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Abstract. Correctly modeling stratospheric inorganic chlo-
rine (Cly) is crucial for modeling the past and future evo-
lution of stratospheric ozone. However, comparisons of the
chemistry climate models used in the latest international as-
sessment of stratospheric ozone depletion have shown large
differences in the modeled Cly, with these differences ex-
plaining many of the differences in the simulated evolution
of ozone over the next century. Here in, we examine the
role of transport in determining the simulated Cly using three
simulations from the same off-line chemical transport model
that have the same lower tropospheric boundary conditions
and the same chemical solver, but differing resolution and/or
meteorological fields. These simulations show that trans-
port plays a key role in determining the Cly distribution, and
that Cly depends on both the time scales and pathways of
transport. The time air spends in the stratosphere (e.g., the
mean age) is an important transport factor determining strato-
spheric Cly, but the relationship between mean age and Cly is
not simple. Lower stratospheric Cly depends on the fraction
of air that has been in the upper stratosphere, and transport
differences between models having the same mean age can
result in differences in the fraction of organic chlorine con-
verted into Cly. Differences in transport pathways result in
differences in vertical profiles of CFCs, and comparisons of
observed and modeled CFC profiles provide a stringent test
of transport pathways in models.

1 Introduction

The observed changes in ozone over the last two decades, as
well as the expected future increases in the next two decades,
are primarily the result of changes in the concentration of
stratospheric inorganic chlorine (Cly) and bromine (Bry).
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Therefore, correctly modeling stratospheric Cly and Bry is
crucial for modeling past and future stratospheric ozone lev-
els. However, comparisons of the coupled chemistry climate
models (CCMs) used in the latest international assessment of
stratospheric ozone (Chapter 6 of WMO, 2007) have shown
large differences in the modeled Cly, both in terms of magni-
tude and the date that Cly returns to pre-1980 values (Eyring
et al., 2006, 2007). Furthermore, these differences appear to
explain many of the differences in simulated ozone between
the models, e.g. models with a later return of Cly to pre-1980
values generally have later return of ozone to pre-1980 val-
ues. Given its importance for modeling ozone and the large
differences between models, it is important to understand the
causes of the differences in the simulations of Cly.

In the above CCM simulations the same time series of or-
ganic chlorine species (e.g., chlorofluorocarbons, CFCs) are
specified in the lower troposphere and the same or similar
chemical reactions are included in the models. This indi-
cates that the differences in Cly are not due to differences in
source gases or stratospheric chemistry but are most likely
due to differences in transport.

Here we explore this issue further by examining Cly from
three simulations from the same off-line chemical trans-
port model (CTM). The simulations use the same lower tro-
pospheric concentration boundary conditions and the same
chemical solver, but differing resolution and/or meteorologi-
cal fields. As the boundary conditions and chemistry are ex-
actly the same any differences in Cly are due to differences
in the transport.

The model and simulations are described in the next sec-
tion. In Sect. 3 we compare the Cly and mean ageŴ from
the CTM simulations, and Sect. 4 we compare the simu-
lated Cly to estimates using the formulation used byNewman
et al. (2006) to calculate EESC. These comparisons show that
transport plays a key role in determining the distribution of
Cly, and that Cly depends on both the time scales and path-
ways of transport.
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4936 D. W. Waugh et al.: Sensitivity of Cly to transport

(a) Cly GCM-HIGH

-90 -60 -30 0 30 60 90
Latitude

10
15

20

25

30

35

40

45

H
ei

gh
t (

km
)

1.0

2.0

3.0

(b) Cly GCM-LOW
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(c) Cly DAS-LOW
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(d) Mean Age GCM-HIGH
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(e) Mean Age GCM-LOW
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(f) Mean Age DAS-LOW
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Fig. 1. Contour plots of (a–c; top panels) October-mean Cly, and (d–f; lower panels) annual-mean mean age for 2000, from three CTM
simulations. In (a–c) the contour interval is 0.5 ppb, while in (d–e) the contour interval is 0.5 years.

2 Model description

The simulations examined are performed using the NASA
Global Modeling Initiative (GMI) CTM (Douglass et al.
(2004) and references therein). The CTM includes a full
description of stratospheric chemistry, and can be driven by
meteorological data from either a free-running general cir-
culation model (GCM) or from a data assimilation system
(DAS). We consider both cases here: Simulations are ana-
lyzed that used either the Goddard Earth Observing System
(GEOS) DAS (Schubert et al., 1993) or the GEOS-4 GCM
(Bloom et al., 2005).

We consider three different simulations with one pair dif-
fering in meteorological fields driving the CTM, and one pair
differing in horizontal resolution and model top. Specifi-
cially, we consider simulations:

1. GCM winds, 2◦ latitude × 2.5◦ longitude, top at
0.015 hPa with 33 levels (“GCM-HIGH”).

2. GCM winds, 4◦ latitude× 5◦ longitude, top at 0.4 hPa
with 28 levels (“GCM-LOW”).

3. DAS winds, 4◦ latitude× 5◦ longitude, top at 0.4 hPa
with 28 levels (“DAS-LOW”).

The two “LOW” simulations are described in Considine et al.
(2004), while the GCM-HIGH simulation is described in
Douglass et al. (2006).

In each case a single year of meteorological fields is used
in the CTM: For the DAS simulation the fields from 1 July
1999 to 30 June 2000 are used, while for GCM simulations
the fields are from a year with a cold Arctic vortex (see
Considine et al., 2004). The GCM simulation used clima-
tological sea-surface temperatures, volcanic aerosols and so-
lar variations were not included, and there was no QBO. All
three simulations use the same chemical solver (see Douglass
et al., 2004) and the concentration of halogens in the lower
troposphere are specified as in table 4B-2 of WMO (2003).
The source gas boundary conditions vary between years. In
the GCM-HIGH simulation the boundary conditions start in
1974 and end in 2025. The “LOW” simulations were spun up
for 5 years at 1995 source gas boundary conditions and then
integrated through the year 2030. Because 1995 boundary
conditions were used rather than 1990 to 1994 conditions in
the spin up of the “LOW” simulations the stratospheric chlo-
rine is over-estimated in the early part of these simulations.
However, the difference is much smaller than the inter-model
differences discussed below. For all simulation, fields have
been archived every 5 years.

In addition to the above, simulations of an age spectrum
tracer were performed for each CTM. In these simulations
the mixing ratio of a conserved tracer in the lowest two model
levels was set to 1 for the first month and then set to 0 for the
rest of the 20 year runs. This tracer allows calculation of the
mean age of air in the stratosphere as well as the full age
spectrum (Waugh and Hall, 2002).

Atmos. Chem. Phys., 7, 4935–4941, 2007 www.atmos-chem-phys.net/7/4935/2007/
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3 Simulations of Cly and mean age

We first consider the Cly distribution in the three simulations.
As shown in Fig. 1 (a–c; top panels) the general features of
the Cly distributions are the same, e.g., there are values larger
than 3 ppb in the upper stratosphere and lower values in the
tropics than in mid- and high latitudes. However, there are
quantitative differences, especially in the wintertime (south-
ern) polar regions. For example, the South Pole Cly at 20 km
varies from less than 1.5 ppb to around 3 ppb. As the surface
concentrations of organic chlorine species and the chemistry
are the same in all three simulations, this confirms the CCM
results (Eyring et al., 2006) that transport plays a key role in
determining Cly.

As Cly is formed by conversion of organic chlorine into
inorganic chlorine species within the stratosphere, the time
spent in the stratosphere is expected to play an important role
in determining Cly. We therefore next consider the distribu-
tions of the mean ageŴ. As described above,Ŵ is calcu-
lated from simulations of the age spectra, and represents the
annual-meanŴ, see Waugh and Hall (2002). As shown in
Fig. 1 (d–f; bottom panels) the mean age differs among all
three simulations. The largest differences are between DAS-
LOW and the two GCM simulations, with much younger
ages in DAS-LOW. The younger ages in the DAS simulation
are related to the excessive mixing in simulations using as-
similated winds (e.g., Schoeberl et al., 2003). There are also
differences in age between GCM-LOW and GCM-HIGH, but
these are small in the lower stratosphere (e.g., the South Pole
mean age at 20 km is≈4.7 yrs in both GCM simulations).

Comparison of the Cly andŴ distributions shows that Cly
is, in general, larger for olderŴ. However, this compari-
son also suggests that differences inŴ do not explain all the
differences in Cly. This is clearly seen in vertical profiles
within the spring Antarctic vortex. At 20 km the mean ages
from the two GCM based simulations are very similar but
there is a large difference in Cly, see Fig. 2a, b. Conversely,
above this altitude there are much larger differences in mean
age than in Cly between these two simulations. Hence, there
is not a simple relationship between differences in mean age
and those in Cly.

To explore the differences in Cly in more detail we com-
pare the time series of lower stratospheric Cly at two loca-
tions whereŴ is similar in the two GCM based simulations
(Fig. 3). In mid-latitudes the two GCM simulations have very
similar Cly (Fig. 3a), but at the polar location there is a large
difference (Fig. 3b). At both locationsŴ and Cly from the
DAS simulation are smaller than from the GCM simulations.
Note, as discussed above, the two “LOW” simulations over-
estimate Cly in 1995 because of the initial conditions used,
and this results in higher Cly in 1995 than in 2000 in these
simulations.

The differences in Cly could be due to differences in the
simulated total amount of chlorine Cltot(the sum of organic
and inorganic chlorine) in the stratosphere. However, Cltot
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Fig. 2. Vertical profiles of(a) Cly, (b) mean age,(c) CFC-11, and
(d) CFC-12 at 82◦ S. Profiles for Cly are mean values for October
2000, mean age are annual mean values, and CFCs are for Septem-
ber 2005. The solid circles show ACE observations.

is very similar among all three simulations (dashed curves in
Fig. 3). There is a slight time shift between the DAS and
two GCM simulations, which is consistent with the approxi-
mately 2 year difference in the mean age. However, the mag-
nitude of Cltot is very similar and differences in Cltot do not
explain the differences in Cly. As well as the time shift in
Cltot between the DAS and GCM simulations there are slight
differences in the peak values, which are due to differences
in the width of the age spectra. However these differences
are insignificant compared to the differences in Cly.

The above shows that the time spent in the stratosphere is
important but this is not the sole transport factor determining
stratospheric Cly(and differences between the simulations).
Hence, the paths taken to get to a particular location must
also be important for determining Cly.

4 Fractional release rates

To understand the differences in simulated Cly we estimate
the Cly using the formulation of Newman et al. (2006, 2007).
In this formulation Cly is estimated by summing the contri-
bution from each CFC, i.e.,

Cl∗y(t)=
∑

i

niFi ρ̂i(t) (1)

www.atmos-chem-phys.net/7/4935/2007/ Atmos. Chem. Phys., 7, 4935–4941, 2007
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Fig. 3. Time series of October-mean Cly (solid) and Cltot (dashed)
at 56.6 hPa for(a) mid-latitude (46◦ S) and(b) polar (82◦ S) re-
gions.

whereni is the number of chlorine atoms in source gasi, ρ̂i

is the mixing ratio in the stratosphere that would occur if the
source gasi was perfectly conserved, andFi is the fraction
of species dissociated while it has been in the stratosphere.
The mixing ratioρ̂i depends on the tropospheric concentra-
tions (ρi,trop) and the troposphere to stratosphere transport
time scales:

ρ̂i(t)=

∫ t

−∞

ρi,trop(t
′)G(t − t ′)dt ′. (2)

whereG(t) is the age spectrum. The fractional release is
given by

Fi=(ρ̂i − ρi)/ρ̂i, (3)

whereρi is the actual concentration of the source gas at given
stratospheric location.

We focus here on lower stratospheric Cly and, as in New-
man et al. (2006), assume that the fractional releases are
solely a function of the mean age, i.e.Fi=Fi(Ŵ). Although
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Fig. 4. Comparison of directly simulated Cly at 56.6 hPa and 82◦ S
(symbols) and reconstruction using Newman et al. method (curves),
for the three simulations. The solid curves show estimates using
simulated age spectra, whereas the dashed curves, which generally
cannot be distinguished from the solid curves, show estimates using
inverse Gaussian age spectra.

we assume a dependence only on the mean age it is impor-
tant to know that the release rates also depend on pathways,
and the functional relationships are not necessarily the same
for all simulations.Fi(Ŵ) are determined separately for the
three simulations using Eqs. (2) and (3).

We first compare Cl∗
y calculated using (1) with the directly

simulated Cly. In these calculations of Cl∗
y we use the age

spectrum G(t) simulated within the CTMs (see Sect. 2), the
ρi,trop used in the CTMs, and the above estimates ofFi calcu-
lated from model fields. As shown in Fig. 4 the Cl∗

y estimated
from G(t) andF matches the time evolution of Cly and the
differences between the simulations. There are some differ-
ences between Cl∗

y and Cly for GCM-LOW, but these differ-
ences are much smaller than model-model differences, and
Cl∗y is a good representation of Cly to within a few percent.
Note that virtually the same Cl∗

y is obtained if the approxi-
mate age spectrum used by Newman et al. (2006) (an inverse
Gaussian age spectrum with width equal to half the mean
age) is used rather than the true model age spectrum. The
dashed curves in Fig. 4 show Cl∗

y from these calculations,
and a virtually indistinguishable from the solid curves.

The good agreement between Cl∗
y and the directly simu-

lated Cly supports the use of the method of Newman et al.
(2006) for calculating EESC. IfŴ andFi are known then the
Newman et al. (2006) method can accurately predict EESC.
Both Ŵ andFi could change in the future, and this will add
uncertainties to estimates of EESC (Newman et al., 2007).

Given this general agreement we can now explore the dif-
ferences in the individual contributions to Cl∗

y. As ρi,trop is
the same in all simulations and the differences in Cltot are

Atmos. Chem. Phys., 7, 4935–4941, 2007 www.atmos-chem-phys.net/7/4935/2007/
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Fig. 5. Variation of(a) CFC-11 concentration,(b) CFC-12 concen-
tration,(c) FCFC11, and(d) FCFC12with mean age,Ŵ, for the three
simulations.

small, differences in fractional release are the main cause for
differences in Cly.

Figure 5 shows the variation of lower stratospheric con-
centration (a, b; top panels) and fractional releaseF (c, d;
bottom panels) with mean ageŴ, for CFC-11 (left) and CFC-
12 (right). Very similar results are found for other CFCs.
Focusing first on the two GCM based simulations we see
that the CFC concentrations andF are very similar forŴ<4
years, but differences occur for older ages. For old ages (po-
lar air) the CFC concentrations are lower for GCM-HIGH,
which means that the fraction of CFC converted into Cly is
larger (i.e.F is larger). Thus, differences in transport can
result in differences in the fraction of organic chlorine con-
verted into Cly, and hence differences in Cly, for air with the
same mean age.

The fractional release rates for the DAS simulation differs
from both the GCM simulations. The maximum values of
bothŴ andF are smaller in the DAS simulation (the smaller
F is consistent with the smaller lower stratospheric Cly in
the DAS simulation). For givenŴ, F is larger from the DAS
simulation than the GCM simulations. In the lower strato-
sphere, a given mean age will be found at higher latitude in
the DAS simulation compared with the GCM simulations,
e.g., air at 20 km withŴ=2.4 yrs in the DAS simulation is

TROPOSPHERE

Fig. 6. Schematic diagram showing path of two irreducible parcels
to sample point in polar lower stratosphere. The circles show the
parcels locations at yearly intervals, with shading of the parcels
indicating the Cly of the parcel (darker color represents a higher
amount). The dashed contours show local photochemical lifetime
of CFC-12, in years.

at the South Pole, whereasŴ=2.4 yrs is in the subtropics in
both GCM simulations (Fig. 1). A higher latitude location
generally has a higher percentage of air that has been in CFC
loss regions, and so higher latitude air with the same age will
have higherF . If comparisons betweenF are made at the
same location thenF is smaller in the DAS simulation than
the GCM simulations, and as a result Cly is smaller.

The differences in the fractional release of CFCs in the
Antarctic vortex can be clearly seen in the vertical profiles
of the CFCs, see Fig. 2c, d. One consequence of this is that
observations of CFCs can probably be used to differentiate
model simulations of Cly. For example, the solid circles in
Fig. 2c, d show the monthly average CFCs near 80◦ S from
the Atmospheric Chemistry Experiment (ACE) (Bernath et
al., 2005) observations in September 2005. (The model and
ACE CFCs are from September rather than October as ACE
samples south of 79◦ S in early September but not later.)
All three simulations overestimate the observed CFC abun-
dances, with the best agreement for the GCM-HIGH simu-
lation. This suggests that GCM-HIGH has the most realistic
simulation of Cly.

Unfortunately, the corresponding profiles of Cly cannot be
determined directly from ACE as Cl2O2 (which is a signifi-
cant reservoir of Cly inside Antarctic lower stratospheric vor-
tex in September) is not measured. However, measurements
of HCl and ClO in October 2005 by Aura MLS indicate that
at 20 km Cly is ≈3.3 ppb (Fig. 4-8 of WMO, 2007). Consis-
tent with the above CFC comparisons, the modeled Cly are
too low, with GCM-HIGH the most realistic.

www.atmos-chem-phys.net/7/4935/2007/ Atmos. Chem. Phys., 7, 4935–4941, 2007
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5 Transport pathways

Previous analysis of models has shown thatŴ is very impor-
tant for correctly estimating Cly. However, the above com-
parisons have shown that although the mean age in the po-
lar lower stratosphere may be the same in two simulations,
this does not mean that Cly will be the same. It is impor-
tant to consider the pathways that the air has taken, which
can be different even ifŴ is the same. Even if two parcels
have the sameŴ one parcel could have lower CFC concen-
trations, higher fractional releases, and larger Cly if this par-
cel spent more time in regions with larger CFC photolysis.
This is illustrated schematically in Fig. 6 which shows two
parcels with same transit time from the tropopause but dif-
ferent pathways. As a result the two parcels have different
photochemical exposure (Schoeberl et al., 2000) and Cly.

The larger CFC concentrations, and hence smaller Cly, in
the GCM-LOW simulation could be explained by a smaller
fraction of the polar air having been in the middle-upper
stratosphere where CFCs are photolyzed. This is supported
by the analysis of Strahan and Polansky (2006). They
showed that with lower horizontal resolution there are leakier
transport barriers (in subtropics and edges of polar vortices),
which results in more rapid transport of young air to polar
regions. The leakier barriers also allow more recirculation
of air between the tropics and extratropics, allowing air to
become old without spending time in the upper stratosphere.
The greater influence of young air in the GCM-LOW simu-
lation can also be seen in the age spectra, see Fig. 7 (see also
Fig. 14 of Strahan and Polansky, 2006). In the GCM-LOW
simulation there is a much higher percentage of young air
(<2 years) than in the GCM-HIGH simulation. Also, air ar-
rives continuously in GCM-LOW whereas the GCM-HIGH
simulation shows an episodic annual injection of air into the
polar region in the transport (Strahan and Polansky, 2006).

6 Conclusions

The CTM simulations presented here show that transport
plays a key role in determining the distribution of Cly, and
that large differences in Cly can occur in models using the
same surface concentrations of source gases and same chem-
istry. The time air spends in the stratosphere (e.g., the mean
age,Ŵ) is an important factor but this is not the sole transport
factor determining stratospheric Cly. Stratospheric Cly also
depends on where the air has been. Differences in transport
pathways can result in differences in the fraction of air that
has been in the upper stratosphere, where organic chlorine
is converted into Cly, even for air with the same mean age.
Thus there can be differences in Cly for air with the sameŴ.

This analysis shows that to correctly model Cly it is nec-
essary to correctly simulate both the time scales and path-
ways for stratospheric transport. The mean age provides a
stringent test of the transport time scales, and can be inferred
from observations. A complementary test of transport path-
ways is also required. Hall (2000) introduced the “maximum
path height” distribution which quantifies transport pathways
and complements the age spectrum. However, this quan-
tity cannot be observed. We therefore have to rely on sim-
ulations of chemical species to assess the model transport.
As shown above transport-induced differences in Cly can be
clearly seen in profiles of CFCs, and observations of CFCs
(e.g., Fig. 2c, d) are available to assess the reality of the trans-
port pathways in models. Hence, comparison of simulated
mean age and CFCs with observations provide complemen-
tary tests that assess the transport time scales and pathways
in models. The complementary nature of tracers with dif-
ferent lifetimes for evaluating transport can also be seen in
Schoeberl et al. (2005), where multiple tracers are used to
constrain the age spectrum.
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