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Abstract. This paper characterizes vertical ozone profiles
retrieved with the IMK-IAA (Institute for Meteorology and
Climate Research, Karlsruhe – Instituto de Astrofisica de An-
dalucia) science-oriented processor from high spectral reso-
lution data (until March 2004) measured by the Michelson
Interferometer for Passive Atmospheric Sounding (MIPAS)
aboard the environmental satellite Envisat. Bias determina-
tion and precision validation is performed on the basis of cor-
relative measurements by ground-based lidars, Fourier trans-
form infrared spectrometers, and microwave radiometers as
well as balloon-borne ozonesondes, the balloon-borne ver-
sion of MIPAS, and two satellite instruments (Halogen Oc-
cultation Experiment and Polar Ozone and Aerosol Measure-
ment III). Percentage mean differences between MIPAS and
the comparison instruments for stratospheric ozone are gen-
erally within ±10%. The precision in this altitude region is
estimated at values between 5 and 10% which gives an accu-
racy of 15 to 20%. Below 18 km, the spread of the percent-
age mean differences is larger and the precision degrades to
values of more than 20% depending on altitude and latitude.
The main reason for the degraded precision at low altitudes
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is attributed to undetected thin clouds which affect MIPAS
retrievals, and to the influence of uncertainties in the water
vapor concentration.

1 Introduction

The Michelson Interferometer for Passive Atmo-
spheric Sounding (MIPAS) is a Fourier transform
infrared (FTIR) spectrometer measuring the emis-
sion of the Earth’s atmosphere in limb-viewing mode
(Fischer and Oelhaf, 1996; Fischer et al., 2007). MIPAS
was launched on the environmental satellite Envisat on
1 March 2002 into a sun-synchronous polar orbit with
equatorial local crossing times of 10:00 (descending node)
and 22:00 (ascending node). MIPAS operated in its nominal
mode from July 2002 to March 2004 in high spectral
resolution of nominal 0.025 cm−1. Flight altitude of Envisat
is 800 km and one orbit takes about 100 min allowing to
measure 72 limb sequences per orbit with a sampling of
about 500 km along track. With these characteristics, MIPAS
is able to provide vertical profiles of temperature and a large
number of trace gases globally during day and night. The
nominal observation mode comprises 17 tangent altitudes
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Fig. 1. Rows (left) and columns (right) of the averaging kernel
matrix for a typical MIPAS ozone retrieval. Rows and colomns of
the averaging kernel closest to a tangent altitude are highlighted in
colors.

per limb sequence from 6 to 68 km (3 km step-width be-
tween 6 and 42 km, and at 47, 52, 60, and 68 km). The
3 km step-width is chosen due to the vertical instantaneous
field-of-view (FOV) of MIPAS, which is about 3 km, while
the across track FOV is about 30 km. The generation of
calibrated radiance spectra, the so-called level 1B data, is
performed by the European Space Agency (ESA) (Nett
et al., 2002). ESA additionally provides vertical profiles
of temperature and 6 key species (H2O, O3, HNO3, CH4,
N2O, and NO2), the so-called Level 2 product. Furthermore,
there are several institutes which have developed retrieval
codes to determine trace gases beyond the ESA key species.
The ozone distributions used for validation in this paper
were derived with the retrieval processor of the Institut für
Meteorologie und Klimaforschung (IMK) and the Instituto
de Astrofisica de Andalucia (IAA) (von Clarmann et al.,
2003b) and are version V3OO3 7 (publicly available at
http://www-imk.fzk.de/asf/ame/envisat-data/).

Validation of a data product involves various self-
consistency tests and comparisons (cf. Rodgers, 2000). The
characterization of the calibrated radiance spectra has been
extensively studied by e.g. Kleinert et al. (2006) and refer-
ences therein. The performance of the retrieval processor
has been studied in a pre-flight analysis by von Clarmann
et al. (2003a), and the characteristics of the retrieved ozone
profiles and self-consistency of results have been studied in a
sensitivity study by Glatthor et al. (2006). Here we report the
final step of validation, which is the comparison of MIPAS
ozone profiles to those from other instruments in order to de-
tect any potential bias and to verify the predicted precision.

Comparisons of MIPAS IMK-IAA ozone profiles with
other satellite instruments have been performed in Wang
et al. (2005) and Bracher et al. (2005). In these papers how-
ever, older data versions were used and no vertically high
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Fig. 2. Vertical resolution of MIPAS ozone derived from the
FWHM of columns (solid) and rows (dashed) of the averaging ker-
nel matrix shown in Fig. 1. Dotted lines are for guidance only.

resolved measurements, like ozonesondes, were considered
for comparison.

2 MIPAS IMK-IAA ozone data

The ozone data investigated in this paper is produced by the
IMK-IAA retrieval processor (von Clarmann et al., 2003b).
These data are complementary to the official ESA data prod-
uct in a sense that the IMK-IAA retrieval aims at the best
possible accuracy in a wide altitude region, while the advan-
tage of the ESA data are their better temporal coverage.

2.1 Description

Since launch, MIPAS performed nearly continuous measure-
ments until 26 March 2004 in high spectral resolution with
a maximum optical path difference of 20 cm. Due to limi-
tations in computational resources, at IMK only episodes of
particular scientific interest are analyzed which is about 20%
of all MIPAS measurements. MIPAS measurements which
range from pole to pole (87◦ S to 89◦ N) are analyzed in
quite regular temporal intervals of at least every tenth day.
The selected spectral regions used for ozone retrieval, the so-
called microwindows, are within the ranges 740–800 cm−1

and 1060–1110 cm−1. For more details see Glatthor et al.
(2006). Furthermore, spectra are excluded which are con-
taminated with cloud signal. For this, the method described
by Spang et al. (2004) is used, however with a more restric-
tive cloud index of 4.0.

The retrievals are performed under the assumption of lo-
cal thermodynamic equilibrium (LTE), which is valid in the
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Fig. 3. Estimated ozone error budget of MIPAS averaged over selected locations (4 seasons, 5 latitude bands, night and day). Left: absolute
errors, corresponding to values in volume mixing ratios (vmr). Right: percentage errors.

troposphere and most of the stratosphere in the selected spec-
tral regions (Echle et al., 2000). The retrieval is performed
on a fixed altitude grid with 1 km step-width up to 44 km, and
2 km step-width above with linear interpolation in altitude
between the levels. Since the retrieval grid step-width is finer
than the tangent altitude grid (about 3 km, see Sect. 1), reg-
ularization is necessary to stabilize the retrieval. Therefore,
the iterative retrieval algorithm uses a Tikhonov’s first order
smoothing constraint, where the strength of the constraint is
based on the number of degrees of freedom (Rodgers, 2000;
Steck, 2002). More details on the retrieval setup can also be
found in Glatthor et al. (2006).

2.2 MIPAS vertical resolution

The vertical resolution of MIPAS ozone is derived from the
averaging kernel matrix (Rodgers, 2000; Steck, 2002). Fig-
ure 1 (left) shows the rows of the averaging kernel matrix
which gives the contribution of the true ozone values to the
retrieved values. The columns of the averaging kernel (Fig. 1,
right) gives the response of delta-peak-like perturbations at
each altitude. Full-width at half-maximum (FWHM) of both
rows and columns of the averaging kernel gives a measure
of the vertical resolution of MIPAS ozone retrieval. Figure 2
shows the vertical resolution derived from the averaging ker-
nel matrix (Fig. 1). The values are increasing from 3.5 km
at 10 km altitude to about 5 km at 42 km, and around 8 km at
60 km altitude. These values are a result of the combination
of vertical sampling of measurements (between 3 and 8 km),
width of FOV (about 3 km), and regularization.

The oscillating nature of the curve is the result of the fol-
lowing: The spacing of the retrieval grid is 1 km whereas the
width of the FOV is 3 km, which means that only some re-
trieval gridpoints matches a tangent altitude. Generally, this
results in a larger diagonal value of the averaging kernel ma-
trix (Fig. 1, colored curves) and smaller values in the ver-

tical resolution. Retrieval gridpoints between two tangent
alitudes result in smaller diagonal values of the averaging
kernel (Fig. 1, black curves) and hence to larger values in
vertical resolution.

2.3 MIPAS error budget

Figure 3 shows the MIPAS ozone error budget averaged over
selected locations (4 seasons, 5 latitude bands, night and
day), which are used in the precision validation (Sect. 5). The
estimated total random error (Fig. 3 right, solid black) varies
between 4 and 7% between 20 and 52 km corresponding to
values in volume mixing ratios (Fig. 3 left, solid black) of
0.15 parts per million by volume (ppmv) and 0.35 ppmv in
this altitude region. The percentage errors are slightly in-
creasing towards 60 km (12%) and down to 15 km (10%).
Below 15 km the percentage errors are rapidly increasing to
values in the order of 25% for polar and midlatitude condi-
tions or more than 50% for tropical conditions, where the
vmr is small. The error in vmr remains below 0.1 ppmv.
The estimated random error is dominated by the instrumen-
tal noise above 14 km (Fig. 3 left, solid blue). Below 14 km,
the error due to uncertain water vapor concentration becomes
dominant (Fig. 3 left, solid beige). The reason for that is the
exponentially increasing water vapor with decreasing alti-
tude which leads to a dominant water vapor signal in MIPAS
spectra. These strong water vapor lines are slightly interfer-
ing with ozone lines leading to a dependence of the retrieved
ozone on the pre-retrieved water vapor amount. Also errors
due to uncertain gain calibration, N2O5, line-of-sight (LOS)
pointing, and temperature contribute noticeably.

The estimated total systematic error (Fig.3 right, dashed
black) is mainly between 4 and 14% (corresponding to 0.1
and 0.8 ppmv, Fig. 3 left, dashed black) with maxima near the
ozone maximum and in the lowermost stratosphere and be-
low. The error is dominated by uncertainties in spectroscopic
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data (Fig. 3 right, dashed blue). The altitude-dependence of
errors due to spectroscopic data is due to the fact that the
microwindows used in the retrieval are varying with altitude.
Errors caused by uncertainties in the ILS (instrumental line
shape) are in the order of 1 to 4% and thus nearly negligible
compared to spectroscopic uncertainties.

2.4 MIPAS data versions

The validation work presented in this paper is based on ozone
data of version V3OO3 7 which uses re-processed ESA
spectra of version 4.61/4.62. Since there have been several
publications with older ozone data (V2O3 2 and V2O3 3)
based on spectra with versions 4.55 to 4.59, a comparison
between the two data sets is performed in the following.

The main difference between version V3OO3 7 and old
versions (V2O3 2 and V2O3 3) is, besides the different
spectra versions, the weaker regularization leading to more
degrees of freedom of the retrieved ozone profile and better
vertical resolution (Glatthor et al., 2006). Furthermore, the a
priori profile is set zero in order to avoid artificial disconti-
nuities in the retrieved ozone distributions.

Figure 4 shows the latitude-dependent comparison be-
tween the current MIPAS (V3OO3 7) and old MIPAS
(V2 O3 2 and V2O3 3) IMK-IAA profiles. The mean pro-
files (Fig. 4, left) are in good agreement showing only little
differences. The mean difference (for calculation see Eq. 3)
is below ±0.2 ppmv for all altitudes and latitudes (Fig. 4,
middle). The mean differences show some similar structures
for all latitudes at the same altitudes (e.g., at 17 km, 28 km,
and 45 km), which is not surprising, since the regulariza-
tion is latitude-independent in both versions. The percent-
age mean differences (Fig. 4, right) are below±5% above
19 km for all latitudes. Remarkable is the large percentage
mean difference for tropical conditions (Fig. 4, right, middle
row) around 17 km. The mean difference in vmr is similar to
other latitudes, but due to the small absolute values, percent-
age differences reach 50%. This effect is discussed in more
detail in Sect. 5.1 when dealing with ozonesonde comparison
at the tropical station Paramaribo. At 14 km a compensation
is seen for the differences at 17 km.

Beyond the differences in the retrieval setup, it was found
that the different spectra versions (versions 4.55 to 4.59 com-
pared to 4.61/62) also cause differences in the retrieval re-
sults. In general the mean differences are rather small be-
tween old and new MIPAS ozone data. Only at altitudes be-
low 19 km differences can exceed 10%.

3 Validation

3.1 Comparison instruments

MIPAS measurements in high resolution are available from
the period July 2002 to March 2004, which are used for com-
parison. An overview of geolocations of coincidences with

considered instruments, together with periods of comparison,
mean spatial distances, mean temporal differences, and num-
bers of coincidences is summarized in Table 1. The different
instruments are selected in such a way that all latitudes are
covered.

To achieve a large number of correlative measurements,
the coincidence criteria for non-satellite instruments are set
to: maximum of 6 h in time, maximum of 800 km in dis-
tance with a maximum latitudinal distance of±4◦. The more
stringent latitudinal criterion has proven to be a good choice
for all comparisons, since latitudinal variations are in general
more pronounced than longitudinal ones.

For the two satellite instruments under consideration a
more stringent spatial criterion is used: maximum of 400 km
in distance with a maximum latitudinal distance of±2◦. This
still allows for plenty of correlative measurements.

3.2 Strategy and terminology

We use the terminology and formalism as summarized by
von Clarmann (2006a,b). In particular, we understand bias
is the mean deviation of the measurements from the truth,
the relative bias is the mean deviation of profiles measured
by two different instruments, and precision is the repro-
duceability of a measurement, i.e. the bias-corrected root
mean squares difference between MIPAS profiles and the
true ozone profiles, all under consideration of effects of fi-
nite resolution of the measurements. We further follow the
strategy recommended by von Clarmann (2006a) to first de-
termine the relative bias between two instruments and to use
this for the subsequent precision validation.

In a first step, two co-incident data sets (profiles, aver-
aging kernel matrices and covariance matrices), which are
given on different altitude grids, need to be made compara-
ble. The vertically higher sampled profiles are transformed
to the lower sampled altitude grid by

xh = W∗
xm, (1)

wherexh is the high resolved profile from the original mea-
surement gridxm, andW∗ is the pseudo-inverse ofW (in-
terpolation matrix from coarse to fine grid) withW∗W=I
(Rodgers, 2000).

There are two possibilities to handle the smoothing error
problem. If the altitude resolutions of the co-incident mea-
surements are in good approximation equal, the smoothing
errors cancel out when the differences between co-incident
measurements are calculated and consideration of smoothing
errors is necessary neither in bias determination nor in preci-
sion validation. This applies to the comparison with MIPAS-
B.

If the contrast in altitude resolution is so large that the finer
resolved profile can be regarded as an ideal profile, the av-
eraging kernel matrix of the coarser resolved profileA can
be applied to the finer resolved profilexh in order to adjust

Atmos. Chem. Phys., 7, 3639–3662, 2007 www.atmos-chem-phys.net/7/3639/2007/
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Fig. 4. Comparison of MIPAS version V3OO3 7 and older versions (V2O3 2 and V2O3 3, MIPAS old) ozone profiles for 5 latitude bins.
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for guidance only.
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Table 1. Geolocations of considered instruments together with period of comparison, mean spatial distance1d, mean temporal difference
1t, and number of comparison pairs.

Instrument lat/lon period 1d 1t coinc.
location (type) [deg] [km] [h] [#]

Ny-Ålesund (lidar) 78.9/11.9 10.2002–03.2003 460 2.6 362
Alomar (lidar) 69.3/16.0 09.2002–03.2004 456 2.6 108
Sodankyla (sonde) 67.8/26.6 08.2002–03.2004 456 2.8 163
Kiruna (FTIR) 67.8/20.4 09.2002–03.2004 498 1.9 498
Kiruna (microwave) 67.8/20.4 11.2002–12.2003 427 2.8 412
Hohenpeissenberg (lidar) 47.8/11.0 09.2002–03.2004 457 1.6 133
Hohenpeissenberg (sonde) 47.8/11.0 07.2002–03.2004 492 4.0 130
Zugspitze (microwave) 47.4/11.0 02.2003–07.2003 512 2.3 77
Izana (sonde) 28.5/–16.3 07.2002–03.2004 541 0.4 50
Izana (FTIR) 28.5/–16.3 09.2002–03.2004 519 2.8 189
Paramaribo (sonde) 5.8/–55.2 07.2002–03.2004 343 1.3 19
Belgrano (sonde) –77.8/–34.6 07.2002–03.2004 393 2.8 127
MIPAS-B (balloon) campaigns 09.2002–07.2003 274 2.2 9
HALOE (satellite) globally 09.2002–02.2004 227 3.8 333
POAM (satellite) N + S poles 09.2002–03.2004 214 3.3 674

it to the altitude resolution of the coarser resolved profile
(Rodgers, 2000; Rodgers and Connor, 2003):

x = xa + A(xh − xa), (2)

wherexa is the a priori profile of the coarser resolved pro-
file. In case of MIPAS, wherexa is zero, Eq. (2) simplifies
to x=Axh. After this transformation, the smoothing char-
acteristics have not to be considered any further. In case of
ground-based sounding by microwave and FTIR instruments,
their averaging kernels are used to smooth the MIPAS pro-
files, whereas the higher resolved lidar, ozonesonde, HALOE
and POAM profiles are smoothed by the MIPAS averaging
kernels. Residual smoothing error differences not accounted
for correctly by the approaches above because the assump-
tions made may hold only in approximation, are discussed in
von Clarmann and Grabowski (2007).

For bias determination and precision validation we follow
the strategy proposed by von Clarmann (2006a). In particu-
lar we perform validation of ozone mixing ratios at discrete
altitudes individually instead of profile validation (Rodgers,
2000; Migliorini et al., 2004), in order not to depend on co-
variance information between the altitudes. Since the true at-
mospheric state is not known, we can only estimate the rela-
tive biasb̆diff (or mean difference) between two datasets from
a sample ofK co-incident pairs of measurements, which is

b̆diff =

∑K
k=1(x̂MIPAS;k − x̂ref;k)

K
, (3)

wherex̂MIPAS;k are the ozone profiles retrieved by MIPAS,
and x̂ref;k are the co-incident profiles measured by the ref-
erence instrument. The statistical uncertainty of the bias

σ̆bias;n, at altitude gridpointn is estimated as

σ̆bias;n =

√

∑K
k=1(x̂MIPAS;n,k − x̂ref;n,k − b̆diff ;n)

2

K(K − 1)
, (4)

for samples large enough to disregard t-statistics (Gosset,
1908). As pointed out by von Clarmann (2006a), this assess-
ment does not need any error estimates ofx̂MIPAS or x̂ref. For
percentage multiplicative bias estimates we use the percent-
age mean difference rather than the mean percentage differ-
ence.

With the relative bias between two instruments available,
the precision at altitude gridpointn is validated by altitude-
wise testing of the de-biased mean squares difference of the
co-incident measurements against the ex ante estimate of the
variance of the differenceσ 2

diff ;n,k
in aχ2 sense:

χ2 =

∑K
k=1(x̂MIPAS;n,k − x̂ref;n,k − b̆diff ;n)

2/K

σ 2
diff ;n,k

. (5)

The ex ante estimate of the variance of random error of the
differenceσ 2

diff (or in short form: estimated combined ran-
dom error) includes the following additive components: the
estimated random error variance of MIPAS ozone; the esti-
mated random error variance of the ozone abundance mea-
sured with the reference instrument; the variance represent-
ing the expected difference due to less than perfect coinci-
dence. In our application no smoothing error of the differ-
ence has to be considered here, because of application of
Eq. (2) whenever relevant.

The error due to less than perfect coincidence (or spatial-
temporal mismatch) is derived from ECMWF (European
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Centre for Medium-Range Weather Forecasts) ozone distri-
butions and is calculated as follows:

σ 2
mm;n,k=(δxt;n1t;k)

2+(δxlat;n1lat;k)
2+(δxlon;n1lon;k)

2. (6)

δxlat;n is the difference in ozone at altituden between two
different latitude points, divided by the distance in latitude
direction, and averaged over a longitudinal bin of 10 degrees.
δxlon;n andδxt;n are defined likeδxlat;n but for longitudinal
and temporal differences.1lat;k, 1lon;k, and1t;k are the ac-
tual differences in latitude, longitude, and time for the com-
parison pairk.

4 Bias determination

4.1 Comparisons with ground-based instruments

4.1.1 Lidar data

Comparison measurements are performed with stratospheric
ozone lidar systems. The technique used is the so-called
Differential Absorption Lidar (DIAL) (see, e.g. Godin et al.,
1999). Ozone profiles are usually measured in reliable qual-
ity between 10 and 45 km altitude. The data was taken from
the NILU (Norwegian Institute for Air Research) server for
the stations at Hohenpeissenberg, Alomar, and Ny-Ålesund.
Since the ozone concentration is given in number densities,
the values are transformed into volume mixing ratios for
proper comparison with MIPAS results.

Measurements at Hohenpeissenberg (47.8◦ N, 11.0◦ E)
were available for the entire comparison period. The com-
parison is shown in Fig. 5 (top), where 133 comparison
pairs were found. The mean profiles (Fig. 5, left) show
good agreement with mean differences (Fig. 5, middle) be-
low ±0.2 ppmv up to 30 km altitude, and reaching about
0.5 ppmv at 38 km. The percentage mean differences (Fig. 5,
right) are within±10% except at 16 km, where the percent-
age mean difference reaches 15%. The rather large positive
difference around 38 km is likely due to a negative bias in
the lidar data, which was found in comparison with SAGE II
(W. Steinbrecht, personal communication, 2006).

Measurements at Alomar (69.3◦ N, 16.0◦ E) were avail-
able for the entire comparison period with 108 comparison
pairs. The mean profiles (Fig. 5, middle left) agree very well
up to 44 km with mean differences (Fig. 5, middle) below
±0.3 ppmv. The large differences at the upper end of the al-
titude range can be explained by the rather large uncertainty
in lidar data there. The percentage mean difference (Fig. 5,
right) is below±10% between 13 and 44 km. At very low
altitudes, mean differences become negative with values of
up to –20%.

Measurements at Ny-Ålesund (78.9◦ N, 11.9◦ E) (Stein-
brecht et al., 1999) were available between October 2002 and
March 2003 resulting in 362 comparison pairs. The mean
profiles (Fig. 5, bottom left) show good agreement up to

36 km with mean differences below about±0.2 ppmv (Fig. 5,
middle). Above 36 km mean differences between MIPAS
and Ny-Ålesund lidar reach values of about−0.5 ppmv.
Above 44 km the lidar values become again unreasonably
large. The percentage mean differences (Fig. 5, right) are be-
low ±10% between 17 and 43 km. At 13 km the difference
reaches +15%.

4.1.2 FTIR data

Measurements are performed with ground-based Fourier
transform spectrometers in the infrared region (FTIR). The
spectrometers are directed to the sun measuring atmospheric
absorption spectra. For ozone, a broad microwindow around
1000 cm−1 and two narrow ones around 780 cm−1 are used.
The number of independent pieces of information (or degrees
of freedom) is around 5, leading to a vertical resolution of
about 6–7 km, depending on altitude and atmospheric situa-
tion.

Ozone profiles at Kiruna (67.8◦ N, 20.4◦ E) (Kopp et al.,
2002.) were available for the entire comparison period. Fig-
ure 6 (top left) shows the comparison between MIPAS and
FTIR mean ozone profiles. The agreement is reasonable ex-
cept a pronounced discrepancy between 18 and 28 km where
the mean difference exceeds the uncertainty of the mean dif-
ference by far. This is attributed to specific choice of the
FTIR a priori profile, which is only corrected in part by ap-
plication of Eq. (2) due to non-linearities in the ground-based
retrieval. Percentage mean differences are below±10%
(Fig. 6, right) above 22 km.

In addition to profile comparison, partial zenith column
densities of ozone between 10 and 40 km have been ana-
lyzed. The agreement between MIPAS and FTIR (Kiruna) is
very good (see Table 2) with a percentage mean difference of
0.4% which is close to the estimated error of the mean differ-
ence (0.3%). This supports our explanation that differences
in the profile comparison are caused by residual altitude res-
olution and a priori differences as discussed above.

Also Izana (28.2◦ N, 16.3◦ W) FTIR ozone profiles
(Schneider et al., 2004) were available from September 2002
until March 2004. The mean profiles (Fig. 6, bottom left)
show good agreement where the mean differences are less
than ±0.4 ppmv (Fig. 6, middle). The percentage mean
differences are below±15% above 18 km altitude (Fig. 6,
right). The large percentage mean difference around 17 km
can partly be attributed to the spatial coincidence criteria.
More restrictive criteria (600 km in distance and 3◦ in lat-
itude) reduce the percentage mean difference from 40% to
20% (not shown).

Like in the Kiruna case, partial columns of ozone between
10 and 40 km have been compared in addition. The agree-
ment between MIPAS and FTIR (Izana) is again very good
(see Table 2) with a percentage mean difference of−0.4%.
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Fig. 5. Comparison of MIPAS and lidar ozone profiles. From top to bottom (number of coincidences in brackets): Hohenpeissenberg (133),
Alomar (108), and Ny-̊Alesund (362). From left to right: MIPAS (solid) and lidar (dashed) mean profiles, mean difference (solid) between
MIPAS and lidar with uncertainty of the mean (error bars), and percentage mean difference (solid) between MIPAS and lidar with uncertainty
of the mean (error bars). Dotted lines are for guidance only.

Table 2. Comparison of MIPAS and FTIR partial zenith column
densities between 10 and 40 km altitude. Entries in the table from
left to right are: station, number of comparison pairs, mean partial
columns of MIPAS and FTIR, mean difference, and uncertainty of
the mean. Values are given in units of 1020m−2.

Station N MIPAS FTIR b̆diff σ̆bias

Kiruna 498 745.8 743.1 2.7 (0.4%) 2.1 (0.3%)
Izana 189 676.3 679.3 –3.0 (–0.4%) 2.0 (0.3%)

4.1.3 Microwave data

Two ground-based microwave radiometers were used for
MIPAS validation, the 195–224 GHz Kiruna microwave ra-
diometer KIMRA at IRF Kiruna (Raffalski et al., 2005) and
the 268–280 GHz millimeter wave radiometer MIRA 2 of

IMK Karlsruhe (Kopp et al., 2002.). The retrieved ozone pro-
files of both instruments have a vertical resolution of about 6–
8 km in the lower stratosphere degrading to more than 15 km
in the lower mesosphere. The degrees of freedom amount to
about 4 for measurements taken during good weather condi-
tions.

Measurements from Kiruna (67.8◦ N, 20.4◦ E) were avail-
able from November 2002 until December 2003. Mean pro-
files of MIPAS and KIMRA are displayed in Fig.7 (top left)
showing very good agreement above 22 km with mean dif-
ferences below±0.2 ppmv (Fig. 7, middle). The nearly per-
fect agreement above 40 km is due to the strong influence
of the microwave regularization at these altitudes since the
measurement response is rather low. The smoothed MIPAS
results are forced to the microwave a priori profile. Percent-
age mean differences (Fig. 7, right) are below±5% above
22 km. In both, mean absolute and percentage mean differ-
ence, no indication of a systematic bias in MIPAS ozone is
noticeable.
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Fig. 6. Comparison of MIPAS and FTIR ozone profiles. From top to bottom (number of coincidences in brackets): Kiruna (498) and Izana
(189). From left to right: see Fig. 5.

Table 3. Comparison of MIPAS and microwave partial zenith col-
umn densities between 20 and 60 km altitude. Entries in the table
from left to right are: station, number of comparison pairs, mean
partial columns of MIPAS and microwave (MW), mean difference,
and uncertainty of the mean. Values are given in units of 1020m−2.

Station N MIPAS MW b̆diff σ̆bias

Kiruna 412 404.0 403.7 0.3 (0.1%) 2.6 (0.6%)
Zugspitze 77 589.6 573.8 15.8 (2.7%) 3.6 (0.6%)

In addition to profile comparison, partial columns of ozone
between 20 and 60 km have been analyzed. The agreement
between MIPAS and microwave (Kiruna) is very good (see
Table 3) with a percentage mean difference of 0.1% which is
below the estimated error of the mean difference (0.6%).

Ozone profiles from Zugspitze (47.4◦ N, 11.0◦ E) were
available for the MIRA campaign between February and July
2003. The comparison is shown in Fig. 7. There is good
agreement below 25 km and above 38 km with mean differ-
ences (Fig. 7, middle) smaller than±0.2 ppmv. In the ozone
maximum, MIPAS mean values are larger than MIRA by
up to 0.7 ppmv. The related percentage differences (Fig. 7,
right) remain below±10%. The larger differences at the up-
per end of the comparison region can be attributed to diurnal
variations in ozone. Microwave measurements at Zugspitze
have been performed mainly during daytime, whereas MI-
PAS measurements also have significant nighttime contribu-
tions with enhanced ozone values above about 50 km.

Table 4. Ozone sonde types and manufacturers for different sta-
tions. Abbreviations: ECC (Electrochemical Concentration Cell),
BM (Brewer Mast).

Station Type Manufacturer

Sodankyla ECC both SPC-6A and ENSCI-Z
Hohenpeissenberg BM –
Izana ECC SPC-6A
Paramaribo ECC SPC-6A
Belgrano ECC both SPC-6A and ENSCI-Z

Like in the Kiruna case, partial columns of ozone between
20 and 60 km have been compared in addition. The agree-
ment between MIPAS and microwave (Zugspitze) is not as
good as for the Kiruna station (see Table 3) with a percent-
age mean difference of 2.7%. However, this is not surprising
considering the 10% difference in the mean ozone profiles
near the ozone maximum.

4.2 Comparisons with balloon-borne instruments

4.2.1 Ozonesondes

Measurements are performed in situ with ozonesondes of the
types electrochemical concentration cell (ECC) and Brewer-
Mast (BM) on small balloons (see Table 4). Ozone profiles
are usually measured with low random error and high vertical
resolution (Smit and Straeter, 2004) from the Earth’s surface
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Fig. 7. Comparison of MIPAS and microwave ozone profiles. From top to bottom (number of coincidences in brackets): Kiruna (412) and
Zugspitze (77). From left to right: see Fig. 5.

up to the mid stratosphere (about 32 km). Since ozone is
measured in partial pressure, the values can be easily trans-
formed into vmrs. The data was taken from the NILU (Nor-
wegian Institute for Air Research) server except for Izana.

Measurements at Sodankyla (67.4◦ N, 26.6◦ E) were avail-
able for the entire measurement time of MIPAS. The com-
parison is shown in Fig. 8 (top), where the mean profiles
(left) agree very well. The mean difference (middle) is below
±0.2 ppmv for the complete altitude range. Also the percent-
age mean difference (Fig. 8, right) is very small and exceeds
±6% difference only around 15 km and below 10 km alti-
tude.

The comparison with measurements at Hohenpeissenberg
(47.8◦ N, 11.0◦ E) is shown in Fig. 8 (second from top).
The mean difference (middle) is increasing with altitude
above 25 km and reaching values larger than +0.5 ppmv. The
percentage mean difference reaches values of +20% below
16 km altitude. At higher altitudes the difference is contin-
uously increasing and reaching +10% at 30 km. A positive
mean difference is noticeable in both troposphere and strato-
sphere.

Izana (28.5◦ N, 16.3◦ W) measurements are compared
with MIPAS and results are shown in Fig. 8 (third from top).
The mean difference (Fig. 8, middle) is increasing with alti-
tude above 21 km and reaches +0.5 ppmv at 28 km altitude.
The percentage mean difference is below±20% in the tro-
posphere and below 10% in the lower stratosphere. Similar
to the Hohenpeissenberg comparison, a positive mean differ-
ence between MIPAS and ozonesonde is noticeable.

Paramaribo (5.8◦ N, 55.2◦ W) measurements are also
available for the entire comparison time interval. However,
only 19 coincidences were found for this period. The mean
profiles are displayed in Fig. 8 (second from bottom, left).
The mean differences (middle) are below±0.3 ppmv be-
low 24 km altitude. Above 24 km altitude the differences
are continuously increasing towards−0.7 ppmv. This is in
contradiction to the higher MIPAS ozone mixing ratios at
Hohenpeissenberg and Izana. A hint that these systematic
differences are not a problem of MIPAS but of the different
ozonesondes is given in Smit and Straeter (2004), who report
biases between different ozonesonde systems of up to 10%.

At 17 km MIPAS is underestimating ozone values consid-
erably by about 0.3 ppmv leading to even a negative mixing
ratio in the mean. In the IMK-IAA MIPAS retrieval negative
mixing ratios are not suppressed. While these are physically
meaningless, a positivity constraint such as the retrieval of
the logarithms of vmr instead of vmr adds complication to
the statistical analysis of results and thus has not been ap-
plied to the current retrievals.

Investigation of the Paramaribo case has shown, that appli-
cation of averaging kernels has basically no influence on the
difference between MIPAS and sonde profiles, which means
that the smoothing error of the MIPAS retrieval is not re-
sponsible for the negative values around 17 km. Dependence
on temperature and water vapor was found negligibly small.
However, in a revision of the MIPAS retrieval baseline, one
suspicious microwindow around 742 cm−1 has been detected
to be used around 17 km tangent altitude. Disregard of this
microwindow decreases the difference between ozonesonde

Atmos. Chem. Phys., 7, 3639–3662, 2007 www.atmos-chem-phys.net/7/3639/2007/



T. Steck et al.: MIPAS-Envisat IMK-IAA ozone validation 3649

mean profiles  for Sodankyla (n=163)

0 2 4 6 8 10 12

10

15

20

25

30
al

ti
tu

d
e 

(k
m

)

MIPAS
Sodankyla

mean difference  for Sodankyla (n=163)

-1.0 -0.5 0.0 0.5 1.0

10

15

20

25

30

mean difference  for Sodankyla (n=163)

-40 -20 0 20 40

10

15

20

25

30

mean profiles  for Hohenp (n=130)

0 2 4 6 8 10 12

10

15

20

25

30

al
ti

tu
d

e 
(k

m
)

MIPAS
Hohenp

mean difference  for Hohenp (n=130)

-1.0 -0.5 0.0 0.5 1.0

10

15

20

25

30

mean difference  for Hohenp (n=130)

-40 -20 0 20 40

10

15

20

25

30

mean profiles  for Izana (n=50)

0 2 4 6 8 10 12

10

15

20

25

30

al
ti

tu
d

e 
(k

m
)

MIPAS
Izana

mean difference  for Izana (n=50)

-1.0 -0.5 0.0 0.5 1.0

10

15

20

25

30

mean difference  for Izana (n=50)

-40 -20 0 20 40

10

15

20

25

30

mean profiles  for Paramaribo (n=19)

0 2 4 6 8 10 12

10

15

20

25

30

al
ti

tu
d

e 
(k

m
)

MIPAS
Paramaribo

mean difference  for Paramaribo (n=19)

-1.0 -0.5 0.0 0.5 1.0

10

15

20

25

30

mean difference  for Paramaribo (n=19)

-40 -20 0 20 40

10

15

20

25

30

mean profiles  for Belgrano (n=127)

0 2 4 6 8 10 12
vmr (ppmv)

10

15

20

25

30

al
ti

tu
d

e 
(k

m
)

MIPAS
Belgrano

mean difference  for Belgrano (n=127)

-1.0 -0.5 0.0 0.5 1.0
difference (ppmv)

10

15

20

25

30

mean difference  for Belgrano (n=127)

-40 -20 0 20 40
difference (%)

10

15

20

25

30

Fig. 8. Comparison of MIPAS and ozonesonde profiles. From top to bottom (number of coincidences in brackets): Sodankyla (163),
Hohenpeissenberg (130), Izana (50), Paramaribo (19), and Belgrano (127). From left to right: see Fig. 5.
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Fig. 9. Comparison of MIPAS and ozonesonde (Paramaribo) pro-
files for 6 February 2003. Omitting one microwindow at one alti-
tude leads to better MIPAS result (dotted line).

and MIPAS (see Fig. 9) but does not fully remove it (dot-
ted line in Fig. 9). This microwindow seems to be particu-
larly sensitive to residual cloud signal in the spectra caused
by e.g. very thin cirrus clouds undetected by the cloud filter-
ing procedure. Negative ozone mixing values were retrieved
by MIPAS particularly when the actual cloud index was low
but still higher than the threshold used by the cloud detection
algorithm. An estimation of the retrieval error due to cirrus
clouds has been done in Glatthor et al. (2006), which shows
a considerable increase of the ozone error. The negative ten-
dency of the ozone values are not yet understood and further
investigations are necessary.

The comparison with measurements at Belgrano (77.8◦ S,
34.6◦ W) is shown in Fig. 8 (bottom). The mean profiles
(Fig. 8, left) agree well, with a rather positive mean differ-
ence. In absolute values this is mostly pronounced above
20 km (Fig. 8, middle). The percentage mean difference
(Fig. 8, right) is below±20% above 17 km altitude. Below
17 km the percentage mean difference reaches 30% but the
mean absolute differences are below 0.2 ppmv.

4.2.2 MIPAS-B

MIPAS-B (Friedl-Vallon et al., 2004) is the balloon-borne
version of MIPAS measuring the atmospheric emission in a
limb viewing mode. The spectral resolution (0.034 cm−1)
and the vertical resolution (2–3 km) is similar to the space-
borne MIPAS. MIPAS-B measurements performed near Aire
sur l’Adour (24 September 2002, Envisat validation cam-
paign) and Kiruna (20/21 March and 3 July 2003) are com-
pared to those made by MIPAS-Envisat.

Figure 10 shows the comparison of MIPAS-Envisat and
MIPAS-B ozone measurements. The mean profiles (Fig. 10,
left) agree very well with mean differences below about
±0.3 ppmv for the complete altitude range. Percentage mean
differences are within±10% above 17 km. Around 15 km,
the percentage mean difference is positive, which has already
been detected in comparison with ozonesondes. The larger
differences can partly be attributed to air parcels viewed by
the instruments which are inside or at the edge of the vortex.

4.3 Comparisons with satellite instruments

4.3.1 HALOE

HALOE (Halogen Occultation Experiment) is a solar occul-
tation instrument (Russell III et al., 1993) on board the Upper
Atmosphere Research Satellite launched in September 1991.
It measured ozone during sunrise and sunset atmospheric
conditions. Due to the limb-viewing geometry a good verti-
cal resolution (about 2.3 km) was achieved, which is slightly
better than that of MIPAS. The measurements were made in
the mid IR, at 9.6µm, which is partly the same band used in
MIPAS retrievals. For the comparison, HALOE version 19
data is used.

Figure 11 shows the global comparison between MIPAS
and HALOE. For nearly all altitudes, we see a positive mean
difference (Fig. 11, middle) between MIPAS and HALOE
with values up to 0.6 ppmv at 28 km and 44 km. The positive
mean differences are attributed to the use of different spec-
troscopic databases. HALOE uses line strengths which are
increased by 5% compared to HITRAN 92 leading to smaller
mean ozone values (Brühl et al., 1996; Randall et al., 2003).
This is confirmed by a bias in the percentage mean differ-
ence (Fig. 11, right) between roughly 0 and 10%. Since
the microwindows used for MIPAS vary with altitude, it
is expected that the bias also varies with altitude. Below
15 km, mean percentage differences become larger, which
has already been detected in comparisons to ozonesondes
(see Sect. 4.2.1).

The pronounced structure at around 18 km (see Fig. 11,
middle) is attributed to the residual cloud signal problem in
the suspicious microwindow used in the MIPAS retrieval,
which has already been discussed in the context of the
comparison with Paramaribo ozonesonde measurements (see
Sect. 4.2.1). Too small MIPAS values do not only appear in
the tropical region, but at all latitudes (Fig. 11). This indi-
cates that not only cirrus, but also polar stratospheric clouds
(PSCs) could be involved.

The other sharp structure at around 32 km is caused by
a discontinuity in the MIPAS background continuum emis-
sion, which is set zero above this altitude but fitted below
(von Clarmann et al., 2003b). Glatthor et al. (2006) have
found by sensitivity studies that this leads to compensation
effects which introduce a structure in MIPAS ozone profiles
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Fig. 10. Comparison of MIPAS-Envisat and MIPAS-B ozone profiles (9 coincidences). From left to right: see Fig. 5.

around 32 km. A revision of the retrieval strategy for the at-
mospheric continuum emission is under way.

4.3.2 POAM III

Polar Ozone and Aerosol Measurement III (POAM III,
Lucke et al., 1999; Lumpe et al., 2002) on board the SPOT-4
satellite was launched in March 1998. POAM III uses, like
HALOE, the solar occultation technique for measuring the
vertical distribution of ozone during sunrise and sunset. The
spectral region used for ozone measurements lies, unlike MI-
PAS and HALOE, in the visible region at 603 nm. The verti-
cal resolution (Randall et al., 2003) in the stratosphere (15 to
50 km altitude) is 1 km, reaching 5 km at 5 km altitude, and
2.5 km at 60 km altitude. For the comparison, POAM version
4 data is used.

Due to the given orbit of SPOT-4, there are no measure-
ments between about 50◦ N and 50◦ S available. Together
with the coincidence criteria (Sect. 3.1) only comparisons
polewards of 50◦ N and 60◦ S have been found leading to
674 comparison pairs.

Figure 12 shows the comparison between MIPAS and
POAM correlative measurements divided into northern and
southern polar regions. The mean profiles (Fig. 12, left) of
MIPAS and POAM agree well. At 32 km a slight negative
kink in the mean MIPAS results is visible (especially in the
southern polar region) but not present in POAM. In the com-
parison with HALOE this feature has already been discussed
and is due to the strategy of atmospheric continuum retrieval.
Since this feature seems to be more pronounced in the south-
ern polar region suggests that very thin PSCs may have an
influence on the ozone retrieval due to upward error propa-
gation. With a vertical FOV slightly larger than 3 km, the
suggestion above becomes more likely.

When considering the entire altitude range, there is no ob-
vious bias of any sign visible (Fig. 12, middle), leading to
mean differences mainly below±0.2 ppmv. The percentage
mean differences (Fig. 12, right) are below±10% for all alti-
tudes and both polar regions. Below 20 km, a similar feature
like in the HALOE comparison is visible, however less pro-
nounced, which is due to the given latitude region.

4.4 Summary

In the previous sections, MIPAS ozone data have been com-
pared to single instruments which give findings for specific
locations and altitudes. In most altitudes and latitude bands,
MIPAS ozone agrees well with the comparison instruments.
Two problems have been identified: First, MIPAS ozone has
a systematic negative kink around 32 km. This is explained
by the treatment of atmospheric continuum emission in the
retrieval (c.f. Sect. 4.3.1), which is forced to zero above this
altitude. The transition will be moved to higher altitudes
where the actual continuum signal can be expected to be
zero. Second, around 18 km MIPAS ozone tends to low val-
ues. At least part of this problem has been solved and can be
attributed to a particular microwindow used at these altitudes
which will be removed in future versions.

In addition to the local and latitude band-wise investiga-
tion a comprehensive global comparison between MIPAS
ozone and all other validation data from the different instru-
ment types (lidar, FTIR, microwave, ozonesonde, MIPAS-B,
HALOE, and POAM) is performed. The mean differences
(Fig. 13, left) are within±0.5 ppmv at all altitudes showing
very good agreement between MIPAS and the comparison
instruments. The mean differences have a slight positive ten-
dency particularly in the lower stratosphere with values be-
tween−0.1 and 0.5 ppmv. FTIR values around 20 km seem
to be too high compared to the other instruments. Mean dif-
ferences below 18 km show values between−0.1 ppmv and
0.2 ppmv. Around 15 km altitude, MIPAS ozone is higher
compared to most other instruments which is likely a com-
pensation for the negative kink above.

The percentage mean differences (Fig. 13, right) are within
±10% above 18 km with very few exceptions. This is mainly
within the expected systematic errors of MIPAS which are in
the order of 5 to 10% (see Fig. 3). The large mean differ-
ences detected in specific latitude bands around 18 km are
below −5% compared to most instrument types and are of
less importance on a global scale. Below 17 km the percent-
age mean differences become larger with a positive tendency
compared to most instrument types with values between−20
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Fig. 11. Comparison of MIPAS and HALOE ozone profiles for 5 latitude bins. From top to bottom (number of coincidences in brackets):
90◦ N to 60◦ N (69), 60◦ N to 30◦ N (67), 30◦ N to 30◦ S (49), 30◦ S to 60◦ S (54), and 60◦ S to 90◦ S (94). From left to right: see Fig. 5.
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Fig. 12. Comparison of MIPAS and POAM ozone profiles for 2 latitude bins. From top to bottom (number of coincidences in brackets):
90◦ N to 60◦ N (347) and 60◦ S to 90◦ S (327). From left to right: see Fig. 5.
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Fig. 13. Comprehensive global comparison of ozone from MIPAS with HALOE (333 comparison pairs, solid blue), POAM (674, dashed
blue), lidar (603, solid red), FTIR (687, dashed red), microwave (489, dotted red), ozonesonde (489, solid green), and MIPAS-B (9, dashed
green). Left: mean difference between MIPAS and others with uncertainty of the mean (error bars), right: percentage mean difference
between MIPAS and others with uncertainty of the mean (error bars). Dotted lines are for guidance only.

and 30%. Here, the mean differences exceed the estimated
systematic errors of MIPAS. But considering that the com-
parison instruments also have biases, the found mean differ-
ences are of reasonable size and should not be overstressed.

5 Precision validation

In this section the estimated random error of the difference
is compared with the bias-corrected root mean squares (rms)
difference between MIPAS and the comparison instrument
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Fig. 14. Analysis of MIPAS and lidar ozone random errors. From top to bottom (number of coincidences in brackets): Hohenpeissenberg
(133), Alomar (108), and Ny-̊Alesund (362). From left to right: mean absolute errors (solid: MIPAS random, dashed: lidar random, dotted:
mismatch, blue: combined random, red: de-biased rms difference), percentage mean errors (lines as for absolute errors), and scaledχ2

values (dotted line marks the 95% limit).

(see Sect. 3.2). The instrument descriptions can be found in
the previous section. Theχ2 value, introduced in Eq. (5),
gives indication at which altitude two datasets agree or dis-
agree for given random error estimation. Since the altitude
range for comparison of two profiles can differ from location
to location due to, e.g., cloud top height and top altitude of
ozone sondes, the number of comparison pairs per altitude
can differ with altitude. Therefore we have scaled eachχ2

by χ2
f , corresponding to a significance levelf for the appro-

priate number of pairs. Thus the ratioχ2/χ2
f should exceed

unity only with probabilityf (Migliorini et al., 2004), where
f is set to 5%.

5.1 Validation with ground-based instruments

5.1.1 Lidar

The analysis of MIPAS and lidar random errors is displayed
in Fig. 14. The estimate of the total random error (solid blue)

for Hohenpeissenberg agrees very well with the de-biased
rms difference (solid red, Fig. 14, top). The error due to
less than perfect coincidence (Fig. 14, dotted line) plays the
dominant role at altitudes below about 30 km where natural
variability is very large. The scaledχ2 values only slightly
exceed the 95% confidence level.

For Alomar (Fig. 14, middle) and Ny-Ålesund (Fig. 14,
bottom) the agreement between estimated random error and
rms difference is similar to the case of Hohenpeissenberg but
at a higher level of values. This can be attributed to the higher
natural variability in the polar vortex region. Additionally,
inside the polar vortex, very thin PSCs have affected MIPAS
retrievals.

5.1.2 FTIR

The analysis of MIPAS and FTIR random errors is displayed
in Fig. 15. For Kiruna (Fig. 15, top), the de-biased rms dif-
ference agrees well with the estimated random error for most
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Fig. 15. Analysis of MIPAS and FTIR random errors. From top to bottom (number of coincidences in brackets): Kiruna (498) and Izana
(189). From left to right: see Fig. 14.
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Fig. 16. Analysis of MIPAS and microwave random errors. From top to bottom (number of coincidences in brackets): Kiruna (412) and
Zugspitze (77). From left to right: see Fig. 14.

altitudes. At 15 and 20 km the scaledχ2 values are larger
than 1. PSC affected MIPAS retrievals in the polar vortex re-
gion are the most probable reasons for this discrepancy. We
also tested the inclusion of potential vorticity as additional
coincidence criteria. However, the reduction of de-biased
rms differences was only marginal (not shown).

For Izana (Fig. 15, bottom), the agreement between de-
biased rms difference and estimated random error is good
except for the tropopause region. The larger discrepancies
there are probably due to the difficult retrieval situation to
get the tropical tropopause correctly. In fact both random er-
ror components of MIPAS and FTIR are peaking 2 km higher
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Fig. 17. Analysis of MIPAS and ozonesonde random errors. From top to bottom (number of coincidences in brackets): Sodankyla (163),
Hohenpeissenberg (130), Izana (50), Paramaribo (19), and Belgrano (127). From left to right: see Fig. 14.
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Fig. 18. Analysis of MIPAS-Envisat and MIPAS-B random ozone errors (9 coincidences). From left to right: see Fig. 14.

than the de-biased rms difference. Without this shift in alti-
tude, the scaledχ2 values would be almost always below 1.
Above 35 km, the percentage random error of MIPAS is very
small. This can be attributed to the strong influence of FTIR
averaging kernels there.

5.1.3 Microwave

The analysis of MIPAS and microwave random errors and
de-biased rms difference is displayed in Fig. 16. The mi-
crowave averaging kernel has a strong impact on MIPAS er-
rors, which are basically zero above 40 km for both locations
(solid black line in Fig. 16 left). The microwave random er-
ror is estimated to be 6% and constant for all altitudes.

For Kiruna (Fig. 16, top), the de-biased rms difference
agrees well with the estimated random error in the region
of the ozone maximum. Below about 30 km the de-biased
rms difference is increasing slightly stronger than the esti-
mated random error. For Zugspitze (Fig. 16, bottom) the
agreement is very good below 42 km altitude with scaledχ2

values smaller than 1. Above 42 km altitude, the percent-
age rms difference increases which can be attributed to diur-
nal variations in ozone. Microwave measurements have been
performed mainly during daytime, whereas MIPAS measure-
ments also have significant nighttime contributions with en-
hanced ozone values above about 50 km leading to a large
variability.

5.2 Validation with balloon-borne instruments

5.2.1 Ozonesondes

The analysis of MIPAS and ozonesonde random errors is
displayed in Fig. 17. For Sodankyla (Fig. 17, top), the de-
biased rms difference exceeds the estimated random error
only around 15 km altitude. For Belgrano (Fig. 17, bot-
tom) the scaledχ2 value exceeds 1 at 20 km which can be
attributed again to the influence of PSCs on MIPAS ozone
retrievals. For both polar conditions the error due to imper-
fect coincidence plays a very important role for the total es-
timated random error.

The results for Hohenpeissenberg (Fig. 17, second row)
are even better than for the Sodankyla case. For Izana
(Fig. 17, third row) there are discrepancies around 15 km
altitude. Here very thin cirrus clouds not detected in the
MIPAS cloud filter are at least partly responsible for the
larger scaledχ2 values. Since the MIPAS random error be-
low 15 km is dominated by uncertainties in the water vapor
amount (Fig.3), scaledχ2 values larger than 1 can also orig-
inate from underestimation of actual water vapor uncertain-
ties.

For Paramaribo (Fig. 17, second from bottom) the esti-
mated random error exceed the de-biased rms differences
at all altitudes. The error estimates for the two instruments
seem to be too high for this geolocation.

5.2.2 MIPAS-B

The analysis of MIPAS-Envisat and MIPAS-B ozone random
errors is displayed in Fig. 18. The estimated random error
and the de-biased rms differences agree very well. The scaled
χ2 for the confidence limit of 95% is exceeded at 15 km only.
Occasional highχ2 values, however, give no evidence of
substantial disagreement but are explained by theχ2 prob-
ability distribution.

5.3 Validation with satellite instruments

5.3.1 HALOE

The analysis of MIPAS-Envisat and HALOE ozone random
errors is displayed in Fig. 19. The estimated random error
and the de-biased rms differences agree well in the region
of the ozone maximum for all latitudes. The largest rms dif-
ferences are visible at 50 km altitude for southern midlatitude
conditions. It is very likely that the diurnal variation of ozone
is the reason for this discrepancy. Horizontal gradients can
be very large at these altitudes for occultation measurements
like HALOE. As described in Natarajan et al. (2005), twilight
gradients have an impact in the order of 20% on ozone near
0.1 hPa. Furthermore, MIPAS usually measures during day-
time or nighttime. This means that nighttime enhanced ozone
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Fig. 19. Analysis of MIPAS and HALOE ozone random errors for 5 latitude bins. From top to bottom (number of coincidences in brackets):
90◦ N to 60◦ N (69), 60◦ N to 30◦ N (67), 30◦ N to 30◦ S (49), 30◦ S to 60◦ S (54), and 60◦ S to 90◦ S (94). From left to right: see Fig. 14.
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Fig. 20. Analysis of MIPAS and POAM ozone random errors for 2 latitude bins. From top to bottom (number of coincidences in brackets):
90◦ N to 60◦ N (347) and 60◦ S to 90◦ S (327). From left to right: see Fig. 14.

produces a large natural variability in the comparison not re-
flected by the error assessment. Division between day- and
nighttime measurements of MIPAS demonstrates the impact
on the de-biased rms differences (not shown). Especially MI-
PAS daytime measurements agree with HALOE well within
the error estimates.

For polar conditions (Fig. 19, top and bottom) and lower
altitudes, we find a similar behaviour of the scaledχ2 values
as for the ozonesondes Sodankyla and Belgrano (Fig. 17, top
and bottom). Larger values can be found also above 20 km
where PSCs can affect MIPAS ozone retrievals. Both, the
criteria for cloud detection and the estimation of random er-
rors may need adaption in particular for southern polar vor-
tex conditions. Furthermore we find a dependence with sea-
sons. The polar cases contain only few comparisons for win-
ter conditions due to the occultation measurement technique
of HALOE. For polar summer conditions, the estimated ran-
dom error and the de-biased rms differences agree very well
for all altitudes. The large values for the rms difference orig-
inates mainly from spring and autumn conditions where the
natural variability is very high.

The inclusion of potential vorticity as additional coinci-
dence criteria reduces the de-biased rms differences only
slightly (not shown). This supports the statement that mainly
undetected thin clouds in MIPAS retrievals are the reason
for the discrepancy between estimated random error and de-
biased rms difference.

For tropical conditions (Fig.19, middle), we see the best
agreement between estimated error and rms difference. For
both midlatitude bands we also find good agreement with
some larger scaledχ2 values below 22 km. The larger dis-
crepancies also have a seasonal component (not shown).
The de-biased rms differences is largest for midlatitude win-
ter conditions in both hemispheres where the variability of
ozone is very large. As mentioned in Sect. 5.2.1, the influ-
ence of water vapor on the estimated ozone error may have
been underestimated in the region around the tropopause and
can contribute toχ2 values larger than 1.

5.3.2 POAM III

The analysis of MIPAS-Envisat and POAM ozone random
errors is displayed in Fig. 20. The estimated random error
and the de-biased rms differences agree well for most of the
altitudes. Above 50 km at northern latitudes (Fig. 20, top),
the estimated errors are exceeding the rms difference consid-
erably. As for HALOE, these discrepancies can mainly be
attributed to diurnal variations in ozone. The effects which
lead to larger discrepancies around 17 km for both latitude
bands have been described for HALOE and are due to high
undetected clouds in the MIPAS retrieval.

5.4 Summary

Total estimated random error, which contains MIPAS ran-
dom error, random error of the correlative measurement, and
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mismatch error, and de-biased rms difference show good
agreement for all instruments and all latitudes particularly in
the region of the ozone maximum. For tropical conditions we
find good agreement at almost all altitudes. Some larger dis-
crepancies occur below about 25 km for midlatitudinal and
polar regions, where MIPAS ozone retrievals can be affected
by undetected clouds. MIPAS random errors in these regions
seem to be slightly underestimated caused by too small water
vapor uncertainties. The error due to imperfect coincidence
(mismatch error) plays an important role except for tropical
conditions.

From the error analysis plots, MIPAS precision can be es-
timated to be between 5 and 10% for an altitude region of
about 20 to 55 km. Above 55 km the precision is degrad-
ing towards values between 15 and 20%. Below 20 km the
precision is in the order of 0.1 ppmv which gives percentage
values between about 20 and 50% depending on the latitude.

6 Summary and conclusions

MIPAS ozone profiles have been compared to and validated
with a large number of correlative measurements of differ-
ent type and geolocation. Correlative instruments comprise
ground-based lidars, Fourier transform infrared spectrome-
ters, and microwave radiometers as well as balloon-borne
ozonesondes, MIPAS-B, and satellite instruments (HALOE,
POAM III) allowing comparisons with global coverage.

We have described the MIPAS ozone data version
V3O O3 7 with its errors and vertical resolution and per-
formed a comparison with older data versions (V1O3 2 and
V1 O3 2 ) which use stronger regularization. Mean differ-
ences are below±0.2 ppmv between 10 and 56 km altitude
and percentage mean differences are mainly below±3% be-
tween 19 and 54 km.

The overall bias assessment of MIPAS (Fig. 13) shows
good agreement between MIPAS and the other instrument
types and good data quality. Mean differences are within
±0.5 ppmv and mean percentage differences vary mainly be-
tween±10% above 18 km altitude which is in agreement
with the estimated MIPAS systematic error. For tropical con-
ditions, percentage differences can be much larger. This has
been attributed to a particular spectral analysis window used
in the MIPAS retrieval which will no longer be used from
version V3OO3 9 on. The too small ozone values around
32 km, which have only little impact on a global scale, can
be attributed to a problem in the strategy of atmospheric con-
tinuum emission retrieval, which is understood and will be
solved (Glatthor et al., 2006). Below 18 km, mean differ-
ences are between−0.1 ppmv and 0.2 ppmv and percentage
values are between−20% and 30%. Around 15 km altitude,
MIPAS ozone is higher compared to most other instruments,
which is likely a compensation effect for the negative kink
around 18 km altitude.

The precision validation shows very good agreement be-
tween estimated random error and de-biased rms difference.
Larger discrepancies at altitudes above 50 km are attributed
to diurnal variations of ozone in MIPAS measurements which
are only slightly present in the comparison instruments due
to the solar occultation measurement technique of HALOE
and POAM III. Discrepancies below 25 km can mainly be at-
tributed to thin clouds which are not detected by the cloud
filter and affect MIPAS ozone retrievals. Underestimation of
water vapor induced error is also likely to contribute to these
discrepancies. The error due to imperfect spatial-temporal
coincidence plays an important role particularly at altitudes
below 30 km for polar and midlatitude conditions. From
the error analysis plots, MIPAS precision can be estimated
to be between 5 and 10%, corresponding to vmr values of
0.15 ppmv and 0.4 ppmv, for an altitude region of about 20
to 55 km. Above 55 km and below 20 km the precision is
degrading towards values of 20%. In tropical conditions the
precision can reach percentage values in the order of 50%,
whereas the absolute values stay around 0.1 ppmv.

Together, bias determination and precision validation sug-
gests an accuracy of MIPAS ozone retrievals of 15 to 20%
between 20 and 55 km altitude. Below 20 km MIPAS accu-
racy is degrading to values of 20 to 50% depending on al-
titude and latitude. The validation of the operational ozone
product (Cortesi et al., 2007) generally shows degradation in
the agreement with comparison data in both bias and preci-
sion at altitudes below 20 to 25 km. In comparison to that,
the IMK-IAA ozone accuracy below 20 km altitude is also
degrading but the data show better agreement with compar-
ison instruments. This is in particular the case for precision
validation.

Acknowledgements. We thank ESA for providing the MIPAS
spectra (Level-1B data) and the POAM Team at the US Naval
Research Laboratory for providing the data.

Edited by: P. Hartogh

References

Bracher, A., Bovensmann, H., Bramstedt, K., Burrows, J. P., von
Clarmann, T., Eichmann, K.-U., Fischer, H., Funke, B., Gil-
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