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Abstract. We measured the fluxes of several hydrocarbon
species above a Scots pine (Pinus sylvestris) stand using
disjunct eddy covariance technique with proton transfer re-
action – mass spectrometry. The measurements were con-
ducted during four days in July at SMEAR II research sta-
tion in Hyytiälä, Finland. Compounds which showed signif-
icant emission fluxes were methanol, acetaldehyde, acetone,
and monoterpenes. A stochastic Lagrangian transport model
with simple chemical degradation was applied to assess the
sensitivity of the above canopy fluxes to chemistry. Accord-
ing to the model, the chemical degradation had a minor effect
on the fluxes measured in this study but may have a major ef-
fect on the vertical flux profiles of more reactive compounds,
such as sesquiterpenes. The monoterpene fluxes derived us-
ing M81 and M137 had a systematic difference with the latter
one being higher. These fluxes followed the traditional expo-
nential temperature dependent emission algorithm but were
considerably higher than the fluxes measured before at the
same site. The normalized monoterpene emission potentials
at 30◦C, obtained using the temperature dependence coeffi-
cient of 0.09◦C−1, were 2.0µg g−1

dw h−1 and 2.5µg g−1
dw h−1,

for fluxes derived using M81 and M137.

1 Introduction

Reactive hydrocarbons, or volatile organic compounds
(VOCs), take part in many chemical processes occurring in
the atmospheric boundary layer. Together with nitrogen ox-
ides they are involved in ozone production and destruction
processes (Chameides et al., 1992; Fehsenfeld et al., 1992),
thus affecting regional ozone pollution. These compounds
are also involved in the formation and growth of atmospheric
aerosol particles (Kulmala et al., 2004; Tunved et al., 2006)
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which affect the transfer of solar radiation in the atmosphere
and act as cloud condensation nuclei. In addition VOCs may
have an effect on the optical properties of aerosol particles
(Nozière and Esteve, 2005). Guenther (2002), Kesselmeier
et al. (2002) and Bortoluzzi et al. (2006) have also discussed
the role of the biogenic hydrocarbon emissions in the carbon
balances of various ecosystems.

Globally, Guenther et al. (1995) have estimated vegeta-
tion to emit about seven times more hydrocarbons into the
atmosphere than human activity. Also, on a regional scale, in
areas with low population density, such as Finland, Simpson
et al. (1999) and Lindfors et al. (2000) have estimated that
hydrocarbon emissions from vegetation exceed the anthro-
pogenic emissions. About half of the emitted hydrocarbons
is comprised of terpenoids, mostly isoprene and monoter-
penes (Guenther et al., 1995). The majority of the research
on VOC emissions has focused on the isoprene and monoter-
pene emissions, while non-terpenoid hydrocarbons, making
up the other half of the emissions, have received consider-
ably less attention. As a result, emission estimates of these
compounds remain highly uncertain.

Recently, both analytical skills and flux measurement
methodologies have developed to allow us to measure the
emissions of both terpenoid and non-terpenoid hydrocarbons
at the canopy scale more directly than in the past. The
development and commercialization of the proton transfer
reaction-mass spectrometry (PTR-MS) has allowed on-line
concentration measurements of hydrocarbons with a reason-
ably short response time (Lindinger et al., 1998) and the ap-
plication of the disjunct eddy covariance technique (Rinne et
al., 2001; Karl et al., 2002) has enabled us to conduct simul-
taneous flux measurements of several hydrocarbon species.

As many VOCs have a relatively short lifetime in the atmo-
spheric boundary layer, the above canopy fluxes do not nec-
essarily fully reflect the surface emission. The emitted com-
pounds may for instance react and be transformed to other
compounds before they are transported to the measurement
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point. The ratio of the above canopy vertical mixing time
(τmix=z/u∗) to the chemical lifetime of a compound, called
the Damk̈ohler number,Da=τmix/τ chem, is often used to as-
sess the importance of the chemical degradation on the mea-
sured fluxes. However, for tall canopies the below canopy
sources, chemistry and transport are not well characterized
by this approach. In order to assess the possible impact of
the chemical degradation on the fluxes, we used a stochastic
Lagrangian transport model with simplified chemical degra-
dation similar to that used by Strong et al. (2004).

Experiments conducted on various plant species and
ecosystems have indicated large emissions of such non-
terpenoid hydrocarbons as methanol and acetone (Janson et
al., 1999; Janson and de Serves, 2001; Warneke et al., 2002;
Spirig et al., 2005). However, very little experimental data
exist on the emissions of non-terpenoid VOCs from most
ecosystems. In Finland, boreal coniferous forests cover about
60% of the land area and the dominant tree species are Scots
pine (Pinus sylvestris L.) and Norway spruce (Picea abies
Karst.) (FFRI, 2005). Until now, the non-terpenoid emis-
sions from these ecosystems have been measured only at
the branch scale (Janson et al., 1999; Janson and de Serves,
2001). Our aim is to determine the magnitude of the emis-
sions of different non-terpenoid, as well as terpenoid, hydro-
carbon species at the canopy scale from a boreal pine for-
est ecosystem using the disjunct eddy covariance technique
combined with proton transfer reaction – mass spectrometry.

2 Methods

2.1 Flux measurements

We applied the disjunct eddy covariance (DEC) technique
to measure the fluxes of VOCs from the Scots pine forest
ecosystem. In the disjunct eddy covariance method the flux
is calculated as a covariance of the vertical wind speed and
trace gas concentration

F =
〈

w′c′
〉

=
1

N

N
∑

i=1

w′
ic

′
i, (1)

wherew′=w− 〈w〉 is the momentary deviation of the verti-
cal wind velocityw from its average value, andc′=c− 〈c〉

is that of the trace gas concentration. The brackets denote
averages over the measurement period, typically 30–60 min.
Each vertical wind speed and trace gas concentration value
must be measured with a fast time response instrument in or-
der to take into account the high frequency contribution to the
flux. Typically instruments with response times shorter than
one second are used in eddy covariance flux measurements.

In contrast to the traditional continuously sampling eddy
covariance technique, in the disjunct eddy covariance tech-
nique the vertical wind speed and trace gas concentration val-
ues used for the flux calculation have a relatively long time
interval between them. The sub-sampling of the continuous

time series does increase the random uncertainty of the mea-
sured flux value, but does not lead to systematic errors as
long as the averaging period is much longer than the inte-
gral time-scale ofw′c′ (Lenschow et al., 1994). The variant
of the DEC technique we are utilizing, first used by Karl et
al. (2002), takes the advantage of the features of the PTR-MS
analyzer. The PTR-MS method is based on detecting charged
molecules that are selected according to their mass. The re-
sponse time of the fast response PTR-MS is well below one
second making it capable of eddy covariance measurements
with continuous sampling. However, PTR-MS is not able to
measure more than one mass at a time. In the DEC method
which we utilize, concentrations of different masses are thus
measured cyclically, each mass for less than a second. The
whole cycle, with the successive mass measurements, can
last anything from a few seconds up to half a minute. A dis-
junct time series of each mass measured with fast response
time is thus formed, which is then correlated with the vertical
wind speed.

The different variants of DEC technique have been inter-
compared experimentally with the traditional continuously
sampling eddy covariance method by Ammann et al. (2006)
and Rinne et al. (2007)1. Both observed good correlation
with the fluxes measured by the DEC and conventional con-
tinuously sampling eddy covariance methods. In the inter-
comparison experiment by Rinne et al. (2007)1 grab sam-
plers similar to those used by Rinne et al. (2001), Warneke
et al. (2002) and Grabmer et al. (2004) were utilized. On
the other hand, Ammann et al. (2006) utilized the variant of
DEC which we are using here and which has previously been
used by Karl et al. (2002, 2003, 2004, 2005) and Spirig et
al. (2005).

Our measurement system consisted of an acoustic
anemometer (Gill Instruments Ltd., Solent HS1199), 8 mm
i.d., 32 m long sample line with 15 L min−1 flow rate, and
a proton transfer reaction – mass spectrometer (PTR-MS,
Ionicon Analytik GmbH). The acoustic anemometer and in-
let of the sample line were at the height of 22 m above the
ground. The three-dimensional wind data was measured con-
tinuously at a rate of 10 Hz and recorded on a separate com-
puter. The concentrations of selected VOCs were measured
with the PTR-MS by pulling a side flow of 0.1 L min−1 from
the main sample line via 1 m long tubing with inner diame-
ter of 1.6 mm (Fig. 1). The measurement cycle lasted about
5.9 s and consisted of measurements of primary ion and water
cluster signals and seven masses associated with VOCs (Ta-
ble 1). The compounds contributing to the masses measured
by PTR-MS have been discussed by de Gouw and Warneke
(2007).

Due to the residence time of the air sample in the sam-
ple tubing, there is a lag-time between the moment when the

1Rinne, J., Douffet, T., Prigent Y., and Durand, P.: Field com-
parison of disjunct and conventional eddy covariance techniques for
trace gas flux measurements, Environ. Pollut., submitted, 2007.
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Table 1. PTR-MS measurement cycle used in the flux measurements, together with the compounds contributing to the measured masses and
integration, or dwell, times. The total cycle length was 5.9 s.

Protonated Contributing compound Formula of the Integration
mass (amu) contributing compound (dwell) time

21 water isotope H18
2 O 0.2

25 (control mass) 0.2
32 oxygen O2 0.2
33 methanol CH3OH 0.5
37 water cluster H2OH2O 0.2
39 water cluster H2OH18

2 O 0.2
45 acetaldehyde C2H4O 0.5
55 water cluster 3(H2O) 0.2
57 water cluster 2(H2O)H18

2 O 0.2
59 acetone C3H6O 0.5
81 fragment of monoterpenes 0.5
99 hexenal C6H10O 0.5
101 hexanal C6H12O 0.5
137 monoterpenes C10H16 0.5

concentration signal is drawn into the sample line and the
time when it is measured by the analyzer. This causes a time
lag between the vertical wind velocity and VOC concentra-
tion time series. Additional source of uncertainty in the tim-
ing of these time series is caused by the use of two separate
computers. We determined the time lag between the verti-
cal wind speed time series and the concentration time series
by finding the maximum in the covariance function. This is
the standard method for determination of the time lag used in
the CO2 flux measurement networks (Moncrieff et al., 1997;
Aubinet et al., 2000).

The uncertainty of the flux value is determined using the
standard deviation of the covariance function far from its
maximum value (Spirig et al., 2005). If we assume this stan-
dard deviation to be normally distributed we obtain 95% con-
fidence interval by multiplying the standard deviationσ by
1.96, as 95% of normally distributed data lies within±1.96σ
from the mean value.

2.2 VOC concentration measurements

We calculated the VOC concentrations,ci , according to

ci=αi





Si
(

δ−1
M21/M19SM21+SM37

)−
Si,zero

(

δ−1
M21/M19SM21,zero+ SM37,zero

)



 , (2)

whereαi is the calibration coefficient,Si is the signal of the
mass in cps,Si,zero is the signal of the mass when hydrocar-
bon free air is being fed to the analyzer,SM21 andSM37 are
signals of M21 and M37 during the measurements, respec-
tively, andSM21,zero andSM37,zero are those during the mea-
surement of zero air.δM21/M19=0.002 is the ratio of H18

3 O+

to H16
3 O+. We obtained the calibration coefficients by di-

rect calibration with gas standard and inverting the Eq. (2) to
yield αi .

The PTR-MS was calibrated weekly using a VOC standard
mixture (Apel-Riemer Environmental Inc.) that contained all
compounds associated with the measured masses except for
hexenal. The concentration of each VOC in the standard was
in the range of 1 ppm per compound. The standard gas was
diluted to the range of 50 ppb using VOC-free air that was
obtained from ambient air with a zero-air generator (Parker
ChromGas, model 1001). The background signal of VOCs
was measured every second hour from the zero-air.

2.3 Measurement site

The measurement site, SMEAR II station (61◦51′ N,
24◦17′ E, 181 m a.s.l.) in Hyytïalä, Finland, is located in
south boreal sub-zone (Vesala et al., 1998; Kulmala et al.,
2001; Hari and Kulmala, 2005). Vegetation at the site is dom-
inated by 40 yr old Scots pine (Pinus sylvestris) trees. The
canopy height is approximately 15 m. The ground vegetation
consists of lingonberry (Vaccinium vitis-idaea), blueberry
(Vaccinium myrtillus), and mosses (Pleurozium scheberi; Di-
cranum polysetum). The dry needle biomass density of Scots
pines, obtained by methods described by Ilvesniemi and Liu
(2001), was 540 g m−2 (2005 data, H. Ilvesniemi2, personal
communication). The total biomass of ground vegetation at
the site was 100 g m−2 (Launiainen et al., 2005). Previously,
Rinne et al. (2000) and Spanke et al. (2001) have conducted
canopy scale VOC emission measurements at the site using
gradient techniques. Leaf and branch scale measurements

2H. Ilvesniemi, Finnish Forest Research Institute, Vantaa, Fin-
land
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PTR-MS

pump

32

m

1 m

Fig. 1. Schematic of the measurement system. The black lines indi-
cate Teflon tubing with flow direction indicated by arrows. The
inner diameter of the long tubing was 8 mm and the flow in it
15 L min−1. The side flow of 0.1 L min−1 was taken to the PTR-
MS via tubing with 1.6 mm inner diameter.

of the VOC emissions from vegetation at the site have been
conducted by Janson and de Serves (2001), Ruuskanen et
al. (2005), Tarvainen et al. (2005), Hakola et al. (2006), and
Hellén et al. (2006). General overview of long term flux mea-
surements of carbon dioxide, water vapor, ozone and aerosol
particles at the site is given by Suni et al. (2003).

The measurements described here were conducted 14–17
July 2005. The air temperature, photosynthetical photon flux
density (PPFD) and friction velocity (u∗) during the mea-
surement period are shown in Fig. 2.

2.4 Modeling the effect of chemical degradation

We used a stochastic Lagrangian transport model with first
order chemical decay (SLTC) to study the effect of the chem-
ical degradation on the fluxes. In the stochastic Lagrangian
transport models air parcels are released from a certain height
and transported by both mean wind and turbulent motions.
The mean wind is given as a pre-described wind profile. Thus
the horizontal transport by mean wind depends on the height
of the air parcel at each time step. The transport by turbu-
lence is described as a stochastic process which depends on
the turbulence statistics. This random displacement due to
the turbulence occurs in both horizontal and vertical direction
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Fig. 2. Air temperature, photosynthetical photon flux density and
friction velocity during flux measurements.

at each time step. The transport model without chemistry is
described in detail by Markkanen et al. (2003).

In the model with chemical degradation each air parcel is
released with the same initial concentration of the trace gas,
which is then reduced at each time step due to the chemical
degradation. The differential equation describing the degra-
dation of the concentration of a reactive hydrocarbon, [R], in
the air parcel can be written as

∂ [R]

∂t
= −kOH [OH] [R] − kO3 [O3] [R]

−kNO3 [NO3] [R] − kphotolysis[R] , (3)

whereki are rate coefficients and square brackets denote con-
centrations of the trace gas,R, and oxidants (OH: hydroxyl
radical, O3: ozone, and NO3: nitrate radical). Depending on
the time of the day different terms in the Eq. (3) can have dif-
ferent importance. For example during night the OH reaction
and photolysis are negligible as there is very little OH and no

Atmos. Chem. Phys., 7, 3361–3372, 2007 www.atmos-chem-phys.net/7/3361/2007/
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Fig. 3. Effect of chemical degradation on cumulative footprints at
the height of 22 m as calculated by SLTC model for compounds
with different chemical lifetimes. The source height was 11.2 m.

solar short wave radiation available. On the opposite, during
the daytime the NO3 reaction is negligible. In the Eq. (3)
only sink terms are taken into account. However, many com-
pounds, such as methanol and acetone, are also generated
in the atmosphere by chemical reactions. In principle these
chemical sources can also be taken into account in this kind
of model.

Our aim was to obtain information on the sensitivity of the
measured fluxes on the chemical degradation of measured
hydrocarbons. The change of the VOC concentration was
described by a simple first-order differential equation

τc

∂ [R]

∂t
+ [R] = 0 (4)

where the time constant is

τc=
(

kOH [OH] +kO3 [O3] +kNO3 [NO3] +kphotolysis
)−1

. (5)

If the time constant is time independent, Eq. (4) leads to ex-
ponential behavior of the tracer concentration in the air parcel

[R] = [R]0 exp
(

−t
/

τc

)

, (6)

where [R]0 is the initial concentration. This type of equation
was used by Strong et al. (2004).

To study the sensitivity of the measured fluxes on the
chemical degradation we used Eq. (6) to calculate the con-
centration change of the trace gas in the air parcel at each
time step during its transport. The concentration was set
to unity in the beginning of each trajectory. When the par-
cel passes the measurement level vertically, the passing is
recorded together with the concentration at that moment.
Summing up all the passes, weighted with respective con-
centrations, gives the footprint function for the reactive trace
gas. The hydrostatic stability was set to neutral and friction
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Fig. 4. Correlation functions between vertical wind speed and sig-
nals of M37, M33 and M137.

velocity to 0.5 m s−1. We used three different oxidant profile
types. In the first one the vertical oxidant profiles are taken
to be constant. In the second one the oxidant concentration
below the canopy is one fourth of that above the canopy, and
in the third one the below canopy oxidant concentration is
four times of that above the canopy.

Even though the transport model we used is commonly
used to calculate flux footprints we were not interested in the
footprint itself. The asymptotic behavior of the flux footprint,
however, can be used to estimate the effect of the chemical
degradation on the fluxes. While the cumulative footprint
function of an inert trace gas approaches unity as the dis-
tance from the measurement point increases, the cumulative
footprint of a reactive hydrocarbon does not reach this value
(Fig. 3). The difference between the asymptotic value of the
cumulative footprint of the reactive trace gas and that of the
inert gas thus shows the effect of the chemical degradation.
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Fig. 5. The normalized vertical flux profiles of trace gases with
different chemical lifetimes derived using the SLTC model with
sources in the ground (upper row) and sources in the canopy (lower
row). Panels(b) and (e): constant oxidant profile. Panels(a)
and(d): trace gas lifetime below canopy one fourth of that above
canopy. Panels(c) and (f): trace gas lifetime below canopy four
times that above canopy. Black horizontal line represents the source
height and grey line measurement height used. Lifetimes given in
the figure refer to lifetimes above canopy.

The rate constants of some of the compounds measured,
and the above canopy chemical lifetimes they yield, are
shown in the Tables 2 and 3. The daytime concentration of
OH was taken to be 0.25 ppt. This was obtained by the model
of Boy et al. (2005). Nighttime concentration of NO3 was
taken to be 2.5 ppt (Hakola et al., 2003). During the mea-
surement period ozone concentrations above the canopy var-
ied between 25 and 50 ppb, with little systematic difference
between daytime and nighttime concentrations. Therefore
we used a value of 40 ppb in the calculations. The photolysis
rates were calculated as described by Hellén et al. (2004).

3 Results and discussion

Of seven masses measured, five showed a more or less
clear positive peak in the covariance function indicating
upward fluxes. Masses with the clear flux signals were
M33 (methanol), M45 (acetaldehyde), M59 (acetone) M81
(monoterpene fragment) and M137 (monoterpenes). Exam-
ples of correlation functions of M37 (water cluster), M33 and
M137 are given in Fig. 4.

3.1 Effect of chemistry on fluxes

Figure 5 shows the asymptotic values of cumulative foot-
prints at different heights for three oxidant profile types and
two source heights. These express the vertical profiles of
fluxes, normalized by dividing with the primary emission.
Two cases, one with sources in the canopy at 11 m, and
the other with sources at the surface, are shown. The frac-
tion of the surface emission which reached the flux measure-
ment height clearly depends on the chemical lifetime and the
height of the measurement. Also the height of the emission
has an effect, as the chemistry has a larger effect on the fluxes
of hydrocarbons emitted at the forest floor. Interestingly, the
compounds with short chemical lifetimes emitted from the
canopy showed negative fluxes below canopy. This was due
to the chemical degradation causing flux divergence also be-
low the canopy.

The effect of the chemical degradation was small for the
hydrocarbons with longer chemical lifetimes and larger for
more short lived compounds. The below canopy chemistry
has an effect on the above canopy fluxes of the reactive com-
pounds, even when the emission source is in the canopy.
This can be seen well by comparing panels (d) and (e) of
the Fig. 5. For example the flux of a compound with chem-
ical lifetime of 30 min is reduced considerably more in the
case where the below canopy lifetime is one fourth of the
above canopy value (panel d), than in the case with constant
oxidant profile (panel e). Thus we would need information
on the oxidant profiles within and below the canopy for more
detailed analysis.

In the cases with constant oxidant profile, or the profile
where the lifetime below the canopy is four times that above
the canopy, the effect of the chemical degradation was small
for the hydrocarbons with chemical lifetimes of 30 min or
more. These cases might represent the daytime situation in
Hyytiälä with relatively open canopy and low emission of
reactive nitrogen from the soil (Pihlatie et al., 2003). For a
compound with chemical lifetime of about 5 min the effect
of the chemical degradation is already significant. However,
even for hydrocarbons with this short chemical lifetime, a
large part of the surface emission reaches the measurement
height.

The four compounds with clear emission fluxes during
the daytime have daytime lifetimes between half an hour
and several days (Table 3). The results of the SLTC model
showed that the effect of the chemical degradation had a mi-
nor effect on the daytime fluxes of compounds with lifetimes
in this range. Thus we can take these above-canopy fluxes
to be a good approximation of the surface emission. We can
also estimate the magnitude of the sesquiterpene flux at our
measurement height by assuming the sesquiterpene emission
from the forest to be about 20% of the monoterpene emis-
sions (Hakola et al., 2006). The fraction of the emission of
a compound emitted from the canopy, with lifetime in the
range of one minute such as most sesquiterpenes, reaching

Atmos. Chem. Phys., 7, 3361–3372, 2007 www.atmos-chem-phys.net/7/3361/2007/
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Table 2. Reaction coefficients of selected VOCs with hydroxyl radical (OH), ozone (O3) and nitrate radical (NO3), and midday photolysis
rates in mid-July, calculated as described by Hellén et al. (2004).

k(OH),
cm3 molecule−1 s−1

k(O3)

cm3 molecule−1 s−1
k(NO3), cm3 molecule−1 s−1 k(photolysis) s−1

methanol 9.44×10−13, (1) – – –
acetone 2.19×10−13, (1) – 3.00×10−17 5.03×10−7

acetaldehyde 1.58×10−11, (1) 5.99×10−21, (2) 2.72×10−15 3.39×10−6

isoprene 10.1×10−11, (1) 1.28×10−17, (1) 6.78×10−13 (1) –
α−pinene 5.37×10−11, (1) 8.66×10−17, (1) 6.16×10−12 (1) –
13−carene 8.8×10−11, (1) 3.70×10−17 (1) 9.1×10−12 (1) –
β−caryophyllene 2.00×10−10, (3) 1.16×10−14, (3) 1.90×10−11, (3) –

(1) Atkinson (1994)
(2) Atkinson et al. (1981)
(3) Shu and Atkinson (1995)

Table 3. Atmospheric lifetimes of methanol, acetone, acetaldehyde,α-pinene,13-carene andβ-caryophyllene. OH concentration, 0.25 ppt,
is estimated by the model described by Boy et al. (2005). NO3 concentration, 2.5 ppt, is taken from Hakola et al. (2003). The O3 concentra-
tion, 40 ppb, was typical for the measurement period.

OH O3 NO3 Photolysis Day:
OH+O3+ photol-
ysis

Night:
NO3+O3

methanol 2.0 d – – – 2.0 d –
acetone 8.7 d – 17 a 23 d 8.7 d 17 a
acetaldehyde 2.9 h 5.4 a 70 d 3.4 d 2.9 h 68 d
isoprene 27 min 22 h 6.7 h – 27 min 5.2 h
α-pinene 51 min 3.3 h 45 min – 41 min 36 min
13−carene 31 min 7.7 h 30 min – 29 min 28 min
β−caryophyllene 14 min 1.5 min 14 min – 1.3 min 1.3 min

the measurement height of 22 m, is around 30–40%. This
would lead to fluxes of sesquiterpenes to be below 10% of
the monoterpene fluxes. Taking into account the fragmen-
tation of sesquiterpenes in the PTR-MS instrument, the dif-
ficulties in measuring these highly reactive and sticky com-
pounds through relatively long tubing, and typical instrument
noise, these fluxes are well below detection limit.

3.2 VOC fluxes

The highest fluxes were those of monoterpenes (Fig. 6).
These fluxes, averaging 400–500µg m−2 h−1, are consid-
erably higher than the monoterpene emissions of around
300µg m−2 h−1 and 200µg m−2 h−1 from the same site re-
ported by Rinne et al. (2000) and Spanke et al. (2001), re-
spectively. There was a systematic difference between the
monoterpene fluxes calculated using M81 and M137 with the
latter being somewhat higher. This difference may be due
to the different fragmentation patterns of different monoter-
penes. We calibrated the PTR-MS usingα-pinene standard,

which is the most abundant monoterpene at the site (Hakola
et al., 2003). Also the ecosystem scale monoterpene emis-
sions from the site have been reported to be dominated by
α-pinene (Rinne et al., 2000; Spanke et al., 2001). However,
branch level measurements have revealed that the emissions
from many Scots pine trees were dominated by13-carene
(Janson, 1993; Hakola et al., 2006).

The emissions of methanol and acetone were in the same
range of magnitude with each other while the acetaldehyde
fluxes were the smallest. The fluxes of all these four hydro-
carbons show a diurnal cycle with higher fluxes during the
day and smaller at night. The uncertainties of the fluxes, de-
fined as 95% confidence interval, were relatively large.

The fluxes of non-terpenoid compounds are a significant
part of the total VOC emission from the forest, comprising
nearly half of the measured total VOC emissions on a mass
basis (Table 4). This is roughly the same as the proportion
of the emissions of other (than isoprene and monoterpene)
VOCs globally or in the national level as estimated by Guen-
ther et al. (1995) and Lindfors et al. (2000). Previous
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Fig. 6. Measured fluxes of methanol (M33), acetaldehyde (M45),
acetone (M59), and monoterpenes derived using M81 (M81) and
M137 (M137) (14–17 July 2005). The gray dots indicate the mea-
surement during which the friction velocity was below 0.25 m s−1.

Table 4. Average daily ecosystem scale VOC emissions from the
Scots pine forest during the measurement period. The monoterpene
emission is calculated as an average of the fluxes derived using M81
and M137.

mg m−2 d−1 % µmol m−2 d−1 %

methanol 3.9 21 120 44
acetaldehyde 1.1 6 24 9
acetone 3.0 16 52 19
monoterpenes 11 57 78 28

studies conducted by enclosure technique with adsorbent and
denuder sampling and gas chromatographic analysis have
shown Scots pines to emit monoterpenes, acetone and ac-
etaldehyde (Janson, 1993; Janson et al., 1999; Janson and
de Serves, 2001). No methanol emissions from Scots pine
were reported as their detection has not been possible due to
limitations of measurement methods.

Canopy scale emissions of methanol have previously been
reported from coniferous forests such as mixed lodgepole
pine, subalpine fir, and Engelman spruce forest (Baker et al.,
2001; Karl et al., 2002), ponderosa pine plantation (Schade
and Goldstein, 2001), and loblolly pine plantation (Karl et
al., 2005). Using only canopy scale flux measurements it
is not possible to determine if the methanol was emitted by
the canopy or by sub-canopy vegetation. However, Karl et
al. (2005) measured significant emissions of methanol from
loblolly pine needles. Also ponderosa pine forest floor has
been reported to emit methanol, acetone and acetaldehyde
(Schade and Goldstein, 2001). Compared to the canopy scale
methanol emissions by coniferous forests reported by Baker
et al. (2001) and Schade and Goldstein (2001), our measure-
ments showed a relatively low emission (Table 5). The emis-
sions reported by Karl et al. (2005) are in the same range with
the measurements reported here.

In comparison to canopy emissions we measured, the
monoterpene emissions from the forest floor in summer at
Hyytiälä site reported by Hellén et al. (2006) were negligi-
ble. Also those measured from a mixed Scots pine – Norway
spruce forest floor by Janson et al. (1999) were small com-
pared to the canopy emissions. Thus we may conclude that
the monoterpene fluxes we measured originate mainly from
the canopy emissions.

The leaf level acetone emissions, measured by Janson et
al. (1999) and Janson and de Serves (2001), have a wide
range into which the canopy scale emissions presented here
fall into, when multiplied by the needle biomass density of
the Hyytïalä site (Table 5). No acetaldehyde or acetone emis-
sions from boreal forest floor were reported by Janson et
al. (1999). Therefore it seems that the emissions of these
carbonyls originate mainly from the canopy.

However, the carbonyls are also produced in the chemical
reactions of e.g. mono- and sesquiterpenes. Therefore the
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Table 5. Typical daytime canopy scale fluxes of non-terpenoid VOCs from coniferous forests reported in literature.

Method Vegetation Methanol
mg m−2 h−1

Acetaldehyde
mg m−2 h−1

Acetone
mg m−2 h−1

Janson et al. (1999) Chamber∗ Pinus sylvestris n.a. n.a. 0.06–0.2+

Baker et al. (2001) REA Pinus contorta, Abies lasio-
carpa, Picea engelmannii

3 n.a. 4

Janson and de Serves (2001) Chamber*Pinus sylvestris n.a. n.a. 0.02–1
Schade and Goldstein (2001) REA Pinus ponderosa 3 0.3 0.3
Karl et al. (2002) DEC Pinus contorta, Abies lasio-

carpa, Picea engelmannii
1 0.4 0.8

Karl et al. (2005) DEC Pinus taeda 0.3 deposition 0.4
This study, Average 10–17 h DEC Pinus sylvestris 0.25 0.086 0.23

* Canopy scale emission obtained by multiplying with the needle biomass density of 540 gdw m−2

+ Based on total carbonyl emission of 3–6 nmol g−1
dw

h−1 of which acetone comprised 79±13%

chemical reactions may contribute positively to the fluxes of
these compounds but this chemical production was not taken
into account in our simple model.

3.3 Emission potentials

Fluxes of all four compounds, methanol, acetone, acetalde-
hyde and monoterpenes, had a clear diurnal cycle (Fig. 6),
which could be due to diurnal cycles in temperature, solar
radiation or some biological factors. Emissions of monoter-
penes from evergreen plants having resin ducts, such as Scots
pine, have usually been taken to depend only on leaf or nee-
dle temperature (Janson, 1993; Komenda and Koppmann,
2002; Tarvainen et al., 2005). The temperature dependence
of the monoterpene emission is usually described by the
equation

E = E30 exp
[

β
(

T − 30◦C
)]

, (7)

whereE is the emission,E30 is the normalized emission
potential, andβ is the temperature dependence coefficient
(Guenther et al., 1993). By fitting an exponential curve to the
measured monoterpene fluxes we obtained temperature de-
pendence coefficients of 0.095◦C−1 and 0.11◦C−1 for fluxes
derived using M81 and M137, respectively. The emission
rates standardized to 30◦C, using these temperature depen-
dence factors, were 1.07 mg m−2 h−1 and 1.55 mg m−2 h−1

for M81 and M137, respectively (Fig. 7). The data with fric-
tion velocity less than 0.25 m s−1 were removed from this
analysis. This friction velocity limit is a general data quality
criterium for fluxes measured at the Hyytiälä site (Markka-
nen et al., 2001). The temperature dependence is in the range
with previous observations (Janson, 1993; Janson and de
Serves, 2001; Rinne et al., 1999, 2000; Spanke et al., 2001;
Tarvainen et al., 2005; Hakola et al., 2006). By using the
temperature dependence coefficient of 0.09◦C−1, commonly
used in the emission inventory models, we arrived at the nor-
malized emission potentials at 30◦C of 1.10 mg m−2 h−1 and

1.37 mg m−2 h−1 for monoterpene fluxes derived from M81
and M137, respectively. Assuming that all the monoter-
penes were emitted by the Scots pine needles and using
the needle biomass density of 540 gdw m−2, we obtained
an emission potential of 2.0µg g−1

dw h−1 and 2.5µg g−1
dw h−1

for monoterpene fluxes derived using M81 and M137, re-
spectively. These are considerably higher than the value of
1.2µg g−1

dw h−1 obtained for the same measurement site by
Rinne et al. (2000) using surface layer gradient technique.

There can be several reasons for the differences between
normalized emission potentials we obtained and those re-
ported previously. When comparing canopy scale emis-
sion measurements to the emissions measured in the branch
scale using enclosure technique, one has to be aware that the
canopy scale measurements include emissions from sources
which are not measured by the branch enclosure technique.
For example emissions from ground vegetation and tree
trunks can contribute to the canopy scale fluxes. The pre-
vious canopy scale measurements above Scots pine forests
(Rinne et al., 1999, 2000; Spanke et al., 2001) have been con-
ducted with surface layer gradient technique. As a rather in-
direct flux measurement technique it may have more sources
of systematic uncertainties than direct disjunct eddy covari-
ance technique. Also limonene was not included in the to-
tal monoterpene emissions reported by Rinne et al. (1999,
2000). However, limonene contributed only 0.5–1.4% of the
total monoterpene emission from Scots pine (Tarvainen et al.,
2005).

As yet, there exists no emission algorithm for non-
terpenoid VOC emissions from vegetation. These com-
pounds have been included into some emission inventories
using for example the temperature dependent monoterpene
emission algorithm (Guenther et al., 1995). However, it
seems that the daily cycles of ambient concentrations of the
main non-terpenoids emitted in Hyytiälä site, methanol, ace-
tone and acetaldehyde, are governed by different processes
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Fig. 7. Monoterpene fluxes derived using M81 (M81) and M137
(M137) as a function of temperature. The solid line indicates
the fitting to the temperature dependent emission algorithm while
dashed line is that with a fixed temperature dependence coefficient
β=0.09◦C−1.

than the daily cycles of monoterpene concentrations (Rinne
et al., 2005). As there are differences also in the chemical
degradation of these compounds we can not attribute the dif-
ference only to the source behavior. Therefore controlled en-
vironment leaf or branch level laboratory studies should be
conducted in order to reveal the dependencies of emissions of
non-terpenoid hydrocarbons on environmental parameters.

4 Conclusions

We measured fluxes of several hydrocarbon species above a
Scots pine (Pinus sylvestris) forest canopy by the disjunct
eddy covariance method utilizing a proton transfer reaction –
mass spectrometer. We also applied a stochastic Lagrangian
transport model with simple chemical degradation to study
the sensitivity of the fluxes on the degradation.

Significant fluxes of monoterpenes, methanol, acetone
and acetaldehyde were detected. The monoterpene fluxes

were considerably higher than those measured previously
at the same site but there was a systematic difference be-
tween the monoterpene fluxes derived using M81 and M137.
The monoterpene fluxes followed the traditional exponen-
tially temperature dependent emission algorithm. Normal-
ized monoterpene emission potentials at 30◦C, obtained us-
ing the temperature dependence coefficient of 0.09◦C−1,
were 2.0µg g−1

dw h−1 and 2.5µg g−1
dw h−1, derived using M81

and M137, respectively These are considerably higher than
the values obtained previously. Combined, the emission of
acetone, acetaldehyde and methanol was of the same magni-
tude as the monoterpene emission which is in line with the
previous emission inventories.

Of the fluxes presented here, the chemical degradation has
the largest effect, about 10%, to the fluxes of monoterpenes.
For acetone, acetaldehyde and methanol the effect is even
smaller. Thus we can take the fluxes of these compounds to
be equivalent to the surface emission. However, if fluxes of
more reactive compounds, such as sesquiterpenes, were mea-
sured, the chemical degradation should be taken into account
in interpreting the results.
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