute) or
1.2% of the RH averaged over the eclipse period. The accu-
racy of the RH sensor is±1%, so once more the amplitude of
RH signal is comparable to the instrumental accuracy, how-
ever, the fact that the oscillations are very distinct and are
observed in both temperature and RH enhances our confi-

100 10

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

100 10

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Fig. 7. Spectrum Analysis on temperature residuals and Cross Spec-
trum Analysis between JO1D and temperature at Kastelorizo. Y-
axes correspond to the spectral and cross spectral estimates, and the
colored dash line represents the 95% confidence limits of the spec-
trum.

dence. It should be also noted here that averaging over 1 min
intervals (measurements recorded every 20 s) has as a result
to reduce the uncertainty both in temperature and RH mea-
surements, and this is easily observed in Fig. 6a and b, where
the noise is well separated from the oscillations.

The power spectrum of temperature at Kastelorizo is
shown in Fig. 7 and a significant periodicity (95% confi-
dence level) in the range 28–38 min is revealed. Similar os-
cillations, with modest wave amplitudes∼0.1◦C, were found
in the spectra of the temperature time series at other sites
namely Finokalia-Crete and Penteli-Athens (not shown). The
cross spectrum between JO1D and temperature (Fig. 7)
shows a strong covariance around the 30 min periodicity with
significantly high square coherence, 0.97.

Concluding, even though distinct oscillations are observed
in surface temperature data at various sites, additionally re-
confirmed by similar relative humidity periodicity, there is no
clear evidence for GWs in the troposphere. Especially inside
the boundary layer, manifold rationale could be provided for
such transient perturbations in temperature and more param-
eters should be monitored and examined to draw safe con-
clusions.

4 Summary – conclusions

Definite observational evidence for a characteristic bow-
wave response of the atmosphere to solar eclipse passages,
despite model calculations at various altitudes, has been still
ambiguous. In this paper, we have provided combined ex-
perimental evidence to support the initital hypothesis of Chi-
monas and Hines (1970) that the cooling of ozone layer
in the stratosphere by the supersonic travel of the moon’s
shadow during an eclipse, constitutes a source of gravity
waves propagating both upwards and downwards. To ex-
amine the above, concurrent measurements at three critical
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layers in the atmosphere namely in the troposphere, in the
stratosphere and in the ionosphere, were conducted.

Spectral Fourier Analysis revealed a dominant oscillation
with period in the range 30–40 min in total ozone column
over Kastelorizo (100% maximum occultation), but also at
larger distances, with less sun coverage (Thessaloniki, 75%
maximum occultation). It is expected that ozone in the upper
stratosphere, where it maximizes and is in radiative equilib-
rium, would respond more rapidly to the transient cooling
due to the eclipse of the sun. The eclipse induced ozone
layer thermal disturbance was endorsed by JO1D and UV ir-
radiance (305 nm) measurements, both sensitive to columnar
ozone variability, yet denoting a spatially extended propaga-
tion of the GWs with regard to the totality axis.

The 30–40 min oscillation was also evident in the spectra
of the Ionosonde Total Electron Content (ITEC) and the peak
electron density height in the ionosphere (hmF2). Cross-
spectrum analysis between total ozone and the ionospheric
parameters depicted high covariance in this range of periods.
The initial argument that the source of the perturbation orig-
inates below the ionosphere was ratified by the fact that the
amplitude of the electron density oscillation increased up-
wards from 160 to 220 km, which is expected for a vertically
propagating wave inside a mean of decreasing with height
density.

The identification of the GWs oscillation in the tropo-
sphere has been attempted with records of surface temper-
ature and relative humidity. Distinct oscillations were ob-
served in both parameters within the period range of our in-
terest, at various sites. However, the amplitude of these oscil-
lations has been modest and in the same order of magnitude
with the sensor’s accuracy. It should be kept in mind that
the intensity of the waves downwards could be considerably
suppressed by the fact that the propagation takes place in a
denser mean, and that inside the BL any periodical signal in
the parameters subjects to manifold rationale also controlled
by meteorological or other local scale factors. The above
do not allow us to draw safe conclusions on the influence of
eclipse induced GWs in the troposphere, and should be taken
under consideration for future experiments planning.
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