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Abstract. The knowledge of the lightning-induced nitro-
gen oxides (LNOx) source is important for understanding
and predicting the nitrogen oxides and ozone distributions
in the troposphere and their trends, the oxidising capacity
of the atmosphere, and the lifetime of trace gases destroyed
by reactions with OH. This knowledge is further required
for the assessment of other important NOx sources, in par-
ticular from aviation emissions, the stratosphere, and from
surface sources, and for understanding the possible feedback
between climate changes and lightning. This paper reviews
more than 3 decades of research. The review includes labo-
ratory studies as well as surface, airborne and satellite-based
observations of lightning and of NOx and related species in
the atmosphere. Relevant data available from measurements
in regions with strong LNOx influence are identified, includ-
ing recent observations at midlatitudes and over tropical con-
tinents where most lightning occurs. Various methods to
model LNOx at cloud scales or globally are described. Previ-
ous estimates are re-evaluated using the global annual mean
flash frequency of 44±5 s−1 reported from OTD satellite
data. From the review, mainly of airborne measurements near
thunderstorms and cloud-resolving models, we conclude that
a “typical” thunderstorm flash produces 15 (2–40)×1025 NO
molecules per flash, equivalent to 250 mol NOx or 3.5 kg of
N mass per flash with uncertainty factor from 0.13 to 2.7.
Mainly as a result of global model studies for various LNOx
parameterisations tested with related observations, the best
estimate of the annual global LNOx nitrogen mass source
and its uncertainty range is (5±3) Tg a−1 in this study. In
spite of a smaller global flash rate, the best estimate is es-
sentially the same as in some earlier reviews, implying larger
flash-specific NOx emissions. The paper estimates the LNOx
accuracy required for various applications and lays out strate-
gies for improving estimates in the future. An accuracy of
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about 1 Tg a−1 or 20%, as necessary in particular for under-
standing tropical tropospheric chemistry, is still a challeng-
ing goal.

1 Introduction

Thunderstorm lightning has been considered a major source
of nitrogen oxides (NOx, i.e. NO (nitric oxide) and NO2
(nitrogen dioxide)) since von Liebig (1827) proposed it as
a natural mechanism for the fixation of atmospheric nitro-
gen (Hutchinson, 1954). Lightning-induced nitrogen oxides
(LNOx) have several important implications for atmospheric
chemistry and climate (WMO, 1999; IPCC, 2001). The
global LNOx source is one of the largest natural sources of
NOx in the atmosphere (Galloway et al., 2004) and certainly
the largest source of NOx in the upper troposphere, in partic-
ular in the tropics (WMO, 1999).

The LNOx source rate is considered to be the least known
one within the total atmospheric NOx budget (Lawrence et
al., 1995; Lee et al., 1997). The global LNOx amount can-
not be measured directly, and is difficult to determine. Mod-
elling of the horizontal and vertical distribution of lightning
and the LNOx source is highly uncertain (Price and Rind,
1992; Pickering et al., 1998). Previous reviews of LNOx dis-
cuss theoretical, laboratory, and field studies to determine the
amount of LNOx (Tuck, 1976; Drapcho et al., 1983; Borucki
and Chameides, 1984; Biazar and McNider, 1995; Lawrence
et al., 1995; Levy II et al., 1996; Lee et al., 1997; Price et
al., 1997b; Huntrieser et al., 1998; Bradshaw et al., 2000; Ri-
dley et al., 2005), mainly by extrapolating measurements of
emissions from individual lightning or thunderstorm events
to the global scale (Chameides et al., 1977, 1987). Only
a few papers review the determination of the global LNOx
source by fitting models to observations (Levy II et al., 1996;
Zhang et al., 2003b). The majority of studies since the mid-
1990s, as reviewed in this paper, assumed a best-estimate

Published by Copernicus Publications on behalf of the European Geosciences Union.



3824 U. Schumann and H. Huntrieser: The global lightning-induced nitrogen oxides source

NOx mixing ratio, nmol mol
-1

0.001 0.01 0.1 1 10

O
H

 c
o
n
c
e
n
tr

a
ti
o
n
, 
1
0

5
 c

m
-3

0

1

2

3

4

N
e

t 
O

3
 p

ro
d
u
c
ti
o
n
 r

a
te

, 

1
0

4
 c

m
-3

 s
-1

0

2

4

6

8

OH

P(O3) 

 4 

μ
Fig. 1. Dependence of the OH concentration and the net O3 pro-
duction rate on the NOx mixing ratio calculated with a steady state
box model for diurnal average in June at 10 km altitude and 45◦

latitude; background mixing ratios of O3: 100 nmol mol−1; H2O:
47µmol mol−1; CO: 120 nmol mol−1; CH4: 1660 nmol mol−1; re-
plotted from Ehhalt and Rohrer (1994) with kind permission of
Woodhead Publishing Limited.

value of about 5 Tg a−1 (NOx source values are given in ni-
trogen mass units per year in this paper), with an uncertainty
range 1–20 Tg a−1. Extreme estimates of the LNOx source
rate such as 0.2 Tg a−1 (Cook et al., 2000) and 220 Tg a−1

(Franzblau and Popp, 1989; Liaw et al., 1990), implying
the global LNOx contribution from minor to overwhelming,
are now considered inconsistent with measured atmospheric
NOx concentrations and nitrate deposition values (Gallardo
and Rodhe, 1997).

Considerable progress has been made recently which al-
lows reducing the uncertainty of the global LNOx value. This
includes satellite observations of global lightning (Christian
et al., 2003), satellite observations of NO2 column distribu-
tions (Burrows et al., 1999), airborne in-situ measurements
of NOx abundance near thunderstorms at midlatitudes (Dye
et al., 2000; Huntrieser et al., 2002; Ridley et al., 2004) and
over tropical continents, where most lightning occurs (see
Sect. 2.4), detailed cloud-resolving model studies (DeCaria
et al., 2000; Fehr et al., 2004), and improved global models
(Dentener et al., 2006; van Noije et al., 2006).

This paper reviews the present knowledge on the global
LNOx source rate. It describes the importance of NOx for
tropospheric chemistry (Sect. 2.1). It reviews knowledge
on the NOx concentrations, sources and sinks (Sect. 2.2),
the essential lightning properties (Sect. 2.3), and the forma-
tion of NOx from lightning and its detection in the atmo-
sphere (Sect. 2.4). It briefly summarises knowledge on the
formation of other trace gases by lightning (Sect. 2.5). It
describes the importance of LNOx for tropospheric chem-
istry and its impact on ozone (Sect. 2.6). Moreover, it as-
sesses the global modelling of NOx and LNOx distributions
(Sect. 2.7), the possible climate impact of LNOx (2.8), the

relative importance of aviation NOx for uncertain LNOx con-
tributions (Sect. 2.9), and derives requirements on LNOx ac-
curacy (Sect. 2.10). Thereafter, the paper reviews the various
methods to constrain the LNOx source values (Sect. 3). It re-
evaluates results from flash (Sect. 3.1) and storm (Sect. 3.2)
extrapolations using the most recent satellite observations of
the global lightning frequency. In addition, the paper reviews
for the first time the results of a large number of global model
studies discussing LNOx impact on tropospheric chemistry
(Sect. 3.3). Section 3.3 also elaborates on the potential of
better constraining the LNOx source estimate using global
model fits to observations of concentrations and deposition
fluxes of nitrogen compounds and other species. Finally,
Sect. 4 presents the conclusions.

2 Review of LNOx contributions and their importance

2.1 Importance of NOx for atmospheric chemistry

Nitrogen oxides are critical components of the troposphere
which directly affect the abundance of ozone (O3) (Crutzen,
1974) and the hydroxyl radical (OH) (Levy II, 1971; Rohrer
and Berresheim, 2006). Ozone is known as a strong oxidant,
a strong absorber of ultraviolet radiation, and a greenhouse
gas (WMO, 1999). Ozone is formed and destroyed by pho-
tochemistry and the net production rate depends nonlinearly
on the abundance of NOx present (Liu, 1977), see Fig. 1.
In regions with low NOx level (e.g. in the tropical marine
boundary layer), the net effect is an O3 destruction. In re-
gions with NOx concentrations above a critical level (but not
very high), e.g. in the upper troposphere, O3 production dom-
inates. The critical NOx level depends on the O3 mixing ratio
and may be as low as 5 pmol mol−1 in the oceanic boundary
layer with typically low ozone values (Crutzen, 1979), 10–
50 pmol mol−1 in the free troposphere (Fishman et al., 1979;
Ehhalt and Rohrer, 1994; Brasseur et al., 1996; Davis et al.,
1996; Kondo et al., 2003b), and increases with the ambient
O3 concentration (Grooß et al., 1998). Hence, in regions re-
mote from strong local pollution, O3 production increases
with NOx concentration (is “NOx limited”). The relative in-
crease of O3 production is largest for low NOx concentra-
tions.

The concentrations of HOx including OH, the hydroper-
oxyl radical HO2 and other peroxy radicals, depend also non-
linearly on the NOx abundance (Logan et al., 1981; Ehhalt
and Rohrer, 1994; Jaeglé et al., 1999; Olson et al., 2006),
see again Fig. 1. Under clean air conditions, OH is mainly
produced by O3 photolysis and reactions of the resultant
atomic oxygen with water vapour. Under more polluted con-
ditions in the troposphere, OH is also formed by photoly-
sis of NO2 during the oxidation of carbon monoxide (CO),
methane (CH4) and non-methane hydrocarbons (NMHC). In
highly polluted regions (in “NOx-saturated” regions) an in-
crease of NOx, by reactions with HO2 and NO2, reduces the
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Table 1. Best estimate of LNOx and total NOx emissions in reviews and assessments.

Reference Best estimate of LNOx source rate (and range)
in nitrogen mass, in Tg a−1

Total NOx emissions in ni-
trogen mass, in Tg a−1

for year

Tuck (1976) 4 –
Chameides et al. (1977) 30–40 –
Dawson (1980) 3 –
Ehhalt and Drummond (1982) 5 (2–8) 39 (19–59) 1975
Logan (1983) 8 (2–20) 50±25 1980
Borucki and Chameides (1984) 2.6 (0.8–8) –
IPCC (1992) 2–20 35–79
Lawrence et al. (1995) 2 (1–8) 60
Levy et al. (1996) 4 (2–6) –
Price et al. (1997a, b) 12–13 (5–25) –
Lee et al. (1997) 5 (2–20) 44 (23–81) 1980
Huntrieser et al. (1998) 4 (0.3–22) –
WMO (1999) 5 (2–20) 44 (30–73) 1990s
Ehhalt (1999) 7 (4–10) 45±7 1990
Holland et al. (1999a) 13 (10–15) 36.1 (23–81) 1980s
Bradshaw et al. (2000) 6.5 (2–10) 45.2 (27–86) 1985
IPCC (2001) 5 (2–13) 52 (>44) 2000
Leue et al. (2001) – 43±20 1997
Tie et al. (2002) 3.5–7 –
Huntrieser et al. (2002) 3 (1–20) –
Martin et al. (2003) – 44.4 1997
Galloway et al. (2004) 5.4 13.1,

46,
82

1860,
1990s,
2050

Müller and Stavrakou (2005) 2.8 (1.6–3.2) 42.1 (38.8–43.1) 1997
Boersma et al. (2005) 3.5 (1.1–6.4) –
Law et al. (2006) 2–9 –
Present estimate 5±3 (2–8) –

HO2/OH ratio, and the production rate of O3 (Jaegĺe et al.,
1999, 2001). OH is the key agent in the atmosphere’s oxi-
dising capacity, i.e. the global abundance of tropospheric O3,
OH, and hydrogen peroxide (H2O2) (Crutzen, 1979; Logan
et al., 1981; Isaksen, 1988; Thompson, 1992; Lelieveld et
al., 2004). OH influences the lifetime of a large number of
anthropogenic and natural compounds. Here, lifetime is the
ratio between the amount of the species and its sinks. Ex-
amples are CO (Logan et al., 1981), sulphur dioxide (SO2)

(Chatfield and Crutzen, 1984), CH4 (Lelieveld et al., 1998;
Bousquet et al., 2006), and further O3 and aerosol precursors
or gases relevant to climate that get oxidised by reactions
with OH. As a consequence, NOx increases not only cause a
positive radiative forcing implying warming via O3 (Lacis et
al., 1990) but also a cooling via CH4; the forcing from these
effects is of similar magnitude globally but differs regionally
(Fuglestvedt et al., 1999).

2.2 NOx sources, sinks, and concentrations

The concentration of NOx in the atmosphere depends on
the source strength and the rates of reactions converting
NOx to nitric acid (HNO3) and particulate nitrate (NO−3 )

and their uptake into precipitation or deposition at the Earth
surface (Crutzen, 1979; Warneck, 1988; Dentener and
Crutzen, 1993; Ehhalt, 1999). NO and NO2 are together
referred to as NOx because NO reacts in the atmosphere
quickly with O3 to form NO2 and equilibrium with respect
to photodissociation of NO2 is reached after a few minutes,
while the sum of both species remains essentially unchanged
(Bradshaw et al., 1999). Collectively, all reactive odd
nitrogen or fixed nitrogen is denoted as NOy, which is
any N-O combination except the very stable N2O, i.e.
NO+NO2+NO3+2N2O5+HNO3+HNO2+HNO4+PAN+
RONO2+NO−

3 , including PAN (peroxyacetylnitrate,
RC(O)OONO2) and alkyl nitrates (RONO2) (Singh et
al., 2007). Conversion of unreactive N2 to more reactive
nitrogen NOy occurs in the biosphere and the atmosphere
(Galloway et al., 2004).

www.atmos-chem-phys.net/7/3823/2007/ Atmos. Chem. Phys., 7, 3823–3907, 2007
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Table 2. Annual global NOx emissions, in the tropics, and at midlatitudes (in Tg a−1).

Latitude range Biomass Fossil fuel Soil N2O Aviation Lightning Sum∗ Lightning Reference
burning burning release degradation NOx fraction, %

90◦ S–90◦ N 10.0 28.5 5.5 0.4 0.7 5.0 49.4 10 See footnote∗∗∗

35◦ N–60◦ N 0.7 13.7 1.5 0 0.4 14.1 4 ∗∗∗

35◦ S–35◦ N 9.2 13.6 3.9 0.4 0.3 4.3 31.3 14 ∗∗∗

35◦ S–35◦ N 8.3 7.8 5.4 – – 6.3 27.9 23 Bond et al. (2002)∗∗

0◦–24◦ S 4.4 1.2 1.5 0 0.03 1.7 8.8 19 ∗∗∗

∗All emission rates in nitrogen mass per year (Tg a−1).
∗∗Bond et al. (2002): Fossil fuel (“anthropogenic activity”), biomass burning and soil emissions from EDGAR 2.0, year 1990 (Olivier et al.,
1998), lightning NOx computed from LIS flash data over the period of 1998-2000 assuming production values of 6.7×1026 and 6.7×1025

NO molecules for each CG and IC flash, respectively.
∗∗∗ Biomass burning (including waste and biofuel burning); and fossil fuel burning (including industrial emissions but without the AERO2K
aviation part) derived from the EDGAR 3.2 Fast Track 2000 dataset (Olivier et al., 2005); Soil release from the Global Emissions Inventory
Activity (GEIA; 5.4 Tg a−1) (Benkovitz et al., 1996); aviation sources for 2002 from the AERO2K data set (Eyers et al., 2005); stratospheric
source from N2O degradation for an assumed 0.4 Tg a−1 total (Martin et al., 2006) and downward transport according to stratosphere-
troposphere exchange mainly near the subtropical jet (Grewe and Dameris, 1996; Stohl et al., 2003). Lightning NOx computed from the
five-year (April 1995–March 2000) OTD 2.5 Degree Low Resolution Diurnal Climatology data, assuming constant NOx production per flash
and a total LNOx source of 5 Tg a−1.
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Fig. 2. Atmospheric annual nitrogen mass emission rate per 1◦ lat-
itude versus latitude for the year 2000. Lightning emissions are
tentatively computed from satellite (OTD)-derived flash frequencies
(Christian et al., 2003) (see Fig. 10), assuming constant emissions
per flash and 5 Tg a−1 global LNOx emissions. Added to this: soil
emissions derived from Yienger and Levy (1995) with data taken
from the Global Emissions Inventory Activity (GEIA; 5.4 Tg a−1)

(Granier et al., 2004); biomass burning (including waste and bio-
fuel burning; 10 Tg a−1); and fossil fuel burning (including indus-
trial emissions; 28.5 Tg a−1) derived from the Emission Database
for Global Atmospheric Research (EDGAR) (Olivier et al., 2005).

In the atmosphere, the present sources of global NOx (to-
tal about 50 Tg a−1), see Table 1, are dominated by anthro-
pogenic sources from fossil fuel combustion (about 28–32)
(IPCC, 2001), biomass burning (4–24), soil (4–16) (Lee et

al., 1997), nitrous oxide (N2O) degradation in the strato-
sphere (0.1–1) (Lee et al., 1997; Martin et al., 2006), air-
craft (0.7–1) (Schumann et al., 2001; Eyers et al., 2005),
and LNOx. Most of the emissions occur in the Northern
Hemisphere, see Table 2 and Fig. 2. Ship NOx emissions,
presently about 3–6 Tg a−1 (Eyring et al., 2005; Olivier et al.,
2005), are included in the fossil fuel combustion source; they
represent an important marine source along the major ship
routes. In the preindustrial period, natural sources from soil
processes, wildfires (biomass burning), stratospheric sources
and LNOx dominated the budget: For the year 1860, the to-
tal NOx emissions are estimated as 13.1 Tg a−1, including
5.4 Tg a−1 from LNOx and 5.1 Tg a−1 from the other natural
sources (Galloway et al., 2004).

The principal sink of tropospheric NOx is oxidation to ni-
tric acid (HNO3) by reaction of NO2 with OH during the
day; during the night, the reaction of NO2 with O3 to form
NO3, the oxidation of NO2 by NO3 to form N2O5, and the
subsequent hydrolysis of N2O5 on aerosols contributes con-
siderably to the nitrogen oxides sinks (Dentener and Crutzen,
1993; van Noije et al., 2006). The oxidation products leave
the atmosphere by dry or wet deposition (“acid rain”) (Lo-
gan, 1983). When deposited they may act as nutrients in
terrestrial and marine ecosystems (Holland et al., 1997), and
may disturb ecologically sensitive regions such as the Ama-
zon basin, central Africa, south-east Asia (Sanderson et al.,
2006), and India (Kulshrestha et al., 2005).

Until the early 1980s very few measurements of nitro-
gen oxides in the atmosphere were available (Kley et al.,
1981; Warneck, 1988; Bradshaw et al., 2000). Whereas
NO2 columns can be measured locally from ground (Noxon,
1976), from space in terms of the optical absorption of solar

Atmos. Chem. Phys., 7, 3823–3907, 2007 www.atmos-chem-phys.net/7/3823/2007/
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Table 3. Airborne air composition measurement experiments in regions with lightning contributions.

Acronym∗ Region Altitudes,
km

Time Period References

– Frankfurt (Germany) to S̃ao Paulo (Brazil)
along east coast of Brazil

10.7 Dec 1982 Dickerson (1984)

GTE/CITE 1A Central North Pacific around Hawaii 9 Nov 1983 Chameides et al. (1987); Davis et al. (1987)
STRATOZ III 55◦ N–55◦ S, passing over South America 12 June 1984 Drummond et al. (1988)
PRE-STORM Southern Great Plains, Colorado 0–12 June 1985 Dickerson et al. (1987); Luke et al. (1992)
GTE/ ABLE 2A Amazon Basin, Brazil 0–5 Aug 1985 Gregory et al. (1988); Torres et al. (1988); Hoell

(1999)
GTE/CITE 2 East N. Pacific and Continental U.S. 8 Aug–Sep 1986 Hübler et al. (1992)
STEP Tropical region near Darwin, Australia 11 Jan–Feb 1987 Murphy et al. (1993); Pickering et al. (1993);

Russell et al. (1993)
NDTP North Dakota, USA 10.8–12.2 28 June 1989 Poulida et al. (1996)
ELCHEM New Mexico, USA 6–12 July–Aug 1989 Ridley et al. (1994, 1996)
TROPOZ II 55◦ N–55◦ S, passing South America 0–11 Jan-Feb 1991 Rohrer et al. (1997); Jonquieres and Marenco

(1998)
PEM-West A West North Pacific (0◦–45◦ N) 0–12 Oct 1991 Crawford et al. (1996); Gregory et al. (1996);

Singh et al. (1996)
GTE/TRACE-A Brazil and South Atlantic (0◦–30◦ S) 8–12 Sep–Oct 1992

(dry season)
Fishman et al. (1996); Pickering et al. (1996);
Smyth et al. (1996a)

PEM-West B 30◦ N–10◦ S, West Pacific, Guam – Hong Kong 8.9–12 Feb 1994 Gregory et al. (1997); Kawakami et al. (1997);
Singh et al. (1998)

POLINAT I and II West Europe and North Atlantic 0–12 Nov 1994,
June–July 1995,
Aug–Nov 1997

Schlager et al. (1997, 1999); Schumann et
al. (2000)

NOXAR I and II Airliner routes between Zurich (Switzerland)
and Atlanta (USA), and Beijing (China)

6–11 1995–1997 Brunner (1998); Jeker et al. (2000); Brunner et
al. (2001)

SUCCESS North America 0–12.5 April–May 1996 Jaeglé et al. (1998)
STERAO North-Eastern Colorado 2–11 June–July 1996 Stith et al. (1999); Dye et al. (2000)
LINOX Southern Germany and Switzerland 0–10 July 1996 Huntrieser et al. (1998); Höller et al. (1999)
PEM Tropics A Sep 1996 Gregory et al. (1999); PEM-Tropics-A-Science-

Team (1999)
SONEX USA and North Atlantic 0–11 Oct–Nov 1997 Singh et al. (1999); Crawford et al. (2000);

Thompson et al. (2000b)
EULINOX Germany and Southern Europe 1–10 July 1998 Höller and Schumann (2000); Höller et

al. (2000); Huntrieser et al. (2002)
MOZAIC Airliners routes between mid Europe and South

Africa, South America and Far East
0–12 1998–2005 Marenco et al. (1998); Volz-Thomas et al. (2005)

STREAM 98 Canada 7.5–13 July 1998 Lange et al. (2001)
BIBLE Tropical western Pacific and Australia 1–14 Sep–Oct 1998,

Aug–Sep 1999,
Nov–Dec 2000

Kondo et al. (2003a); Koike et al. (2007)

INCA 55◦ N–55◦ S, passing South America 0–12 March–April
2000

Baehr et al. (2003); Schumann et al. (2004a)

CONTRACE West Europe 0–12 Nov 2001–July
2003

Huntrieser et al. (2005)

SPURT 35–75◦ N, 10◦ W–20◦ E 0–13.7 Nov 2001–July
2003

Engel et al. (2006)

CRYSTAL-FACE Florida, USA 8–18 July 2002 Ridley et al. (2004)
HIBISCUS Brazil, and tropical tropopause region 10–23 Feb–March

2004
Pommereau et al. (2007)

TROCCINOX 2004 and 2005 Between Europe and Brazil, and local flights
near State of Sao Paulo

0–12.5 and
0–20

Jan–March
2004, and
Jan–Feb 2005

Schumann et al. (2004b);
Huntrieser et al. (2007);
http://www.pa.op.dlr.de/troccinox/

INTEX-A/ICARTT/ITOP North America, North Atlantic and West Eu-
rope

0–12.8 July–Aug 2004 Fehsenfeld et al. (2006); Singh et al. (2006)

CARIBIC Airliner routes between mid Europe and South
Africa, South America and Far East

0–12 2005 Brenninkmeijer et al. (2005, 2007)

SCOUT-O3 Between Europe and Darwin, Australia, and lo-
cal flights in the Hector cloud north of Darwin

0–20 Nov–Dec 2005 http://www.ozone-sec.ch.cam.ac.uk/scouto3

ACTIVE and TWPICE Area around Darwin, Australia 0–20 Nov 2005–
March 2006

http://www.atm.ch.cam.ac.uk/active/
http://www.bom.gov.au/bmrc/wefor/research/
twpice.htm

AMMA Area around Ouagadougou, Burkina Faso, West
Africa

0–20 Aug 2006 Redelsperger et al. (2006)

www.atmos-chem-phys.net/7/3823/2007/ Atmos. Chem. Phys., 7, 3823–3907, 2007
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Table 3. Continued.

∗) ACTIVE: Aerosol and Chemical Transport in Tropical Convection; AMMA: African Monsoon Multidisciplinary Analysis; BIBLE:
Biomass Burning and Lightning Experiment; CARIBIC: Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instru-
mented Container; CONTRACE: Convective Transport of Trace Gases into the Middle and Upper Troposphere over Europe: Budget and
Impact on Chemistry; CRYSTAL-FACE: The Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment;
ELCHEM: Electrified Cloud Chemistry; EULINOX: European Lightning Nitrogen Oxides Experiment; GTE/ABLE 2A; Global Tropo-
spheric Experiment/Amazon Boundary Layer Experiment 2A; GTE CITE: Global Tropospheric Experiment – Chemical Instrumentation
Test and Evaluation; GTE/TRACE-A: Global Tropospheric Experiment/Transport and Chemistry Near the Equator – Atlantic; HIBISCUS:
Impact of tropical convection on the upper troposphere and lower stratosphere at global scale; ICARTT: International Consortium for Atmo-
spheric Research on Transport and Transformation; INCA: Interhemispheric Differences in Cirrus Properties from Anthropogenic Emissions;
INTEX-A: Intercontinental Chemical Transport Experiment – North America; ITOP: Intercontinental Transport of Ozone and Precursors;
LINOX: Lightning Nitrogen Oxides Experiment; MOZAIC: Measurement of Ozone by Airbus in-service Aircraft; NDTP: North Dakota
Thunderstorm Project; NOXAR II: Nitrogen Oxides and Ozone along Air Routes; PEM: Pacific Exploratory Mission; POLINAT: Pollution
in the North Atlantic flight corridor; PRE-STORM: Preliminary Regional Experiment for STORM-CENTRAL; SCOUT-O3: Stratospheric-
Climate Links with Emphasis on the Upper Troposphere and Lower Stratosphere; SONEX: Subsonic Assessment, Ozone and Nitrogen
Oxide Experiment; SPURT: Spurenstofftransport in der Tropopausenregion; STEP: Stratosphere Troposphere Exchange Project; STERAO:
Stratosphere – Troposphere Experiment – Radiation, Aerosols and Ozone; STRATOZ III: Stratospheric Ozone Experiment; STREAM:
Stratosphere-Troposphere Experiment by Aircraft Measurements; SUCCESS: Subsonic aircraft: Contrail and cloud effects special study;
TROCCINOX: Tropical Convection, Cirrus, and Nitrogen Oxides Experiment; TROPOZ II: Tropospheric Ozone Experiment; TWPICE:
Tropical Warm Pool International Cloud Experiment.

Table 4. Nitrogen oxides chemical lifetimes (in days) in various atmospheric regions.

Altitude range, km Global(1) North America(2) Western North Pacific(3) South Atlantic Basin(4) Tropical South Pacific(5)

2–4 1 0.3–0.8 1.1–1.8 0.18 0.7–1
4–8 5 1–3 1.5–2.4 0.66 1.1–2.1
8–12 10 3–10 3.2–8.9 2.4 4.2–7.4

(1) Tropospheric regions which have not recently experienced deep convection. Based on MATCH-MPIC model results (Lawrence et al.,
2003b; von Kuhlmann et al., 2003b). The three altitude ranges given correspond to the lower troposphere, middle troposphere and upper
troposphere in the model.
(2) Photochemical model constrained to data obtained during SUCCESS over North America in April and May (Jaeglé et al., 1998).
(3) Western North Pacific, 0–42◦ N, photochemical model constrained with observed NO, O3, H2O, CO, NMHC, H2, CH4, temperature,
pressure, and UV solar flux values (PEM West A). In this analysis, the NOx lifetime decreases with latitude. The lower/upper bounds given
reflect the values for 18–42◦ N and 0–18◦ N, respectively (Davis et al., 1996).
(4) South Atlantic Basin. Model for the Southern Hemisphere TRACE-A data (Jacob et al., 1996; Smyth et al., 1996b).
(5) Tropical South Pacific (PEM-Tropics A), photochemical model constrained with observations (Schultz et al., 1999).

light in limb (Russell III et al., 1993; Llewellyn et al., 2004;
Rind et al., 2005) and nadir (Burrows et al., 1999; Zhang et
al., 2000), tropospheric NO cannot be determined by remote
sensing accurately. In recent decades, in-situ instruments to
measure NO, NOx, and NOy and their speciation accurately
at low and high concentrations have been developed (Clemit-
shaw, 2004; Singh et al., 2007). Accurate in-situ measure-
ments of NO are difficult to perform, because of the large
range of concentrations and the large spatial and temporal
variability. Many in-situ instruments determine the NO con-
centration from the rate of photon emissions from chemilu-
minescence (CL) during reaction of NO with excess O3 in a
reaction chamber; NOy is measured similarly after catalytic
conversion of NOy to NO (Fahey et al., 1985; Ḧubler et al.,
1992; Bradshaw et al., 1998). Alternatively, NO may be

measured with low detection limits using two-photon laser-
induced fluorescence (TP-LIF) (Sandholm et al., 1990) and
NO2 with a time-gated laser-induced fluorescence instrument
(LIF) (Thornton et al., 2000).

Since the early 1980s, many airborne field experiments
have been carried out to measure NOx and NOy compo-
nents in the free troposphere (Bradshaw et al., 2000; Em-
mons et al., 2000; Brunner et al., 2001), see Table 3. Sev-
eral experiments obtained measurements of NOx, O3, ozone
precursors, aerosols and air mass tracers in convective out-
flow regions. But only a few dedicated experiments (such
as STERAO, LINOX, EULINOX, and TROCCINOX) mea-
sured these species in the inflow and outflow regions of the
storms together with measurements of the cloud structure and
kinematics and the lightning activity, which can be used to
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Fig. 3. Average profiles of(a) NOx concentration and(b) NO/NOx ratio (Huntrieser et al., 2002). The profiles represent the mean values over
all EULINOX mission days (except the case of 21 July, with an exceptionally strong thunderstorm). The horizontal bars indicate standard
deviations.

connect the chemical measurements in the convective out-
flow to specific cloud and lightning properties.

The atmospheric NOx mole fraction or mixing ratio (i.e.
number of NOx molecules per number of air molecules)
spans a wide range (0.001–100 nmol mol−1) and shows con-
siderable small-scale spatial and temporal variability due to
local sources and highly variable sinks. The mixing ratio
values reach from an order of 1–10 pmol mol−1 in the clean
maritime boundary layer to an order of 10–100 nmol mol−1

in polluted continental boundary layers (Fehsenfeld and Liu,
1993; Carroll and Thompson, 1995). It reaches an or-
der of 0.05–1 nmol mol−1 near the tropopause, and about
20 nmol mol−1 near 3 hPa pressure altitude in the tropical
stratosphere (Grooß and Russell III, 2005). The tropospheric
vertical profile often shows a C-shape with low values in the
mid-troposphere and high values in the polluted boundary
layer and near the tropopause (Kley et al., 1981; Drummond
et al., 1988; Warneck, 1988; Luke et al., 1992; Rohrer et al.,
1997; Huntrieser et al., 2002), see for example Fig. 3a. Up-
per tropospheric NOx stems from fast vertical transport from
the planetary boundary layer via convection, downward mix-
ing of stratospheric sources, and from in-situ sources from
lightning and aviation (Ehhalt et al., 1992; Schlager et al.,
1997; Thompson et al., 2000b). The equilibrium ratio of
NO/NOx increases with the NO2 photolysis rate, and de-
creases with the ambient O3 concentration and ambient tem-
perature (Schlager et al., 1997); hence, it varies typically be-
tween 0.3 and 0.9 during day time (Fig. 3b), with the largest
values above clouds in the upper tropical troposphere, and
approaches zero quickly during night.

The lifetime for NOx with respect to photochemical loss,
see Table 4 and a plot in Levy et al. (1999), varies between
0.2 and 10 days, generally increasing with latitude and alti-

tude in the troposphere; the lifetime of NO2 is shorter than
that of NO (Davis et al., 1996). The lifetime of HNO3 against
photolysis is of the order of 10 to 20 days in the tropics and
increases strongly with latitude (Jacob et al., 1996; Tie et al.,
2001). HNO3 rainout occurs intermittently in precipitation
events (Giorgi and Chameides, 1985; Giannakopoulos et al.,
1999; Shindell et al., 2006). In the troposphere, part of the
NOx gets converted to PAN which is thermally unstable, not
water-soluble, and has a long lifetime in the cold upper tro-
posphere (100 days at−30◦C) (Tie et al., 2001). As a conse-
quence, the tropospheric NOx/NOy ratio varies strongly, typ-
ically from 0.05 to 0.5 (Ridley et al., 1994; Singh et al., 1996;
Ziereis et al., 2000; Koike et al., 2003; Hegglin et al., 2006).
This ratio is often larger than in photochemical equilibrium
with HNO3 and PAN, suggesting fresh NOx sources from
convection and lightning (Jaeglé et al., 1998; Ko et al., 2003;
Koike et al., 2003). In the upper troposphere over the North
Atlantic, the NOy composition was found to be dominated
by a mixture of NOx (25%), HNO3 (35%) and PAN (17%)
(Talbot et al., 1999). Over North America in summer, NOx
contributes about 15% to NOy, while PAN and HNO3 are the
dominant species, providing some 65% of NOy, with PAN
dominating in the upper troposphere and HNO3 in the lower
troposphere (Singh et al., 2007). In the upper troposphere,
the NOx/HNO3 ratio varies strongly because convection pro-
vides local sources of NOx while HNO3 is depleted due to
scavenging during uplift (Jaeglé et al., 1998). In the tropical
Pacific, convection has been observed to increase NOx over
land and to decrease NOx over the ocean because of upward
transport of polluted or very clean air masses, respectively
(Koike et al., 2003). The NOx/HNO3 ratio has been used
to test the validity of photochemical models and as “chem-
ical clock” to determine the age of air since outflow from
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Table 5. Satellite platforms and instruments providing NO2 column measurements.

Instrument∗ Satellite Period Spatial resolu-
tion,
km2

Local time
at equator

Swath, km Global cover
after, days

Spectral
range, nm

Reference

GOME ERS-2 1995–2003∗∗ 320×40 10:30 a.m. 960 3 240–790 Burrows et al. (1999)
SCIAMACHY ENVISAT Since 2002 60×30 10:00 a.m. 960 6 240–2380 Bovensmann et al. (1999)
OMI AURA Since 2004 13×24 01:45 p.m. 2600 1 270–500 Levelt et al. (2006)
GOME-2 METOP Since Oct 2006 80×40 09:30 a.m. 1920 1.5 240–790 Munro et al. (2006)

∗AURA: NASA Earth Science satellite; ENVISAT: European Earth Observation satellite; ERS-2: European Remote Sensing Satellite;
GOME (-2): Global Ozone Monitoring Experiment (-2); METOP: ESA – Polar orbiting weather satellite; OMI: Ozone Monitoring Instru-
ment; SCIAMACHY: Scanning Imaging Absorption Spectrometer for Atmospheric Cartography.
∗∗GOME continued measurements with reduced spatial coverage thereafter.
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Fig. 4. Trace gas profiles from airborne measurement flights out of
Punta Arenas in March 2000 and Prestwick in September 2000 dur-
ing the project INCA (Baehr et al., 2003). For comparison median
values of POLINAT II (Shannon, Ireland, July–September 1997)
(Schumann et al., 2000) and NOXAR 1995 (>50◦ N) (Brunner et
al., 2001) are included. Symbols and whiskers indicate median val-
ues and 25% and 75% percentiles, respectively.

convective clouds (Prather and Jacob, 1997; Schultz et al.,
1999; Wang et al., 2000; Bertram et al., 2007).

Because of the different magnitudes of the NOx emis-
sions, tropospheric concentrations are higher over the con-
tinents than over the oceans (Drummond et al., 1988), and
higher at northern than at southern midlatitudes (Baehr et
al., 2003), see Fig. 4. First climatologies of NOx and NOy
(Carroll and Thompson, 1995; Emmons et al., 1997; Thakur
et al., 1999) have been considerably extended by the Nitro-
gen Oxide and Ozone Concentration Measurements along
Air Routes (NOXAR) project. The measurements in the up-
per troposphere at Northern midlatitudes show background
NOx values in the 20–200 pmol mol−1 range, highly skewed
probability distributions, and large regions with NOx >

0.5 nmol mol−1 reflecting fresh sources from upward con-
vection of polluted boundary layer air masses and lightning
contributions (Brunner et al., 2001), see Fig. 5.

Measurements of NO2 profiles from space have been ob-
tained by limb sounding methods, e.g., the Halogen Oc-
cultation Experiment (HALOE) (Russell III et al., 1993),
SAGE II (Stratospheric Aerosol and Gas Experiment II)
(McCormick, 1987), the Michelson Interferometer for Pas-
sive Atmospheric Sounding (MIPAS) (Funke et al., 2005),
and the Optical Spectrograph and Infrared Imager System
(OSIRIS) (Llewellyn et al., 2004). These instruments pro-
vide profiles versus altitude and latitude in the stratosphere
and in the upper troposphere above clouds. NO2 columns
above the Earth surface can be derived from nadir measure-
ments. Data on the global distribution of NO2 columns have
been provided by the Global Ozone Monitoring Experiment
GOME since 1995 (Burrows et al., 1999), and later by SCIA-
MACHY (Bovensmann et al., 1999), and OMI (Levelt et al.,
2006); GOME-2 on METOP was launched recently, see Ta-
ble 5. The GOME and SCIAMACHY satellite overpasses are
restricted to the morning hours (10:00 or 10:30 LT), when the
LNOx source is small (Kurz and Grewe, 2002). Better spatial
coverage and observations during the early afternoon is pro-
vided by OMI (Bucsela et al., 2006). Measurements on such
low orbiting satellites suffer the effects of cosmic radiation
when passing the South Atlantic anomaly of the geomagnetic
field off the coast of Southern Brazil (Heirtzler, 2002).

The total NO2 molecule column amounts to about 1.5–
3×1015 cm−2 in the tropics and 0.5–6×1015 cm−2 at middle
and high latitudes (Wenig et al., 2004). The stratospheric
part is rather smooth longitudinally and dominates in remote
oceanic regions with low local pollution. Therefore, the tro-
pospheric part, see Fig. 6, may be obtained by subtracting
the total column in such remote regions. The tropospheric
NO2 column may reach a maximum of up to 50×1015 cm−2

locally at 30×60 km2 resolution over the industrial regions
in the annual mean. In the tropics the NO2 plumes originate
from the continents, presumably mainly from biomass burn-
ing, soil emissions and local pollution near large cities. The
tropospheric column of NO2 molecules per unit surface area
is dominated by the NO2 abundance in the lower troposphere.
The presence of clouds prevents the detection of NO2 below
the cloud, and enhances detection of NO2 above cloud top.
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 1 

Fig. 5. Distribution of NOx mixing ratio in the 330–220 hPa altitude range in the four seasons (a: MAM, b: JJA,c: SON,d: DJF). Numbers
denote the sample sizes along the routes (Brunner, 1998).

The satellite-derived NO2 columns have been used to-
gether with estimates of the NO2 lifetime or with global mod-

els to derive global or regional NOx budgets (Leue et al.,
2001; Velders et al., 2001; Lauer et al., 2002; Martin et al.,
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 1 

 2 

 3 
Fig. 6. Annual mean tropospheric NO2 column density versus longitude and latitude from a retrieval of, top: GOME data for the year 1996;
bottom: SCIAMACHY data for the year 2005. The data and the analysis method are described in Richter et al. (2005). Figure provided by
A. Richter (personal communication, 2006).

2002a; Richter and Burrows, 2002; Duncan et al., 2003; Ed-
wards et al., 2003; Kunhikrishnan et al., 2004; Savage et al.,
2004; Choi et al., 2005; Irie et al., 2005; Jaeglé et al., 2005;
Konovalov et al., 2005; Meyer-Arnek et al., 2005; Richter et
al., 2005; Ma et al., 2006; van der A et al., 2006; van Noije et
al., 2006). Figure 6 illustrates the improvement in spatial res-
olution provided by SCIAMACHY compared to GOME. On
the other hand, the GOME time series is still longer. GOME
and SCIAMACHY data have been used to detect decreases of
NO2 column values over Europe and the USA and increases
over China (Richter et al., 2005), which are obvious from
Fig. 6. Moreover, GOME and SCIAMACHY data have been
used successfully to detect ship-NOx emissions, in spite of
their small NO2 columns of the order of (0.5–1)×1015 cm−2

(Beirle et al., 2004a; Richter et al., 2004).

The LNOx contribution to the NO2 column is difficult to
observe directly from space for various reasons (Hild et al.,
2002; Choi et al., 2003; Beirle et al., 2004b; Martin et al.,
2006). Any correlation between NO2 columns and light-
ning frequency densities is not immediately evident. Dif-
ferent methods of GOME retrievals vary by more than 10%
(van Noije et al., 2006). Therefore, accurate LNOx estimates
require LNOx column contributions significantly larger than
10%. Model studies compute LNOx contributions to the NO2
column below (2–6)×1014 molecules cm−2 (Martin et al.,
2003, 2007; Boersma et al., 2005), i.e. a small fraction of the

annual mean NO2 column even in the tropics. The computed
LNOx column contribution is generally below 20% (Martin
et al., 2003; Boersma et al., 2005; van Noije et al., 2006) with
localized fractions of more than 80% in regions with weak
surface NOx emissions (Martin et al., 2007). Detections of
LNOx contributions to the NO2 column in space-based ob-
servations are discussed in Sect. 2.4.

2.3 Lightning

Lightning is a transient, high-current electric discharge over
a path length of several kilometres in the atmosphere (Uman,
1987). The majority of lightning in the Earth’s atmosphere
is associated with convective thunderstorms (MacGorman
and Rust, 1998; Rakov and Uman, 2003). Lightning forms
from the breakdown of charge separation in thunderstorms.
Charge separation is efficient for strong updrafts containing
supercooled liquid water, ice crystals and hail or graupel
(Takahashi, 1984; Saunders, 1993; Deierling et al., 2005;
Petersen et al., 2005; Kuhlman et al., 2006; Sherwood et
al., 2006). The charge separation leads to high electric field
strengths in thunderstorms (Marshall et al., 1995). Once
the electric field exceeds a certain threshold value, a light-
ning discharge may occur (Stolzenburg et al., 2007). The
threshold value decreases with altitude and is of the order
of 100 to 400 kV m−1, far smaller than in the laboratory,
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  2 

 3 Fig. 7. Radiation sources for a negative CG discharge observed within STEPS. The colours indicate time progression, and the different
panels show the evolution of the flash in (top) height-time, (bottom left) plan view, and in (middle left) east-west (E-W) and (bottom right)
north-south (N-S) vertical projections. Also shown is a histogram of the source heights. The triangles indicate negative ground strike times
and locations from the National Lightning Detection Network (NLDN). The squares in the plan view indicate the location of measurement
stations, and the vertical line denotes the Colorado-Kansas state border; from Thomas et al. (2004).

possibly because of cosmic-ray-induced electrical break-
down in the atmosphere (Dwyer, 2005; Gurevich and Zy-
bin, 2005; Khaerdinov et al., 2005). The lightning discharge
in its totality is called a flash (Orville, 1968). One distin-
guishes between cloud-to-ground (CG) lightning and vari-
ous other lightning types (which we call IC), including intr-
acloud, intercloud and cloud-to-air lightning. So-called blue
jets have been observed above clouds, and sprites and other
transient luminescent events occur in the middle atmosphere
(Füllekrug et al., 2006). Positive and negative CG flashes
(CG+ and CG-) are distinguished depending on whether pos-
itive or negative charges are transported from the cloud to the
ground. CG+ discharges are less frequent than negative ones,

but have larger currents and transfer more charge (Orville,
1994; Lyons et al., 1998b). Lightning occurs typically in a
sequence of stages. A CG discharge begins with local dielec-
tric breakdown causing first branched conduction paths in-
side the cloud. The breakdown initiates conducting channels,
e.g. in the form of a “stepped leader” that moves earthward
in discrete steps. A large fraction of charge is lowered to the
ground within a “return stroke,” an intense discharge region
that propagates up the stepped leader path from ground to
cloud. A flash consists of one or more strokes closely spaced
in time travelling along the same discharge channel (Thery,
2001; Saba et al., 2006a). The first stroke is often the most
energetic one and assumed to produce the largest amount of
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LNOx (Hill, 1979; Dawson, 1980). Large currents also oc-
cur in relatively slow discharge processes, such as continuing
currents, in both cloud and cloud-to-ground flashes (Rakov
and Uman, 2003; Saba et al., 2006b). The flash proper-
ties vary from storm to storm and during the lifecycle of a
thunderstorm; they depend on the volume and strength of
the convective updrafts causing charge separation (Lang and
Rutledge, 2002); as well, they depend on the degree of cell
isolation and the complexity of cell evolution (MacGorman
et al., 2007).

Lightning can be detected from ground and from space
using sensors measuring the optical emission, electric radio
waves, or magnetic waves resulting from the discharge pro-
cesses in certain frequency ranges (MacGorman and Rust,
1998). The low frequency (LF, 30–300 kHz), very low fre-
quency (VLF, 3–30 kHz), extremely low frequency (ELF,
30–300 Hz), and very high frequency (VHF, 30–300 MHz)
bands are employed for lightning detection besides acous-
tical and optical detection means. Various parts of a flash
cause different emissions. The bright spark of light associ-
ated with CG lightning stems from the return stroke. Light-
ning channels behave like a huge antenna which radiates
electromagnetic energy as signals of impulsive nature be-
low about 100 kHz (Price et al., 2007). Strong LF radio
emission is generated by CG flashes mainly near ground.
IC flashes emit multi-pulse bursts of VHF signals from the
inner parts of the clouds (Proctor, 1991; Suszcynsky et al.,
2000; Thomas et al., 2000). The continuing current between
strokes causes small radio wave signals but large reductions
in the electric field strength. Most of the ground-based opera-
tional lightning detection networks provide two-dimensional
(2-D) maps of mainly CG lightning events (Orville et al.,
2002) (Table 6). Regionally, within a dense network of detec-
tors, height information is also available (Table 7). The sys-
tems use magnetic direction finders (Cummins et al., 1998),
time of arrival (Shao and Krehbiel, 1996) or VHF interfer-
ometers techniques (Defer et al., 2001) to evaluate the loca-
tion of the lightning sources. In addition, the duration, and
energy or peak current of the flash can be deduced from the
measured electromagnetic signals. The peak current is ap-
proximately proportional to the amplitude of VLF/LF signals
(Orville, 1999; Jerauld et al., 2005; Schulz et al., 2005). Peak
current measurements are sensitive to network station spac-
ing; recent measurements show median peak currents of the
order of 16–20 kA, smaller than what was estimated earlier
(Orville et al., 2002; Biagi et al., 2007).

VHF systems allow for fine-scale observations of the
structure of flashes. For example, Fig. 7 shows a light-
ning discharge observed by the VHF New Mexico Tech
Lightning Mapping Array (LMA, see Table 7) (Noble et
al., 2004; Thomas et al., 2004; Wiens et al., 2005) dur-
ing the Severe Thunderstorm Electrification and Precipita-
tion Study (STEPS) (Lang et al., 2004), that illustrates the
spatial resolution that the system is able to obtain. Simulta-
neous data from the National Lightning Detection Network

(NLDN) show that the flash was a multiple-stroke negative
CG discharge. The top panel of the figure shows the alti-
tude of the VHF sources versus time and indicates an initial
stepped leader initiated between 8 and 9 km altitude, after
about 50 ms of preliminary breakdown, that required about
60 ms to reach the ground. Thomas et al. (2004) show that
the location accuracy for VHF sources between about 6 and
12 km altitude over the central part of the network is<12 m
in horizontal position and<30 m in the vertical.

Since the mid 1980s ground-based observations have
provided detailed information on the structure of VLF/LF
sources radiated by lightning in real time with regional cov-
erage. In many countries lightning detection is routinely per-
formed by means of VLF/LF-networks. Prominent examples
are the NLDN in the USA and EUCLID in Europe. These
systems report mainly strong (>5 kA) CG strokes (Cum-
mins et al., 1998). Advanced VLF/LF measuring and sig-
nal processing techniques detect also IC flashes (Betz et al.,
2004; Shao et al., 2006). VLF/LF systems, such as the
operational Lightning Location Network (LINET) use re-
fined antenna techniques, optimised waveform handling and
shorter sensor base line of∼100 km. Hence, they locate also
low-current discharges (>1 kA) and discriminate IC and CG
events (Betz et al., 2004). Betz et al. (2007) find a large
number of IC signals especially with low current values.
The World Wide Lightning Location Network (WWLLN)
of VLF-sensors (typically 7000 km distance) provides quasi
global real-time observations; its detection efficiency is low,
of the order of 0.3–1% (Lay et al., 2004; Jacobson et al.,
2006).

The Optical Transient Detector (OTD) was, and the Light-
ning Imaging Sensor (LIS) is, an operational spaceborne
camera which detects and locates rapid changes in the bright-
ness of the clouds as they are illuminated by lightning dis-
charges. Both sensors use narrow band optical filtering to
select an oxygen triplet line generated by atmospheric light-
ning centred at 777.4 nm. The narrow band filter reduces
daytime background light to a level which allows contin-
uous day/night observation of lightning events. The in-
struments detect total lightning, since cloud-to-ground, in-
tracloud, and cloud-to-cloud discharges all produce optical
pulses that are visible from space. The optical pulses are
combined into flashes depending on the temporal and spa-
tial separation; the clustering induces less than 20% uncer-
tainty in the overall flash counts (Mach et al., 2007). The
two sensors cover different latitude bands (OTD:±75◦; LIS:
±35◦; ±39◦ since the satellite (the Tropical Rainfall Mea-
suring Mission, TRMM) was boosted from 350 to 402 km
altitude during August 2001). Depending on cloud thickness
and transparency, the detection efficiency (for sufficiently
strong flashes) of LIS (OTD) is about 85% (50%) on average
with weak day/night biases and a local minimum of about
50% in the region of the South Atlantic anomaly of the ge-
omagnetic field off the coast of Southern Brazil (Boccippio
et al., 2000, 2002; Christian et al., 2003). LIS observes an
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Table 6. Selection of operational two-dimensional lightning observation systems.

Acronym∗ Based at Observed flash types Spatial
coverage

Spatial resolu-
tion, km

Temporal coverage Reference

EUCLID Ground CG Europe <10 Continuous since 1998 http://www.euclid.org/index.html,
Schulz et al. (2005)

LINET Ground CG+IC More than
60 stations
in mid-
Europe

<1 Continuous since 2006 Betz et al. (2007)

NLDN Ground CG North Amer-
ica

<10 Continuous since 1998 Cummins et al. (1998)

RINDAT Ground CG Brazil <2 Continuous since 1999 Pinto and Pinto (2003)

WWLLN Ground CG and some IC global 20 Continuous since 2003 Lay et al. (2004)

OTD MicroLab-1
satellite,
740 km
altitude

CG+IC 75◦ N–75◦ S 8–20 min day−1, 1995–1999 Christian et al. (2003)

LIS TRMM satel-
lite, 350 km
altitude

CG+IC 35◦ N–35◦ S
(39◦ N–39◦ S
since August
2001)

10 min day−1, since 1998 Thomas et al. (2000); Christian and
Petersen (2005)

∗ EUCLID: European Cooperation for Lightning Detection; LIS: Lightning Imaging Sensor; LINET: Lightning Location Network; NLDN:
National Lightning Detection Network; OTD: Optical Transient Detector; RINDAT: Brazilian Integrated Lightning Detection Network;
TRMM: Tropical Rainfall Measuring Mission; WWLLN: World Wide Lightning Location Network.

area of 600×600 km2 with a spatial resolution of about 4 km
directly below the satellite, increasing in size to 7 km on a
side at the edges of the field of view (Thomas et al., 2000).
Because of higher orbit (750 km), the field of view and pixel
sizes are bout 2.1 times larger for OTD than for LIS (Mach
et al., 2007). LIS (OTD) observes each point in the scene for
about 90 (190) s, and each point of the Earth for only about a
day per year. Nevertheless, they provide statistics with near
global coverage (Christian et al., 2003). They derive a count-
ing of total lightning activity but do not discriminate between
IC and CG flashes. The counting treats all flashes equally
regardless of the intensity, though radiance values are avail-
able from the observations as well (Baker et al., 1999). Other
spaceborne sensors using VHF radiation have been flown for
limited periods (Kotaki and Katoh, 1983), or are operated
in an experimental fashion, like the Fast On-Orbit Record-
ing of Transient Events (FORTE) (Boeck et al., 2004; No-
ble et al., 2004), or have been suggested for future missions
(Bondiou-Clergerie et al., 2004). VHF sensors are indepen-
dent of day/night and ocean/land light differences.

Lightning climatologies have been derived from ground
and satellite-based systems for many regions (Brazil, Africa,
India, Austria, Germany, Italy, Spain, Japan, China, Ti-
betan Plateau, Indonesia, Israel, Canada, and the USA), and
also for oceans, the Mediterranean Sea, the tropics, hurri-
canes and mesoscale systems, see Williams (2005), Pinto
et al. (2006), and further references (Finke and Hauf, 1996;
Molinari et al., 1999; Price and Federmesser, 2006). More-

over, mobile lightning detection systems have been used
in connection with special observation experiments such
as during EULINOX: VHF interferometer (Thery et al.,
2000), STERAO: VHF interferometer (Defer et al., 2001),
STEPS: LMA (Thomas et al., 2004), TROCCINOX: LINET
(Schmidt et al., 2005), SCOUT-O3, TWPICE, and AMMA:
LINET. (STEPS provided extensive cloud and lightning ob-
servations (Lang et al., 2004) but no air composition mea-
surements.) Figure 8 shows an example of LINET observa-
tions as obtained in Southern Brazil during TROCCINOX.
Lightning activity is well correlated with radar reflectivity.
One can recognize a major line-like oriented convective sys-
tem with embedded distinct cell centres associated with the
majority of the lightning events. The LIS flashes coincide
nicely with the LINET stroke clusters.

The global frequency of lightning flashes was first esti-
mated by Brooks (1925) to be of the order of 100 s−1. Later
estimates, see Table 8, reached as high as 1600 s−1, par-
tially because of confusion about whether CG or IC or both
types of flashes are counted and confusion between the terms
“stroke” and “flash” (Rakov and Uman, 2003). The num-
ber of strokes (or IC pulses) varies regionally. Global ob-
servations are missing, but typical values may be 1.9 for CG
flashes and 6 for IC flashes (Borucki and Chameides, 1984).
From an aircraft flying above clouds, intracloud flashes were
observed to have almost twice as many optical pulses as
ground discharges (Goodman et al., 1988). During the EULI-
NOX experiment, average CG- and CG+ flashes were found
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Table 7. Three-dimensional lightning observation systems.

System ITF: Office National d’Etudes
et de Recherches Áerospatiales
(ONERA) VHF interferometric
mapper

LMA: The New Mexico Tech
Lightning Mapping Array

LINET: Lightning Location Net-
work

Frequency VHF: 1 MHz band near 114 MHz VHF: 60–66 MHz VLF/LF: 5–200 kHz
Sampling
interval

23µs; 100µs in real time 50 ns 1µs

Number of sta-
tions

2 stations 40 km apart during EU-
LINOX and STERAO-A

13 stations within 70 km diameter
during STEPS

6 sensors in a range of 100 km
during TROCCINOX, 20 sen-
sors within 100 km over Southern
Germany and∼200 km otherwise

Location tech-
nique

Azimuth and elevation angles Time of arrival relative to GPS
time reference

Time of arrival relative to Global
Positioning System (GPS) time
reference, and bearing angles
components of magnetic induc-
tion; discrimination of IC and CG
strokes with a three-dimensional
(3-D) procedure from deviations
of arrival times measured at sen-
sor stations close to lightning
events as compared to arrival
times expected on the basis of 2-
D propagation paths

Detection Up to 4000 s−1 samples of VHF
radiation emitted along the prop-
agation path of IC or CG dis-
charges, typically 50–60 km for
3-D and 120 km range for 2-D lo-
calisation

Impulsive radio frequency radia-
tion emitted along the propaga-
tion path of IC or CG discharges,
typically 100 km range for 3-D
localisation, depending on size of
the network

VLF/LF emissions from IC or
CG discharges; typically 100 km
range for 3-D and 300 km for 2-
D localisation, depending on size
of the network

Location accu-
racy

0.25◦ azimuth, 0.5◦ elevation at
22◦ elevation

6–12 m horizontal, 20–30 m ver-
tical

250 m horizontally, in Germany
10–30% vertically, inside net-
work

Reference Thery et al. (2000); Defer et
al. (2001); Thery (2000)

Thomas et al. (2004) Betz et al. (2004, 2007); Schmidt
et al. (2005)

to be composed of 2.8 and 1.2 strokes, respectively (Thery,
2001).

The knowledge of the global distribution of lightning has
improved strongly since the advent of space-based lightning
observations. Observations with OTD (and ongoing obser-
vations with LIS (Christian and Petersen, 2005)) (see Ta-
ble 6) indicate a global flash rate of 44±5 s−1 (Christian
et al., 2003). The LIS data for the years 1998–2005 re-
veal annual mean values of 40.2±4 s−1 for the latitude band
±35◦ (A. Schady, personal communication, 2007). The OTD
data show that higher latitudes (up to±78◦) contribute about
14% to the global mean lightning activity. Hence, the global
mean value may possibly reach 47±5 s−1, consistent with re-
cent estimates of the LIS investigators (D. Buechler, personal
communication, 2007).

Lightning occurs mainly over land areas (see Fig. 9), with
an average land/ocean ratio of about 6 to 10. (The precise
ratio depends on the satellite used, on the resolution of the
land mask, and on how coastal areas are assigned to land
or ocean). Approximately 77% of all lightning occurs be-
tween 30◦ S and 30◦ N, see Fig. 10. The flash rate is a max-
imum over the Congo basin with annual mean flash den-
sity of 80 km−2 a−1. Over Brazil and Florida the density
reaches 30 km−2 a−1, and over Northern Italy, for compar-
ison, it stays below 10 flashes km−2 a−1 (Christian et al.,
2003). For Germany, a value of 2.8 km−2 a−1 (mainly CG)
has been reported based on a ground-based lightning loca-
tion system (Finke and Hauf, 1996). In the tropics, regions
with lightning activity may extend over several thousands of
kilometres (Nickolaenko et al., 2006). Globally, most flashes
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Table 8. Lightning flash rate (total, cloud-to-ground, and stroke rate).

Flash rate
(s−1)

CG flash rate Stroke
rate

Method Reference

100 – – Estimate assuming 1800 ac-
tive thunderstorms, each
lasting 1 h and causing 200
flashes

Brooks (1925); Mackerras et al. (1998)

400 100 1600 Review and extrapolations
based on the energy dissi-
pated by lightning

Chameides et al. (1977); Chameides (1979a)

123±60 – – Photographs from two
DMSP satellites at dusk

Orville and Spencer (1979)

300 60 – Review Kowalczyk and Bauer (1981)

80±40 – – Photodetector on a DMSP
satellite recording lightning
at dawn and dusk

Turman and Edgar (1982)

63±30 – – High-frequency radio re-
ceivers on the Japanese
Ionosphere Sounding Satel-
lite (ISS-b) satellite

Kotaki and Katoh (1983)

65 10–14 – Combining DMSP, ISS-b,
ground-based observations,
and a model

Mackerras et al. (1998)

44±5 – – from OTD data and a
continuous nine-year record
of global lightning activity
from LIS and OTD

Christian et al. (2003); Christian and Petersen (2005)

occur during the Northern Hemisphere summer (about 1.2
times more than in winter, because of larger land fraction
in the Northern Hemisphere). There is a distinct seasonal
and diurnal cycle. Over land, with the daily cycles of thun-
derstorm convection, lightning peaks clearly in the afternoon
hours between 14 and 18 local time, while being less vari-
able over oceans (Hendon and Woddberry, 1993; Finke and
Hauf, 1996; Williams et al., 2000; Dai, 2001; Ricciardulli
and Sardeshmukh, 2002; Soriano et al., 2006); minimum of
lightning activity occurs in the morning, at 6–8 local time
(Nickolaenko et al., 2006), see Fig. 11.

Lightning activity increases dramatically with the depth
and the vigour of convection (in particular updraft velocity)
which is particularly pronounced over the tropical continents
(Williams, 1985; Zipser et al., 2006). Lhermitte and Krehbiel
(1979) using a network of three Doppler radars and ground-
based lightning detection systems demonstrated that the total
lightning flash rate correlates with in-cloud updraft velocity.
Lightning is absent or highly unlikely if the updraft speed
does not exceed a threshold of roughly 6–7 m s−1 (mean) or
10–12 m s−1 (peak), regardless of cloud depth (Zipser, 1994;
Zipser and Lutz, 1994). Case studies show that the strongest

10% of convective updraft cores (including those in most of
the intense hurricanes) have average vertical velocities ex-
ceeding 4–5 m s−1 over oceans, compared to 12–13 m s−1

over land (Jorgenson and LeMone, 1989; Lucas et al., 1994b;
Williams and Stanfill, 2002; Anderson et al., 2005). Cer-
tain supercell and multicell storms over land reach updraft
velocities up to about 80 m s−1 (Cotton and Anthes, 1989;
Lang et al., 2004; Mullendore et al., 2005; Chaboureau et
al., 2007). Some ground-based radar and lightning observa-
tions indicate that the flash frequency increases with cloud
top height (Williams, 1985, 2001). However, even for the
same cloud top brightness temperature, size and radar reflec-
tivity, satellite data indicate that storms over water produce
less lightning than comparable storms over land (Cecil et al.,
2005).

The higher flash ratio over land is explained by more in-
tense convection (“thermal hypothesis”) (Williams, 2005).
Most oceanic storms have updrafts which are too weak to
induce sufficiently ice and supercooled water for electrifi-
cation (Zipser, 1994; Toracinta et al., 2002). The amount
of convective available potential energy (CAPE) is similar
over land and oceans. However oceanic updrafts achieve a
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Table 9. Intra-cloud/cloud-to-ground flash number ratio.

IC/CG flash number ratio Method Author

3.35 (2–6) Satellite and ground observations. The
bracket lists the possible range of values.

Prentice and MacKerras (1977)

5 Review Kowalczyk and Bauer (1981)
3.6–4 Satellite and ground observations Proctor (1991)

2.3 Ground-based lightning observations Mackerras and Darvenzina (1994)

4 Review Price et al. (1997b)

4.4± 1 Satellite and ground observations Mackerras et al. (1998)

2.8±1.4 (1–9) OTD and NLDN data over the continen-
tal USA. The bracket lists extreme mean
values at various stations.

Boccippio et al. (2001)

2±0.6 (0.75–7.7) Data from OTD, LIS, and ground-based
lightning detection instruments denoted
CIGRE-500 and CGR3, over Australia.
The bracket lists extreme mean values at
various stations.

Kuleshov et al. (2006)

3.5 (0–12) Data from OTD and a ground-based light-
ning detection network over Spain. The
bracket lists the spatial variability of the
mean values over the Iberian peninsula.

Soriano and de Pablo (2007)

lower fraction of their potentially available updraft velocities
because of higher water loading (reducing buoyancy), more
lateral entrainment, less buoyancy at low levels (Lucas et al.,
1994a), and lower cloud base (Lucas et al., 1994b; Mushtak
et al., 2005; Williams et al., 2005). The higher cloud base
over land correlates with larger scales in the boundary layer,
wider updrafts, less entrainment, and larger ice content above
the freezing level (Lucas et al., 1994b; Zipser and Lutz, 1994;
Williams and Stanfill, 2002).

Differing aerosol concentrations have also been proposed
as a factor on the observed land-ocean contrasts (“aerosol
hypothesis”) (Takahashi, 1984; Molinié and Pontikis, 1995;
Rosenfeld and Lensky, 1998; Steiger et al., 2002; Williams
et al., 2002; Andreae et al., 2004). Wet land regions, like
the Amazon basin in the wet season, act like a “green ocean”
with reduced lightning activity (Williams et al., 2002). The
presumed role of increased aerosol concentration is a reduced
mean droplet size, narrower cloud droplet spectra, deeper
mixed phase region in the cloud, additional charge separation
in this region, enhanced lightning downwind of the aerosol
source, and reduced particle sizes of ice crystals (Lyons et
al., 1998a; Sherwood et al., 2006). Aerosols also impact
the electrical conductivity of the atmosphere (Rycroft et al.,
2000). A microphysical model study shows that different
boundary layer aerosol causes differences in cloud condensa-
tion nuclei (CCN), which influences thunderstorm charging
(Mitzeva et al., 2006). Recent experiments provide mixed

support for the idea that smoke aerosols may impact CG po-
larity, and suggest a possible link between drought condi-
tions and lightning properties instead (Lang and Rutledge,
2006). Sensitivity of lightning to natural ground radioactiv-
ity (Rakov and Uman, 2003), and to cosmic rays and the
solar cycle has been also considered (Rycroft et al., 2000;
Williams, 2005), but such influences are difficult to detect
(Harrison, 2006). An analysis of the annual number of thun-
der days versus island area gives more support to the thermal
than the aerosol hypothesis (Williams and Stanfill, 2002).
Also the invariance of lightning activity for two months with
high and low aerosol concentrations over the Amazon re-
gion casts doubt on a primary role for the aerosol enhancing
the electrification (Williams et al., 2002). Simply speaking,
land lightning is dominant because land is hotter than ocean
(Williams and Stanfill, 2002).

Observations of the strength or size of convective updrafts
do not exist worldwide. Weather analysis data indicate the
global distribution of intense storms (Brooks et al., 2003).
Proxies for convective intensity are given by satellite data
of minimum passive microwave brightness temperature (at
37 and 85 GHz), maximum vertical extent of radar reflectiv-
ity values (e.g., 20 or 40 dBZ), and maximum radar reflec-
tivity at some height level (e.g.>6.5 km). Such data are
available from the TRMM satellite in the tropics. Global
data are available from the 85-GHz passive microwave sen-
sor on a Defence Meteorological Satellite Program (DMSP)
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Table 10. Enhancements of NO and NOx mixing ratios measured in situ near thunderstorms.

Year Project, region Instrument(1) Species Mean,
nmol mol−1

Mean
scale
(2), km

Peak,
nmol mol−1

Peak du-
ration

Peak alti-
tude, km

Reference

∼1960 s Wank mountain station in
Southern Germany

KI NO2 – – ∼3,
<50

unknown 1.7,
mountain

Reiter (1970)

April 1981 Argonne, Illinois CL NOx – – 20 40 s ground Drapcho et al. (1983)

Dec 1982 Flight Frankfurt – Sao
Paulo

CL NOx 0.3 >100 0.5 ∼min 9.5 Dickerson (1984)

Nov 1983 GTE/CITE 1A, Pacific
near Hawaii

TP-LIF NO 1 40 1 2 min 9 Chameides et al.
(1987); Davis et
al. (1987)

1983 Midwest USA, CL NOx 0.6 – 1.2 10 s 10–11 Dickerson et al.
(1987)

June 1985 PRE-STORM, Great
Plains, Colorado

CL NO 0.3 – 1.2,
4.1

20–60 s,
10 s

10.6 Luke et al. (1992)

12 July
1985

GTE/ABLE 2A, Amazo-
nia, near Manaus, Brazil

CL NO 0.06 60–100 0.17 5–40 s 5 Torres et al. (1988)

June 1989 NDTP, North Dakota CL NO 0.25 0.9 20 s 11 Poulida et al. (1996)

July–Aug
1989

ELCHEM, New Mexico CL NO 0.1–0.8 20–44 1.3–1.9 4 s 10.5–10.9 Ridley et al. (1994,
1996)

27 Sep
1992

GTE/TRACE A,
Brazilian cerrado, 6◦–
12◦ S

TP-LIF NOx 0.3–0.9 – 1.4 3 min 9.5 Pickering et al. (1996)

Feb 1994 PEM-West, West Pacific,
4◦–10◦ S

CL NO 0.05–0.2 ∼100 0.2 30 s 9.5 Kawakami et al.
(1997)

1 July 1995 POLINAT, Ireland CL NO 0.6 27–90 9.5 Huntrieser et al.
(1996)

June–July
1996

STERAO, Colorado CL NO 0.2–0.8 20–40 4.2, 19 1–10 s,
(100–
960 m)

7–12 Dye et al. (2000);
Stith et al. (1999)

July 1996 LINOX, Southern Ger-
many

CL NO
NOx

0.4–1.3,
0.8–2.2

10–45 3.8, 20 2 s 8.2, 9 Huntrieser et al.
(1998)

Aug, Nov
1997

NOXAR/POLINAT-2,
North Atlantic

CL NO 0.8
3

1000
300

Jeker et al. (2000)

July 1998 EULINOX, Southern Ger-
many

CL NOx 0.5–3.0 15–60 25, often
>20

2–10 s, 8–10 Huntrieser et al.
(2002)

July 1998 STREAM, Ontario,
Canada

CL NO 0.6–2 100 2.5 1 min 10 Lange et al. (2001)

Sep 1999 BIBLE, Pacific between
Darwin and Biak

CL NO 0.1–0.3 800 1.4 1 s 13 Kondo et al. (2003b)

March
2000

INCA, west coast South
America

CL NO 0.04–0.8 400 1.3 1 s 11.5 Baehr et al. (2003)

9 Dec 2000 BIBLE C, near Darwin,
Australia

CL NOx 0.4 140–
620

1.6 10 s 11.5–14 Koike et al. (2007)

July 2002 CRYSTAL FACE, Florida CL NO 1–4 60–120 9.5,
325(3)

0.3 s 13.8 Ridley et al. (2004,
2006)

Jan–March
2004,
Feb 2005

TROCCINOX, Brazil,
State of Sao Paulo

CL NO 0.5–1.5 25–40 45 1 s 8 Schumann et al.
(2004b); Huntrieser et
al. (2007)

(1) CL: Chemiluminescence from the reaction of NO+O3; KI: Method on the basis of a chemical reaction between NO2 gas and a diluted KI
solution; TP-LIF: two-photon laser-induced fluorescence.
(2) Horizontal mean scale of mean NO or NOx enhancements; -: no information available; if only one value is given, the information
available is insufficient (or has not yet been evaluated in detail) to specify a range.
(3) Likely due to hot or cold discharges occurring on the aircraft fuselage or air sampling system (Ridley et al., 2006).
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Fig. 8. Horizontal distribution of precipitation and lightning activ-
ity near Bauru, Brazil, between 21.4◦–22.4◦ S and 48.5◦–50.0◦ W,
during the TROCCINOX experiment on 4 February 2005, near
21:30 UT (19:30 local time), when the TRMM satellite passed over
this region. The radar image of 21:30 UTC shows maximum radar
reflectivity in the vertical (max-CAPPI) as obtained from the vol-
ume scan composite of two operational C-band Doppler weather
radars of the Instituto de Pesquisas Meteorológicas (IPMET), lo-
cated at Bauru and Presidente Prudente. The red symbols denote
the positions of lightning flashes observed with the LIS sensor from
TRMM in the time window from 21:23:45 to 21:25:21. Black dots
denote horizontal positions of individual lightning strokes identified
by the LINET system (at any altitude) in the same time window.
(Figure provided by H. Ḧoller, DLR, using data from the LIS sen-
sor aboard the TRMM satellite as provided by NASA, data from
the LINET system set up in cooperation with the Sferics group of
H.-D. Betz at the University of Munich (LMU), and radar data from
the team of G. Held, IPMET, Bauru, Sao Paulo, Brazil).

polar orbiting satellite (Zipser et al., 2006). The TRMM
data have been used to identify precipitation features (PF).
A PF is a contiguous region of precipitation. For exam-
ple, Fig. 12 shows the locations of PFs with strong light-
ning activity (Cecil et al., 2005; Cecil, 2006). As nicely il-
lustrated by Zipser et al. (2006), only about 1% of all PFs
reach flash rates greater than about 3 min−1, with a few ex-
tremes up to 1360 min−1. Zipser et al. (2006) further note:
The most extreme of such convective events occur over the
United States, Argentina, Congo, and parts of the Indian Sub-
continent while strong storms in these measures are rare over
the tropical oceans; the most intense storms over oceans oc-
cur adjacent to land, in locations favouring storm motion
from land to ocean; strong convective storms are often found
in semiarid regions. Tropical clouds with heavy rain over
the oceans or parts of the monsoon of the Indian subconti-
nent show rather low flash rates; areas of intense storms in
the central United States and southeast South America coin-
cide with regions where huge mesoscale convective systems
(MCS) occur frequently (Laing and Fritsch, 1997; Houze,
2004). These are regions with strong low-level wind shear

and low-level transport of very moist air and mid-level dis-
turbances which may lift the low-level air and initiate release
of convective instability.

Operational ground-based detection systems like the
NLDN in the USA observe mainly CG flashes while the
OTD/LIS sensors observe more or less all flashes. Hence, the
IC/CG flash ratio can be derived from the ratio of both ob-
servations, see Fig. 13 (Boccippio et al., 2001). Most studies
suggest a global annual mean IC/CG flash ratiofIC/fCG of
about 2 to 4, see Table 9. The ratio increases with the total
flash density (Soriano and de Pablo, 2007), with values ex-
ceeding 50 in intensive individual storms (Dye et al., 2000;
Thery, 2001; Wiens et al., 2005). A latitudinal dependence
of the IC/CG flash ratio has been suggested in many studies
(Pierce, 1970; Prentice and MacKerras, 1977). Traditional
studies related this ratio to the freezing level in the atmo-
sphere. Boccippio et al. (2001) find little evidence for a lat-
itude dependence but stronger dependence on ground eleva-
tion; however, the IC/CG ratio was found to depend far more
on storm intensity, morphology, and level of organization
than on latitude, freezing-level height, troposphere depth, or
surface elevation. More recent studies identify high cloud
tops, and low cloud bases with narrow updrafts as supportive
for high IC/CG ratios (Mushtak et al., 2005).

Interannual variability of lightning is large regionally. For
the contiguous USA, 3 years of total CG lightning varied
by 6–20% from year to year (Orville, 1994); similarly for
Germany, 4 years of data show interannual variations of 8–
30% (Finke and Hauf, 1996). The total set of 10 years of
LIS/OTD data 1996–2005 shows an interannual variability of
globally averaged lightning activity of about±4% for annual
and±(4–9)% for monthly mean values; for LIS 2000–2005,
the interannual variability is smaller (±1.7% for the annual
mean); and a systematic trend cannot be detected over the
years 1996–2005 from the total set of 10 years of LIS/OTD
data (A. Schady, personal communication, 2007).

OTD data together with ground-based lightning statistics
have been used to estimate the seasonal and global distribu-
tion of LNOx production for given flash-specific LNOx pro-
duction values (Nesbitt et al., 2000; Bond et al., 2001, 2002),
similar to Fig. 2.

2.4 Observations of NOx from lightning

A few years after Benjamin Franklin published his find-
ings on lightning (Franklin, 1774; Uman, 1987), Henry
Cavendish performed the first experiments with a spark dis-
charge in a glass tube (Cavendish, 1785). While trying to
distinguish the different constituents of air, he succeeded in
identifying oxidised nitrogen compounds as a product of the
burning of air in the discharge. Approximately half a century
later, von Liebig (1827) discovered nitric acid in different
samples of rain water. Being aware of the work performed
by Cavendish, he related this to the formation of NOx by
lightning, followed by an oxidation in rainwater. Von Liebig
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Fig. 9. Global distribution of annually averaged lightning flash frequency density derived from data of LIS between 1997 and 2002, and
OTD between 1995 and 2000 (from NASA’s Global Hydrology and Climate Center at Marshall Space Flight Center, 2006). The maximum
and global mean flash density values are∼80 km−2 a−1 and 2.7±0.3 km−2 a−1, respectively.
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Fig. 10. Mean flash frequency (totally and over land) per degree
versus latitude (mean frequency 43.3 s−1; total land/sea flash fre-
quency ratio: 6.5), computed from the five-year (April 1995–March
2000) OTD 2.5 Degree Low Resolution Diurnal Climatology data,
counting all 2.5◦×2.5◦ grid cells with more than 2% land fraction as
land cells. The gridded satellite lightning data were produced by the
NASA LIS/OTD Science Team (Principal Investigator, H. J. Chris-
tian, NASA/Marshall Space Flight Center) and are available from
the Global Hydrology Resource Center (http://ghrc.msfc.nasa.gov).

already pointed out, that the oxidation by lightning may play
a significant role in the global NOx budget. Various in-
vestigations in the 19th and 20th century tried to quantify
this role, but the general result was that the concentration
of nitric acid in rainwater and lightning correlated poorly
(Hutchinson, 1954; Viemeister, 1960; Reiter, 1970). Neither
NO nor NO2 are water soluble and the long time required
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Fig. 11. Mean diurnal variation of the OTD flash frequency over
land and over sea versus local time, computed from the same data
as in Fig. 6 (mean frequency 37.6 s−1 over land, 5.8 s−1 over sea;
43.3 s−1 total).

to convert NOx to nitric acid explains the missing correla-
tion between lightning and nitrate deposition (Tuck, 1976).
It was concluded that the production of oxidised nitrogen
compounds due to lightning is negligible compared to an-
thropogenic and biogenic sources (Viemeister, 1960). These
findings lead temporarily to a lack of interest in the inter-
action of atmospheric chemistry and lightning. The grow-
ing awareness on the important influence of tropospheric
and stratospheric NOx on atmospheric chemistry (Haagen-
Smit et al., 1953; Crutzen, 1970; Johnston, 1971; Chamei-
des and Walker, 1973) renewed the interest in the interaction
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of lightning and atmosphere. Early estimates of very high
LNOx contributions triggered intensive discussions and fur-
ther investigations.

The production of NO by lightning is described by the
Zel’dovich mechanism of O2 and N2 dissociation and subse-
quent NO formation in the initially very hot lightning chan-
nel (Zel’dovich and Raizer, 1967; Goldenbaum and Dick-
erson, 1993). Because of lower bond dissociation energy of
O2 (0.50 MJ mol−1) compared to that of N2 (0.94 MJ mol−1)

(Howard and Rees, 1996), oxygen molecules dissociate first.
Peak temperatures in excess of 30 000 K are reached in light-
ning return strokes after a few microseconds, mainly by
ohmic heating (Orville, 1968; Stark et al., 1996; MacGor-
man and Rust, 1998). After cooling to about 3000–4000 K
by expansion, radiation and conduction, the channel con-
tains a plasma with high concentrations (order of 1–20%)
of O, NO, OH, NO and N radicals (Hill, 1977; Bhetanab-
hotla et al., 1985). The rapid cooling of the hot channel by
mixing with ambient air in the next milliseconds “freezes
out” the NO content, i.e. prevents the NO produced under-
going thermal decay reactions (Chameides, 1979a; Hill et
al., 1980; Bhetanabhotla et al., 1985). Lightning may also
induce some NO2 with the NO2/NOx ratio of 0.5 to 0.1, de-
creasing with the water content of the air (Franzblau, 1991;
Stark et al., 1996). As explained before, the NO reacts in the
atmosphere with O3 to form NO2 quickly. Recently, Rahman
et al. (2007) investigated NOx produced by rocket-triggered
lightning. They suggest that relatively slow discharge pro-
cesses, those occurring on time scales of milliseconds to hun-
dreds of milliseconds, such as continuing currents in both
cloud and cloud-to-ground flashes and other steady currents,
with quasi-steady currents of the order 100 kA, contribute
significantly to the global LNOx production.

Lightning contributions to NOx in the atmosphere have
been evidenced in many experiments. Mean and peak en-
hancements of NO (or NO2 or NOx) mixing ratios observed
in lightning-influenced air masses are listed in Table 10.
Lightning-induced NO2 was detected for the first time by
Reiter (1970) with in-situ measurements at a mountain sta-
tion with peak mixing ratios of 50 nmol mol−1 during the
passage of 17 thunderstorms. A few years later, Noxon
(1976) measured NO2 by optical absorption of solar light
from ground and found an enhancement of the column con-
centration of NO2 by a factor of 100 to 500, which he at-
tributed to LNOx from thunderstorms in the vicinity. For
a specific thunderstorm producing five strokes per minute
within a radius of 3 km from the observatory, the derived
NO2 column concentration reached 2.5×1017 cm−2, with
peak NO2 mixing ratios far higher than the column average
of 12 nmol mol−1. Dickerson (1984) performed airborne in-
situ measurements of NOx and found enhanced NOx in wide
(>100 km) plumes at about 10 km altitude during a flight
from Frankfurt to S̃ao Paulo along the eastern coast of Brazil
in December 1982 (Dickerson, 1984); the NOx increases
were attributed to biomass burning and possibly lightning.

During the NASA GTE/CITE 1 fall 1983 airborne field ex-
periment near Hawaii local increases of NOx abundance due
to lightning were identified (Chameides et al., 1987; Davis et
al., 1987).

Since then a series of experiments performed measure-
ments close to or within thunderstorms over the USA (Dick-
erson et al., 1987; Luke et al., 1992; Ridley et al., 1994;
Poulida et al., 1996; Ridley et al., 1996). The measurements
identified enhanced NO mixing ratios of 0.1–0.8 nmol mol−1

in the sometimes 10–50 km wide anvil plumes, with local
concentration “spikes” exceeding 4 nmol mol−1 (Luke et al.,
1992). The large-scale enhancements within and outside
thunderstorm anvils are more important in assessing NOx
contributions from lightning than such short but high peak
values.

In the 1990s, evidence for large LNOx contributions
from lightning in midlatitude thunderstorms was provided by
dedicated experiments in the USA and Europe (STERAO,
LINOX, and EULINOX, see Table 3). These experiments
performed measurements of the NOx concentrations directly
in and near thunderstorms, including the outflow from the
storm anvil, the composition of the boundary layer and the
storm vicinity. The experimental setup combined airborne,
radar and satellite observations of the cloud scales, structure
and kinematics and ground-based and satellite-based light-
ning observations (Ḧoller et al., 1999; Dye et al., 2000;
Höller and Schumann, 2000). These experiments found
highly variable NOx levels with many NOx peaks in the up-
per troposphere on small spatial scales near thunderstorms
with lightning (Huntrieser et al., 1998). Mean NOx mixing
ratios in the anvils (0.8–2.2 nmol mol−1) and the horizontal
anvil scales were similar in these experiments (see Table 10).
Simultaneous measurements of boundary layer air tracers
like CO and CO2 indicated that the observed NOx only partly
results from upward transported polluted air masses, see e.g.,
Fig. 14. Sometimes the anvils “mirror” the boundary layer
in that the mixing ratio values of these tracers in the anvils
are nearly as large as in the boundary layer. Analyses of
these data show that on average about 70% of the NOx in-
crease measured in the anvil region results from production
by lightning and about 30% from NOx in the boundary layer
(Huntrieser et al., 2002).

In parallel, LNOx contributions were identified at midlat-
itudes from airborne studies of other aspects of tropospheric
chemistry. LNOx sources have been discriminated from
stratospheric, aviation and surface NOx sources at midlati-
tudes over the North Atlantic during the NOXAR, POLINAT,
SONEX and STREAM experiments in 1995–1997 (Brun-
ner et al., 1998; Schumann et al., 2000; Thompson et al.,
2000b; Lange et al., 2001) and the INTEX-A/ICARTT/ITOP
experiments in 2004 (Fehsenfeld et al., 2006; Singh et al.,
2006). Measurements over Canada, the North Atlantic and
Europe, showed that convective clouds release NOx from sur-
face pollution and lightning into the upper troposphere where
it is carried over long distances and far over the Ocean. NOx
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2 

3 

 4 
Fig. 12. Locations of precipitation features (PF) with high flash rates. A PF is a contiguous area greater than four pixels in size (>75 km2)

with rain identified by the TRMM precipitation radar. The coloured symbols represent different categories of flash rates as in Cecil et
al. (2005). Black triangles mark the top 0.001% of the 13.2 million precipitation features with flash rates between 310 and 1389 min−1.
Bottom all months in March 1998–February 2005, middle same for June, July, August, top for December, January, February only (from
Cecil, 2005). Note that the satellite samples the high latitudes in the sub-tropics more often than the tropical ones.

enhancements between 0.5 and 4.0 nmol mol−1 were ob-
served in these experiments (Crawford et al., 2000; Jeker et
al., 2000; Schumann et al., 2000; Brunner et al., 2001; Lange
et al., 2001). During the first POLINAT project in 1995, si-
multaneous measurements of NO, CO2, O3, H2O, HNO3,
and acetone over Southern Ireland at 9.5 km altitude on 1

July showed NO increases of up to 0.6 nmol mol−1 in three
27 to 90 km wide flight segments correlated with increases
in HNO3 and H2O, but slight decreases in acetone and O3.
Using CO2 and trajectory analysis, these events were related
to LNOx produced in a large thunderstorm at about 8.7 km
altitude about 20 h earlier, observed in satellite pictures over
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 2 

 3 Fig. 13. CG (top left) and total (bottom left) flash rates derived from ground-based (NLDN) and satellite-based (OTD) lightning observations
over the USA, together with the IC/CG ratio (top right) and the ground elevation (bottom right) (Boccippio et al., 2001).
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Figure 14. Mixing ratios of NO and CO  and particle concentration (CN) versus time during a 3 

Fig. 14. Mixing ratios of NO and CO2 and particle concentration
(CN) versus time during a flight over Southern Germany, 21 July
1998 (project EULINOX) (Huntrieser et al., 2002). More than 100
NO spikes were observed. An isolated thunderstorm was penetrated
7 times after 63 500 s which is clearly visible in NO (labelled I–VII).

Northern Spain on the afternoon the day before (Huntrieser
et al., 1996). Jeker et al. (2000) used air mass back trajec-
tories, satellite infrared images and lightning observations
from the NLDN network and the OTD satellite to analyse
the origin of wide plumes with strongly enhanced NOx con-
centrations measured onboard a B-747 on flights between
Zürich and the USA in 1997 during NOXAR/POLINAT-2.
High NO concentrations were measured in plumes of marine

thunderstorms with small contributions from continental sur-
face emissions. NOx concentrations exceeding 3 nmol mol−1

were found in a plume of 300 km in width originating from
lightning activity triggered over the warm Gulf Stream in
November; and NOx concentrations up to 0.8 nmol mol−1 in
a plume of about 1000 km in width was found in air orig-
inating from a marine thunderstorm over the Eastern At-
lantic in August. The strong correlation with lightning events
suggests that most of the measured NOx in these plumes
originated from lightning (Brunner et al., 1998, 2001), in
agreement with POLINAT and POLINAT-2 (Schumann et
al., 2000) and SONEX results (Thompson et al., 1999; Craw-
ford et al., 2000; Koike et al., 2000). In the recent INTEX-
A/ICARTT mission during 1 July–15 August 2004, i.e. dur-
ing a period with strong convective and lightning activity,
the composition of the upper troposphere over North Amer-
ica and the Atlantic was found to be significantly perturbed
by influences from surface pollution and lightning (Singh et
al., 2007). The LNOx source was found to be far larger than
anticipated based on previous measurements over the USA
(Jaegĺe et al., 1998) and model simulations (Cooper et al.,
2006; Martin et al., 2006; Hudman et al., 2007).

LNOx contributions to the tropical troposphere have been
identified mainly by correlations with other trace gases.
Carroll and Thompson (1995) and Bradshaw et al. (2000)
reviewed the results from the GTE program including the
projects ABLE 2A, PEM-West A and B, and PEM-Tropics
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A (see Table 3). No clear LNOx signal was observed dur-
ing the ABLE 2A mission over the Amazon Basin during the
dry season in August. The NO mixing ratios reached up to
0.2 nmol mol−1 in regions of electrically active clouds at al-
titudes up to 5 km (Torres et al., 1988; Pickering et al., 1991).
However, clear signals of lightning-generated NOx were de-
tected during a flight at 9–12 km altitude in the TRACE-A
experiment in the Brazilian cerrado (savanna-type environ-
ment) at 6–12◦ S, 45–49◦ W during one day (27 September
1992) at the end of the dry season (Pickering et al., 1996).
The region was covered with deep convective clouds reach-
ing at least up to 16 km altitude 8–9 h before the flight. The
convective system occurred over regions of biomass burning
activity. From the NOx/CO ratio, about 40% of the NOx at
the 9.6 km level and 32% at 11.3 km were attributed to light-
ning (Pickering et al., 1996). In the outflow to the South
Atlantic, upper tropospheric NO plumes at horizontal scales
of 100–1000 km were observed as resulting from deep con-
vection over Northern Brazil (partly from MCS) transport-
ing NOx emissions from both biomass burning and LNOx
(Smyth et al., 1996b). From the ethyne (C2H4) to CO ratio,
Smyth et al. (1996b) (see also Bradshaw et al., 2000) de-
duced that enhanced NOx values in the upper troposphere in
the Southern Atlantic Basin are not predominantly the direct
result of biomass burning emissions. Instead, a large share of
the NOx originates from recycling of its oxidation products
(mainly from HNO3) (Davis et al., 1996; Jacob et al., 1996).
As a consequence of recycling, the effective lifetime of NOx
is larger than its oxidation lifetime, increasing the O3 produc-
tion rate. Moreover, Smyth et al. (1996b) assess that light-
ning is responsible for at least 50% of the initial (not recy-
cled) NOx in the upper troposphere. The magnitude of the re-
gional lightning source is estimated as 0.3 Tg a−1, implying a
global LNOx source of “several” Tg a−1. Davis et al. (1996)
differentiate between continental surface sources and high al-
titude NOx sources (lightning, aviation, stratospheric sources
or recycled NOy) using the NOx/C3H8 (propene) ratio and
attribute the major fraction (possibly 71%) of NOx in the up-
per troposphere during PEM West A to lightning. The con-
clusions were limited by uncertainties in measured NOy and
HNO3 and the models used.

Enhanced NOx concentrations from convective outflow
from tropical continents can be identified from measure-
ments during individual flights across the tropical belt over
continents or along the continental shore during the Euro-
pean projects STRATOZ III, TROPOZ II, and INCA (see
Table 3). The early experiments focused on periods with
enhanced biomass burning (Jonquieres and Marenco, 1998).
LNOx superimposed on biomass burning contributions was
identified from measurements near the west coast of South
America between 4–6◦ S at about 11.5 km altitude during the
INCA experiment in March and April 2000 (Baehr et al.,
2003). High peak values of NO and NOy mixing ratios (up
to 1.3 and 2.3 nmol mol−1) and high NOx/NOy ratios (0.46
in the peaks) indicate relative fresh NOx sources. For com-

parison, similar peaks of fresh NOx over the Pacific ocean
between 4◦ and 10◦ S remain below 0.3 nmol mol−1, with a
few scattered peaks reaching higher (Kawakami et al., 1997;
Kondo et al., 2003b). Air mass back trajectories and high
CO concentrations indicate that the air masses measured in
the upper tropical troposphere during INCA originate from
the Amazon basin uplifted by deep convection (Schumann et
al., 2004a). A combination of trajectories, infrared satellite
images, brightness temperature analysis, and OTD lightning
flash data shows that all of the air masses measured along
the flight path were influenced by deep convection during
the previous 3 days. The air masses with high NO and NOy
originate from convective events over the western Amazon
(about 5◦ S, 71◦ W) 7–12 h before the time of the measure-
ments. The OTD data show lightning activity in the same
region. The high NO/NOy ratio is caused by fresh lightning-
induced NO. Compact CO-NOy correlations were found in
air masses of the same age relative to the origin from con-
vection. Because of different lifetimes, the NOy to CO ra-
tio decreases from 0.016 to 0.008 with plume age increasing
from about 1–6 h to 13–18 h.

Convective outflow can also be seen in the many flights
where measurements were performed with instrumented
containers onboard airliners in the projects MOZAIC and
CARIBIC, including flights towards North America, Asia,
South Africa, and South America (see Table 3). MOZAIC
has been performing extensive NOy and NO measurements
since April 2001 (P̈atz et al., 2006), CARIBIC performed NO
and NOy measurement flights in 2002 and has been perform-
ing again since 2004 (Brenninkmeijer et al., 2007).

In-situ observations targeting LNOx from tropical and sub-
tropical thunderstorms over continents with simultaneous
lightning observations have been performed since 2000 (see
Table 3). LNOx contributions were found within large air
masses during two flights of the project BIBLE near Dar-
win, Australia, in December 2000 (Koike et al., 2007). NOx
enhancements up to 1 and 1.6 nmol mol−1 were observed at
altitudes between 11.5 and 14 km. The region with NOx mix-
ing ratio larger 0.1 nmol mol−1 extended over 620×140 and
400×170 km (wind direction× perpendicular direction) in
the two flights, respectively. Intensive lightning events took
place upstream from the measurement area 10–14 h prior to
the measurements. From the data, a global LNOx source rate
of about 1–17 Tg a−1 was estimated.

Airborne in-situ observations near sub-tropical (possi-
bly also tropical) thunderstorms have been obtained dur-
ing CRYSTAL-FACE in Florida (see Sect. 3.1.3). Com-
pared to measurements elsewhere, these measurements show
relatively high mean NO abundances (typically 1.2, up to
4 nmol mol−1) in wide anvils (Ridley et al., 2004).

Extensive airborne in-situ observations near sub-tropical
and tropical thunderstorms were obtained during the
TROCCINOX experiments, which were performed over the
State of S̃ao Paulo and surroundings in Brazil (10–28◦ S and
38–55◦ W) during the wet season in 2004 and 2005, when
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Figure 15. Nitrogen oxide mixing ratio data (grey) with median (full curve) and 25% (shor2 
Fig. 15. Nitrogen oxide mixing ratio data (grey) with median (full
curve) and 25% (short dashed) and 75% percentiles (long dashed)
and mean values with standard deviation (circles with error bars)
from CRYSTAL-FACE (24–27◦ N, 77–86◦ W, July 2002; top, data
provided by B. Ridley) and TROCCINOX (data from 0–28◦ S, 38–
55◦ W, February–March 2004 and February 2005, bottom, data pro-
vided by H. Schlager). Every 10th data point with 1 s temporal res-
olution is indicated by a grey dot. The red curve in the top panel
shows the median TROCCINOX result for easier comparison.

biomass burning contributions were small for most of the
time. The area of operation was located along the South
Atlantic convergence zone, a transition zone between trop-
ical and subtropical air masses. The observations included
also measurements in air masses coming from MCS. Air-
borne measurements in the troposphere and the lower strato-
sphere, together with satellite, radar and lightning observa-
tions provided a comprehensive set of cloud, lightning and
trace species data in clear air and in clouds, including thun-
derstorm anvils (Schumann et al., 2004a, b; Huntrieser et al.,
2007). Lightning observations were performed with LINET
(Betz et al., 2004; Schmidt et al., 2005), see Fig. 8, as dis-
cussed before.

Both CRYSTAL-FACE and TROCCINOX provide data on
NO mixing ratios inside and near convective clouds with high
NO peaks, see Fig. 15. Simultaneous CO data show little cor-

relation with NOx; hence, the NOx peaks are not caused by
upward transport of polluted air masses from the boundary
layer but originate from lightning. TROCCINOX includes
measurements in air masses with and without contributions
from deep convection whereas the CRYSTAL-FACE data
have been taken preferably close to convective clouds. The
median NOx values at about 9–12 km altitude during TROC-
CINOX are within 0.3–0.6 nmol mol−1; higher median val-
ues are observed in the anvil outflows of the sub-tropical and
tropical thunderstorms (0.5–1.5 nmol mol−1). The NO me-
dian value concentrations over Florida (1–4 nmol mol−1) are
higher than those from the Brazilian thunderstorms and re-
lated to wider regions of NOx enhancement. There is no in-
dication that tropical thunderstorms produce more LNOx per
stroke or storm than midlatitude storms, in fact the opposite
may be the case (Huntrieser et al., 2007).

These and earlier airborne experiments found sometimes
very large, short-duration local NO spikes, see Table 10.
However, one cannot exclude that these spikes are caused
by local (hot or cold) discharges occurring on the aircraft
fuselage or air sampling system (see also Sect. 2.5). In fact,
such discharges cause electric sparks as observed with the
LMA lightning detection system (Thomas et al., 2004): Air-
craft induce typically 102–104 s−1 small sparks with a source
power of 2–5 W by collision charging from the planes as they
fly through ice clouds. The very high NO peak measured
during CRYSTAL-FACE was convincingly identified to be
caused by cold discharges (Ridley et al., 2006). The high-
est NO peak (25 nmol mol−1) obtained in EULINOX may be
real because it was measured immediately after a flash hit the
aircraft (Huntrieser et al., 2002);

Ground-based measurements of NO2 slant columns dur-
ing the passage of thunderstorms have been presented in a
few studies. Reported NO2 column peak values near light-
ning flashes are 2.5 (Noxon, 1976, 1978), 1–3 (Jadhav et al.,
1996), 7 (Winterrath et al., 1999), 12 (Langford et al., 2004),
and 6–9 (Fraser et al., 2007), in units of 1017 NO2 molecules
cm−2. These peak values are far larger than typical back-
ground values (Langford et al., 2004; Wenig et al., 2004).
Some of the data may overestimate the NO2 column due to
effective path length enhancements by photon diffusion in
optically thick clouds or multiple reflections between clouds
(Pfeilsticker et al., 1998; Meena et al., 2004). The last three
studies corrected for such enhancements using simultaneous
measurements of gases such as O2 and O4, with known ver-
tical profiles (Erle et al., 1995).

In spite of the difficulties explained before, LNOx con-
tributions may be identified in satellite NO2 column data
in regions and at times where the LNOx contribution to
NO2 columns is large. A case study of tropospheric NO2
above Africa in fall 1997 revealed signatures from light-
ning and from anthropogenic and biomass burning sources
(Richter and Burrows, 2002). From a correlation between
GOME NO2, LIS lightning flash distributions, and satel-
lite data indicating O3 increases, lightning over Southern
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 2 

 3 Fig. 16. Monthly mean LIS flash counts (upper row, flashes per day and km) and GOME tropospheric NO2 column (lower row, 1014

molecules cm−2; corrected for air mass factors) in Australia for several months in 1999 as discussed in Beirle et al. (2004b); figure from
Beirle (2004), with kind permission of Elsevier.

Africa has been identified as a source of mid-troposphere
NOx and O3 in addition to biomass burning (Edwards
et al., 2003). Unusually large tropospheric GOME NO2
columns (≤55×1014 molecules cm−2) observed during a
severe weather event over the western Mediterranean in
November 2001 were interpreted as LNOx transport from
coastal regions with high lightning activity (Thomas et al.,
2003). Lightning enhancements of NO2 have been iden-
tified over the North American continent and the western
North Atlantic during a few days with convective or cy-
clogenesis events in April 2000 from GOME NO2 and re-
gional model results (Choi et al., 2005). GOME data over
Australia (≤5.5×1014 cm−2), see Fig. 16 (Beirle, 2004),
the Gulf of Mexico (≤40×1014 cm−2), and several trop-
ical regions (7–10×1014 cm−2), have been related to ob-
served lightning frequencies and model results to quantify
NOx emissions per flash (Beirle et al., 2004b, 2006; Boersma
et al., 2005). Broad lightning enhanced NO2 columns of
about 2–6×1014 molecules NO2 cm−2 were identified over
the tropical Atlantic and Africa from SCIAMACHY data
with the help of model results (Martin et al., 2007). Re-
cently, Sioris et al. (2007) analysed limb scattered radiation
in the 280–810 nm range in the upper troposphere measured
with OSIRIS. They identified NO2 enhancements of up to
0.92 nmol mol−1. The peaks were related to LNOx sources
using model results and LIS observations; the NO2 from
lightning was found to occur generally at 12 to 13 km more
frequently than at 10 to 11 km. Similar NO2 peaks were ob-
served by balloon-borne remote sensing during HIBISCUS
(Pommereau et al., 2007): The observed NO2 concentrations
reached up to 0.5 nmol mol−1 at about 12–14 km in the upper
troposphere over South America and Africa; smaller concen-
trations of 0.1 nmol mol−1 or less were found over the South
Pacific Convergence Zone and Australia, although deep con-
vection is also frequent there.

2.5 Other trace species from lightning

Lightning and cold discharges may induce some further gas
species, including O3, N2O, HNO2, HNO3, H2O2, HO2, and
CO, and small particles into the atmosphere (Levine, 1981;
Levine and Shaw Jr., 1983; Hill et al., 1984; Bhetanabhotla
et al., 1985; Chameides, 1986; Zuo and Deng, 1999). Trace
gas production by sprites (with estimated global rates of 0.5–
33 min−1 (Sato and Fukunishi, 2003; Ignaccolo et al., 2006))
and similar transient luminescent events is expected to have
local importance in the middle atmosphere but small global
significance (Mishin, 1997; Rakov and Uman, 2003; Hiraki
et al., 2004; F̈ullekrug et al., 2006). Table 11 compiles pub-
lished estimates of the formation of various trace gases be-
sides NOx. The various emission estimates are based on lab-
oratory work and theoretical considerations without system-
atic verifications. Some of the papers report opposing views.

The fact that electrical discharges produce O3 is well
known. Martinus van Marum noted in 1785 “the odour of
electrical matter,” and determined that air and oxygen sub-
jected to electrical discharges tarnished mercury, but he did
not identify the gas as an allotrope of oxygen. During elec-
trolysis experiment in 1839, Christian Schönbein attributed a
similar odour to a substance which he named “ozone,” from
the Greekozien, “to smell” (Rubin, 2001). Today, light-
ning is known to produce very little O3 (and N2O). In fact,
ozone may get destroyed in the hot flash channel, but these
gases may be formed from cold discharges and in the cold
corona around hot flashes (Buettner et al., 1962; Donohoe
et al., 1977; Griffing, 1977; Levine, 1981; Hill et al., 1988;
Franzblau, 1991). In contrast, NOx is produced mainly by the
hot lightning strokes, not corona discharges (Noxon, 1978;
Martinez and Brandvold, 1996; Coppens et al., 1998). Ex-
cept for N2O in one study (Levine and Shaw Jr., 1983), air-
borne measurements in thunderstorm anvils generally show
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Table 11. Global lightning production rates for trace species.

Species Value reported in the reference Global emission rate, Reference Method
Tg a−1 (2)

N2O 8×1024 molecules per flash 0.8 Griffing (1977) Theory
1×10−4 mol C−1 1.5×10−6 Donohoe et al. (1977) Laboratory
4×1012 molecules J−1, 300×10−6 Tg a−1 130×10−6 Levine et al. (1979) Laboratory
1.5×1013 molecules J−1 500×10−6 Hill et al. (1984) Theory
220×10−6 Tg a−1(1) 100×10−6 Bhetanabhotla et al. (1985) Theory
(3–13)×1012 molecules J−1 (100–400)×10−6 Chameides (1986) Theory
(1±0.5)×1017 molecules J−1 in corona discharge Hill et al. (1988) Laboratory

HNO2 25×10−3 Tg a−1(1) 11×10−3 Bhetanabhotla et al. (1985) Theory
H2O2 320×10−6 Tg a−1(1) 140×10−6 Bhetanabhotla et al. (1985) Theory
HO2 320×10−6 Tg a−1(1) 140×10−6 Bhetanabhotla et al. (1985) Theory
CO 1×1014 molecules J−1 0.04 Levine et al. (1979) Laboratory

(1–50)×1013 molecules J−1, 0.004–0.2 Chameides (1979b, 1986) Laboratory
O3 1.2×1022 molecules C−1 0.03 Paetzold and Regener (1957) Cold discharge estimate

2×1017 molecules J−1 (0.03 per eV) 150 Kroening and Ney (1962); Buettner et al. (1962) Laboratory
3×1026 molecules flash−1 33 Griffing (1977); Peyrous and Lapeyre (1982) Theory
6×10−7 g J−1 from cold point discharges 6 Peyrous and Lapeyre (1982) Laboratory
1.2 Mg a−1(1) 0.0005 Bhetanabhotla et al. (1985) Theory
(4±2)×1017 molecules J−1 in corona discharges 300±150 Hill et al. (1988) Laboratory
(5–7)×1016 molecules J−1 in negative streamers 40 Cooray and Rahman (2005) Laboratory

(1) Based on a global flash rate of 100 s−1; including both hot channels and corona productions (Bhetanabhotla et al., 1985).
(2) Assuming a discharge energy of 6.7 GJ per flash (Price et al., 1997b), a flash rate of 44 s−1 (Christian et al., 2003), a global discharge
current of 1 kA (Donohoe et al., 1977) (the total air-Earth current is about 1.8 kA (Harrison, 2004)), and the molar mass of the respective
species.

no lightning contributions to trace gases, in particular no en-
hancements of O3 and CO (Dickerson et al., 1987; Luke
et al., 1992; Ridley et al., 1994, 2006; Hauf et al., 1995;
Huntrieser et al., 1998; Jeker et al., 2000). Nevertheless, a
few studies reported partially large O3 increases exceeding
several 100 nmol mol−1 (Sisterson and Liaw, 1990; Zahn et
al., 2002; G̈usten et al., 2003) near thunderstorms using vari-
ous observation methods (Dobson et al., 1946; Orville, 1967;
Shantla and Moore, 1972; Clarke and Griffing, 1985; Jad-
hav et al., 1996; Borra et al., 1997; Suhre et al., 1997; Ran-
driambelo et al., 1999; Winterrath et al., 1999). However,
ground-based spectroscopy of visible light absorption by O3
may suffer from multiple scattering in the clouds (Platt et al.,
1997); in-situ measurements of O3 by ultraviolet absorption
near deep convective events with high water vapour concen-
tration changes are prone to an instrument interference with
water vapour (Meyer et al., 1991; Huntrieser et al., 2007);
and O3 (also NO and NO2) may be formed by local corona
discharges at the instrument’s inlet in intense electrical fields
inside thunderstorms (Zahn et al., 2002; Ridley et al., 2006).
Also the “extremely high O3 peaks near ground” reported
by Attmannspacher and Hartmannsgruber (1973) are likely
caused by electrical discharges at the heated inlets of the in-
struments (P. Winkler, personal communication, 2006). The
very high N2O peak concentrations reported in one early
study (Levine and Shaw Jr., 1983) would imply unrealisti-
cally large global N2O emission rates (own calculation).

The global emission rate estimates in Table 11 are com-
puted for an assumed discharge energy of 6.7 GJ per flash
(Price et al., 1997b); other studies suggest at least ten times
smaller values (Borucki and Chameides, 1984; Jayakumar et
al., 2006). Nevertheless, flashes contribute only small frac-
tions to the global budgets of the individual species. The total
tropospheric chemical production rate of O3 mass is of the
order of 2500–4500 Tg a−1 (IPCC, 2001; Stevenson et al.,
2006), the total amount of CO mass emitted from all sources
at the Earth surface is of the order of 2800 Tg a−1 (Mueller
and Stavrakou, 2005), and that of N2O is of the order of
20 Tg a−1 (Bouwman et al., 2002). The most recent estimates
listed in Table 11 suggest lightning contributions to global
sources of O3, CO, and N2O, of 40, 0.2, and 4×10−4 Tg a−1,
respectively. Hence, the relative lightning contributions may
amount to an order of 2%, 0.01%, and 0.002%, for O3, CO
and N2O, respectively.

Condensation nuclei have been observed both in the labo-
ratory and the atmosphere to be formed by flashes possibly
due to nucleation of nitric acid (Peyrous and Lapeyre, 1982)
or from sulphuric acid produced by oxidation of SO2 with
H2O2 in the aqueous phase (Chameides, 1986). Thunder-
storms may also contribute to ions and subsequent particle
nucleation (Yu and Turco, 2001). High concentrations of
CN (of unknown composition) have been measured in the
outflow of thunderstorm anvils (Huntrieser et al., 2002), see
Fig. 14. The concentration of condensation nuclei formed
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Fig. 17. Relative contributions (%) to the NOy budget from various sources as a function of latitude and pressure-altitude in the annual mean;
figure from Grewe (2007), with kind permission of Elsevier.

in storm anvils decreases by coagulation with typical time
scales of 4 h; the concentration has been used as “chemi-
cal clock” for the age of air masses since convective outflow
(Jaegĺe et al., 1998). High particle concentrations may arise
(possibly also without lightning), by homogeneous nucle-
ation of sulphuric acid in the anvil after scavenging of most
other aerosol mass (Clarke et al., 1999). A recent study sug-
gests that most sulphuric acid will be washed out in anvils
and the particles form from insoluble organic trace gases
(Kulmala et al., 2006). The particle emissions are of rele-
vance in regions with deep convection at midlatitudes and in
the tropics (Wang et al., 2000; Minikin et al., 2003).

2.6 Importance of LNOx for atmospheric chemistry

Thunderstorms inject NOx mainly into the relatively clean
upper troposphere. Locally within the cloud the concentrated
NO reacts with ambient O3 to produce NO2 which reduces
the O3 abundance accordingly. Mainly in the clear air out-
side the cloud, after dilution and at time scales of the order

of hours to weeks, the increased NOx causes, as explained
before, a photocatalytic production of O3 (Pickering et al.,
1996; DeCaria et al., 2005). Part of the NO2 reacts with
OH to HNO3 which may get washed out. In the upper tro-
posphere the lifetime of NOx due to oxidation is of the or-
der of several days, see Table 4. Some LNOx emissions re-
main in the atmosphere far longer: Part of the LNOx gets
converted to PAN which may release NOx after subsidence
into warmer regions far from its source region (Moxim et
al., 1996; Schultz et al., 1999; Hudman et al., 2004). Some
LNOx gets transported from the upper tropical troposphere,
by isentropic transport at altitudes of around 100 hPa, into the
lower-most stratosphere at midlatitudes (Grewe et al., 2004)
where it may add to NOx from aviation and from strato-
spheric sources. The LNOx flux upwards across the tropical
tropopause (about 0.03–0.1 Tg a−1 at 64 hPa (Kotamarthi et
al., 1994)) may be an important source in the lower tropical
stratosphere (Murphy et al., 1993) but appears to be small
compared to the production of NOy by N2O degradation (0.2
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to 1 Tg a−1) (Murphy and Fahey, 1994; M̈uller and Brasseur,
1995; Lee et al., 1997; Lamarque et al., 1999; Martin et al.,
2006).

Even though the contribution of LNOx to the total NOx
budget is small, its contribution to the upper tropospheric
NOx concentrations is large because of its comparatively
long lifetime. For a source magnitude of between 4 and
8 Tg a−1, LNOx has been computed to be responsible for
more than 70% of the NOx concentration in the upper tro-
posphere in the subtropics and tropics, and for more than
20% in summer at higher latitudes (Lawrence et al., 1995;
Brasseur et al., 1996; Levy II et al., 1996; Berntsen and
Isaksen, 1999; Lelieveld and Dentener, 2000; Meijer et al.,
2000; Grewe et al., 2001; Hauglustaine et al., 2001a; Jour-
dain and Hauglustaine, 2001; Tie et al., 2001; Zhang et al.,
2003a; Sauvage et al., 2007b). These findings are illustrated
by Fig. 17 showing the contributions from various sources
to the NOy concentration as computed for a LNOx source of
5 Tg a−1 with the E39/C model (Grewe, 2007).

Lightning NOx is also responsible for a large fraction of
the O3 produced in the troposphere, see Fig. 18, similar to
Fig. 17 (Grewe, 2007). NOx in the upper troposphere is more
effective in generating O3 than at the surface because of the
longer lifetime and because of the lower background NOx
concentration (see Fig. 1). LNOx was computed to be about
6 times more efficient in driving ozone production than an-
thropogenic NOx emissions (Wu et al., 2007). NOx emis-
sions in the tropics are more efficient in producing O3 (be-
cause of higher photolysis rates) and changing CH4 lifetime
(because of higher air temperatures) than the same emissions
at higher latitudes (Crutzen et al., 1999; Hauglustaine et al.,
2005; Naik et al., 2005). The production rate and the limit-
ing value of NOx, for which the production rate of O3 takes
its maximum, is particularly large in the outflow from thun-
derstorm anvils because of high levels of humidity and HOx
precursors like hydrogen peroxide (H2O2), methylhydroper-
oxide (CH3OOH), and formaldehyde (HCHO) transported
upwards within the convective storm (Chatfield and Crutzen,
1984; Jaegĺe et al., 1997; Prather and Jacob, 1997; Ko et al.,
2003; DeCaria et al., 2005; Ott et al., 2007).

An increase in global tropospheric O3 of about 7–12%
is computed if the LNOx production is doubled from 5 to
10 Tg a−1 (Brasseur et al., 1996; Labrador et al., 2005). The
mean tropical tropospheric ozone column increases by about
14% (26 to 29.6 Dobson units) for an increase of the LNOx
source from 3 to 6 Tg a−1 (Martin et al., 2002b), or 10% for
an increase from 3 to 8 Tg a−1 (Wild, 2007). Though LNOx
(for a global LNOx source of 7 Tg a−1) contributes only to
about 5% of the total USA NOx emissions, summer light-
ning may play a dominant role regionally and at certain times
in controlling NOx and O3 concentrations in the middle and
upper troposphere (Bond et al., 2001; Zhang et al., 2003b;
Cooper et al., 2006).

Whereas the contributions of lightning to NOx concentra-
tions have been detected from measurements in many cases,

evidence for the LNOx influence on O3 via photochemistry
is more difficult to derive from observations. This is be-
cause O3 production in the upper troposphere may take sev-
eral days and hence is slow even though the number of O3
molecules produced per unit NOx consumed is high (Martin
et al., 2000). Moreover, since deep convection plays a very
important role in the vertical lofting of surface pollutants,
it is very difficult to separate O3 contributions from light-
ning emissions in thunderstorms and from surface emissions
(Schultz and Bey, 2004).

Nevertheless, the contribution of LNOx to ozone pro-
duction has been identified from combined observation and
model studies (Smyth et al., 1996b; Moxim and Levy II,
2000; Hauglustaine et al., 2001a; Martin et al., 2002b;
Richter and Burrows, 2002; Ko et al., 2003; Roelofs et al.,
2003; Sauvage et al., 2007a). For example, upper tropo-
spheric lightning influence on O3 was identified over the
North Atlantic (Brunner et al., 1998), the South tropical At-
lantic and both adjacent continents (Pickering et al., 1996;
Thompson et al., 2000a; Martin et al., 2002b; Peters et al.,
2002), the Middle East and the Mediterranean (Li et al.,
2001), the tropical Pacific (Ko et al., 2003; Koike et al.,
2003), the Southern Pacific (Staudt et al., 2002), over Africa
(Marufu et al., 2000) and over North America (Cooper et
al., 2006). NOx has been shown to be positively corre-
lated with high O3 concentrations in the upper troposphere
in about 100 km wide plumes from continental or lightning
sources departing from the South-East USA over the Atlantic
(Brunner et al., 1998). Li et al. (2001) explain 10–15% of
an upper tropospheric O3 maximum in the Middle East with
LNOx contributions. Roelofs et al. (2003) estimate that 13%
of upper tropospheric O3 over the Mediterranean is caused
by LNOx but also note that the model underestimates the
lightning contribution to NOx concentrations (Scheeren et
al., 2003). Marufu et al. (2000) show that 27% of the tro-
pospheric O3 abundance observed over Africa is caused by
LNOx, but also find that the representation of details of the
O3 distribution suffers from imperfect LNOx source mod-
elling. Cooper et al. (2006) performed an analysis of O3
profiles from measurements over midlatitude North America
during July–August 2004; using a Lagrangian air parcel dis-
persion model, the upper tropospheric O3 enhancement was
shown to be anti-correlated with tracers of surface emissions
and positively correlated with tracers of LNOx sources. For
a global LNOx source between 4.4 and 8.9 Tg a−1, they con-
clude that LNOx explains most of the identified upper tropo-
spheric O3 enhancement. Over the Southern Pacific, biomass
burning dominates the supply of NOx in the lower tropo-
sphere but LNOx dominates NOx in the upper troposphere
and both make similar contributions to O3 production (Staudt
et al., 2002). During the 1997 Indonesian fire episode, LNOx
appears to be more important for O3 formation than the re-
lease of NOx from biomass fires (Duncan et al., 2003; Kita
et al., 2003).
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Fig. 18. Relative contributions (%) to the O3 budget from various sources as a function of latitude and pressure-altitude in the annual mean;
figure from Grewe (2007), with kind permission of Elsevier.

Several studies (Martin et al., 2002b; Edwards et al., 2003;
Jenkins et al., 2003; Chatfield et al., 2004) have explored
the Atlantic “ozone paradox” (Thompson et al., 2000a),
with high O3 over the Atlantic south of the Equator during
the Northern African biomass burning season in December–
February (Weller et al., 1996; Thompson, 2004). This effect
has been explained by the combination of upper tropospheric
ozone production from lightning NOx, persistent subsidence
over the southern tropical Atlantic as part of the Walker cir-
culation, and cross-equatorial transport of upper tropospheric
ozone from northern midlatitudes (Martin et al., 2002b). A
global lightning NOx source of 6 Tg a−1 in a global chemical
transport model produces a simulation that is most consis-
tent with analysis of tropospheric ozone column data derived
from the Total Ozone Monitoring Spectrometer (TOMS), see
Fig. 19 and Sect. 3.3.4. The explanation agrees with in-
situ observations of the transport of O3 precursors and other
tracers across the inter-tropical convergence zone (ITCZ) in
the December–January period during the TROPOZ II aircraft
campaign (Jonquieres and Marenco, 1998), and with statis-

tical analysis of correlations between tropospheric column
TOMS O3 data and OTD data of lightning flash rates (Martin
et al., 2000; Ryu and Jenkins, 2005).

Finally, though much of the focus of lightning NOx re-
search has been on its impact on ozone, it is also important
for other trace gases. In particular, the relative change in
mean tropospheric OH due to lightning is larger than the rel-
ative change in the ozone burden (Labrador et al., 2004), with
important impact on the life time of methan and other gases
(see Sect. 2.8). Furthermore, the LNOx source can contribute
to NO3, which is known to be important for the oxidation of
certain gases, such as the aerosol-precursor dimethylsulfide
(DMS; Boucher et al., 2003).
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 Fig. 19. Top left: Seasonally averaged and sensor efficiency corrected seasonally averaged tropical tropospheric ozone columns from TOMS
for September 1996–August 1997. Bottom left: Comparable results from the model (GEOS-CHEM). Top right: Ozone column enhancement
from lightning emissions in the model, as determined by difference from a simulation without lightning emissions. Bottom right: Seasonally
averaged NOx emissions from lightning as computed using the cloud-top-height parameterisation in the model, yielding a global annual
LNOx source of 6 Tg a−1 (Martin et al., 2002b).

2.7 Global modelling of the NOx and LNOx distribution

2.7.1 Overview

The contribution of lightning to the atmospheric composition
can be computed using models representing lightning and its
impact on atmospheric chemistry. In view of the random na-
ture of lightning events and the large scale range involved
between the local lightning and LNOx formation process and
the driving outer parameters, this is not an easy task and has
been accomplished so far only in a very approximate man-
ner. Table 12 lists many of the 3-D global models used for
assessing the effect and the size of LNOx sources on tro-
pospheric chemistry. Cloud-scale models are discussed in
Sect. 2.7.4. Recently, lightning has been addressed also in
numerical weather prediction models (van den Broeke et al.,
2005; Mansell et al., 2007).

At present only very few two-dimensional (2-D) and three-
dimensional (3-D) global models exist which explicitly sim-
ulate the storm electrification process with charge separation

and lightning formation together with the NOx formation and
the resultant tropospheric chemistry (Zhang et al., 2003b;
2003c). Instead most models parameterise the LNOx source
distribution directly as a function of the meteorological vari-
ables in the model.

A chemical transport model (CTM) takes the meteoro-
logical fields from either a global circulation model (GCM)
or from numerical weather prediction results (e.g. from
the European Centre for Medium-Range Weather Forecasts,
ECMWF or the National Center for Environmental Predic-
tion, NCEP) (Rasch et al., 1997). GCMs compute their
own meteorology in a climate mode. GCMs may also use
the technique of “nudging” (i.e. temporal or Newtonian re-
laxation) to adjust the computed fields for observed situa-
tions using prescribed meteorological analysis fields (Jeuken
et al., 1996). In early studies, the LNOx source was pre-
scribed as fixed function of space and time. However, it was
soon noted that the high spatial and temporal variability is
of large importance for good comparisons with observations
data (Flatøy and Hov, 1997; Stockwell et al., 1999).
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Table 12. Three-dimensional chemical atmospheric models.

Year Model∗ Wind
field

Lat Lon V Top, hPa G,
Tg a−1

Horizontal
distribution

Vertical
distribution

IC/CG References

1984 MOGUNTIA
CTM

Monthly
mean

10◦ 10◦ 10 100 5 (0–
24.9)

constant, CTH constant mixing
ratio

0.1, 1 Zimmermann (1988); Dentener and Crutzen
(1993); Lelieveld and Crutzen (1994); Gallardo
and Rodhe (1997); Lelieveld et al. (1998)

1991 Lagrangian transport GCM 4.5◦ 7.5◦ 12 9 3–12.9 constant constant density Penner et al. (1991)

1995 NCAR MACCM,
GCM/CCM

5◦ 4◦ 52 0.005 5 Rasch et al. (1995); Boville (1995); Gauss et
al. (2006)

1996 NORLAM CTM 5 constant, PR92 constant 0.1 Flatøy and Hov (1997)

1996 GFDL GCTM GCM 2.4◦ 265 km 11 10 4 (2–6) PR92 constant<7 km 0.1 Levy et al. (1996, 1999); Emmons et al. (1997);

1996 IMAGES
CTM

Monthly
ECMWF

5◦ 5◦ 25 50 5, (2–
10),
3

TE82 constant 0.1 M̈uller and Brasseur (1995, 1999); Brasseur et
al. (1996); Lamarque et al. (1996); Emmons
et al. (1997); Thakur et al. (1999); Granier et
al. (2000)

1996 GRANTOUR, La-
grangian transport
CTM

GCM 4.5◦ 7.5◦ 12 9 7 (2–12) P97 P98 0.1 Emmons et al. (1997); Penner et al. (1998)

1997 CTM2, UiO-CTM GCM 8◦ 10◦ 9 10 5.7
(12.2)

constant constant 0.1 Berntsen and Isaksen (1997, 1999); Jaffe et
al. (1997)

1997 STOCHEM, CTM GCM 5◦ 5◦ 9 100 7 PR97, CPR constant density Collins et al. (1997); Stevenson et al. (2004);
Sanderson et al. (2006)

1997 MATCH, CTM GCM 500 km 500 km 21 50 2 PR92 constant Rasch et al. (1997); Lawrence et al. (1999)

1998 GEOS-CHEM,
GCM (3-D Harvard)

GCM 4◦ 5◦ 9 10 1–3.5 PR92 P98 1/3 Wang et al. (1998b); Mickley et al. (1999);
Horowitz et al. (1999); Bey et al. (2001); Martin
et al. (2002b)

1998 MOZART, CTM GCM 2.8◦ 2.8◦ 25 3 7 (3) PR92, PR97 constant density Emmons et al. (1997, 2000); Brasseur et
al. (1998b); Hauglustaine et al. (1998, 2001a);
Thakur et al. (1999); Tie et al. (2001)

1998 CTMK, CTM ECMWF 4◦ 5◦ 15 12.7 5 constant, PR92 constant Wauben et al. (1997); Emmons et al. (1997)

1998 TOMCAT, tropo-
spheric CTM

ECMWF 5.6◦ 5.6◦ 31 4 CTH PR92 different for CG
and IC

Law et al. (1998); Stockwell et al. (1999); Savage
et al. (2004)

2000 ECHAM4 ECMWF 3.75◦ 5◦ 19 10 4, 5 PR92, DC93 Roelofs and Lelieveld (1995, 2000); Lelieveld and
Dentener (2000); Marufu et al. (2000)
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Table 12. Continued.

Year Model∗ Wind
field

Lat Lon V Top, hPa G,
Tg a−1

Horizontal
distribution

Vertical
distribution

IC/CG References

2000 FRSGC-UCI, CTM ECMWF 2.8◦ 2.8◦ 37 10 5 PR92 Wild and Prather (2000); Wild et al. (2003)

2000 TM3, CTM ECMWF 3.75◦ 5◦ 19 10 5 PR92 constant density 1/3 Meijer et al. (2000, 2001); Peters et al. (2002)

2001 GISS, GCM GCM 3.9 P97 modified P98 0.1 Grewe et al. (2001); Shindell et al. (2001, 2003)

2001 DLR E39/C, GCM GCM 3.8◦ 3.8◦ 39 10 ∼5.4 PR94 or UPD P98 Grewe et al. (2001, 2002); Hein et al. (2001); Kurz
and Grewe (2002); Stenke and Grewe (2004);
Dameris et al. (2005)

2002 CHASER, GCM and
CTM

CCM 2.8◦ 2.8◦ 32 3 5 PR92 P98 0.1 Sudo et al. (2002a, b); Gauss et al. (2006)

2003 UIO-CTM2, CTM 2.8◦ 2.8◦ 40 10 5 PR97 Gauss et al. (2006)

2003 STOCHEM –
HadGEM1, GCM

CCM 2.5◦ 3.8◦ 20 4 8 PR92 PR97 Collins et al. (2003)

2003 MATCH-MPIC,
CTM

CCM 1.9–5.6◦ 1.9–5.6◦ 28 3 2–2.8 CTH, PR92 3 versions von Kuhlmann et al. (2003a, b); Kunhikrishnan et
al. (2004); Labrador et al. (2005)

2003 MOZART 2 GCM or
NCEP
or
ECMWF

2.8◦ 2.8◦ 34 4 3 CTH, PR92 P98 Horowitz et al. (2003); Brasseur et al. (2006); Mu-
razaki and Hess (2006)

2004 LMDz/INCA, CCM Nudging
of
ECMWF

2.5◦ 3.8◦ 19 3 5 CTH PR97 Hauglustaine et al. (2004, 2005)

2006 ECHAM5/MESSy,
GCM/CTM

GCM
nudged
to
ECMWF

1.9◦ 1.9◦ 19 10 5 UPD or CTH
PR92

P98 1 Kurz (2006)

2006 ECHAM5/MESSy1,
GCM/CTM

GCM
nudged
to
ECMWF

2.8◦ 2.8◦ 90 0.01 2.2 CTH P98 J̈ockel et al. (2006)

∗CTM: Chemical Transport Model; GCM: General Circulation Model; CCM: coupled Chemistry-Climate Model; Year: Year of Publication;
Lat: Latitudinal resolution; Lon: Longitudinal resolution; V: Number of vertical levels; Top: Model top boundary altitude; G: Global and
annual LNOx nitrogen mass source, Tg a−1; IC/CG: NO production rate per IC and CG flash ratio, partly cited from Zhang et al. (2003b);
DC93: Dentener and Crutzen (1993); PR92: Price and Rind (1992); PR97: Price et al. (1997b). P98: Pickering et al. (1998); TE82: Turman
and Edgar (1982). CPR: Convective precipitation rate (Meijer et al., 2001); CTH: Cloud-top-height (Price et al., 1997b); UPD: updraft
velocity (Grewe et al., 2001).
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Fundamental to this approach is the assumption that the
meteorological fields used represent the convection which
causes lightning. Convection is driven by locally generated
or advected hot and moist air masses in the boundary layer
causing convective instability, enhanced by advection of cool
air masses in the upper troposphere, wind shear, and low-
level convergence and upper level divergence of horizontal
wind fields (Cotton and Anthes, 1989; Johnson and Mapes,
2001). Hence, it covers a wide range of scales. So far cloud-
scale convection is parameterised in global weather and cli-
mate models either by moist adiabatic convective adjustment
of unstable temperature profiles (Manabe et al., 1965), mass
flux schemes (Tiedtke, 1989; Hack, 1994), or convective
cloud models (Zhang and McFarlane, 1995). The convec-
tive adjustment approach does not provide information on
the convective process. The mass flux schemes determine
the overall mass flux for all cumulus clouds in one grid cell
column. Convective cloud models simulate an ensemble of
subgrid clouds with different horizontal cloud diameters and
updrafts speeds and may include aerosol effects (Nober and
Graf, 2005). Details of the parameterisations have large ef-
fects on LNOx relevant cloud parameters including precipi-
tation (Arakawa, 2004; Tost et al., 2006). Cloud-resolving
models may be able to resolve convection which occurs
as singlecell, multicell and supercell convective storms and
MCS (Maddox, 1980; Houze, 2004). The large-scale models
should be able to resolve the “warm conveyor belt” of mid-
latitude cyclones contributing to long-distance trace species
transport (Browning, 1990; Stohl et al., 2003; Huntrieser et
al., 2005). CTMs are often tested in their ability to represent
the transport and chemistry of species for given meteorol-
ogy (Brunner et al., 2003, 2005; Zhang et al., 2003b; Eyring
et al., 2006; Gauss et al., 2006; Stevenson et al., 2006; van
Noije et al., 2006). Relatively less attention has been given
to validate the (often coarsely represented or simplified) me-
teorological fields and processes used in driving the transport
and chemistry in the CTM.

2.7.2 Lightning parameterisation based on cloud-top-
height

LNOx parameterisation in the models compute the spatial
distribution of lightning events, the relative contribution from
CG and IC flashes, and the vertical extent and profile of the
resultant LNOx emissions as a function of the given meteo-
rology. The globally averaged LNOx source is usually ad-
justed to some pre-selected value.

Many models rely on the work of Price and Rind (1992)
and Price et al. (1997b) who parameterised the spatial distri-
bution of the flash frequency as a function of the maximum
cloud-top-height (CTH). This allows to proxy lightning rates
from observable large-scale parameters. Different parame-
terisations were used for continental and maritime thunder-
storms. The parameterisation for continental thunderstorms
is based on theories and observations showing that lightning

frequencies in continental thunderstorms are related to the
fifth power of the cloud height (Vonnegut, 1963; Williams,
1985). The parameterisation for maritime thunderstorms is
based on observations indicating that marine thunderstorms
with the same CTH have weaker updrafts, resulting in lower
lightning frequencies (Lucas et al., 1994b; Zipser et al.,
2006). The relationships used are

Fc = 3.44× 10−5H 4.9, Fm = 6.40× 10−4H 1.73, (1)

whereFc andFm are the continental and maritime flash fre-
quencies (flashes per minute), respectively, andH is the
cloud-top height above ground (km). Storms up to 500 km
from the coastlines are still regarded as being continental in
nature (Price and Rind, 1992); in fact storms with strong
lightning activity occur also in oceanic regions with low-
level outflow of warm and humid air masses from the ad-
jacent land region, such as to the east of North America,
east of South Africa around Madagascar, east of South Amer-
ica and east of the Indian subcontinent (“continental oceans”
(Takayabu, 2006)).

The approach of Price et al. distinguishes between CG and
IC flashes. CG flashes were expected to be less frequent but
more energetic. The fraction of CG flashes relative to total
flash frequency is parameterised as a function of the thick-
ness of the cold cloud layer (between 0◦C and cloud top)
(Price and Rind, 1993). Price et al. (1997b) apply the model
to satellite-derived cloud-top-heights assuming a discharge
energy per CG flash of 6.7 GJ and a NO molecule production
rate per discharge energy of 10×1016 J−1. This implies a to-
tal annual LNOx nitrogen mass emission rate of 12.2 Tg a−1.

The LNOx source is distributed vertically within global
atmospheric models using an effective vertical emission pro-
file (Pickering et al., 1998). The altitude of the convective
outflow has important implications for the transport speed
and direction and it determines the chemical lifetime of the
lofted pollutant species, and the large-scale NOx distribution
is sensitive to the shape of the profiles (Labrador et al., 2005).
The models do not resolve the mixing processes in individual
storms which occur at spatial and temporal scales far smaller
than resolvable in global models, and the emissions are not
distributed according to the vertical distribution of the CG
and IC flash events. Instead the effective vertical emission
profile describes the outflow pattern of LNOx from the thun-
derstorms. Until now, the relative importance of the various
outflow domains is uncertain.

Various forms of effective vertical emission profiles have
been used so far; see Fig. 20. At early times, models as-
sumed profiles which are constant with altitude from ground
to cloud top either in terms of constant mass density or con-
stant mixing ratio (Lamarque et al., 1996). The latter would
result from complete vertical mixing by convection. The ver-
tical distribution of the LNOx outflow depends strongly on
the specific storm properties, and consequently different pro-
files may be needed for different (e.g. oceanic/continental,
tropical/midlatitude) storm types (Pickering et al., 1998).
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2 

Fig. 20. LNOx mass emission profiles for a convective system
with altitude normalised to cloud top height: constant mass (long-
dashed), constant mixing ratio (dash-dotted), constant mass flux
from anvil (short dashed), midlatitude storm outflow profile (thin
line with dots) (Pickering et al., 1998), midlatitudes supercell out-
flow profile (thin line with triangles) (Fehr et al., 2004), quadratic
parabola C-shape fit (thin line) (Kurz and Grewe, 2002).

Observations show clearly that part of the LNOx gets re-
leased to the environment from thunderstorms within the
anvils (Huntrieser et al., 1998; Ridley et al., 2004). Some
LNOx fraction may get transported downwards with down-
drafts as indicated in some cloud-resolving model studies
(Pickering et al., 1998; DeCaria et al., 2000; Skamarock et
al., 2003; Zhang et al., 2003c; Fehr et al., 2004). There-
fore, many authors assume that the emission profile has a
C-shape profile similar to the C-shape fit used by Kurz and
Grewe (2002) to approximate those computed by Pickering
et al. (1998). However, observational evidence for LNOx en-
tering the planetary boundary layer with downdrafts is miss-
ing. It would be difficult to find because of shorter lifetime
and higher background NOx concentration in the boundary
layer, and the difficulty to measure at the right place and time.
Simulations for observed STERAO, EULINOX and TROC-
CINOX cases show no significant NOx outflow below about
4 km altitude, consistent with observations (DeCaria et al.,
2005; Mari et al., 2006; Ott et al., 2007).

2.7.3 Alternative lightning parameterisations

CTH does not primarily control the formation of lightning,
and the fundamental limitations of the CTH approach have
often been discussed (Molinié and Pontikis, 1995; Price et
al., 1997b; Ushio et al., 2001; Allen and Pickering, 2002;
Boccippio, 2002; Cecil et al., 2005). The cloud top heights
may be large without active updrafts and hence without ac-
tive lightning. Later, other approaches were developed based
on a combination of latent heat release and cloud-top-height

(Flatøy and Hov, 1997), convective precipitation rate (CPR)
(Meijer et al., 2001; Allen and Pickering, 2002), convec-
tive available potential energy (CAPE) (Choi et al., 2005),
land-ocean cloud CCN spectrum differences (Michalon et
al., 1999; Jourdain and Hauglustaine, 2001), or convectively
induced updraft velocity (UPD) (Allen et al., 2000; Grewe
et al., 2001; Allen and Pickering, 2002; Kurz and Grewe,
2002). Besides a few observations (Lhermitte and Krehbiel,
1979), conceptual flash models indicate that flash rates are
correlated with a high power (order of six) of the strength of
storm updrafts (Baker et al., 1995, 1999).

Figure 21 illustrates the capability of the parameterisa-
tions, namely CTH, CPR and UPD in various models for
the February 2005 TROCCINOX period. In comparison to
the LIS data, the three models all represent the observed spa-
tial distribution of lightning activity reasonably; in particular,
they simulate the observed maximum values over the tropical
continents (Africa, South America and the region between
Indonesia and North Australia). The UPD scheme underes-
timates lightning at Northern midlatitudes, the CPR overes-
timates lightning in the ITCZ, and the CTH model underes-
timates the lightning activity in Northern Argentina. Obvi-
ously, there is a need for further improvements. Recently,
Tost et al. (2007) compared several combinations of state-of-
the-art convection and lightning parameterisations. Model
simulations with the global atmospheric chemistry model
ECHAM5/MESSy were evaluated against lightning observa-
tions. A wide range in the spatial and temporal variability
of the simulated flash densities was found, attributed to both
types of parameterisations.

Allen et al. (2000) studied the impact of lightning on to-
tal odd nitrogen in the North Atlantic in a CTM calculation
driven by fields from the Goddard Earth Observing System
Data Assimilation System (GEOS DAS). CTH-based flash
rates over the western Atlantic and Gulf Stream were much
lower than observed during SONEX. In addition, the fifth
power dependence of flash rate on cloud top height made
this method very sensitive to biases in GEOS DAS cloud
top heights. For these reasons, they developed an alterna-
tive UPD method that relates the CG flash rate to the GCM-
calculated convective mass flux. Allen and Pickering (2002)
tested various parameterisations including UPD, CPR and
CTH. Their UPD variant relates the flash frequency to a
fourth order polynomial of the grid cell mean upward flux at
440 hPa as derived from a meteorological data assimilation
system regardless of type of land surface. The polynomial
parameters were derived by fitting model results to ground-
based lightning frequency observations. They compared the
computed flash rates with satellite and ground-based light-
ning observations. The CTH parameterisation tends to un-
derestimate lightning over marine locations while the UPD
and CPR parameterisations have the opposite problem (Allen
and Pickering, 2002). The UPD variant appears most re-
alistic. Allen and Pickering (2002) noted that improve-
ments in flash rate parameterisations will be tied closely to

Atmos. Chem. Phys., 7, 3823–3907, 2007 www.atmos-chem-phys.net/7/3823/2007/



U. Schumann and H. Huntrieser: The global lightning-induced nitrogen oxides source 3857

(a) (b)

(c) (d)

Fig. 21. Observed and computed lightning flash density for February 2004. Top left: LIS (NASA), top right: MOZART, CTH (L. Emmons),
Bottom left: ECHAM5/MESSy, UPD (C. Kurz), bottom right: TM4, CPR (E. Meijer).

improvements in modelling the convection physics. Allen
and Pickering (2002) applied their model with global LNOx
values between 0.1 and 35.2 Tg a−1, but did not derive ex-
plicit conclusions on the best LNOx source values.

Grewe et al. (2001) independently introduced a parame-
terisation variant based on convective updrafts (UPD) veloc-
ities. They used a global circulation model E39/C coupled to
a chemical model. The convective updrafts (typically a few
km wide) have to be parameterised in such models with grid
scales of the order of a few 100 km. The GCM computes a
mean upward convective mass fluxmfi (in kg m−2 s−1) in a
grid cell at each vertical leveli using a classical parameteri-
sation (Tiedtke, 1989). From this Grewe et al. computed an
indicator for the (grid cell average) updraft velocity

w = 6(mfi/ρi)(hi/D), (2)

with the cloud thicknessD = 6hi (m), ρi the mass density
(kg m−3), andhi (m) the thickness of the cloud layeri, where
6 denotes summation over the cloud layersi from cloud bot-
tom to cloud top in the grid cell. The cloud-top-heightH , the
mass-flux-derived updraft velocityw (m s−1), and the cloud
heightD are related to each other by

H = awD1/2, (3)

 1 

2 

 3 

Fig. 22. NO mixing ratio (nmol mol−1) versus time. The total time
amounts to about 30 h. Measured values (dots and line, mean value
for a running average over 1200 s), and results for ECHAM UPD
(red) and ECHAM CTH (blue), both for 5 Tg a−1. TROCCINOX
flights F2 (14 February), F4 (17 February), F6 (20 February), F9
und F10 (morning and afternoon of 3 March), F11 (4 March), and
F13 (7 March, 2004) (Kurz, 2006).

wherea=0.85 was selected to achieve consistency with Price
and Rind (1992). Inserting this into the equation forFc gives
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Table 13. “Lightning yield”, i.e., number of CG flashes per rain mass.

Region Lightning yield, Tg−1 Reference

Florida 50 Piepgrass et al. (1982); Gungle and Krider (2006)
Arizona 15–33 Battan (1965)
Congo 30 1550 mm rain a−1, ∼45 flashes km−2 a−1

(Williams and Śatori, 2004)
Arid south-western USA 15 Petersen and Rutledge (1998)
Midcontinental USA 10 Petersen and Rutledge (1998)
Amazonas 10 2150 mm rain a−1, ∼20 flashes km−2 a−1

(Williams and Śatori, 2004)
Continental Australia 4 Jayaratne and Kuleshov (2006)
Mediterranean regions 1–4 Price and Federmesser (2006)
Tropical continent 2.5 Petersen and Rutledge (1998)
Tropical land 36◦ S–36◦ N 2.5∗) Takayabu (2006)
Summer stations Australia 1.9 Jayaratne and Kuleshov (2006)
Coastal Australia 1 Jayaratne and Kuleshov (2006)
Winter stations Australia 0.77 Jayaratne and Kuleshov (2006)
Tropical oceans 36◦ S–36◦ N 0.5∗) Takayabu (2006)
Tropical thunderstorm 0.12 Williams et al. (1992)
Tropical Pacific Ocean 0.1 Petersen and Rutledge (1998)

∗) Lightning yield for total flash number derived from 3 years of TRMM precipitation radar-based rainfall amount and LIS flash data.

a flash frequency

F = 3.44× 10−5H 4.9

= 3.44× 10−5(awD1/2)4.9

= 1.54× 10−5(wD1/2)4.9. (4)

The model simulates different convective mass fluxes over
land and sea, and provides a non-perfect but reasonable ap-
proximation for the lightning land-ocean contrast without us-
ing different sets of model parameters as was necessary in
the CTH parameterisation. The dependence ofF on D pre-
vents lightning in shallow convection (Grewe, 2007). The
model of Grewe et al. (2001) further assumes that the ra-
tio of IC to CG flashes is determined as in Price and Rind
(1993). The vertical distribution of the LNOx emissions fol-
lows Pickering et al. (1998), and the total annual emission of
LNOx was scaled to 5 Tg a−1. Hence, the UPD model is both
consistent with theoretical expectations and experiences with
the CTH model, but without the need for different types of
parameterisations for land and sea. Still, the mean velocity
averaged over the cell differs from the mean velocity in the
cloud cores, in particular if the cell is only partially clouded.
Kurz (2006) presents a case study for Brazil and computes
peak convective mass flux values of 0.3 kg m−2 s−1, imply-
ing peak velocities of about 1 m s−1 in the upper troposphere.
It is not yet clear whether the approach is invariant with re-
spect to grid scale variations. It is to be expected that the
results are sensitive to details in the convection parameteri-
sation (Tost et al., 2006). Moreover, not all CTMs have ac-
cess to meteorological input for convective mass flux. Unfor-
tunately, simultaneous global observations of lightning and

updraft speeds in convection are missing, meaning that this
approach is hard to validate.

Systematic comparisons of the performance of various
lightning parameterisations in terms of flash frequencies,
land-ocean contrast, latitudinal variations, Congo-Amazon-
contrast, daily and seasonal cycles, and spatial and temporal
variability are rare. Model comparisons with observed pre-
cipitation features (Zipser et al., 2006) have still to be per-
formed. CTH based flash rates, scaled to an assumed total
LNOx source rate, have been compared with OTD/LIS data
in a few model studies (Shindell et al., 2001; Martin et al.,
2002b; Hauglustaine et al., 2004; Labrador et al., 2005). The
models reproduce the main features of the observed daily
and seasonal cycle and the general location of convective re-
gions, but otherwise the agreement is not quantified and sev-
eral disagreements were noted. In a recent study with the
GEOS-CHEM model, the seasonal correlation coefficients
between CTH-derived flash frequencies and OTD/LIS obser-
vations varied between 0.4 and 0.57; a far higher correla-
tion (0.97–0.98) was obtained after scaling the model results
locally to fit observed seasonal mean values (Martin et al.,
2007; Sauvage et al., 2007a).

The CPR lightning parameterisation assumes a fixed ‘rain
yield’, i.e. mass of rain produced per lightning CG flash.
Actually relevant is the inverse, i.e. the “lightning yield”
(Williams et al., 2002). Though lightning may occur also
without rain (Rorig and Ferguson, 2002), the lightning yield
is mostly finite, and has been reported to vary within 0.1–
50 Tg−1, see Table 13 (for further studies see MacGorman
and Rust, 1998, and Rakov and Uman, 2003). Note that the
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TRMM data refer to total flash rates while all other data refer
to CG flashes. For the same rain rate, more CG flashes are
produced over continents than oceans and more at midlati-
tudes than in the tropics. On average, the lightning yield is
3 times smaller over ocean than over land (Takayabu, 2006)
and about 3 times smaller over the Amazon than over the
Congo (Williams and Stanfill, 2002). The CPR model sug-
gested by Meijer et al. (2001) is now used with ten times
higher lightning yields over land than over ocean (Boersma
et al., 2005).

Kurz and Grewe (2002) compare the flash frequencies
from the global circulation model E39/C using either the
CTH or UPD model with those from OTD. The UPD ver-
sion computes a land/sea flash ratio of 3.1 which is below the
value of 6 derivable from OTD data (Kurz and Grewe, 2002)
but far better than the ratio of 160 which would result for the
same land/sea mask when using the same CTH flash parame-
terisation for ocean as for land globally. Kurz (2006) applies
the UPD model for comparison with TROCCINOX data. He
finds that the IC/CG ratio is not important in this approach
because of prescribed total LNOx source and given vertical
emission profiles. For IC/CG ratios of 0.1 and 1 the concen-
trations over the continental tropics differ by less than 3%.
The comparison with TROCCINOX observations shows that
the UPD parameterisation reproduces the observed variabil-
ity of convection and the related NOx fields far better than the
CTH model, see Fig. 22. The model computed CTH values
are often rather uniform in that most cloud tops reach close to
the tropopause while updraft speed (and precipitation) varies
more strongly.

Choi et al. (2005) use a regional chemical transport model
with various lightning parameterisations. They find best
agreement with ground-based lightning observations when
using a combination of UPD and CAPE, but with differ-
ent parameterisations for land and ocean. Correlations be-
tween CAPE and aerosols with lightning have been investi-
gated with observed data over the Amazon by Williams et
al. (2002). More recently, precipitating ice mass has been
suggested as indicator of lightning activity (Petersen et al.,
2005; Gauthier et al., 2006; Sherwood et al., 2006). Also
an elevated cloud base height has been identified to support
transfer of CAPE to updraft energy in thunderstorms causing
strong updrafts, high lightning flash rates and high lightning
yields (Williams and Stanfill, 2002; Williams et al., 2005; Ja-
yaratne and Kuleshov, 2006). However, these parameters are
not yet included in predictive models.

2.7.4 Cloud scale models

Cloud-scale models have been used to simulate the transport
and distribution of NOx, and its contribution to photochem-
istry at scales directly comparable to airborne measurements
in thunderstorm systems (Hauf et al., 1995; Thompson et al.,
1997; Pickering et al., 1998; Marécal et al., 2006; Rivière
et al., 2006). Cloud-scale models parameterise flash occur-

rence, flash position, and related LNOx sources inside the
cloud as a function of pressure (Wang et al., 1998a; De-
Caria et al., 2000), temperature, model hydrometeor fields
(DeCaria et al., 2000, 2005; Ott et al., 2007), updraft speed
and thickness of the “cold” cloud region between the 0◦C
isotherm and cloud top (Price and Rind, 1993; Fehr et al.,
2004), or cloud top height and thickness of cold cloud re-
gions (Price and Rind, 1992; Mari et al., 2006). The flash-
specific LNOx production rate and the relative contributions
from IC and CG flashes are free parameters in these models.
Only a few models simulate the process of charge separation
and lightning discharges when reaching critical electric field
strengths (Takahashi, 1984; Wang and Prinn, 2000; Zhang et
al., 2003b; Barthe et al., 2005; Fierro et al., 2006; Kuhlman
et al., 2006; Barthe and Pinty, 2007). The simulated storm
charge structure depends strongly on the choice of charging
parameterisation, breakdown assumptions and flash param-
eterisation (Kuhlman et al., 2006; Barthe and Pinty, 2007).
A detailed review of the methods used for this purpose is be-
yond the scope of the paper. The model quality is assessed by
comparing simulated cloud and lightning field properties and
NOx concentrations with observations. Such studies have
been performed with 2-D and 3-D cloud-scale models for the
measurements during STERAO (DeCaria et al., 2000; Ska-
marock et al., 2000, 2003; DeCaria et al., 2005; Barthe et al.,
2007), with 3-D models for EULINOX (Fehr et al., 2004;
Ott et al., 2007), and with 3-D models for TROCCINOX
(Chaboureau and Bechtold, 2005; Chaboureau et al., 2007;
Mari et al., 2006). By fitting the model results to mainly air-
borne observations, the results provide insight on the effec-
tive transports and emission profiles, and on the air chemistry
induced by LNOx from the thunderstorm. The results can be
used to derive both the flash-specific LNOx production rate
and the relative contributions from IC and CG flashes. Some
results with estimates of the LNOx production per flash and
per thunderstorm, and the IC/CG LNOx productivity ratio,
are reported in Sects. 3.1 and 3.2.

2.8 Climate impact of LNOx

In a future warmer world, more thunderclouds may form,
causing more lightning, more LNOx production, and hence,
larger O3 concentrations, stronger radiative forcing, which
may intensify the warming and thus produce more thun-
derstorms. Therefore, though still under debate (Williams,
2005; Harrison, 2006), LNOx may contribute to a positive
climate feedback cycle (Williams, 1992).

LNOx contributes with a positive radiative forcing on cli-
mate via ozone formation in the upper troposphere (Toumi
et al., 1996; Sinha and Toumi, 1997) and a negative forc-
ing by enhanced OH reducing CH4 (Isaksen and Hov, 1987).
For a LNOx increase from 3–6 Tg a−1, Martin et al. (2002b)
compute a 10% increase in OH and a reduction of the life-
time of methyl chloroform (CH3CCl3) from 5.9 to 5.3 years.
Labrador et al. (2004) calculate OH increases by 10% and
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23% when the global lightning source is increased, respec-
tively, by a factor of 2 and 4 from a 5 Tg a−1 reference
case. A 1.4 years difference in CH4 lifetime is found for
LNOx varying from 3 to 8 Tg a−1 (Wild, 2007). Fiori et
al. (2006) compute that the CH4 lifetime decreased by 1.6%
from 1991–1995 to 2000–2004, reflecting increases in OH
and temperature due to increasing LNOx.

Ozone in the upper troposphere has a larger impact on
the radiative forcing of the atmosphere than ozone generated
near the Earth surface because of lower ambient tempera-
tures and smaller optical depth of the air mass above that
level (Chalita et al., 1990; Lacis et al., 1990; Strand and Hov,
1994; Hansen et al., 2005). This is one of the reasons why
NOx emissions into the upper troposphere have a far larger
climate impact than NOx emissions at the surface (Johnson
et al., 1992). Using a 2-D global model, Toumi et al. (1996)
find that a 20% increase in lightning (from 5 to 6 Tg a−1)

enhances the global mean radiative forcing via tropospheric
O3 by about 0.1 W m−2. Hopkins (2003) computes a smaller
sensitivity: the global average total radiative forcing due to
O3 formed by 6.5 Tg a−1 of LNOx is about 0.1 W m−2 in her
model.

Positive correlations between surface temperature, light-
ning activity, and the global electric circuit have been iden-
tified from observations at daily to interannual time scales
(Williams, 1992; Harrison, 2004; Williams, 2005). The
amplitude of the Schumann resonance oscillations in the
ground-ionospheric cavity (Schumann, 1952; Rycroft et al.,
2000; Price et al., 2007) and temperature fluctuations in the
tropical atmosphere are positively correlated mainly because
of lightning activity increasing with temperature (Williams,
1992). For a 1% increase in global surface temperature, the
ionospheric potential may increase by 20% (∼50 kV) (Price,
1993). An increase in global lightning of 5–6% per degree
Kelvin global warming was derived (Price and Rind, 1994a;
Satori and Zieger, 1996), with much larger regional and tem-
poral changes. Finally, biomass burning is likely to increase
with climate change as a result of increased lightning-caused
fires (Price and Rind, 1994b).

Correlations between observed lightning and temperature
seem to support the existence of a lightning-climate inter-
action: For example, a seasonal sensitivity of the flash fre-
quency to surface temperature of 50–800% K−1 was found
(Williams, 1994); the sensitivity increases with decreasing
latitude. The global position of lightning activity shifts with
El Niño and La Nĩna (Satori and Zieger, 1996). Satellite-
derived intraseasonal oscillations in deep convection modu-
late the global variations in the Schumann resonance inten-
sity (Anyamba et al., 2000). The correlation of OTD flash
data with monthly mean wet-bulb temperature anomalies is
strongest in the Northern Hemisphere and weak in the South-
ern Hemisphere, and a change in the average land wet-bulb
temperature of 1 K may result in a change in lightning ac-
tivity of about 40±14% (Reeve and Toumi, 1999). Over
the Gulf of Mexico, during the 1997–1998 El Niño event,

a 100–150% increase in lightning days is found, compared
to the 1996–1997 and 1998–1999 winters, apparently corre-
lated with increase in synoptic scale cyclones and the posi-
tion and strength of the jet stream (Goodman et al., 2000).
The 5-year LIS data, the 8-year OTD data, and the NCEP re-
analysis data of surface air temperature show a sensitivity of
lightning to temperature of up to 17±7% K−1, but the cor-
relation varies with latitude, land/ocean regions, and periods
(Ma et al., 2005).

Further evidence supports the existence of a lightning-
climate interaction: The upper tropospheric water vapour
variability, upper tropical cloud coverage, and the global
lightning activity are closely linked, because continental
deep convective thunderstorms transport large amounts of
water vapour into the upper troposphere while producing
most of the lightning on Earth (Price, 2000; Price and Asfur,
2006). Using TRMM lightning and radar data, a strong re-
lationship is found between precipitating ice mass and light-
ning flash density (Petersen et al., 2005). Durden et al. (2004)
find high correlation between average flash rates and pre-
cipitation data from satellites over both land and ocean; al-
though both flash rates and radar reflectivity are much lower
over ocean than land. In contrast, the anomalies of light-
ning and precipitation have different spatial patterns; how-
ever, both are correlated with the Southern Oscillation Index
and, hence, El Niño. Differences in behaviour of the light-
ning and precipitation anomaly correlations suggest that El
Niño plays a smaller role in lightning anomaly than precipi-
tation anomaly.

Several model studies identify an increase in lightning
and LNOx emissions due to global warming, see Table 14.
The estimates of LNOx increases due to global warming
vary within 4–60% K−1 with median near 15% K−1. Some
studies find no global trend in lightning emissions over the
period 1990–2030, but significant changes in its distribu-
tion (Stevenson et al., 2005; Sanderson et al., 2006). An-
other study finds large interannual variability of the LNOx
source (5.2±0.3 Tg a−1) but no significant trend in a transient
simulation with the interactively coupled chemistry-climate
model (CCM) E39/C over the 40-year period 1960 to 1999
(Dameris et al., 2005). Larger changes over the coming cen-
tury are not excluded with these results. Models also com-
pute a correlation between the El Niño phenomenon and the
ozone column (Doherty et al., 2006). Lightning occurrence
and LNOx emissions increase during El Niño periods and
leads to an inter-annual ozone variability of around 3% in
the tropical upper troposphere (Grewe, 2007).

For a possible global warming of 1.5 to 5.8 K (IPCC,
2001), a LNOx increase of 15% K−1 would imply a 20–
90% increase in lightning activity. Hence, future changes
in LNOx emissions may be larger than future increases in
aviation NOx emissions (see Sect. 2.9). On the other hand,
future O3 increases from increased LNOx and other emis-
sions are partially damped by increased tropospheric water
vapour concentration (Brasseur et al., 2006).
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Table 14. Lightning sensitivity to global warming in model computations.

Model Period Parameter LNOx,
Tg a−1

1T,
K

Relative
change,
% K−1

Reference

GISS 2×CO2 Flash frequency – 4.2 5–6 Price and Rind (1994a)
Global 2-D model 2 K warming pe-

riod
LNOx 5 2 10 Toumi et al. (1996)

ARPEGE 2×CO2 Flash frequency – 2 5 Michalon et al. (1999)
GISS GCM ∼1860–2000 LNOx 3.6–3.9 1.8 4 Shindell et al. (2001)
E39/C 1992–2015 LNOx 5.4–5.9 ∼1 9 Grewe et al. (2002)
GISS II′ 1860–2000 LNOx 6.2–6.5 ∼0.5 ∼10 Shindell et al. (2003)
GISS (23 layers, with chem-
istry)

2×CO2 LNOx 6.5 22–27 Hopkins (2003)

GISS 2000–2100 LNOx 4.9–6.9 3.25 12 Grenfell et al. (2003)
ECHAM/CHEM 1960–2105 LNOx 5.1–5.6 0.7 14 Stenke and Grewe (2004)
GISS1/2 2000–2100 LNOx 6–13.5 ∼2 ∼60 Lamarque et al. (2005)
NCAR (CAM, MOZART) 2000–2100 LNOx 2.2–2.8 ∼2 ∼14 Lamarque et al. (2005)
LMDz/INCA 2000–2100 LNOx 5–7.5 2.45 22 Hauglustaine et al. (2005)
E39/C 1969–1999 LNOx 5.2±0.3 0.5–1 – Dameris et al. (2005)
HadAM3-STOCHEM 1990–2030 LNOx 7 – Stevenson et al. (2005)
MOZART 2/NCAR-CSM 2000–2100 LNOx 3.9–4.5 ∼2 ∼15 Murazaki and Hess (2006)
GISS III (G-PUCCINI) 2000–2100 LNOx 5.2–7.2 ∼3 ∼13 Shindell et al. (2006)
GISS III 2000–2030 LNOx 6.2–6.5 0.68 7 Unger et al. (2006)
MOZART 2 with ECHAM5 2000–2100 LNOx ∼3–4 ∼2.3 9 Brasseur et al. (2006)

2.9 Assessment of aviation NOx for uncertain LNOx
sources

Besides lightning and upward transport from polluted bound-
ary layers over continents by convection, and small contribu-
tions from the stratosphere, aviation contributes to NOx in
the upper troposphere; see Fig. 23 and Table 2. Downward
transport of NOy (with small NOx fraction) (Lee et al., 1997;
Martin et al., 2006) from the stratosphere into the upper tro-
posphere occurs mainly near the subtropical jet (Grewe and
Dameris, 1996; Lamarque et al., 1999), and possibly by
sedimentation of cloud particles in polar regions (Weller et
al., 2002). The amount and distribution of NOx emissions
from aviation is known to about±15% accuracy (Schumann
et al., 2001). Hence, the aviation NOx source is far bet-
ter known than most other NOx emissions. Aviation NOx
emissions grew from about 0.55 to 0.7 Tg a−1 in the years
1992 to 2002 and may double in the next 20 years (Lee et
al., 1997; Brasseur et al., 1998a; IPCC, 1999; Eyers et al.,
2005). Aircraft NOx contributions are clearly detectable in
measurements at various scales (Schlager et al., 1999; Schu-
mann et al., 2000; Thompson et al., 2000b). Only a small
fraction of NOx is oxidised in the exhaust plume in the first
30 min (Schlager et al., 1997). Aviation NOx sources, though
smaller than LNOx sources globally (see Table 2), may be
larger than the LNOx source regionally, e.g. over Europe
(Huntrieser et al., 2002). Hence, aviation NOx contributes
significantly to the upper tropospheric NOx concentrations
at northern midlatitudes and may have considerable influence
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Fig. 23. Annual nitrogen mass emissions from LNOx (5 Tg a−1,
as in Fig. 2), civil aviation (0.7 Tg a−1, derived from the AERO2K
data set (Eyers et al., 2005)), and from degradation of dinitrogen
oxide (N2O) by reactions with atomic oxygen in the stratosphere
(about 0.4 Tg a−1) with a distribution similar to the stratosphere to
troposphere mass flux (Grewe and Dameris, 1996).

on O3 and the related radiative forcing (IPCC, 1999; Sausen
et al., 2005).

The uncertainty in LNOx and its pathways has a signifi-
cant impact on the assessment of aviation NOx contributions
in the upper troposphere at midlatitudes in summer (Beck et
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al., 1992). For an increase in LNOx from 2 to 10 Tg a−1,
the aviation NOx share decreases from about 40% to 20%
(Brasseur et al., 1996; Lamarque et al., 1996; Meijer et
al., 2000). Lower emissions from lightning (2 instead of
5 Tg a−1) may cause 50–70% higher enhancement of O3 due
to aircraft at northern midlatitudes in summer (Berntsen and
Isaksen, 1999). Grewe et al. (2002) find that the replace-
ment of the CTH parameterisation (Price and Rind, 1993) by
one based on UPD (Grewe et al., 2001) for the same total
LNOx rate (5.4 Tg a−1) together with changes in the vertical
profile of emissions reduces the aircraft contribution to the
upper tropospheric NOx content in the Northern Hemisphere
from 30% to 20%, and reduces the aviation-induced net O3
production rate in the region 20◦ N–70◦ N, 500–200 hPa by
25%. LNOx must also be well known for assessing the im-
pact of aviation NOx in the lower and lowermost stratosphere
because of transport of LNOx from the upper tropical tro-
posphere (Kotamarthi et al., 1994; Grewe et al., 2004). In
addition, the impact of supersonic aircraft’s NOx emissions
on the ozone layer may be sensitive to the LNOx source
(Smyshlyaev et al., 1999).

2.10 Required LNOx accuracy

The required relative accuracy1G/G of the global LNOx
sourceG depends on the parametery considered, its re-
quired relative accuracy1y/y, and the sensitivity∂y/∂G or
the relative contributionα=(G∂y/∂G)/y of G to y for which
1y/y=α1G/G. Consequently,

1G/G = (1y/y)/α. (5)

This simple relationship assumes that all other parameters are
known. The required relative accuracy1y/y depends on the
implications of the resulty and is assumed to be 10% here,
without further argument. The required absolute accuracy
1G also depends on the best-estimate of the LNOx source
which is assumed to amount toG=5 Tg a−1. The sensitivity
∂y/∂G or the relative contributionα can be determined from
detailed model results or from rough estimates, see below.
With these parameters the required accuracy of LNOx can be
estimated as listed in Table 15 and as explained next:

1. ForG=5 Tg a−1, lightning contributes about 60% to the
NOx concentrations in the free tropical troposphere, e.g.
Brasseur et al. (1996), so thatα=0.6.

2. ForG=5 Tg a−1, lightning contributes aboutα=20% to
the NOx concentrations at upper tropospheric midlati-
tudes (Brasseur et al., 1996).

3. For 5 Tg a−1, LNOx contributes about 30% to the O3
concentrations in the free tropical troposphere (Brasseur
et al., 1996), so thatα=0.3.

4. The radiative forcing due to tropospheric O3 increase is
sensitive to LNOx such that a doubling of the source

causes an increase of the radiative forcing by about
α=20% (Toumi et al., 1996).

5. The OH concentration changes by about 10% for an in-
crease ofG from 5 to 10 Tg a−1 (Labrador et al., 2004).
Hence,α=0.1.

6. Also, the radiative forcing due to CH4 changes about
linearly with the lifetime of CH4 and hence with the OH
concentration, hence,α=0.1, as before.

7. The aviation contribution to midlatitude upper tropo-
spheric NOx concentration changes from 40% to 20%
for an increase ofG from 2 to 10 Tg a−1 (Lamarque et
al., 1996). Hence,α=0.125.

8. The feedback of lightning on climate may increase
LNOx by 50% (Hauglustaine et al., 2005), the radiative
forcing by about 0.1 W m−2 (Toumi et al., 1996), and
the temperature increase over the next century by about
5–10% (0.2 of 2 K) (IPCC, 2001), implyingα=0.1 to
0.2.

9. LNOx contributions to acid rain are small in most re-
gions, but may reach aboutα=20% in the tropics (Bond
et al., 2002), see Table 2.

10. Acid rain over the industrialised countries is affected by
LNOx to aboutα=5% (Zhang et al., 2003a), see also
Table 2.

This simple exercise tells us that the accuracy is most impor-
tant for assessing the NOx concentration in the tropics, for
assessing tropical O3 and the radiative forcing from tropo-
spheric O3, and possibly for assessing acid rain in the trop-
ics. For these purposes, the LNOx value should be known
to about 1 Tg a−1 or about 20%. On the other hand, an ac-
curacy of about 5 Tg a−1 (100%) should be sufficient for the
other listed parameters.

At present, the accuracy of observations and models re-
stricts the achievable accuracy to about 50%, as explained
in Sect. 3.3.5. The interannual variability of global lightning
may restrict the practically achievable accuracy of the annual
mean global LNOx source to about 5%. For regional applica-
tions, not only the global budget but also the regional LNOx
distribution must be simulated with comparable accuracy.

3 Methods to constrain the LNOx values

The methods which have been used to estimate the global
LNOx source rate are summarised in Table 16. This chapter
describes the various approaches and identifies their limita-
tions and possible extensions.
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Table 15. LNOx sensitivity and required accuracy of the LNOx sourceG.

No. Parameter α, LNOx Contribution in % 1G/G, % 1G∗, Tg a−1

1) NOx concentration in the free tropical troposphere 60 17 0.8
2) NOx concentration in upper mid-latitudinal troposphere 20 50 2.5
3) Ozone concentration in the tropical troposphere 30 33 1.7
4) Radiative forcing by tropospheric O3 20 50 2.5
5) OH concentration 10 100 5.0
6) Lifetime of CH4 and related radiative forcing 10 100 5.0
7) Relative importance of aviation NOx contribution 12.5 80 4.0
8) Temperature increase from climate feedback of lightning 20 50 2.5
9) Acid rain rate over tropical continents 20 50 2.5
10) Acid rain rate over the industrialised countries 5 200 10.0

∗ Absolute accuracy computed from1G/G for G=5 Tg a−1.

3.1 Flash extrapolation

The flash extrapolation method determines the global LNOx
production rate as the product of the LNOx production rate
per flash and the global flash frequency (Lawrence et al.,
1995). The LNOx production rate per flash may be deter-
mined from the production rate per discharge unit energy (or
peak current (Wang et al., 1998a)) times the discharge energy
(or peak current) per lightning flash, e.g. from theoretical
considerations, from laboratory experiments, or from obser-
vations in the atmosphere. Alternative approaches determine
the flash-length-specific production rate and then multiply
the result with length estimates. Other approaches determine
the LNOx production rate directly per flash. All these ap-
proaches assume that one set of flash property values is rep-
resentative for all flashes occurring globally. The production
rate per flash is usually expressed in number of molecules or
moles or mass, where 6.02×1023 molecules = 1 mol = 14 g
of nitrogen.

3.1.1 LNOx production per flash energy or peak current

Published estimates for the energy-specific LNOx produc-
tion rates are listed in Table 17; for studies published before
1988 see Lawrence et al. (1995). The values range within 1–
50×1016 molecules J−1. The upper bound value seems a bit
high, because if all discharge energy is consumed to split the
triple bond of molecular nitrogen (0.94 MJ mol−1) the LNOx
production could reach at most 64×1016 molecules J−1.

The flash discharge energy that is spent in ionisation of
the air in the flash channel, shock-wave channel expansion,
and the production of electromagnetic (including optical)
and acoustic radiation from the flash channel may be es-
timated from theoretical considerations (Tuck, 1976), from
acoustical energy of thunders (Hameed et al., 1981), or from
comparisons of measured optical energies in natural light-
ning first strokes with laboratory spark experiments (Orville,
1968; Rakov and Uman, 2003). The stroke energyE=1/2

QV depends on the charge Q (in Coulombs) transferred and
the total potential V (in Volts) (Bradshaw, 1996). The peak
current I=Q/1t (in Ampere) in the stroke depends on the
charge transferred and the stroke duration1t. For typi-
cal values (Uman, 1987; Orville et al., 2002), V=10 MV,
I=20 kA,1t=1 ms, we compute Q=20 C, and E=0.1 GJ. Early
studies estimated the energy of an average lightning stroke
as about 10 GJ (Vonnegut, 1963). From field and labora-
tory experimental data, a length specific discharge energy of
230 kJ m−1 for a single return-stroke natural flash was de-
rived (Krider et al., 1968). A review of estimates from elec-
trical, optical, acoustical and theoretical methods revealed a
value of 10 kJ m−1 (Hill, 1979). From electrostatic consider-
ation, a possible range of length specific values between 100
and 1000 kJ m−1 was deduced (Uman, 1987), while Cooray
(1997) computes 70 kJ m−1. For 5 km flash length, these val-
ues imply a range of 0.35 to 5 GJ per stroke. Recent field
measurements find even far smaller energies between 1 and
10 kJ m−1 in rocket-triggered lightning (Jayakumar et al.,
2006). However, a natural flash may differ from rocket trig-
gered ones. Moreover, a single flash usually includes several
strokes. A best estimate value of about 0.4 GJ per flash, with
uncertainty factor of about 3 was derived from reanalysis of
several optical and electrical measurements by Borucki and
Chameides (1984), assuming 1.75 equivalent return strokes
per flash. Also Bradshaw (1996) reviewed the interpretation
of previous experimental data and derived energies per light-
ning flash of 1.2 GJ for midlatitude negative CG lightning
(240 kJ m−1) and similar values for other flash types: 2.3 GJ
for tropical negative CG lightning, 3 GJ for positive CG light-
ning and 0.9 GJ for IC lightning with uncertainties of at least
a factor of 2. Far larger discharge energy values, 6.7 GJ per
flash, were derived from a review of observations and the
contributions of lightning to the global atmospheric electric
circuit (Price et al., 1997a, b). Hence, the flash-specific value
of discharge energy derived from these studies ranges within
at least 0.4 and 6.7 GJ per flash, with different values depend-
ing on flash type.
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Table 16. Methods to derive estimates of the global LNOx production rate.

No. Method Explanation Typical Reference

1 Flash extrapolation:
G=Pff

G is the global rate of NOx production by lightning in
nitrogen mass units;
P is the mass of fixed nitrogen produced by a single,
average flash of lightning;
ff is the global lightning flash frequency.

Lawrence et al. (1995)

1.1 NO per flash based on dis-
charge energy:
P=pEf

p is the mass yield of fixed nitrogen per unit energy of
discharge;
Ef is the energy of a lightning flash.

Tuck (1976)

Alternatively, one may scale P with the flash peak cur-
rent.

Wang et al. (1998a)

1.2 NO per flash based on NO
increase:
P=ρairV (MN/Mair)
1NOx/Nf

P is the nitrogen mass due to increase in mixing ratio
1NOx in a given volumeV with given air densityρair,
and molar mass ratio of nitrogen and air(MN/Mair);
Nf is the number of flashes responsible of this increase.

Noxon (1976)

2 Storm extrapolation:
G=Fnt

G=Mft

F is the outflow of NO from a single thunderstorm per
time unit; nt is the number of thunderclouds active at
any time globally; M is the mass of NO produced by
a single thunderstorm;ft is the frequency of thunder-
clouds occurring globally.

Chameides et al. (1987)

2.1 F : nitrogen mass outflow
rate of thunderstorm pro-
duced NO

F=ρair Av 1NOxMN/Mair; ρair is the air density;
A is the vertical cross section area of anvil outflow from
a thunderstorm;
v is the velocity difference between the velocity of the
air in the outflow and the velocity of the cloud system;
1NOx is the increase in mixing ratio due to lightning in
the thunderstorm.

Huntrieser et al. (1998)

2.2 M: mass of N produced
within a thunderstorm at a
given time

M=ρair V 1NOxMN/Mair;
V is the volume containing LNOx within a thunder-
storm;
1NOx is the increase in mixing ratio due to lightning in
the thunderstorm.

Ridley et al. (1996)

3 Global model fit:
3.1 Concentration based model

fit
G is that LNOx value for which the model results best fit
observations of concentrations of NOx, NOy, and pos-
sibly other species sensitive to LNOx.

Levy et al. (1996)

3.2 Deposition-based model fit G is that LNOx value for which the model results best
fit observations of nitrate deposition.

Gallardo and Rodhe (1997)

Wang et al. (1998a) pointed out that LNOx is not a unique
function of the energy converted to heat in the flash dis-
charge but increases (about linearly) with atmospheric pres-
sure and (about quadratically) with the peak current of the
flash, see Fig. 24. For surface pressure, the energyspe-
cific NO molecule production was found to increase from
15×1016 to 40×1016 J−1 for an increase in peak current from
10 kA to 30 kA. The same flash at 370 hPa would produce
half that amount. A quadratic dependence on the peak cur-
rent I may be expected for constant channel resistanceR

and stroke duration1t, where the energy released in a light-
ning stroke isE=1/2RI2 1t . Peak currents in (negative)
CG flashes observed from the ground-based lightning detec-
tion systems NLDN are typically 10–30 kA (Orville, 1990;
Petersen and Rutledge, 1992; Wacker and Orville, 1999;
Orville et al., 2002; Langford et al., 2004). The measured
dependence of the NO production as a function of flash peak
current and ambient pressure opens a new approach to esti-
mate the LNOx production per flash from lightning detection
systems identifying flashes and peak currents (Huntrieser et
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Table 17. Lightning NOx production rate per discharge energy.

Production rate, 1016

molecules J−1
Method Author

1.4±0.7 Laboratory simulated corona discharges Hill et al. (1988)

8.5±4.7 Review Lawrence et al. (1995)

9 (5–17) Review and lightning data for USA Biazar and McNider (1995)

7.5 (CG–), 15 (CG+), 5
(IC)

Based on a critical review distinguish-
ing negative (CG–) and positive (CG–)
cloud to ground flashes and intracloud
(IC) flashes

Bradshaw (1996)

9±2 Laboratory discharges, NO/NOx mea-
surements, and literature (Borucki and
Chameides, 1984)

Stark et al. (1996)

10 Theoretical Price et al. (1997a, b)

10–50 Laboratory experiments Wang et al. (1998a)

1.1±0.2 Laboratory experiments of low energy
sparks

Cook et al. (2000)

15±5 Lightning in laboratory simulated hot
plasma generated with pulsed Nd-YAG
laser. Initial temperature near 105 K.

Navarro-Gonźalez et al. (2001)

20–30 Laboratory streamer discharges in a coax-
ial cylinder cell

Cooray and Rahman (2005)

al., 2006). Unfortunately, the satellite systems like OTD
identify the flash-energy-related radiances nearly globally
(Baker et al., 1999) but not the peak currents of the flashes.

3.1.2 LNOx production per flash length

Some airborne studies derive the LNOx production per unit
flash-length from measurements of the concentration of NOx
in fresh flash plumes near thunderstorms, see Table 18. In or-
der to extrapolate these values to LNOx production per flash,
one needs to know their lengths. Some authors use typical
altitude ranges of 5–7 km for midlatitude CG flashes and 1–
6 km for IC flashes (Price et al., 1997b), but detailed stud-
ies of lightning flashes show that flashes may be far longer
(Defer et al., 2001; Thery, 2001; Thomas et al., 2004), see
Fig. 7. For the STERAO case, the flash length derived from
VHF lightning observations and model studies is about 20–
30 km (Defer et al., 2001; Barthe et al., 2007). For the 21
July EULINOX supercell, typical flash lengths for IC and CG
flashes derived from VHF lightning and radar observations
are: 43 km for an IC flash, 26.5 km for a negative CG flash,
and 29.5 km for a positive CG flash (Dotzek et al., 2000). A
flash may even have a fractal structure implying that the ac-
tual length scales with the height with a power larger than
one. A ratio of 3.6 between the effective length of the dis-
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Fig. 24. NO molecules produced per spark length as a function of
peak current for ambient surface pressure and temperature; data and
quadratic fit; replotted from Wang et al. (1998a).

torted flash and the outer geometrical scale (“tortuosity ra-
tio”) has been estimated by Wang et al. (1998a).
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Table 18. Lightning NOx production rate per flash length.

Production rate per flash
length, 1021 molecules
m−1

Method Author

1.4–5.2 Laboratory NO measurements and flash
chemistry model, including a tortuosity
factor of 3.6 for the flash length

Wang et al. (1998a)

13 Airborne NO measurements, LINOX,
Germany, 23 July 1996, and 2-D model,
Lightning Position And Tracking System
(LPATS)/Blitz-Informations-Dienst von
Siemens (BLIDS)

Höller et al. (1999)

2.5 (0.2–10) Airborne NO measurements, STERAO,
Colorado, 9–10 July 1996, VHF interfer-
ometer (ONERA), NLDN

Stith et al. (1999)

2.7 (0.07–10) Airborne NO measurements, EULINOX,
Germany, 21 July 1998, VHF interferom-
eter (ONERA)

Huntrieser et al. (2002)

1 3-D cloud model, airborne NO measure-
ments, STERAO, North Colorado, 10
July 1996, VHF interferometer (ONERA)

Skamarock et al. (2003)

7.5 3-D cloud model, airborne NO mea-
surements, EULINOX, Germany, 21 July
1998, VHF interferometer (ONERA)

Ott et al. (2007)

Table 19. IC/CG LNOx production rate per flash ratio.

Z=PIC/PCG Method Author

1/3 Acoustic measurements Hameed et al. (1981)
0.1 Review Kowalczyk and Bauer (1981)
1/3 Review Proctor (1991)
0.1 Review Price et al. (1997b)
∼1 Theory Gallardo and Rodhe (1997)
2–3 Electrostatic and lightning model Cooray (1997)
0.5–1 Fit of 2-D model to data for STERAO, 12 July 1996 DeCaria et al. (2000)
1.4 (1–2) Fit of 3-D model to airborne NOx measurements

and VHF based lightning observations, EULINOX, 21 July 1998
Fehr et al. (2004)

0.75–1 Fit of 3-D model to data for STERAO, 12 July 1996 DeCaria et al. (2005)
1 Review Ridley et al. (2005)
0.7–1.5 Fit of 3-D model to data, CRYSTAL-FACE, 16 and 29 July 2002 Ott et al. (2005)
1 Fit of 3-D model to data, EULINOX, 21 July 1998 Ott et al. (2007)

3.1.3 LNOx production per flash

The LNOx production rate per flash in the atmosphere may
be derived by various approaches resulting from ground-
based (Noxon, 1976), airborne (Chameides et al., 1987),
and spaceborne (Beirle et al., 2004b) measurements. The
approaches usually distinguish between CG and IC flashes

which have different properties:

G = PCGfCG + PICfIC, (6)

ff = fCG + fIC (7)

The flash extrapolation methods are very sensitive to the
value of the productivity ratioZ=PIC/PCG, i.e. the ratio in
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the number of NOx molecules formed per CG and IC flashes
(Bond et al., 2002). For a number ratiofIC/fCG=3, the global
rateG is more than 3 times larger ifZ=1 instead ofZ=0.1 is
used (Gallardo and Cooray, 1996; Ridley et al., 2005).

Both, the number ratiofIC/fCG (see Table 9, and Fig. 13)
and the productivity ratioZ (Table 19) are uncertain. The
fIC/fCG ratio varies strongly during the life-cycle of a thun-
derstorm and ratios exceeding 100 have been observed (Dye
et al., 2000; DeCaria et al., 2005; Wiens et al., 2005; Ott et
al., 2007). New techniques seem to show that lightning can
occur in strong thunderstorms (supercells) virtually continu-
ously (Krehbiel et al., 2000; Thomas et al., 2001). Hence,
the determination of the flash rate and the IC/CG ratio may
be ill-defined and dependent on the observation system used
(Dye et al., 2000).

Acoustic data indicate that IC discharges are less ener-
getic than CG ones (Holmes et al., 1971; Rakov and Uman,
2003). One reason could be the decrease of the threshold
value for electrical breakdown with altitude. Moreover, the
NO production seems to decrease with decreasing ambient
pressure for the same energy and peak current (Goldenbaum
and Dickerson, 1993; Wang et al., 1998a). Therefore, the
productivity ratioZ=PIC/PCG has been assumed to be 0.1
in early studies based on estimates of cloud charges, electro-
static potentials and acoustical measurements of the energy
of CG and IC discharges (Kowalczyk and Bauer, 1981; Price
et al., 1997b), and this value has been used in many follow-
on studies, see Table 12. However, for the same charge neu-
tralisation, an IC flash dissipates more energy than a CG flash
(Cooray, 1997). IC flashes may be far longer than CG flashes
(Defer et al., 2001). From above clouds, the pulse shape and
intensities of IC and CG flashes were observed to exhibit
similar waveshapes, radiances and radiant energy densities
(Goodman et al., 1988). IC flashes may form more strokes
or pulses per flash than CG flashes (Borucki and Chameides,
1984; Goodman et al., 1988). Moreover, the frequent occur-
rence of narrow NO peaks as observed in field experiments
(see, e.g., Fig. 14) is more likely the fresh signature of IC
flashes in the vicinity of the measurements in the upper part
of the cloud; CG flash plumes signatures would be smoother
when reaching the anvil (Ḧoller et al., 2000). Such obser-
vations imply high NO productivity per unit length in IC
flashes.Z values of the order of 1 are in agreement with some
theoretical studies (Bradshaw, 1996; Cooray, 1997; Zhang
et al., 2003b) and laboratory results (Gallardo and Cooray,
1996; Cooray and Rahman, 2005). In fact, a few recent anal-
yses of lightning observations and airborne measurements
during STERAO (DeCaria et al., 2000), EULINOX (Fehr et
al., 2004), and CRYSTAL-FACE (Ott et al., 2005) with cloud
model simulations indicate that IC flashes produce about the
same amount of NO as CG flashes, see Table 19.

Note that the higherPIC/PCG values for STERAO and
EULINOX were derived using the ONERA VHF lightning
detection system (Defer et al., 2001), which may overes-
timate the IC/CG number ratio. The derivedPIC/PCG ra-

tio could be even higher when the IC/CG number ratio is
smaller. Moreover, the air in flash channels dissociates for
temperatures in excess of about 3000 K, far less than the
maximum flash temperature reported for CG flashes. Perhaps
IC flashes exceed this threshold temperature high enough
for LNOx formation more often than expected (Stark et al.,
1996; Dye et al., 2000). In fact, it would be desirable to have
lightning observation systems measuring the volume of air
heated above 3000 K by flash events.

The production rate per flash may be derived by relating
the measured concentration increase, in a certain volume of
the thunderstorm, to the number of flashes causing the NOx
increase in that specific volume of the thunderstorms (Rid-
ley et al., 1996, 2004; Skamarock et al., 2003; Koike et al.,
2007). For illustration of the approach and the difficulties
involved, we describe the application of the method to an ex-
ample. Ridley et al. (2004) analyse a moderate-sized and a
large thunderstorm during CRYSTAL-FACE on two differ-
ent days. Because of the limited altitude ranges of the air-
borne sampling it is not possible to estimate the NOx content
in the lower part of the storms. Moreover, possible influx
from the boundary layer is not subtracted. Hence, the air-
borne in-situ NOx measurements are fully attributed to light-
ning sources. From the data the mean increase1NOx in the
anvil relative to background values is estimated (in fact, me-
dian values in several altitude intervals are derived). Radar
and satellite observations and the airborne measurements are
used to estimate the horizontal areas sizeA of the anvil. The
volume of air containing that mixture is the product of this
area in various altitude bins and their depths, defining an ef-
fective depth of the anvil1z. The numberNCG of CG flashes
in the thunderstorm is taken as observed by a ground-based
lightning detection network. Typical mean IC/CG number
ratios of fIC/fCG≈2.25 for Florida, see Fig. 13 (Boccip-
pio et al., 2001), are used to estimate the number of IC
flashes, implying large uncertainties for this case. IC and
CG flashes are considered equally efficient in NOx produc-
tion (Z=PIC/PCG=1). From this the production of NOx per
CG flash is estimated. The global productionG is extrap-
olated based on the ratio between the global flash rate of
ff =44 s−1 worldwide and the number(fIC/fCG+1)NCG of
actual flashes which may have caused the NOx production,

G = 1NOxA1z(MN/Mair)ρairff /[(fIC/fCG + 1)NCG] (8)

with molar mass ratioMN/Mair=14/29. Table 20 lists the
respective values.

Taking into account estimated uncertainties of a factor 1.5
in 1NOx, a factor 1.5 in the volumeA 1z, and a factor 2
in the flash rate (Ridley et al., 2004), the total uncertainty
of the global LNOx rate may be as large as a factor of 6.
Moreover, the unknown value of the ratioZ of production
efficiencyPIC/PCG in IC and CG flashes causes significant
uncertainty. Finally, the extrapolation of the two storm cases,
whose individual results differ by a factor of about 5, to the

www.atmos-chem-phys.net/7/3823/2007/ Atmos. Chem. Phys., 7, 3823–3907, 2007



3868 U. Schumann and H. Huntrieser: The global lightning-induced nitrogen oxides source

Table 20. Parameters of observed convective events during CRYSTAL-FACE∗.

Date Cloud top, km Flight altitude, km NOmax, nmol mol−1 1NOx,
nmol mol−1

A, km2 1z, km NCG P , 1026 G, Tg a−1

16 July 2002 15.2 11.4–14.2 6.5 ∼1 4200 4.5 392 0.33–0.66 1.1–2.2
29 July 2002 13.8 12.5–13.8 9.5 ∼4 15 000 ∼5 3067±150 4.5–6.1 5.5–7.5

∗Data from Ridley et al. (2004). NOmax = observed peak NO mixing ratio,1NOx, = effective NOx mixing ratio increase,A = horizontal
anvil area,1z = effective depth,NCG= number of CG flashes in the storm,P = number of NOx molecules per flash,G = global LNOx
production rate.
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Fig. 25. Flash-specific LNOx emissions in 1025 molecules (NOx or
NO) per flash from various theoretical, laboratory, and field stud-
ies and from reviews versus year of publication, according to Ta-
ble 21. Different symbols denote best-estimates from different ap-
proaches and vertical bars the estimated uncertainty ranges. The red
symbols refer to the flash-specific emissions derived in the reviews
of Lawrence et al. (1995), Bradshaw et al. (2000), and this paper.
The right axis measures the total annual global LNOx-induced ni-
trate emission rate using the global mean OTD-derived flash rate of
44 s−1 (Christian et al., 2003).

global scale implies further uncertainty. Therefore, the over-
all uncertainty factor is estimated to be of the order of 10.

Table 21 summarises previous attempts to derive flash-
specific estimates of LNOx production published since 1976.
Franzblau and Popp (1989) provided an upper extreme value
on the number of NOx molecules per flash of 300×1025.
For a flash rate of 44 s−1, this value implies an unrealis-
tically large global LNOx source of 100 Tg a−1. Such a
high value is inconsistent for example with nitrate deposi-
tion data (Gallardo and Rodhe, 1997). Without this extreme
value, the remaining values scatter between 0.4×1025 and
67×1025 molecules per flash (Price et al., 1997b; Cook et
al., 2000). Based on the arithmetic mean of the individ-
ual results, we find that the best estimate of LNOx produc-
tion per flash is about 15 (2–40)×1025 molecules per flash,
equivalent to 250 mol NOx or 3.5 kg of nitrogen per flash,
with uncertainty factors 0.13 to 2.7. The uncertainty range
is asymmetric because negative values can be excluded. The
range includes most (83%) of the 39 individual results cited.

The lower bound is consistent with the review of Lawrence
et al. (1995). Only a few (four) studies from before 1985
suggested smaller values. Extrapolations of laboratory spark
results to natural flashes may have underestimated the LNOx
productivity. The often used CG value of Price et al. (1997b)
defines the upper bound of the set of estimates. They as-
sumed 25 (75)% of all flashes to be CG (IC) flashes, and
IC flashes to be ten times less productive than CG flashes.
For equal productivity, the values imply a production rate
of 22×1025 molecules per flash, which is within the given
range of uncertainty. The upper bound covers also the recent
estimate of Ott et al. (2007), and is consistent with the best
estimates of Langford et al. (2004) and Fraser et al. (2007)
when accounting for their uncertainty ranges. The range be-
tween the lower and upper bounds corresponds to about two
to three standard deviations of the individual best-estimate
values relative to the mean. Figure 25 (based on Table 21)
shows the estimated NOx production per flash from theoret-
ical, laboratory, field and review studies versus the year of
publication. We see that values below 3×1025 molecules per
flash resulted from mainly theoretical and some laboratory
studies in the 1980s. Several of those early results would
change when recomputed with present knowledge on flash
frequencies and energies. Our present estimate is consistent
with the growing number of values derived from field mea-
surements in the more recent years.

The flash-specific LNOx values are extrapolated globally
using the mean annual global frequency of flashes. The best-
estimate value of this frequency, see Table 8, varied consid-
erably over the years explaining part of the large scatter in
previous global LNOx source rate estimates. Recent obser-
vations show that the lightning flash rate is smaller than ex-
pected in early studies. Multiplying the best estimate flash-
specific LNOx value derived from the collection of existing
studies, see Table 21, with the present best estimate of 44 s−1

for the number of flashes derived from OTD data (Christian
et al., 2003) results in the LNOx production rate of 5 Tg a−1,
with a range of uncertainty of 0.6–13 Tg a−1. This range is
smaller than the range of values listed in the individual stud-
ies. Note that in spite of lower global flash rates the best es-
timate is larger than in the review of Lawrence et al. (1995),
because our flash-specific production rate is higher.
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Table 21. LNOx production rate per flash.

Production rate
per flash, 1025

molecules

Assumed
global flash
rate

Global LNOx
production∗,
Tg a−1

Method Author

10 – – Ground-based absorption
spectroscopy over Colorado

Noxon (1976, 1978)

1.1 500 4 Theoretical calculations Tuck (1976)

6–14 400 18–41 Theoretical calculations Chameides et al. (1977); Lawrence et al. (1995)

16±4 (12±2) 400 47±23 Laboratory results Chameides et al. (1977); Lawrence et al. (1995)

16–34 400 47–100 Theory and laboratory re-
sults (Biazar and McNider,
1995; Lawrence et al.,
1995)

Chameides (1979a)

6 100 4.4a Theoretical calculations Hill et al. (1980)

4 100 3 Theoretical calculations Dawson (1980)

0.5 1.8±0.7 Laboratory experiment:
(5±2)×1015J−1

Levine (1981)

0.74 – 2.1 Review and NOy model Hameed et al. (1981)

10 50 CG+250 IC 5.7 (2–20) Review (Noxon, 1978;
Kotaki and Katoh, 1983;
Olivier et al., 1998),
PIC/PCG=0.1 per assump-
tion

Kowalczyk and Bauer (1981)

2.8 400 9c Laboratory experiment in
a point-to-plane discharges
vessel; derived from the
given 5.9×1011moles NOx
per year and 400 strokes
s−1

Peyrous and Lapeyre (1982)

40b (10–80) 100 30 Ground-based in-situ in-
strument, Illinois

Drapcho et al. (1983)

3.6±0.8 100 2.6 (0.8–8) Theoretical calcula-
tions/laboratory exp.

Borucki and Chameides (1984)

1.6 100 1.1 Theoretical calculations Bhetanabhotla et al. (1985)

300 100 220d Ground-based in-situ in-
strument, and absorption
spectroscopy, New Mexico

Franzblau and Popp (1989)

3.8 Fluid dynamics model
coupled with chemistry
(Zel’dovich reactions)

Goldenbaum and Dickerson (1993)

2.3 (1–7) 100 (70–150) 2 (1–8) Review Lawrence et al. (1995)

6 63 2 Review and theoretical Kumar et al. (1995)

2.8–3.6 ≥2.0–2.7 Airborne in-situ measure-
ments and lightning obser-
vations, New Mexico

Ridley et al. (1996)
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Table 21. Continued.

Production rate
per flash, 1025

molecules

Assumed
global flash
rate

Global LNOx
production∗,
Tg a−1

Method Author

6.4 100 4.7 Ground-based absorption
spectroscopy in core region
of thunderstorm, Pune,
India, 28 May 1991; flash
detection with electric field
meter and optical sensor

Jadhav et al. (1996)

6.7–67 70–100 12.2 (11.3–13.1) Theoretical Price et al. (1997b)

4–30 – 4 (0.3–13) Airborne in-situ mea-
surements, LINOX,
LPATS/BLIDS, average
July 1996, Germany, global
estimate based on the
number of thunderstorms

Huntrieser et al. (1998)

3.1 (1.4–5.2) 30–100 2.5–8.3 (0.7–8.3) Laboratory in-situ measure-
ments and flash chemistry
model

Wang et al. (1998a)

7 100 5 Airborne in-situ measure-
ments, LINOX, Germany,
23 July 1996, and 2-D
model, LPATS/BLIDS

Höller et al. (1999)

1.25–12.5 – – Airborne in-situ instrument,
STERAO, Colorado, 9–10
July 1996, VHF interfer-
ometer (ONERA), NLDN,
assuming 5–50 km flash
length

Stith et al. (1999)

14–28 – – Airborne in-situ instrument,
STERAO, Colorado, 9–10
July 1996, VHF interferom-
eter (ONERA), NLDN

DeCaria et al. (2000)

10–20 25 (CG) 75
(IC)

6.5 (2–10) Review Bradshaw et al. (2000)

0.4–7.4 100,
30

0.6–9.7
0.2–4

Laboratory experiments of
low energy sparks

Cook et al. (2000)

8.1 65 4 Airborne in-situ instrument,
EULINOX, Germany, 21
July 1998, VHF interferom-
eter (ONERA)

Huntrieser et al. (2002)

2.6 44 0.8 3-D cloud model, airborne
in-situ measurements,
STERAO, Colorado, 10
July 1996, VHF interfer-
ometer (ONERA), NLDN

Skamarock et al. (2003)
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Table 21. Continued.

Production rate
per flash, 1025

molecules

Assumed
global flash
rate

Global LNOx
production∗,
Tg a−1

Method Author

21 (7.7–38) – – 3-D cloud model, airborne
in-situ measurements, EU-
LINOX, Germany, 21 July
1998, LPATS/BLIDS

Fehr et al. (2004)

58±29 – – Ground-based absorption
spectroscopy in core region
of thunderstorm, Colorado,
12 September 2002, NLDN

Langford et al. (2004)

3.3–23 44 1–8 Airborne in-situ measure-
ments, CRYSTAL-FACE,
16 July and 29 July 2002,
NLDN

Ridley et al. (2004)

6 (1.8–30) 63 2.8 (0.8–14) GOME, Australia, LIS Beirle et al. (2004b)

21–28 – – 3-D cloud model, airborne
in-situ measurements,
STERAO, Colorado, 10
July 1996, VHF interfer-
ometer (ONERA), NLDN

DeCaria et al. (2005)

5.4 (2–14) 44 1.7 (0.6–4.7) GOME, Gulf of Mexico, 30
August 2000, NLDN

Beirle et al. (2006)

21.7 44 7 3-D cloud model, airborne
in-situ measurements,
EULINOX, Germany,
21 July 1998, VHF in-
terferometer (ONERA),
+LPATS/BLIDS, for 30 km
flash length

Ott et al. (2007)

10–33 – – Ground-based absorp-
tion spectroscopy near a
thunderstorm at Vanscoy,
Saskatchewan, 28 August
2004; Canadian Lightning
detection network and
Doppler radar

Fraser et al. (2007)

2–49 44 1–16 Airborne in-situ instru-
ments, BIBLE-C

Koike et al. (2007)

15 (2–40) 44±5 5 (0.6–13) Mean This paper

∗ Value stated in the cited paper
a) see comment by Borucki and Chameides (1984).
b) subject to controversy (Franzblau and Popp, 1989; Liaw et al., 1990; Lawrence et al., 1995) because of observations near polluted area.
c) The global NOx production rate is stated as 5.9×1011 moles a−1 and 25 Tg a−1 in Peyrous and Lapeyre (1982).
d) The original paper reported 100 Tg a−1 (Franzblau and Popp, 1989), however the information provided implies 220 Tg a−1 (Liaw et al.,
1990).
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As mentioned before, this approach assumes that one set
of flash property values exists which is valid for all flashes
occurring globally and that the LNOx production scales with
the number frequency of flashes. However, various indica-
tions for variations of flash properties exist. For example
peak flash currents over Florida were found to be about twice
as large as over New England (Orville, 1990). A later study
showed similar results with highest peak currents along the
Gulf coast and over Florida (Orville et al., 2002). Differ-
ences between OTD-derived global distributions for flash ra-
diances and flash frequencies indicate that the mean radi-
ance per flash (and hence possibly the LNOx productivity
per flash) is higher over the oceans than over land, and (in the
Northern Hemisphere) higher in the wintertime than in sum-
mer; moreover, flash radiances are lower when flash-rates
are higher (Baker et al., 1999). The median negative current
in strong storms is smaller than in nonsevere storms (Carey
and Rutledge, 2003). Measurements of global lightning ac-
tivity using magnetic field variation at very low frequencies
(<300 Hz) reveal the strongest source of lightning activity on
Earth over the North American continent and not in the trop-
ics (Füllekrug and Fraser-Smith, 1997). The impact of such
variations on the global LNOx value is unknown.

Analysis of the frequency distribution of flash peak cur-
rents measured with LINET over Southern Brazil (TROCCI-
NOX) (Schmidt et al., 2005) and Germany (Betz et al., 2007)
suggests that the stroke peak currents in the tropical thunder-
storms may be on average a factor 1.6–2 lower than at midlat-
itudes, so that tropical strokes may produces less NOx than
mid-latitudinal ones (Huntrieser et al., 2006). From com-
parisons of GEOS-CHEM model simulations with NOx con-
centration profiles observed during ICARTT over Southern
USA, Martin et al. (2006) and Hudman et al. (2007) sug-
gest that the flash specific LNOx production rate may be four
times larger at midlatitudes (500 mol per flash) than in the
tropics (125 mol). From the OTD data, see Fig. 10, we com-
pute that 17.6% of OTD flashes occur north of 30◦ N and
5.3% south of 30◦ S. If a tropical flash produces 250 mol
of NOx, but a midlatitude flash four times more (1000 mol),
and if the global flash frequency is 44 s−1 (Christian et al.,
2003), then the global LNOx source may be as large as
8.2 Tg a−1. If, on the other hand, the tropical flashes are four
times less productive (62.5 mol per flash), then we obtain a
global LNOx source of 2.1 Tg a−1. Hence, the uncertainty in
flash productivity at various latitudes implies a factor 0.4–
1.6 uncertainty relative to the best estimate LNOx source
of 5 Tg a−1, or a range of 2–8 Tg a−1. This uncertainty is
smaller than the uncertainty of the global mean flash-specific
productivity (Table 21).

3.2 Storm extrapolation

The LNOx production estimated for a single thunderstorm
may be extrapolated to the globe assuming a known num-
ber of thunderstorms active on the globe (Chameides et al.,

1987; Huntrieser et al., 1998, 2002). The method requires to
measure the NOx concentration increase in the outflow rela-
tive to the inflow air and the mass flux of the anvil outflow
of a thunderstorm, and to estimate the numbernt of thun-
derclouds active at any time globally. Alternatively, one may
estimate the amount of NOx induced by lightning within a
cloud and extrapolate this value to the global scale according
to the number of thunderstorms occurring per day (Ridley et
al., 1996, 2004; Skamarock et al., 2003). The advantage of
these methods is that no information about the lightning ac-
tivity and thePCG/PIC ratio is required; however, one needs
to know the number of active thunderstorms accurately.

Brooks (1925) estimated that about 1800 thunderclouds
are active at any time globally from a global survey of an-
nual thunderstorm day reports and the number of lightning
flashes observed per thunderstorm. Others cite this number
asnt=2000±1000, implying an uncertainty factor of 1.5 to
2 (Chameides et al., 1987; Ridley et al., 1996). For an es-
timated lifetime of 1 h this corresponds to a frequency of
aboutft=44 000 thunderstorms occurring per day (Viemeis-
ter, 1960; Ridley et al., 1996). The order of magnitude of this
estimate is confirmed by the number of storms needed to bal-
ance the fair-weather current (Rycroft et al., 2000). Williams
et al. (2000) test various thunderstorm definitions related
to clusters of lightning activity; a global flash frequency
of 44 s−1 from 1800 thunderstorms implies 1.5 flashes per
minute per thunderstorm, a number which is within the range
1–3 min−1 observed with the OTD or LIS sensor.

A five times higher rate of “ordinary thunderstorms” oc-
currence was derived from estimated precipitation rates and
a lifetime of 0.5 h implying about 200 000 such storms per
day (Cotton et al., 1995). However, this estimate does not
consider the different updraft strengths and lightning activ-
ity of such storms. The top 1% of precipitation features ob-
served by the radar onboard the TRMM satellite, ranked by
the flash rate, contributes 90% of the lightning and 21% of
the rainfall (Cecil et al., 2005). Obviously, it is difficult to
define an objective measure of “thunderstorm” (Williams et
al., 2000). Hence, the accuracy offt or nt is hard to improve.

Results obtained for several cases with this method are
given in Table 22 from a storm penetration during CITE 1
in fall 1983 near Honolulu, Hawaii (Chameides et al., 1987),
from the average of the LINOX and EULINOX observations
(Huntrieser et al., 1998, 2002), and from some TROCCINOX
2004 cases (Schumann et al., 2004b). The table contains es-
timates of the increase in mixing ratio1NOx, horizontal and
vertical sizes of the anvil outflow area1x 1z, the mean anvil
outflow velocity1v relative to the cloud motion at its “steer-
ing level” (near 3 km altitude) (Chameides et al., 1987), and
the computed global LNOx production rate using

G = 1NOx1x1z1v(MN/Mair)ρairft , (9)

with MN/Mair=14/29 as ratio of molar masses,
ρair=0.4 kg m−3 as air density, andft=2000 active thun-
derclouds globally. In addition, the maximum NO mixing
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Table 22. LNOx related parameters observed in thunderstorm anvils.

Experiment Case Cloud
top,

Flight
altitude,

NOmax, NOx in-
flow,

1NOx, 1x, 1z, 1v, G, Reference

km km nmol
mol−1

nmol
mol−1

nmol
mol−1

km km m s−1 Tg a−1

GTE/CITE 1 9 9 0.9 – 1.2 40 1 10 5.8 Chameides et al. (1987)
LINOX/EULINOX medium 7–11 0.7 0.5 1 30 1 8 3 (2–4) Huntrieser et al. (1998, 2002)
LINOX/EULINOX large 7–11 1.3 0.5 1.8 45 1 13 12

(10–
13)

dito

TROCCINOX 14 Feb 2004 14.5 11–11.3 3.2 <0.1 0.4 45 1 7 >1.5 Schumann et al. (2004b)
28 Feb 2004 11 8.8–

10.7
2.4 <0.2 1.2 25 1.9 11 7.5 dito

Table 23. LNOx production rate per thunderstorm and global extrapolation.

Experiment Thunderstorm type 1NOx
nmol mol−1

Fc,
Tg s−1

Number or
frequency
of globally
active thun-
derstorms

Global LNOx
production,
Tg a−1

Author

GTE/CITE 1 One case near Hawaii 1.2 0.16 2000 5.8 Chameides et al. (1987)
ELCHEM Two cases with 326–434

flashes/storm
44 000 day−1 4.1–4.9 Ridley et al. (1996)

LINOX, average
July 1996

Small thunderstorms 0.3–0.8 0.03 2000 0.3–0.7 Huntrieser et al. (1998)

dito Medium thunderstorms 0.5–1.0 0.13 2000 2–4 dito
dito Large thunderstorms 1.4–1.9 0.23 2000 10–13 dito
EULINOX Average over 29 cases, convec-

tive clouds with lightning
1.3±0.7 0.11 2000 3 Huntrieser et al. (2002)

STERAO, 10
July 1996

Large thunderstorms – 3.2–
8.8 Mg/storm

44 000 day−1 52–141 Skamarock et al. (2003)

ratio measured and the vertical extent of the cloud and the
measurement flights are listed which show that parts of the
anvils are covered.

Table 23 compiles the production rates as derived from
these studies. Also listed is the global thunderstorm rate
as assumed in the cited references and the resultant global
LNOx production. The STERAO result in this table is com-
mented as likely unrealistic by the authors (Skamarock et al.,
2003) because the storm observed was exceptional in several
respects (Dye et al., 2000).

The thunderstorm based extrapolation results in values of
0.3–13 Tg a−1. In view of estimated uncertainties (Chamei-
des et al., 1987) in the derived concentrations (factor 1.5),
outflow fluxes or volumes (factor 1.5), and in the number of
thunderstorms (factor 1.5 to 2), the best estimates may be
5 Tg a−1 with an uncertainty factor of about 5. From this,
we estimate the range as 1–25 Tg a−1. Hence, this method
gives important insight in the properties of various thun-
derstorms but does not reduce the uncertainty of the global
LNOx source value.

3.3 Global model fit

3.3.1 Overview

The global LNOx sourceG may be determined by adjusting
the LNOx value in a CTM such that the model results, in a
suitable norm, best fit measured field properties of the NOx
and NOy concentrations in the upper troposphere in regions
with strong LNOx contributions (Levy II et al., 1996). LNOx
is the most dominant NOx source in the upper troposphere in
the subtropics and tropics and in summer also at higher lati-
tudes (Lamarque et al., 1996; Levy II et al., 1996; Berntsen
and Isaksen, 1999; Hauglustaine et al., 2001b; Bond et al.,
2002). Hence, comparisons between measured and com-
puted results in these regions should be sensitive to LNOx
and should allow assessing the validity on assumptions con-
cerning its modelling.

The idea of the global model fit can be illustrated as fol-
lows: the concentrations of NOx in the upper troposphere
and in the boundary layer over continents are of comparable
magnitude, while the chemical lifetime of NOx (see Table 4)
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Fig. 26. Growth of numerical resolution in models versus year of
publication (based on Table 12). The dots indicate the number of
grid points in individual 3-D numerical models, the line represents
a linear regression. The triangle denotes the number of grid points
in the ECMWF forecast model which is operational since 2006.

in the upper troposphere is about one magnitude larger than
in the boundary layer. For the same concentrations but larger
lifetimes, the NOx source must be correspondingly smaller.
Hence, the NOx source in the upper troposphere (partly from
lightning) must be one order of magnitude smaller than the
NOx source near the surface. For a total atmospheric NOx
source of about 50 Tg a−1 (Table 1), released mainly near
the surface, an upper tropospheric LNOx source of about
5 Tg a−1 is fully consistent with this estimate.

The LNOx source may also be determined by adjusting
the LNOx source in a chemical transport model (CTM) such
that the model results best fit the combination of measure-
ments of trace gases which are affected by LNOx-sources
either directly by emissions (NOx, NOy) or indirectly by
photochemistry (O3, CO, HNO3, and others) (Martin et al.,
2002b, 2007; M̈uller and Stavrakou, 2005; Schumann et al.,
2006). In-situ data for NOx and NOy from airborne mea-
surements in the mid troposphere over the tropical continents
are well suited because of high sensitivity. Satellite-derived
NO2 columns (such as from GOME, SCIAMACHY or OMI)
may be suitable for selected periods and regions where LNOx
contributions are larger than model and retrieval biases (van
Noije et al., 2006; Martin et al., 2007). These satellites mea-
sure during morning or noon hours. This is less of a disad-
vantage when comparing with global models than with cloud
scale models. The air masses carrying the LNOx from the
day before may become less cloudy over night while the
LNOx survives longer than a day in the mid and upper tropo-
sphere. The thunderstorm outflow plumes may spread to the
grid scale of global models during that time.

If the measured concentration at a certain position isc,
and if the model result for two different LNOx source values

Gm>0 andGb≥0 arem andb (the “background” solution),
and if the true solution scales linearly between these results
(i.e., for a sufficiently narrow intervalGb≤G≤Gm), then the
LNOx value is

G = Gb + (c − b)/s, s = (m − b)/(Gm − Gb). (10)

Hence, high quality estimates ofG should be obtainable from
accurate measurementsc in regions with high sensitivitys.
For more than one measurement a suitable weighted fit is
to be used. Global model results are best compared to large-
scale measurements in LNOx homogeneous air masses while
mesoscale models may be compared to small-scale measure-
ments in the vicinity of individual thunderstorms.

Several authors expressed doubts about the feasibility of
this approach noting either missing or highly variable data,
strong sensitivity of the model results to model parameters
(such as emissions from other sources, numerical resolution,
transport properties, lightning parameterisation details etc.),
and different behaviour of the differences between model re-
sults and measurements in various regions of the atmosphere
(Singh et al., 1996; Penner et al., 1998; Labrador et al.,
2005). Even recently, large discrepancies between various
CTMs and observations have been noted (Singh et al., 2006).

Since the first attempts, models, observations, and data
analysis methods have been improved in many ways. The
number of grid points used in the models increased by more
than a factor of 20 over the last 20 years, see Fig. 26, im-
plying an increase of factor 2.7 in spatial resolution in each
dimension. Far higher resolution is in use for numerical
weather predictions: version T799L91 at ECMWF is oper-
ational since February 2006, with 50 km resolved horizontal
wavelength and 91 vertical levels from the surface to about
80 km (1 Pa) (Untch et al., 2006), i.e. about 2.3×106 grid
points. Such models will eventually include the necessary
chemistry modules for use as CTMs. Resolution is important
in many respects. It influences the atmospheric motion field
that drives convection, lightning and LNOx formation. Also
ozone production in global chemical models is dependent on
model resolution, because O3 chemistry is inherently non-
linear, the timescales for chemical production are short, and
precursors are artificially distributed over the spatial scale of
the model grid (Wild and Prather, 2005; Stevenson et al.,
2006). With coarser resolution ozone production rate is over-
predicted due to artificial dilution of NOx. Flash plume scale
chemistry as considered for aircraft and ship plumes (Petry
et al., 1998; Crawford et al., 2000; Kraabøl et al., 2000; Song
et al., 2003; von Glasow et al., 2003) may be important for
LNOx studies but has still to be included in the models.

In addition, models have been improved with better nu-
merical advection schemes, more complete and more accu-
rate air chemistry models, better meteorological input driv-
ing the CTMs, more realistic emission databases of trac-
ers other than LNOx emissions, and improvements identified
from comparisons with observational data and other models
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(Brunner et al., 2003; van Noije et al., 2006). Early mod-
els used a linearised NOx chemistry (Penner et al., 1991;
Ehhalt et al., 1992; Kasibhatla et al., 1993; Kraus et al.,
1996; Köhler et al., 1997; van Velthoven et al., 1997), oth-
ers included full tropospheric chemistry. Some models are
specialised in stratospheric chemistry and treat tropospheric
chemistry in a simplified manner, but most of the modern
models listed in Table 12 use extensive chemical cycles to
represent tropospheric chemistry. Techniques have been de-
veloped which allow for modular combination of various
sub-models (J̈ockel et al., 2006). The photochemistry treated
had become more and more complex. Modern models treat
more than 100 species and reactions, often including reac-
tions with NMHC (as an O3 precursor), PAN (as a reservoir
species for NOx), and acetone (possibly a major OH source).
Acetone was suggested to enhance the effect of NOx emitted
into the upper troposphere but more recent studies indicate
that this effect is smaller than expected earlier (Arnold et al.,
2005). PAN acts as a sink for upper tropospheric NOx and
a source of NOx in the remote atmosphere (Crutzen, 1979;
Moxim et al., 1996; M̈uller and Brasseur, 1999; Brühl et al.,
2000; Tie et al., 2001).

Many further in-situ and remote sensing data have become
available, in particular for tropical continental regions with
high LNOx sensitivity. The measurement results of many
experimental studies have been made available in public-
accessible databases (Emmons et al., 2000; Brunner et al.,
2005), and many more such data (in-situ and space observa-
tions) are becoming accessible, mostly via internet.

Also the analysis methods have been improved. Whereas
early studies compared regional averages of measurements
with regional statistics from CTM results obtained with me-
teorological input from climate models (Levy II et al., 1996)
or monthly means of analysis fields (Müller and Brasseur,
1995), more recent studies compare measurements with
CTM results driven with actual meteorological analysis fields
(Emmons et al., 2000). Modern studies compare model re-
sults obtained from “virtual flights” (Lawrence et al., 2003a)
with observations from real flights, sampling model results
along the flight tracks and times of the measuring aircraft
(Schlager et al., 1999; Allen et al., 2000; Meijer et al., 2000;
Brunner et al., 2003), see Fig. 22. Moreover, various new sta-
tistical analysis methods have been developed to assess the
quality of model-observation data comparisons (Brunner et
al., 2003) and to determine optimal model parameters with
objective error bounds (M̈uller and Stavrakou, 2005; Schu-
mann et al., 2006). At present not all this progress has been
used to determine best-estimate LNOx source rates with error
bounds.

Many model studies of atmospheric chemistry depending
on LNOx have been performed, see Table 24. Most mod-
els were run with LNOx sources and parameterisation taken
from the literature with little or no further justification. In
some cases, model results were compared to observations but
without a systematic strategy to optimize the LNOx source.

In only a few model studies, the model results were com-
pared in more detail with observations for various model ver-
sions and LNOx values, in order to find out the best estimate
LNOx value and the best model version.

3.3.2 Deposition-based LNOx determination

The LNOx source may be determined by adjusting the LNOx
source in a chemical transport model (CTM) to fit nitrate de-
position measurements in regions with strong LNOx contri-
butions. Most of the emitted NOx is eventually converted to
HNO3 or nitrate aerosol and removed from the atmosphere
by rain-out or dry deposition at the ground. The use of nitrate
deposition data to constraint the total NOx budget has been
considered in several studies (Ehhalt and Drummond, 1982;
Logan, 1983; Warneck, 1988; Penner et al., 1991; Dentener
and Crutzen, 1994; Kraus et al., 1996; Gallardo and Rodhe,
1997; Holland et al., 1997, 1999a, b; Ehhalt, 1999; Levy II
et al., 1999; Hauglustaine et al., 2004; Shepon et al., 2007).
Observations of nitrate deposition in regions with large an-
thropogenic NOx emissions, such as Europe, the USA, or
India (Leeuwen et al., 1996; Hauglustaine et al., 2004; Kul-
shrestha et al., 2005), are not very sensitive to LNOx sources.
Data from preindustrial times and from remote stations (Gal-
loway et al., 1982; Albritton et al., 1984; Dentener et al.,
2006) may be more suitable for this purpose.

For example, wet nitrate deposition at Barbados
(59◦30′ W, 3◦15′ N) was measured in 1989–1994 to amount
to about 50 mg m−2 a−1; calculations with the TM3 model
(Lelieveld and Dentener, 2000) show that LNOx causes about
30% of this flux; and the simulated total deposition flux
agrees within about 20% with the observed value (F. Den-
tener and J. Galloway, personal communication, 2006). The
annual mean nitrate concentration at polar stations, which
was fairly constant in the preindustrial era, has increased
since about the mid of the last century (Wolff, 1995). Snow
nitrate content increased from about 50 to 140 ng g−1 at the
Dye 3 station, Greenland (44◦ W, 65◦ N) in the period 1940–
1980, and from about 20 to more than 100 ng g−1 at Vos-
tok, Antarctica (107◦ E, 78◦ S) in the period 1970–1990. The
preindustrial values and the increase observed in the last
decades may be used to discriminate natural and anthro-
pogenic NOx contributions. Legrand and Kirchner (1990)
determined that a LNOx source of 2.8 to 5.6 Tg a−1 con-
tributes about a third to a half to the NO−

3 content at the South
Pole. A further possibility is to use the15N/14N ratio in the
nitrogen isotopic composition of deposited nitrate to identify
LNOx sources: About 70% LNOx contribution was identi-
fied in rainwater collected on the island of Bermuda (32◦ N,
65◦ W) during the warm season (July–September) (Hastings
et al., 2003).

Measurements of dry and wet deposition are not trivial,
for example because of bidirectional surface-atmosphere ex-
change of ammonia (NH3) (Trebs et al., 2006) or because
of organic nitrogen compounds (Cornell et al., 2003), and
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Table 24. LNOx source strength values as used or assessed in global atmospheric models.

Author Model or Method LNOx nitrogen
source strength,
Tg a−1

Variation, comparison to data

Logan et al. (1981) 2-D model <10 Order of magnitude agreement with NOx
data (Kley et al., 1981)

Logan (1983) Budget analysis, measured con-
centrations and deposition fluxes

0.8–7.8,<10 Compares with surface and airborne NOx
data and nitrate deposition data

Ko (1986) 2-D stratospheric model 2 and 4 Compares stratospheric NOy with satel-
lite data

Crutzen and Zimmermann
(1991)

3-D MOGUNTIA 5 No comparisons with observations

Penner et al. (1991) 3-D Lagrangian model, without
PAN

3 Compares with airborne NO, HNO3 and
nitrate deposition data

Beck et al. (1992) 2-D model, zonal band 30–60◦ N. 5.2 Identifies importance of LNOx for avia-
tion assessments

Ehhalt et al. (1992) 2-D model, zonal band 40–50◦ N. 5 Identifies importance of convection,
LNOx and aviation emissions

Law and Pyle (1993) 2-D model 5 (2–20) Compares with NOx data from STRA-
TOZ at 2 and 6 km latitude

Kotamarthi et al. (1994) 2-D stratospheric model, revising
(Ko, 1986)

2 and 4 Good agreement with STEP 1987 NOy
data for both LNOx values

Müller and Brasseur (1995) 3-D CTM IMAGES. 8 Rough agreement with NO observations;
HNO3 too low

Kraus et al. (1996) 3-D linear NOx, CTM with GISS
winds.

5 Rough agreement with data of STRATOZ
III and nitrate deposition fluxes over USA

Atherton et al. (1996) 3-D Lagrangian model (Penner et
al., 1991)

10 Model and measured O3, CO, NOx and
NOy data correlate 40 to 90%

Lamarque et al. (1996) IMAGES 5, (2–10), for 2
emission profiles

Compares results from various model ver-
sions to various data, and identifies some
deficiencies

Moxim et al. (1996) 3-D CTM with PAN 3–10 Simulated and observed PAN data agree
“generally”

Levy et al. (1996) 3-D CTM GFDL-GCTM 4 (2–6) LNOx fit to airborne measurements of
NOx and NOy gives good agreement

Jaffe et al. (1997) GISS GCTM 5 Good agreement with surface NOx but
low model NOx results in remote regions

Köhler et al. (1997) 3-D GCM ECHAM linearised
NOx chemistry.

5 Measured NOx values often lower than
modelled results

Gallardo and Rodhe (1997) 3-D MOGUNTIA 5 (0–24.9) Larger LNOx emission over the oceans
results in an improved simulation of sur-
face total nitrate in the remote Pacific

Emmons et al. (1997) 6 CTMs 3–12.9 Rough agreement with ground-based and
airborne data
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Table 24. Continued.

Author Model or Method LNOx nitrogen
source strength,
Tg a−1

Variation, comparison to data

Holland et al. (1997) 5 CTM2 3–10 Nitrogen deposition comparisons with
data, no conclusion on LNOx

Pickering et al. (1998) 3-D IMAGES 3 C-shape emission profile provides higher
NOx levels in the upper troposphere than
constant profile

Dameris et al. (1998) ECHAM/CHEM 4 Good comparisons to O3 column data

Hauglustaine et al. (1998) 3-D MOZART 7 HNO3 overestimated over the Pacific by
a factor<10, and over the continental re-
gions by factor<3

Brasseur et al. (1998b) 3-D MOZART 7 O3 data showing general agreement

Wang et al. (1998b) 3-D Harvard GISS 3 No comparisons to observations

Singh et al. (1998) 3-D Harvard GISS 4 Rough agreement with PEM-W-B data

Smyshlyaev et al. (1999) 2-D model 5 (2–12) Finds LNOx induced O3 changes compa-
rable with TOMS

Berntsen and Isaksen (1999) UiO CTM 12.2 (5) No comparisons to observations

Levy et al. (1999) 3-D GFDL 4 Justifies the selected LNOx value by com-
parison with many data

Müller and Brasseur (1999) 3-D IMAGES 3 No LNOx discussion

Crutzen et al. (1999) 3-D MATCH 1.7 NOx levels were assessed as low

Stockwell et al. (1999) 3-D TOMCAT 4 NOx, HNO3, O3 agree reasonably with
observations

Holland et al. (1999b) Review and 3-D MOGUNTIA 10–15 Discusses wet deposition at northern mid-
latitudes

Emmons et al. (2000) MOZART and IMAGES 3, 7 Identifies too low biomass emissions

Moxim and Levy (2000) GFDL GCTM 4 Model NOx results are within the scatter
NOx data from TRACE-A

Lelieveld and Dentener
(2000)

3-D CTM based on ECMWF
winds

5 Identifies the LNOx source as important
uncertainty

Allen et al. (2000) 3-D CTM with maximum horizon-
tal resolution over eastern North
America and the North Atlantic;
flash rate proportional to convec-
tive mass flux

3.6 Compares with SONEX NOy data; the
use of emissions from observed lightning
flashes significantly improves the simula-
tion

Tie et al. (2001) 3-D CTM MOZART 7 LNOx larger than 7 Tg a−1 cannot be ex-
cluded from this study

Hauglustaine et al. (2001a) 3-D MOZART 7 Compares qualitatively well with data
from TRACE-A ELCHEM, STERAO

Grewe et al. (2001) 3-D ECHAM/CHEM and GISS
model with CTH and UPD param-
eterisation

5, 3.9 NOXAR data mass flux based model per-
forms better than cloud-top-height based
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Table 24. Continued.

Author Model or Method LNOx nitrogen
source strength,
Tg a−1

Variation, comparison to data

Bey et al. (2001); Li et
al. (2001);

3-D GEOS-CHEM 3.4 Compares with airborne campaigns. NO,
PAN fits well; HNO3 is overestimated;
finds 10–15% contribution from LNOx to
upper tropospheric O3 maximum in the
Middle East

Meijer et al. (2001) 3-D TM3 model with cloud-top-
heights and convective precipita-
tion, 2 vertical distributions

5 Comparison with EULINOX and POLI-
NAT/SONEX data supports precipitation
based LNOx model

Mickley et al. (2001) 3-D GISS GCMII, 1–3.6 LNOx emissions need to be reduced to
match preindustrial O3 observations

Jourdain and Haugslustaine
(2001)

LMDz/INCA 5 For 5 Tg a−1 and profile of Pickering et
al. (1998), the model shows good agree-
ment with ELCHEM NO data

Shindell et al. (2001) GISS GCM 3.9 (3.6 in prein-
dustrial time)

Comparison with many data; for NOx,
comparison with NOXAR data shows fac-
tor 2 differences

Allen and Pickering (2002) LNOx parameterisations with dif-
ferent vertical profiles and sources

0.5–18.5 Compares observed and modelled flash
rates

Grewe et al. (2002) 3-D climate-chemistry model
E39/C

5.4 for 1990 and
5.6 for 2015

Aviation NOx, model parameter study

Tie et al. (2002) 3-D MOZART 3.5–7, various
vertical profiles

PEM West-A, PEM Tropics, CITE-2,
CITE-3, ECHEM, ABLE and TRACE-A

Staudt et al. (2002) 3-D Harvard/Florida CTM 6 PEM-Tropics A

Martin et al. (2002b) GEOS-CHEM 3, 6 A LNOx source of 6 Tg a−1 is shown to
be consistent with TOMS and in-situ ob-
servations of tropospheric ozone over the
tropical Atlantic

Brunner et al. (2003) 7 CTMs 5 Comparison to aircraft observations

Staudt et al. (2003) 3-D Harvard/Florida CTM 5 (3–9) PEM-Tropics B

Horowitz et al. (2003) 3-D MOZART 2 3 airborne observations in the upper tropo-
sphere at most locations

Shindell et al. (2003) 3-D GISS-GCM 6.5 (6.2 in prein-
dustrial time)

Model NOx within the scatter of data
from PEM Tropics B, PEM West B and
TRACE-A; model HNO3 generally too
high

von Kuhlmann et al. (2003a,
b)

3-D MATCH 4.9 Nitrogen species reproduced within a fac-
tor of 2 or better, with bias of too small
HNO3 and too large PAN

Martin et al. (2003) 3-D GEOS-CHEM 6.2 GOME NO2 used to fit NOx emissions
for fixed LNOx source

Labrador et al. (2004) 3-D MATCH 2–5 (0–20) LNOx is varied as free parameter

Hauglustaine (2004) 3-D LMDz-INCA 5 Compares with wet deposition data for
USA and Europe
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Table 24. Continued.

Author Model or Method LNOx nitrogen
source strength,
Tg a−1

Variation, comparison to data

Hudman et al. (2004) 3-D GEOS-CHEM 6 Model NO, HNO3, and PAN results are
generally within the scatter of data from
the northwest Pacific; no LNOx discus-
sion

Wong et al. (2004) 3-D CCM (UiO+SUNYA CCM3) 3–6 Reproduces NOx and HNO3 data from
various tropical experiments well, with
some underestimate of NOx in the tropi-
cal upper troposphere

Stevenson et al. (2004) STOCHEM, HadAM3 7.3 No comparison with observations

Savage et al. (2004) TOMCAT 5 Model results and GOME NO2 data show
79% correlation; no LNOx discussion

Labrador et al. (2005) 3-D MATCH-MPIC 0<LNOx<20,
(0–20)

Model results and airborne NOx data
show about 50% correlation; best for
5 Tg a−1 and profile of Pickering et
al. (1998)

Boersma et al. (2005) 2 versions of 3-D TM4 3.5 (1.1–6.4) Determines LNOx from fit to GOME
NO2 columns

Lamarque et al. (2005) 3-D MOZART-2 5 (2–10) Compares with preindustrial data

Müller and Stavrakou (2005) 3-D IMAGES 2.8 (1.6–3.2) LNOx and CH4 fit using ground-based
CO observations, NO2 columns from
GOME, data from 14 airborne campaigns,
and prescribed CH4 lifetime

Naik et al. (2005) 3-D MOZART-2 3 Sensitivity study for fixed LNOx

Dameris et al. (2005) 3-D chemistry-climate model
E39/C

4.8–5.4 Simulation for period 1960–1999

Gauss et al. (2006) 7 global atmospheric chemistry
models

4–7 (5.4±0.9) Model intercomparison

Sanderson et al. (2006) STOCHEM/HadAM3 7 Compares to deposition data

van Noije et al. (2006) 17 global atmospheric chemistry
models

3–7 (5±0.9) Comparison with GOME NO2 retrievals.
No LNOx discussion

Stevenson et al. (2006) 26 global atmospheric chemistry
models

3.7–7 Model intercomparison, and comparison
with O3 data. Largest uncertainties for O3
peak over tropical South Atlantic; due to
biomass or LNOx

Martin et al. (2006) GEOS-CHEM, Inverse modelling,
SCIAMACHY and airborne data.

7.1 Best fit for midlatitude LNOx of
1.6 Tg a−1 instead of 0.4 Tg a−1

Kurz (2006) 3-D ECHAM5/MESSy climate
chemistry model with ECMWF
meteorology

5 Updraft mass flux fits TROCCINOX 2004
data

Jöckel et al. (2006) ECHAM/MESSy1 climate chem-
istry model with ECMWF meteo-
rology

2.2 Modelled NO data correlate to 31% with
observations; slight underestimate could
be due to deficit of NOx sources or too
rapid conversion to HNO3 and PAN
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Table 24. Continued.

Author Model or Method LNOx nitrogen
source strength,
Tg a−1

Variation, comparison to data

Schumann et al. (2006) Fit of TM4, MOZART-4, MATCH
and ECHAM/MESSy model re-
sults to TROCCINOX data

4.8±2.5 LNOx source from fit to NO, O3, and CO
data from TROCCINOX

Sauvage et al. (2007a) GEOS-CHEM 4, 6, 8 For the model with CTH-computed light-
ning distribution scaled to fit OTD/LIS
data, a LNOx source of 6±2 Tg a−1 is
shown to be consistent with in-situ data
for O3 and GOME data in the tropics

Martin et al. (2007) GEOS-CHEM with seasonal and
regional mean CTH model results
normalised to OTD flash observa-
tions

6±2 LNOx source from fit to observed NO2,
O3, and HNO3 satellite data
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Fig. 27. Annual mean nitrate deposition rate over land (thick full
curve) and sea (thick dashed) (in nitrogen mass units) versus latitude
as computed from model output data for 1993 (Dentener, 2006),
together with land cover fraction (thin dashed).

because problems arise from the quality of the deposition
data for various reasons (Kulshrestha et al., 2005). It is often
not clear whether the measurements represent the mean de-
position value in a model grid cell and whether they include
wet deposition only or also dry deposition (Ehhalt and Drum-
mond, 1982). Model results depend on proper treatment of
the NOx–NOy conversions (including PAN etc.) and various
models show still large differences in this respect. More-
over, model results depend on the precipitation rates which
are mostly taken as input from an external meteorological
source (Shepon et al., 2007).

Gallardo and Rodhe (1997), see also Lee et al. (1997), us-
ing the MOGUNTIA model for various LNOx source values,
concluded that a LNOx source larger 20 Tg a−1 can hardly
be justified in view of deposition fluxes measured at remote

tropical stations. Hence, the deposition-based model fit pro-
vides an upper bound on the size of the global LNOx source.
However, this study used a rather coarse model (10◦×10◦

horizontally) with monthly averaged wind and precipitation
fields.

Lamarque et al. (2005) compared results on continen-
tal nitrogen deposition rates from six different tropospheric
CTMs. Averaging over all model results, the comparisons of
computed and observed deposition rates shows mean values
which differ by 14%,−10%, 60%, and correlation coeffi-
cients of 0.3, 0.8, and 0.6 for Europe, North America and
Asia, respectively. About 70% of the emitted nitrogen is de-
posited over land masses. The authors did not discuss de-
position at remote stations and do not assess the accuracy
of the assumed LNOx source values from this comparison.
A recent study evaluated nitrogen (and sulphur) deposition
globally and regionally using 23 different atmospheric mod-
els (Dentener et al., 2006). Unfortunately, the cited study did
not report the LNOx contributions to the deposition fluxes.
This suggests follow-on studies.

For illustration we present model output for a global LNOx
source of 5.4 Tg a−1, see Fig. 27 (Galloway et al., 2004; Den-
tener, 2006). From the data we compute mean nitrate depo-
sition rates of 45 and 280 mg m−2 a−1 in the southern trop-
ics (0–24◦ S) at oceanic and continental sites, respectively.
Böttger et al. (1978) derive mean nitrate deposition rates (in
terms of nitrogen mass) of 5–50 mg m−2 a−1 for the oceans
and 100–200 mg m−2 a−1 for land in the tropics (0–30◦ N)
which is roughly consistent with these results. From simple
estimates of the various emissions, we expect LNOx to con-
tribute about 14–23% of the total NOx emissions in the trop-
ics (see Table 2). Hence, a LNOx source of about 5 Tg a−1

would be consistent with these deposition values. In order to
verify this, one has to compare model results for at least two
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LNOx source values with observations in more detail. Such
comparison has still to be performed.

3.3.3 Model studies with comparisons to observational data

This section reviews a few examples of the many studies
comparing model results with data discussing the LNOx con-
tribution but without specific conclusion on the best LNOx
parameterisation. Model simulations concluding on best
LNOx estimates are summarised in the next section.

Lamarque et al. (1996) used the IMAGES model (5◦×5◦

horizontal resolution, monthly averaged meteorological
fields) with LNOx source rates between 2 and 10 Tg a−1 and
two vertical emission profiles (constant by mass or constant
by mixing ratio). Most results were obtained for a LNOx
source of 5 Tg a−1 distributed vertically with constant mix-
ing ratio. The results were compared with a large set of
observational data. General agreement was noted, support-
ing the selected LNOx value approximately. Lamarque et al.
concluded that a LNOx source strength exceeding 20 Tg a−1

would yield model generated mixing ratios of reactive nitro-
gen oxides in the upper troposphere significantly larger than
those typically observed.

Meijer et al. (2001) use the TM3 model (3.75◦×5◦ hor-
izontal resolution, driven with ECMWF analysis fields) in
two versions. They introduce the CPR parameterisation
in addition to the CTH version of Price and Rind (1992).
The LNOx emissions are distributed vertically as in Price
et al. (1997b) (constant vertical profiles for CG and for IC
LNOx emissions) or as in Pickering et al. (1998) (prescribed
C-shaped profile). In both versions the profile is scaled to the
cloud-top heights in TM3, and the LNOx source amounts to
5 Tg a−1. The model results analysed along the flight paths
of the measuring aircraft are compared to measurements per-
formed within the EULINOX and the POLINAT/SONEX
campaigns. The CPR parameterisation gives better agree-
ment with observations than the CTH version; in particular
it computes a more realistic NOx concentration variability.
The prescribed vertical distribution with a C-shape performs
better than the older alternative. The model gives good re-
sults for the background and thunderstorm outflow cases, but
underestimates the observed NOx concentrations near active
thunderstorms, possibly due to insufficient spatial and tem-
poral resolution in the model.

Grewe et al. (2001) report simulation results of two cli-
mate models, the ECHAM/CHEM (3.8◦×3.8◦ horizontal
resolution) with 5 Tg a−1 and the GISS model (4◦×5◦) with
3.9 Tg a−1. Regional-mean model results are compared with
corresponding NOx data from the NOXAR project (Brunner
et al., 2001). The UPD model version performs better than a
CTH version. In particular, though by far not perfect, it bet-
ter simulates the observed highly skewed probability density
function of NOx values. The differences in the parameteri-
sations are more important than the differences in the total
LNOx value.

Jourdain et al. (2001) use a GCM model (2.5◦×3.8◦ hori-
zontal resolution) and consider various model versions for a
global LNOx source rate of 5 Tg a−1 and find that the CTH
model version with Pickering’s (1998) vertical profile gives
good agreement with ELCHEM NO data. Hauglustaine et
al. (2004) apply this model and compare to many further ob-
servational data (including OTD and nitrate deposition data)
but do not assess alternative model versions or LNOx source
rate values.

Wong et al. (2004) present simulations of present-day and
preindustial tropospheric O3, using a global tropospheric
climate-chemistry model including a GCM to compute the
meteorological fields (2.8◦×2.8◦ horizontal resolution). The
LNOx parameterisation follows Price et al. (1997b), scaled to
3 and 6 Tg a−1, with vertical distributions as in Pickering et
al. (1998). For 3 Tg a−1, the model underestimates NOx con-
centrations in the middle and upper troposphere. Increasing
the LNOx production results in increased upper tropospheric
NOx concentrations; however, this increase is seasonally de-
pendent and does not account for the discrepancy between
the model and the observed results. They find an underesti-
mation of NOx levels in particular over convective areas in
the tropics, and suggest deficiencies in the LNOx parameter-
isation as possible cause.

Labrador et al. (2005) apply the MATCH model
(5.6◦×5.6◦ horizontal resolution), a CTM driven with NCEP
analysis data, for various LNOx parameterisations for LNOx
between 0 and 20 Tg a−1. They compare the model results
with a large set of data. They conclude that a zero LNOx
source appears too low and 20 Tg a−1 too high. In their opin-
ion, no model version can be singled out as best fitting the
observations.

Martin et al. (2006) retrieve tropospheric NO2 columns
for May 2004 to April 2005 from SCIAMACHY and de-
rive NOx emission estimates via inverse modelling with a
global CTM (GEOS-CHEM, with about 2◦×2.5◦ horizontal
resolution, driven by assimilated meteorological data, with
7.1 Tg a−1 global LNOx source rate). The standard simu-
lation with 0.4 Tg a−1 of NOx emissions from lightning at
northern midlatitudes (north of 30◦, where the OTD data find
about 22% of the global lightning activity) was found to un-
derestimate NO2 in the upper troposphere observed by air-
borne measurements by 0.1 nmol mol−1. The comparison is
based on vertical profiles of NO2 over eastern North America
averaged over the entire ICARTT campaign. Further com-
parisons are reported by Hudman et al. (2007). Both studies
find that a factor 4 increase of the northern midlatitude light-
ning source, with fixed emissions in the tropics, minimises
bias in the retrieval.

3.3.4 Model studies with best-estimates of the global
LNOx rate

Levy et al. (1996, 1999) report on simulations of tropo-
spheric photochemistry, NOx and NOy including PAN using
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the GFDL model, based on meteorological results from a
GCM, see Table 12. The model includes 11 vertical levels
at 2.4◦×2.4◦ horizontal resolution. They compare wet de-
position and concentration statistics with observations. Levy
et al. (1996) estimate the range of the LNOx source by sys-
tematically comparing computed mean NOx and NOy val-
ues with mean measured values. They use NOx and NOy
measurements from various airborne experiments in tropical
regions, primarily between 30◦ S and 30◦ N, at altitudes be-
tween 500 and 190 hPa, mainly over oceans and partly in re-
gions with important biomass contributions. In spite of rather
coarse model resolution, they find that 50% of the compar-
isons of NOx and NOy data from observations and the model
are within±25%, without global bias. The measurements,
say c, are compared with model results,b andm for zero
and finite LNOx sourceGm. For each subset of data in 13
different regions/altitudes they determine the LNOx source
G such that the mean model resultmopt=b+G (m–b)/Gm ap-
proximates the mean observed valuec optimally in the ex-
perimental region. The regional results imply a global LNOx
sourceG which scatters between 1.4 and 21 Tg a−1. From
the mean and the standard deviation of the scatter of theG

values and a subjective assessment of the validity of the data,
the global LNOx source is estimated to be within the range
3 to 5 Tg a−1. Implications of systematic model errors are
discussed but not quantified. The result for LNOx depends
critically on the assumed photochemical model (Levy II et
al., 1999). Changes in the model causing an increase of
upper tropospheric OH by 50% on average (factor 2–3 lo-
cally) cause quicker oxidation of NO2 into HNO3, and hence
lower NOx values. This was assessed to imply a larger LNOx
source of 8–10 Tg a−1. Moreover, the study used only one
emission profile with maximum emissions at 7–10 km, which
may be too low for tropical continental regions. A profile
with emissions at higher altitudes causes larger NOx life-
times and hence best fit to observations for a lower LNOx
source. The error estimate given by Levy et al. (1996) does
not cover these uncertainties.

Tie et al. (2002) use the MOZART model (2.8◦×2.8◦ hor-
izontal resolution, driven by meteorological fields from a
GCM) and compare the model results with field data ob-
tained in the tropics and over the USA (Emmons et al.,
1997). The accuracy is assessed by computing the differ-
ences between NOx concentrations above 5 km from various
model versions with observed NOx values from 14 observa-
tion sites. Six model versions were run, including runs for 0,
1, 3.5 and 7 Tg a−1, with uniform LNOx emissions or emis-
sions only in the upper cloud. It is found that the model re-
sults deviate strongly from measurements for LNOx of 0 and
1 Tg a−1. Also 7 Tg a−1 released in the upper clouds gives
large errors. However, 5 Tg a−1 of LNOx uniformly dis-
tributed in convective clouds or 3.5 Tg a−1 distributed in the
upper cloud regions produce both good agreement between
calculated and measured NOx concentrations in the tropics.
The study suggests that LNOx is between 3 and 7 Tg a−1 (Tie

et al., 2002). Since the uniform LNOx emissions case seems
less realistic than the emissions only in the upper cloud, this
study supports the smaller value (3.5 Tg a−1) more than the
larger one.

Martin et al. (2002b) use a version of the GEOS-CHEM
model (4◦×5◦ horizontal resolution), driven by assimilated
meteorological input for 1996/97. They compare the model
results with tropospheric ozone column data from TOMS for
the same period. Moreover, they compare with in-situ NO
and PAN observations (Bey et al., 2001), monthly mean O3
data from ozonesonde stations and from MOZAIC in the
tropics, mostly at other periods. The in-situ observations,
mainly from measurements over the oceans, provide little
constraints on the LNOx source in the range 3–6 Tg a−1,
though observations from TRACE-A are more consistent
with the model results for 6 Tg a−1. However, the LNOx
source magnitude has a large effect on the tropical tropo-
spheric ozone burden, especially in the middle and upper
troposphere of the tropical Atlantic region, where the model
results agree with sonde and satellite data for 6 Tg a−1 sig-
nificantly better than for 3 Tg a−1. A reduction from 6 to
3 Tg a−1 reduces the latitudinal gradient in the middle and
upper troposphere, and results in model underestimates of
the observed ozone concentrations. The best-estimate result
for the LNOx source of this study is 6 Tg a−1. The authors
leave the uncertainty range undefined.

Staudt et al. (2003) use the global Harvard/Florida CTM
model with 4◦×5◦ horizontal resolution driven by assimi-
lated meteorological analysis fields and examine the sources
and chemistry affecting NOx over the tropical Pacific. They
compare the model results for LNOx sources of 3, 5 and
9 Tg a−1 to observational data from PEM-Tropics B for O3,
HOx, NOx, HNO3, PAN, CO, hydrocarbons and related
species. They find that reducing LNOx improves the sim-
ulations of upper tropospheric OH and of upper tropospheric
HNO3 in the Northern Hemisphere. On the other hand, in-
creasing LNOx improves the simulation of HNO3 in the up-
per troposphere south of 20◦ S while exacerbating the HNO3
overestimate above the North Pacific. The authors provide
no best-estimate for LNOx but the results suggest a range of
3–9 Tg a−1.

Boersma et al. (2005) use the TM3 model at 2.5◦×2.5◦

horizontal resolution driven by ECMWF analysis fields and
fit satellite (GOME) observations, sayc, of tropospheric NO2
columns to simulated NO2 columns,b andm, for a zero and
a finite LNOx sourceGm in six oceanic and continental trop-
ical regions of the globe by adjusting a sensitivity or slope
parametersj and a background parameterbj for each region
(j=1, ..., 6) such that6(c−bj−sj (m−b))2 is a minimum re-
gionally and in the annual mean. The background parameter
accounts for possible biases, while the sensitivity parameter
accounts for the sensitivity of the NO2 columns to LNOx. A
global mean sensitivitys is computed averaging the regional
sj values. Finally, the best estimate LNOx source is deter-
mined fromG=Gm/s. Results for two TM3 model versions

Atmos. Chem. Phys., 7, 3823–3907, 2007 www.atmos-chem-phys.net/7/3823/2007/



U. Schumann and H. Huntrieser: The global lightning-induced nitrogen oxides source 3883

(LNOx parameterisation based on either CTH or CPR) are
used to estimate systematic model errors. The two model
versions imply LNOx estimates of 2.8 and 4.5 Tg a−1. The
random and systematic errors are considered and a “conser-
vative” error bound is estimated (1.1–6.4 Tg a−1). The de-
rived error bounds assume random error propagation.

Müller and Stavrakou (2005) use the IMAGES CTM with
5◦×5◦ horizontal resolution driven with monthly averaged
wind fields. The LNOx model source is scaled globally to
3 Tg a−1 and distributed horizontally as in Price et al. (1997b)
and vertically as in Pickering et al. (1998). By means of an
adjoint modelling technique, they determine improved esti-
mates for the continental emission of CO, surface and light-
ning NOx sources. The estimate uses ground-based CO ob-
servations together with tropospheric NO2 columns from the
GOME satellite, and data from 14 airborne campaigns (Em-
mons et al., 2000). In one version of the analysis the results
are constrained to prescribed CH4 lifetime. As a result they
find that the LNOx source is 2.8 Tg a−1. For various model
versions they find a range 1.6–3.2 Tg a−1. They do not ex-
plicitly specify the errors in these results due to uncertainties
in the model or in the observational data.

Sauvage et al. (2007a) use a version of the GEOS-CHEM
model (2◦×2.5◦ horizontal resolution, 30 vertical levels up
to 0.1 hPa), driven by assimilated meteorological input. They
compare monthly averaged model results with observations
for tropospheric O3, NO2 and HCHO columns from GOME,
lightning flashes from OTD and LIS, profiles of O3, CO, and
relative humidity from MOZAIC, and profiles of O3 from
an ozonesonde network (SHADOZ). The model computes
LNOx using the CTH method with Pickering-profiles and
an IC/CG NOx production ratio of 0.1. The global LNOx
sources rate is varied (4, 6, and 8 Tg a−1). They find that
tropical tropospheric ozone is very sensitive to the LNOx
model. Scaling the spatial distribution of lightning in the
model to the OTD/LIS-observed flash counts improves the
simulation of O3 in the upper troposphere by 10–45%. A
LNOx rate of 6±2 Tg a−1 best represents in-situ O3 observa-
tions from aircraft and ozonesondes. Outside of that range,
the simulated O3 was found to become increasingly incon-
sistent with in situ measurements. A uniform increase of the
IC/CG NOx production ratio from 0.1 to 0.75 (for constant
total global LNOx rate) introduces an O3 overestimate com-
pared to in-situ measurements (mainly in the tropics). More-
over, the authors found a strong sensitivity of the results to
meteorological datasets provided by two versions of the anal-
ysis scheme.

A further recent study with a slightly different version of
the same model finds the same result, 6±2 Tg a−1 (Martin
et al., 2007). This LNOx range is obtained by comparing
the model results with observations of trace gases from four
satellite platforms: tropospheric NO2 columns from SCIA-
MACHY, tropospheric O3 columns from OMI and from the
Microwave Limb Sounder (MLS), and upper tropospheric
HNO3 from the Atmospheric Chemistry Experiment Fourier

Transform Spectrometer (ACE-FTS).
A recent comparison of the GEOS-CHEM model results of

upper tropospheric NO2 data relative to OSIRIS observations
suggests a higher LNOx source of about 9 Tg a−1 (Sioris et
al., 2007). However, the authors consider this high value to
be related to the assumed vertical distribution of LNOx in the
model and the coarse vertical resolution of the observations.

In an ongoing study we use several chemical transport
models (ECHAM5/MESSy1, TM4, MOZART-4, MATCH-
MPIC) with 1.9◦×1.9◦ to 3◦×2◦ horizontal resolution and
meteorological fields from weather analysis or a GCM
nudged to ECMWF analysis and various LNOx parameter-
isations (CTH, UPD or CPR) to compute the concentrations
of NOx, NOy, CO and O3 for at least 2 values of the nomi-
nal LNOx source, and compare the model results interpolated
along flight paths with recent observations in the continental
tropics and subtropics (TROCCINOX). By a least square fit,
we determine the LNOx value for which the model results
provide the best fit to the observations. From the magnitude
of the deviations between model and observational data we
compute systematic error estimates using the model-derived
LNOx sensitivity. Only the results from the model exhibiting
the smallest systematic errors in this application are taken
for the final best estimate. The results from the model TM4
with 3◦×2◦ horizontal resolution, meteorological data from
the ECMWF, and CPR based parameterisation show the best
agreement with the observed data. Based on the data of
TROCCINOX and this model, a best estimate of 4.8 Tg a−1

is computed with an uncertainty range 2.3–7.3 Tg a−1 (Schu-
mann et al., 2006).

3.3.5 Results, uncertainties, and future improvements

Figure 28 shows the LNOx values as used in the model stud-
ies listed in Table 24 versus the year of publication. The
figure shows that even the more recent studies allow for a
wide range of LNOx values between 1 and 20 Tg a−1, though
most studies assumed values between 3 and 7 Tg a−1. Not all
these studies compare model results for various LNOx emis-
sons with observations. Nevertheless, the results are gener-
ally consistent with the findings from the more specific stud-
ies. Nine specific studies as explained above determine the
best fitting LNOx value by comparing model results with ob-
servations.

All together the model fit studies performed so far pro-
vide a LNOx source estimate in the range 2–8 Tg a−1 or
(5±3) Tg a−1. The accuracy is not necessarily equal to the
difference between the upper and lower LNOx values used to
embrace the best estimate in the individual model fits. The
best-estimate may change and the error bounds may increase
when further data are included and when other model parts
get improved. Even for the given results, the uncertainty is
still large, 3 Tg a−1 or about 66%, but far smaller than in most
previous reviews, see Table 1. Lawrence et al. (1995) derived
a best-estimate of 2 Tg a−1 and a range of 1–8 Tg a−1. Our
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Fig. 28. Global annual nitrogen mass LNOx source as prescribed
or fitted to data in global atmospheric model studies versus year
of publication, as listed in Table 24. Triangles with vertical bars
denote estimated values and expected uncertainty ranges. Thick red
dots with error bars denote model fit LNOx results and the derived
uncertainty ranges (Levy II et al., 1996; Martin et al., 2002b, 2007;
Tie et al., 2002; Staudt et al., 2003; Boersma et al., 2005; Müller and
Stavrakou, 2005; Schumann et al., 2006; Sauvage et al., 2007a).

range is essentially the same, but encloses the best estimate
more symmetrically. Our best estimate is larger in spite of
the smaller global flash rate used (44 instead of 100 s−1) im-
plying larger flash-specific NOx emissions (15×1025 instead
of 2.3×1025 NO molecules per flash). The present uncer-
tainty is small enough for some of the applications discussed
in Sect. 2.10, and appears to be smaller than the uncertainty
ranges assessed in this review for the flash or thunderstorm
extrapolation methods.

What accuracy can be expected from the model fit ap-
proach? Random errors are reducible by including many
data; systematic errors are reducible by selecting high qual-
ity model and observation data with relatively high LNOx
sensitivity. The systematic errors arise because of incorrect
models and observation methods and control the accuracy
achievable when many data are available.

For a conservative estimate we assume that the systematic
errors are additive in the absolute norm (where all errors1

enter with their absolute amount). Using Eq. (10), the sys-
tematic error1G of G follows from

1G/G = (1c + 1b)/(c − b) + 1s/s (11)

= (1c/c)c/(c−b)+(1b/b)b/(c−b)+1s/s (12)

= (1c/c)/α + (1b/b)(1 − α)/α + 1s/s, (13)

with α=(c–b)/cmeasuring the relative LNOx contribution to
c. This shows that systematic errors in the estimated LNOx
sourceG originate from systematic errors in three terms: the
data (1c/c), the background model results (1b/b), and the

sensitivity (1s/s) of the model results to changes in the LNOx
source value. The first two terms enter with higher weight
α−1. Hence, accurate results can be obtained only from data
with large LNOx contributionα. To make things simpler,
let us assume that the relative errors in the three terms are
of comparable magnitude, i.e.1c/c≈1b/b≈1s/s≈ε. Then
the total systematic error is

1G/G = 2ε/α. (14)

Hence, the final error1G/G is larger the largerε is and the
smallerα is. In order to achieve an accuracy1G/G of better
than about 100%, the individual errorsε must stay below
α/2. For, e.g.,α<0.5, the individual errors must stay below
25%. This seems just achievable and hence, is consistent
with the derived accuracy of about 100% from the ensemble
of model fits. Obviously, it is difficult to achieve G values
with uncertainties far smaller than 100%.

Coming back to the deposition-based LNOx determina-
tion, we note again that a LNOx source of about 5 Tg a−1

causing deposition values as described in Sect. 3.3.2 does
not appear unrealistic. However, for an uncertainty of about
30% in the measured and computed deposition rates and a
LNOx contribution of 20% (Table 2), the uncertainty in any
LNOx estimate derived from these data is of the order of a
factor 3. Improvements may be obtained with data from re-
mote stations (Galloway et al., 1982; Dentener et al., 2006),
in particular in the southern tropics during the wet season
when biomass burning contributions are low (Savoie et al.,
1989), or in Antarctica (Weller et al., 2002). However mod-
els predict very small nitrate deposition fluxes for Greenland
and Antarctica (Dentener et al., 2006), see also Fig. 27.

In the future, more accurate LNOx estimates may be de-
rived using all the data sensitive to LNOx sources from the
many experimental studies performed so far, including in-
situ, remote sensing, and deposition data. Moreover, global
atmospheric models should be further improved. Improve-
ments are needed in particular in the parameterisations of the
horizontal distribution of lightning and the vertical profile of
the LNOx emissions, and in all the other properties deter-
mining the quality of the global atmospheric models, such
as grid resolution, meteorological input fields, emission esti-
mates from other than LNOx emissions, chemical reactions
and deposition parameters. Critical tests for model improve-
ments include the ability of the models to compute cloud and
lightning distributions as observed from satellites (Christian
et al., 2003; Takayabu, 2006; Zipser et al., 2006), the abil-
ity to represent the other highly uncertain NOx sources such
as those from soils (Jaeglé et al., 2004) or biomass burning
(Granier et al., 2004), to represent NOx concentrations and
related photochemistry both at tropical and midlatitudes in
the altitude range from the surface to the tropopause, and to
represent the skewed probability distribution on NOx (Brun-
ner et al., 2001; Hudman et al., 2007) which reflect both the
uneven distribution of the sources and the short NOx life-
times.
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4 Conclusions

This review covers research aimed at quantifying the LNOx
source rateG and its distribution in some detail from the first
estimates published. The lightning physics and atmospheric
chemistry are covered only briefly. More emphasis is given
to observations available and to global models which are seen
as crucial for further progress. The paper identifies the nec-
essary and achievable accuracy of LNOx estimates.

The precise knowledge of the LNOx source is important
for understanding and predicting the nitrogen oxides and
ozone distributions and their trends, the oxidising capac-
ity of the atmosphere, and the lifetime of trace gases de-
stroyed by reactions with OH. In addition, the LNOx source
must be known accurately for assessment of other impor-
tant sources besides surface sources, in particular from avi-
ation and the stratosphere. Finally, the LNOx source must
be known for understanding the possible feedback between
climate changes and lightning. Some of the early estimates
tended to overestimate the source rate for various reasons,
while recent findings suggest smaller LNOx values.

Various methods have been used so far to provide LNOx
estimates. Method 1 (flash extrapolation) has been improved
in recent years mainly by using airborne observations of NOx
increases in thunderstorm outflows together with simultane-
ous observations of lightning activity. Applications of the
flash extrapolation to satellite-derived NO2 column data were
successful in case studies for regions with high LNOx con-
tributions. Attention has been given to the laboratory find-
ing that the NOx production rate is a function of flash peak
current. The peak current may be observable from ground-
based VLF/LF lightning detection systems. The results from
airborne studies have been interpreted with cloud-resolving
models and these studies have identified the flash-specific
production rates and the ratio in NOx productivity for IC and
CG flashes. The results for midlatitude thunderstorms sug-
gest that IC and CG flashes produce about the same amount
of NOx per flash. The results are extrapolated globally us-
ing the ratio between the global flash rate and the flash rate
during the thunderstorm investigated. Satellite lightning de-
tection systems observe each point on Earth only for about
15 h each year (Christian et al., 2003). Nevertheless, the
global flash rate appears to be well assessed with OTD and
LIS data. However, the various instruments measure signals
from different parts of the lightning discharge, and no in-
strument can determine precisely the number, length, peak
current and energy of the flashes. The lightning observa-
tions may miss some low-current flash events contributing
to NOx production. Also it would be important to better un-
derstand the processes in flashes contributing to LNOx pro-
duction. This knowledge is needed as the various types of
lightning detection instruments are sensitive to different pro-
cesses. Note that flash channels exceeding 3000 K may con-
tribute to NOx production and such rather cold channels may
perhaps be underrepresented in the observations performed

so far. Recently, Rahman et al. (2007) suggested that rel-
atively slow discharge processes, with quasi-steady contin-
uing currents of the order 100 kA, contribute significantly
to the global LNOx production. Long continuing currents
may follow in particular low peak current strokes (Saba et
al., 2006b). Such quasi-steady currents are hardly detectable
by most operational lightning detection systems and not in-
cluded in LNOx models so far.

The best estimate for method 1, derived from the reviewed
flash studies, including laboratory, theoretical and airborne
studies, is 15 (2–40)×1025 molecules per flash, equiva-
lent to 250 mol NOx or 3.5 kg of nitrogen mass per flash
with uncertainty factors 0.13 to 2.7. Multiplying this flash-
specific value with the satellite- (OTD-)derived global flash
frequency of 44 s−1, which is a smaller value than estimated
in earlier studies, and assuming equal IC and CG NOx pro-
ductivity, gives a global LNOx value of 0.6–13 Tg a−1. Fur-
ther reduction of this uncertainty range with this method is
difficult for several reasons, in particular because the method
assumes that the properties of flashes are uniform at global
scale. However, the flash productivity at midlatitudes may be
higher than in the tropics (Huntrieser et al., 2006).

Method 2 (storm extrapolation) has been applied to a few
thunderstorm cases at midlatitudes and recently also in the
tropics and subtropics. The global LNOx estimates obtained
include a range of about 1–25 Tg a−1. The method does not
require knowing the flash properties. The results are helpful
in understanding differences between the LNOx productions
of different types of thunderstorms. However, the method
suffers from the ill-defined number of thunderstorms active
at any time globally.

Method 3 (global model fit), using concentration data of
NOx, NOy, and NOx dependent species and deposition data
in regions with high LNOx sensitivity, has been applied with
various models. The method determines the best estimate
LNOx value by adjusting model parameters such that the
model fits observations as well as possible. The accuracy of
the result depends strongly on the accuracy of the measured
data, the accuracy of the model results for background con-
centrations (for best a priori LNOx estimates), and the sen-
sitivity of the NOx concentrations to changes in the LNOx
source. A simple error estimate shows that the individual
errors must be below about 25% and the LNOx contribu-
tion to the fitted observations must be larger than 50%; oth-
erwise the resultant LNOx uncertainty is likely to exceed
100%. A large set of chemical transport models has been
developed which have been shown to provide good results
through comparisons with a growing number of observations
and with other models. Most models agree with observa-
tions up to a factor 1.2 to 2, but the agreement is not uni-
form over the globe. So far, the model results were tested
on only a subset of the available data. Recent in-situ mea-
surements obtained in the tropics and subtropics during the
projects BIBLE, CRYSTAL-FACE, TROCCINOX, SCOUT-
O3, ACTIVE, and AMMA appear to be well suited for such
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comparisons. Systematic comparisons with the set of all or
most of the LNOx-sensitive data obtained so far, both over
land and ocean, in the tropics and at midlatitudes, over the
last 2 to 3 decades, are still to be done. The results ob-
tained with model fits up to now indicate best-estimates of
the global LNOx value of about 2–8 Tg a−1 (or 5±3 Tg a−1).
The possibility that the true value lies outside this range can-
not be strictly excluded. The best value and the bounds may
still vary when including additional data and improved mod-
els.

The models compute the LNOx production rate as a func-
tion of meteorological parameters. So far, the models do
not account for all parameters identified as being important
for affecting lightning and LNOx production for given ther-
modynamic and air composition conditions. Recent results
show that the classical cloud-top-height (CTH) model does
not capture the observed variability. The convective pre-
cipitation (CPR) model needs different scaling over oceans
and continents and does not account for different lightning
yields (number of lightning CG flashes per rain unit mass) at
various latitudes. The convective updraft speed (UPD) and
the CPR methods are based on subgrid-scale processes and
hence are sensitive to details in the convective parameteri-
sation. The LNOx parameterisation based on UPD covers
better than CTH the land/ocean contrast. Both the UPD and
CPR versions seem to simulate the variability of convection
better than CTH. The results are also sensitive to the vertical
emission profiles, and the best profile (or set of profiles for
various storm types) has still to be determined. The model
fit approach is only weakly sensitive to the IC/CG ratio in
flash rates or production rates. Moreover, the LNOx sensitiv-
ity of the model results depends on mixing and the computed
hydroxyl radicals converting lightning-induced NO to NOy
and affecting other NOx-dependent species such as O3, CO
and others. An overestimate of the lifetime of NOx results
in an underestimate of the LNOx source rate by the model
fit. The quality of the models depends strongly on the grid
resolution because of the large scale range between the fresh
lightning plumes, narrow convective cloud cores and typical
grid cell sizes. The background results depend also strongly
on the accuracy of emission data from other sources. Even
more demanding is the still open development of 3-D models
accounting correctly for atmospheric electricity.

Model fits based on nitrate deposition data have been con-
sidered in several model studies, however only one early
study made conclusions with respect to LNOx. Because of
large scatter of the deposition data and the difficulty in mod-
elling dry and wet deposition fluxes, this method may not
provide more accurate results than the concentration based
approach. Previous model studies suggest that 5 Tg a−1 of
LNOx do not contribute more than about 20–25% to nitrate
deposition on average even in the tropics. The deposition
fluxes are small in the polar regions and dependent on the
complex transport and chemistry of long-living NOy com-
ponents. Hence, an accurate analysis requires selection of

regions and periods with higher LNOx share, preferably in
the remote southern tropics.

So far, the globally-emitted LNOx nitrogen mass per year
estimated in this study is in the range 2–8 Tg a−1. The uncer-
tainty range is smaller than in early assessments, see Table 1.
However, in spite of considerable progress, the uncertainty
range is still large, only a little smaller than the range 1–
8 Tg a−1 assessed by Lawrence et al. (1995). Though other
NOx emissions (e.g., from soil or from biomass burning)
may be uncertain to similar or even larger absolute scales,
the LNOx uncertainty is still relatively large, and this is
important because of the large impact of LNOx on upper
tropospheric NOx and O3. Future work should aim to re-
duce the uncertainty range from presently±3 Tg a−1 to about
±1 Tg a−1 or 20%, whatever is smaller. In view of simple er-
ror estimates, this is still a very challenging goal.
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forschungsanlage Jülich, J̈ul-1558, 1978.

Boucher, O., Moulin, C., Belviso, S., et al.: DMS atmospheric con-
centrations and sulphate aerosol indirect radiative forcing: a sen-
sitivity study to the DMS source representation and oxidation,
Atmos. Chem. Phys., 3, 49–65, 2003,
http://www.atmos-chem-phys.net/3/49/2003/.

Bousquet, P., Ciais, P., Miller, J. B., et al.: Contribution of anthro-
pogenic and natural sources to atmospheric methane variability,
Nature, 443, 439–443, doi:10.1038/nature05132, 2006.

Bouwman, A. F., Boumans, L. J. M., and Batjes, N. H.: Emis-
sions of N2O and NO from fertilized fields: Summary of avail-
able measurement data, Global Biogeochem. Cycles, 16, 1058,
doi:10.1029/2001GB001811, 2002.

Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noeel,
S., Rozanov, V. V., Chance, K. V., and Goede, A. P. H.: SCIA-
MACHY: mission objectives and measurement modes, J. Atmos.
Sci., 56, 127–150, 1999.

Boville, B. A.: Middle atmosphere version of CCM2 (MACCM2):
Annual cycle and interannual variability, J. Geophys. Res., 100,
9017–9040, 1995.

Bradshaw, J.: On the lightning source of tropospheric NOx: A tuto-
rial critique, School of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, GA (Copy available from D.
Davis, School of Earth and Atmospheric Sciences, Georgia In-
stitute of Technology, Atlanta, GA 30332-0340), 1996.

Bradshaw, J., Sandholm, S., and Talbot, R.: An update on re-
active odd-nitrogen measurements made during recent NASA
Global Tropospheric Experiment programs, J. Geophys. Res.,
103, 19 129–19 148, 1998.

Bradshaw, J., Davis, D., Crawford, J., et al.: Photofragmenta-
tion two-photon laser-induced fluorescence detection of NO2
and NO: Comparison of measurements with model results based

on airborne observations during PEM-Tropics A, Geophys. Res.
Lett., 26, 471–474, 1999.

Bradshaw, J., Davis, D., Grodzinsky, G., Smyth, S., Newell, R.,
Sandholm, S., and Liu, S.: Observed distributions of nitrogen
oxides in the remote free troposphere from the NASA Global
Tropospheric Experiment programs, Rev. Geophys., 38, 61–116,
doi:10.1029/1999RG900015, 2000.

Brasseur, G., Schultz, M., Granier, C., Saunois, M., Diehl, T., Bot-
zlet, M., Roeckner, E., and Walters, S.: Impact of climate change
on the future chemical composition of the global troposphere, J.
Climate, 19, 3932–3951, doi:10.1175/JCLI3832.1, 2006.

Brasseur, G. P., M̈uller, J.-F., and Granier, C.: Atmospheric
impact of NOx emissions by subsonic aircraft: A three-
dimensional model study, J. Geophys. Res., 101, 1423–1428,
doi:10.1029/95JD02363, 1996.

Brasseur, G. P., Cox, R. A., Hauglustaine, D., Isaksen, I., Lelieveld,
J., Lister, D. H., Sausen, R., Schumann, U., Wahner, A., and
Wiesen, P.: European Scientific Assessment of the Atmospheric
Effects of Aircraft Emissions, Atmos. Environ., 32, 2329–2418,
1998a.

Brasseur, G. P., Hauglustaine, D. A., Walters, S., Rasch, P. J.,
Mueller, J. F., Granier, C., and Tie, X. X.: MOZART, a global
chemical transport model for ozone and related chemical tracers.
Part 1: Model description, J. Geophys. Res., 103, 28 265–28 289,
1998b.

Brenninkmeijer, C., Slemr, F., Koeppel, C., et al.: Analyzing atmo-
spheric trace gases and aerosols using passenger aircraft, EOS,
86, 77–88, 2005.

Brenninkmeijer, C. A. M., Crutzen, P., Boumard, F., et al.: Civil
aircraft for the regular investigation of the atmosphere based on
an instrumented container: the new CARIBIC system, Atmos.
Chem. Phys. Discuss., 7, 5277–5339, 2007,
http://www.atmos-chem-phys-discuss.net/7/5277/2007/.

Brooks, C. E. P.: The distribution of thunderstorms over the globe,
Geophys. Memor., 3, 147–164, 1925.

Brooks, H. E., Lee, J. W., and Craven, J. P.: The spatial distribution
of severe thunderstorm and tornado environments from global
reanalysis data, Atmos. Res., 67–68, 73–94, 2003.

Browning, K. A.: Organization of clouds and precipitation in extra-
tropical cyclones, in: Extratropical Cyclones – The Erik Palmén
Memorial Volume, edited by: Newton, C. and Holopainen, E. O.,
pp. 129–153, Amer. Met. Soc., Boston, 1990.
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