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Abstract. Little is known about how the methane source in-
ventory and sinks have evolved over recent centuries. New
and detailed records of methane mixing ratio and isotopic
composition (12CH4, 13CH4 and 14CH4) from analyses of
air trapped in polar ice and firn can enhance this knowl-
edge. We use existing bottom-up constructions of the source
history, including “EDGAR”-based constructions, as inputs
to a model of the evolving global budget for methane and
for its carbon isotope composition through the 20th century.
By matching such budgets to atmospheric data, we exam-
ine the constraints imposed by isotope information on those
budget evolutions. Reconciling both12CH4 and13CH4 bud-
gets with EDGAR-based source histories requires a combi-
nation of: a greater proportion of emissions from biomass
burning and/or of fossil methane than EDGAR constructions
suggest; a greater contribution from natural such emissions
than is commonly supposed; and/or a significant role for ac-
tive chlorine or other highly-fractionating tropospheric sink
as has been independently proposed. Examining a compan-
ion budget evolution for14CH4 exposes uncertainties in in-
ferring the fossil-methane source from atmospheric14CH4
data. Specifically, methane evolution during the nuclear era
is sensitive to the cycling dynamics of “bomb14C” (originat-
ing from atmospheric weapons tests) through the biosphere.
In addition, since ca. 1970, direct production and release of
14CH4 from nuclear-power facilities is influential but poorly
quantified. Atmospheric14CH4 determinations in the nuclear
era have the potential to better characterize both biospheric
carbon cycling, from photosynthesis to methane synthesis,
and the nuclear-power source.

Correspondence to: K. R. Lassey
(k.lassey@niwa.co.nz)

1 Introduction

Despite considerable activity in atmospheric methane re-
search over the past 15–20 years, little is known about how its
sources and its sinks have evolved during the agro-industrial
era (the past 3 centuries) of profound human influence. This
era has seen a 2.5-fold growth in the atmospheric methane
burden that has not been fully interpreted in terms of the evo-
lution of methane sources and sinks. The principal cause
of this growth is the expansion of agricultural and industrial
activities, including livestock farming, rice cultivation, min-
ing of fossil fuels, reticulation of natural gas, and the large-
scale burning of forest and grassland biomass. The detailed
histories of these anthropogenic sources are ill-determined
despite efforts to reconstruct them based on historical activ-
ity data (e.g. van Aardenne et al., 2001). Other approaches
apply inverse tracer modelling using detailed 3-D models
over limited time ranges (Fung et al., 1991; Hein et al.,
1997; Houweling et al., 1999; Cunnold et al., 2002; Mikaloff
Fletcher et al., 2004; Wang et al., 2004) or use global box
models over longer time scales (Etheridge et al., 1998; Dlu-
gokencky et al., 1998; Lassey et al., 2000).

The methane source mix and its evolution can be con-
strained by carbon isotope data (Fung et al., 1991; Hein et
al., 1997; Mikaloff Fletcher et al., 2004). Hydrogen iso-
tope data (δD) may also prove valuable (e.g. Conny and Cur-
rie, 1996; Bergamaschi et al., 2000). The carbon isotope
constraint results from the distinctive isotopic “signatures”
δ13C and/or114C (defined in Sect. 2) of different source
categories. Specifically, biogenic methane is relatively de-
pleted in the stable isotope13C (δ13C≈−60‰), pyrogenic
methane (a by-product of biomass combustion) is relatively
enriched (δ13C>−25‰), and fossil methane of thermogenic
origin is intermediate between these (δ13C≈−40‰). Fur-
thermore, fossil sources are devoid of the radioisotope14C,
while biogenic and pyrogenic methane sources contain14C
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levels characteristic of the atmospheric CO2 from which
the carbon was photosynthetically derived, adjusted for
post-photosynthesis decay. The14C-free property of fossil
methane has led investigators to infer the “fossil fraction” of
the prevailing methane source from atmospheric14CH4 mea-
surements (Lowe et al., 1988; Wahlen et al., 1989; Manning
et al., 1990; Quay et al., 1991, 1999).

Studies of the evolution of atmospheric methane based on
measurements of ice-entrapped air started in the early 1970s
(Robbins et al., 1973). While correspondingδ13C determina-
tions were reported from the late 1980s (Craig et al., 1988),
sample-size requirements precluded detailed time series, and
measurements were uncorrected for differential diffusion and
for gravitational settling within the entrapped air bubbles
(e.g. see Trudinger et al., 2002). Consequently, the source-
inventory evolution over long time scales has been poorly
constrained. Longer and better resolved time series forδ13C
are now becoming available due to small-sample develop-
ments that combine gas chromatography and stable isotope
ratio mass spectrometry (GC-IRMS) (Miller et al., 2002) in
conjunction with new techniques for extracting and analysing
samples of old air trapped in polar firn and ice (Ferretti et al.,
2005; Sowers et al., 2005). In particular, such samples from
Law Dome, Antarctica, offer highly time-resolved measure-
ments (Trudinger et al., 2002; Ferretti et al., 2005). Paral-
lel developments in accelerator mass spectrometry (AMS)
are enabling coarse-resolution air samples to be analyzed for
14CH4 (Etheridge et al., 2001).

The methane budget evolution is also affected by changes
to atmospheric sinks. The principal sink (∼85%) is in situ
oxidation by the OH radical, generated photolytically at a
rate that depends in part upon the local presence of pollu-
tants such as hydrocarbons and other volatile organic com-
pounds, CO and NOx. Minor sinks include consumption by
methanotrophic biota in aerated soils, transport to and de-
struction in the stratosphere (Prather et al., 2001), and re-
moval by other tropospheric oxidants such as active chlorine
(Allan et al., 2001a). Quantitative assessment of the global
OH trend is difficult over any time scale. However, various
modelling studies agree qualitatively that global OH levels
have declined over the industrial era (Lelieveld et al., 1998;
Wang and Jacob, 1998; Houweling et al., 2000) though quan-
titative estimates vary over the range 7.5 to 27%. Nonethe-
less, during recent decades that decline may have been ar-
rested (Lelieveld et al., 2002) or, within decadal intervals,
even reversed (Karlsdóttir and Isaksen, 2000; Dentener et
al., 2003; Wang et al., 2004). Prinn et al. (2005) determine
global-mean trends in OH over 25 years from a network of
CH3CCl3 (methyl chloroform) measurements; Manning et
al. (2005) determine trends over a solar cycle in the extra-
tropical Southern Hemisphere using the quite different tracer
14CO. Both studies report a remarkably stable OH, punctu-
ated by fluctuations lasting up to a few years that reflect wide-
scale perturbations (e.g. eruption of Mt Pinatubo in 1991).

In this paper, we present a detailed model analysis of the
methane budget evolution over the 20th century during which
the atmospheric burden doubled. In investigating the merit
of carbon-isotope information obtained from both contem-
porary records and from air trapped in polar ice and firn, we:
(a) explore the constraints imposed by high-resolution13CH4
measurements, and (b) assess the information conveyed by
14CH4 (“radiomethane”) measurements.

2 Modelling strategy

Global methane mass balance requires that:

∂C(t)

∂t
= S(t) − λ(t)C(t) (1)

whereS(t), λ(t) andC(t) are the global source (Tg yr−1),
sink (yr−1) and tropospheric burden (Tg) respectively of
methane at timet . The same equation applies separately to
each “methane isotopologue”,12CH4, 13CH4 and14CH4, but
with λ(t) augmented by radioactive decay,λR, in the case
of 14CH4. The tropospheric burden is taken to be directly
proportional to mean surface mixing ratio at 2.767 Tg ppb−1

(Fung et al., 1991; Dlugokencky et al., 1998). Mixing ra-
tios cited in this paper are expressed on the NOAA04 scale
(Dlugokencky et al., 2005).

A corollary of Eq. (1) is that the specification of any two
of S(t), λ(t) andC(t) over a time period enables the third
to be inferred through “budget closure”. Of these,C(t) is
the best-determined through the history of methane mixing
ratio. MacFarling Meure et al. (2006) recently reported such
a history to 2004 AD based on analyses of air extracted from
Antarctic firn and ice cores and on contemporary records
from Cape Grim (Fig. 1), updating an earlier time series to
1992 AD by Etheridge et al. (1998). Thus withC(t) speci-
fied, budget closure can be achieved by either: (a) prescrib-
ing the methane sink history and inferring a corresponding
source history; or (b) constructing the source history and in-
ferring a corresponding sink history. The former option is
commonly pursued using a time-invariant sink (Dlugokencky
et al., 1998; Lassey et al., 2000). The present work applies
the latter option using published bottom-up constructions of
the methane source inventory (Sect. 3), and then uses the in-
ferred sink history to close the budget for individual isotopo-
logues.

The methane mixing ratio appears to have been fairly
steady at∼700 ppb near ca. 1700 AD, even if suppressed
during the cooler temperatures of the “Little Ice Age” ca.
1300 AD–1850 AD (Etheridge et al., 1998), but it has risen
almost monotonically since then (Fig. 1). We therefore com-
mence our model integration at an imposed steady state in
1700, as per Lassey et al. (2000), through to the most recent
year specified by the source history, using the mixing ratio
history of Fig. 1 which is referred to as the “MM dataset”.

Each source construction is likewise specified as an annual
time series from 1700 (Sect. 3), even if extrapolation back
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Fig. 1. The global methane mixing ratio dataset reported by MacFarling Meure et al. (2006) from 1650 AD based on detailed measurements
in firn air and ice-entrapped air at Law Dome, Antarctica, and air sampled at Cape Grim, Australia. The smoothed dataset is adjusted for
latitudinal gradient to a global mean by adding 37% of the inter-polar difference to the Antarctica dataset after Etheridge et al. (1998), and
further adjusted to the NOAA04 scale (Dlugokencky et al., 2005). The annualized time series is referred to as the “MM dataset”.

to 1700 has little supporting data. Commencing integration
as early as 1700 enables the history of post-1700 disequilib-
rium in both mixing ratio andδ13C to be plausibly simulated
(Lassey et al., 2000), having regard to the slow response of
atmosphericδ13C to source perturbations (Tans, 1997).

Integration over 1-year time steps perforce ignores season-
ality. This is unavoidable, not only because source construc-
tions lack seasonal information, but also because the bubble
enclosure process in the Law Dome firn and ice smoothes out
compositional variations over five years or more (Trudinger
et al., 2002). However, the neglect of seasonality is also rea-
sonable when examining changes over centennial timescales.
Within each time step the source and sink are held constant,
enabling analytic integration of Eq. (1) so that the burden
propagates fromCbeg to Cend during a time step of duration
1t , given by:

Cend = S/λ +
(

Cbeg− S/λ
)

exp(−λ1t) (2)

We apply three alternative constructions of the source his-
tory from 1700 (Sect. 3). With the tropospheric burdenC(t)

and source historyS(t) both specified at annual time steps,
the mass-balancing sink historyλ(t) is deduced by solving
Eq. (2) numerically in successive time steps forλ (Sect. 3).
This sink history, adjusted for time-independent isotope frac-
tionation, is then applied separately to12CH4 and 13CH4
budgets, and budget closure addressed through either for-
ward or inverse modelling (Sect. 4). For the14CH4 budget,
both source and sink histories are constructed and the result-
ing atmospheric history examined (Sect. 5).

The model treats the three methane isotopologues as in-
dependent tracers, whose abundances are transformed non-
linearly to and from the three more commonly used entities,
total methane,δ13C and114C. Total methane is the sum of

the three isotopologues, though in practice, with abundances
of 12C, 13C, 14C approximately in the ratio 0.99:0.01:10−12,
14CH4 can be excluded from the sum. Aside from this exclu-
sion, the transformations are applied without approximation.
Definitions ofδ13C and114C follow.

Following Craig (1953):

δ13C = R/Rstd − 1 (3)

whereR is the isotopic molar ratio13C/12C in the methane
sample, andRstd is the corresponding ratio in the stable car-
bon isotope standard Vienna Peedee belemnite (VPDB) with
accepted value 0.0112372 (Craig, 1957). While the usual
“per mil” notation, ‰, is used to express bothδ13C and114C
numerically, we omit the implicit scaling factor of 1000 from
algebraic expressions such as Eq. (3). We refer to a methane
sample as being isotopically “lighter” or “heavier” than an-
other when itsδ13C value is lower or higher (i.e. when it is
less or more enriched in13CH4).

The definition of114C is more esoteric:

114C = ASN/Aabs− 1 (4a)

The notation is that of Stuiver and Polach (1977, Table 1) ex-
cept that we use the more usual114C in place of1, andλR

in place ofλ for the14C radioactive decay rate (8267 yr)−1.
In Eq. (4a),Aabs is the “absolute international standard ac-
tivity” defined for 1950 AD in the standard known as “0.95
NBS oxalic acid”, andASN is the “normalized” sample ac-
tivity (assumed to be corrected for “shelf” decay between
sample collection and14C analysis) expressed in terms of
the measured activityAS through

ASN = AS

(

0.975

1 + δ13C

)2

(4b)
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Table 1. An indicative global inventory postulated for 1700 AD,
andδ13C assignmentsa.

Source component Strength δ13C
Tg yr−1 ‰

Natural sources
Wetlands 163±78 –60
Termites 20±10 –57
Wildfires 5±0 –25
Oceans 15±10 –40
Wild animals 15±0 –62
Geologic 4±0 –40
Natural subtotal 222 –57.4

Anthropogenic sourcesb

Coal mining 0 –35
Other fossil 0 –40
Farmed livestock 5±3 –62
Animal wastes 0 –55
Rice cultivation 10±5 –64
Forest burning, woodfuel 5±3 –25
Savanna burning 5±3 –12
Waste treatment, landfills 5±5 –55
Anthropogenic subtotal 30 –47.0
Total source 252±34 –56.1±3.6

a Source strengths andδ13C assignments are taken from Houwel-
ing et al. (2000), except that anthropogenic biomass burning is split
into forest and savanna biomass withδ13C assignments typical of
C3 and C4 vegetation (Chanton et al., 2000). The 95% confidence
intervals (CIs) for individual sources are guided by lower and up-
per limits assessed by Houweling et al. (2000), most of which are
symmetrical about the best estimate. The CI in the total source is
constrained by top-down sink uncertainty (Houweling et al., 2000).
The CI in δ13C for the total source is calculated assuming a CI of
±5‰ in eachδ13C value and is without top-down constraint.
b The anthropogenic inventory is notional only, and the inven-
tory adopted for 1700 AD is that for the earliest year specified
by a particular source construction (1860 or 1890), scaled down to
30 Tg yr−1.

Activities Aabs, ASN , AS are expressed in Bq per gram
of carbon (Bq gC−1), with the accepted value forAabs
of 0.2260±0.0012 Bq gC−1 (Stuiver, 1980). The unit
Bq (Becquerel, or disintegrations per second) equates to
433.2×10−15 mole(14C).

The normalization in Eq. (4b) adjustsAS to what it would
have been had the sample had aδ13C value of−25‰, the
value for standard pre-industrial wood. This adjustment is
based upon “mass-dependent isotope fractionation” in which
isotope-specific chemical reaction rates,kn, are inter-related
through (e.g. Mook and van der Plicht, 1999)

k14/k12 = (k13/k12)
2 (5)

With normalization (Eq. 4b), the product carbon of a re-
action bears the same114C value as the reactant carbon.

The isotope-specific sink strengthsλn(t) would also satisfy
Eq. (5), with the result that the sink evolution of14CH4 is
fully specified in terms of those of12CH4 and13CH4:

λ14(t) = αλ13(t) = α2λ12(t) (6)

with α the “isotope fractionation factor”.
Some researchers report “percent modern carbon”, pMC,

in place of114C (e.g. Wahlen et al., 1989; Manning et al.,
1990; Quay et al., 1999; Nakagawa et al., 2002), a usage bor-
rowed from radiocarbon dating and without literal meaning
in geochemical application when values exceed 100% mod-
ern carbon as they do in the nuclear era. The two are related
through pMC=1+114C.

3 Source construction and mass-balancing sink

A history of methane sources from 1700 can be con-
structed by combining published inventories of natural
sources (e.g. Lelieveld et al., 1998; Houweling et al., 2000)
with “bottom-up” compilations of anthropogenic sources
based on activity and production indicators or their proxies
(e.g. Stern and Kaufmann, 1996; van Aardenne et al., 2001).
All such constructions are subject to considerable uncer-
tainty. We adopt three alternative anthropogenic source con-
structions as discussed below, each augmented by a common
time-invariant natural inventory, taken to be that of Houwel-
ing et al. (2000) and totalling 222 Tg yr−1 (Table 1). While
natural emissions may have changed over recent centuries
(e.g. changes to wetland emissions due to wetland manage-
ment or drainage) and may vary inter-annually with climate
(Warwick et al., 2002; Dentener et al., 2003; Bousquet et
al., 2006; Fiore et al., 2006), such changes are likely to be
smaller than emission uncertainty, and are much smaller than
emission growth from human activities.

A very recent discovery that vegetation is a source of
methane (Keppler et al., 2006) has implications for pre-
industrial and contemporary budgets that are neither under-
stood nor tightly quantified (Kirschbaum et al., 2006; Par-
sons et al., 2006; Houweling et al., 2006; Ferretti et al.,
2007). Consequently, this source has yet to be integrated into
source inventories, though we discuss potential implications
of its inclusion.

The few available constructions of the anthropogenic
source history are confined to the past∼100–150
years. We adopt the proxy-based construction of
Stern and Kaufmann (1996, see also http://cdiac.ornl.gov/
trends/meth/ch4.htm) for 1860–1994 (hereafter abbreviated
“S&K”), and two versions of the EDGAR-HYDE inven-
tory (http://mnp.nl/edgar/). The EDGAR-HYDE datasets
(hereafter “E-H”) are available as two alternate time series:
(1) version 1.3 (“E-H v1.3”) based on EDGAR 2.0 and de-
scribed by van Aardenne et al. (2001) provides emission in-
ventories every ten years, 1890–1990; and (2) version 1.4
(“E-H v1.4”), adjusted to match EDGAR 3.2 (Olivier and
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Berdowski, 2001; Olivier, 2002), provides inventories every
ten years, 1890–1970, then yearly to 1995.

We refer to each of the three anthropogenic source histo-
ries, augmented by a fixed natural source inventory, annu-
alized, and extrapolated back to 1700, as a “global source
inventory history” (GSIH) and shown in Fig. 2a from 1880.

In developing a plausible extrapolation of each GSIH back
to 1700, we note the evidence by several researchers that an
anthropogenic influence on methane emissions commenced
well before the industrial era (e.g. Kammen and Marino,
1993; Subak, 1994; Houweling et al., 2000; Ruddiman and
Thomson, 2001; Ferretti et al., 2005). Houweling et al.
(2000) assessed the pre-industrial anthropogenic source at
30 Tg yr−1, a value which we here associate with ca. 1700.
A linear interpolation between 30 Tg yr−1 in 1700 and the
commencement of each source construction (1860 or 1890)
preserves the proportional composition of the latter so that
each anthropogenic inventory in 1700 differs slightly from
that of Table 1. While linear interpolation is clearly an ide-
alization in the absence of guiding data, it should assure that
the disequilibrium inδ13C propagates more realistically than
spinning up from an initial state postulated for 1860 or 1890.

In summary, we employ three constructed GSIHs based on
S&K, E-H v1.3 and E-H v1.4 (Fig. 2a). The source strength
increases from 252 Tg yr−1 in 1700 to either 593 Tg yr−1 in
1994 (S&K), 542 Tg yr−1 in 1990 (E-H v1.3) or 524 Tg yr−1

in 1995 (E-H v1.4). It is clear (Fig. 2a) that both E-H GSIHs
are weaker than S&K, especially since ca. 1960, and prob-
ably weaker than the global source strength that closes the
contemporary “top-down” budget estimated at∼600 (495–
700) Tg yr−1 (Schimel et al., 1996; Prather et al., 2001).

From the source and atmospheric histories of total
methane the sink history required by mass balance,λ(t), can
be derived by solving Eq. (2) numerically at each time step.
The result is shown in Fig. 2b in the form of turnover time
τ(t)=λ(t)−1. The sinks matching the three GSIHs all display
a weakening trend through the 20th century, qualitatively
supporting the assessment of Lelieveld et al. (1998) and oth-
ers of a slowed methane removal rate through the industrial
era. In the 1980s all three sinks strengthen, qualitatively
in line with chemistry-model calculations by Karlsdóttir and
Isaksen (2000) and by Dentener et al. (2003). Those calcula-
tions appear to report lifetime against OH removal and while
this differs in definition from turnover timeτ , that difference
is manifested mainly as an offset leaving the trends directly
comparable.

4 Mass balance of13CH4 and the atmospheric history
of δ13C

Two approaches are possible for modelling the evolution
of 13CH4. Both employ the mass-balancing sink history
(Fig. 2b) from which separate sinks for12CH4 and 13CH4
follow once an isotopic fractionation is specified (Sect. 4.1).

In the first approach (Sect. 4.2), source histories for12CH4
and 13CH4 are constructed and the respective atmospheric
histories are deduced by forward modelling. The second ap-
proach (Sect. 4.3) exploits the detailedδ13C time series now
obtainable from air archived in polar ice and firn, enabling
the δ13C history in the global source to be inferred through
inverse modelling of13CH4.

4.1 The evolving13CH4 sink

With the usual assumption thatλ12 and λ13 are related
through a fixed isotope fractionation factorα=λ13(t)/λ12(t),
it is straightforward to deduceλ12(t) andλ13(t) separately
from the inferred sink historyλ(t) in each time step by im-
posing mass balance for total methane and for each methane
isotopologue. (Note our convention thatα is defined with
the minor isotope in the numerator, consistently with defini-
tion (3) for δ13C). Formally

λ13 = αλ12 =
1 + W

1 + αW
αλ (7a)

in which W is the tropospheric mass ratio,13CH4:12CH4, in
that time step given by

W =
17

16
Rstd(1 + δ) (7b)

with δ denoting the troposphericδ13C value.
For multiple first-order methane sinks,α is the sink-

weighted fractionation factor. Reported values for the dom-
inant OH sink areαOH=0.9946±0.0009 (Cantrell et al.,
1990) andαOH=0.9961±0.0004 (Saueressig et al., 2001);
both of these are laboratory-based determinations and the
cited uncertainties are 95% confidence intervals. The depar-
ture ofα from unity is referred to as the kinetic isotope effect
or KIE. It is useful to useε=α−1, expressed in ‰, to quan-
tify the KIE, so thatεOH values that correspond to the above
measured values forαOH are −5.4‰ and−3.9‰, respec-
tively. Separate KIEs apply to each removal process: for the
soil sinkεsoil is near−20‰ (Tyler et al., 1994a; Snover and
Quay, 2000), while for a minor active-chlorine sinkεchlorine
is near−60‰ (Saueressig et al., 1995; Crowley et al., 1999;
Tyler et al., 2000).

The large range of individual KIE values and uncertain
relative sink strengths confer appreciable uncertainty on the
“bottom-up” KIE value,εtotal, for which Table 2 derives a
plausible value of−7.7±1.4‰ (95% confidence interval).

The entry in Table 2 for the stratospheric sink may re-
quire explanation. Multiple chemical loss processes via OH,
O(1D), Cl are estimated to remove 40±8 Tg yr−1 from the
contemporary stratosphere (Schimel et al., 1996; Lelieveld et
al., 1998), and in doing so discriminate against13CH4 (e.g.
Bergamaschi et al., 1996). Methane that survives oxidation
is returned to the troposphere, but the re-entry flux is poorly
known or unknown. Measurements of methane mixing ratio
andδ13C(CH4) in the mid-latitude lower stratosphere which

www.atmos-chem-phys.net/7/2119/2007/ Atmos. Chem. Phys., 7, 2119–2139, 2007
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Fig. 2. (a)Three “bottom-up” constructions of the anthropogenic source history, each augmented by a natural source of 222 Tg yr−1. Each
construction, with its underlying inventory, is referred to as a “Global Source Inventory History” (GSIH).(b) The histories of methane
turnover time,τ(t)=λ(t)−1, corresponding to the three GSIHs and consistent with the mixing ratio history of Fig. 1. Also shown are model
calculations by Karsld́ottir and Isaksen (2000) and by Dentener et al. (2003, Simulation S1) of turnover times due to the OH sink alone for
which trends, but not absolute values, can be compared withτ(t).

is the site of much of that re-entry (Waugh and Hall, 2002)
are consistent with removal by Rayleigh distillation with an
isotope fractionation of about−12‰ (Brenninkmeijer et al.,
1995; Bergamaschi et al., 1996; Sugawara et al., 1997).
The 13CH4 enrichment actually realised in a parcel of air
re-entering the troposphere depends upon the stratospheric
“age” of that parcel at re-entry compared to the “chemical
lifetime” of methane due to exposure to oxidants along its
stratospheric trajectory. The mean air age in the mid-latitude
lower stratosphere is∼4 years (Waugh and Hall, 2002), prob-
ably much shorter than the ill-determined chemical lifetime
that can be scoped at (∼410 Tg)/(30 Tg yr−1)≈14 yr, sug-
gesting that the re-entry flux is too “young” for appreciable
13CH4 enrichment. The latter estimate is from model sim-
ulations by Struthers et al. (2007) showing a stratospheric
methane burden of∼410 Tg in steady state with an imposed
sink (OH+O(1D)+Cl) of 30 Tg yr−1 that account for the data
reported by Sugarawa et al. (1997) (H. Struthers, personal
communication, 2007). That same model analysis (Struthers

et al., 2007) simulates aδ13C-contrast between troposphere
and stratosphere, calculated as if each were well mixed, of
1.9‰. Since steady state does not prevail and the strato-
sphere is highly stratified with much higher enrichment in
the upper stratosphere (Bergamaschi et al., 1996; McCarthy
et al., 2001), one would expect a somewhat smaller contrast
in the vicinity of the tropopause. This is consistent with
measurements reported for the lower stratosphere south of
latitude 43◦ S (Brenninkmeijer et al., 1995) that reveal en-
richments of<1‰ relative to contiguous troposphericδ13C
values, and also with modelled steady-stateδ13C contrasts
near the tropopause of 1‰ (McCarthy et al., 2001) that
provide consistency with measurements by Sugawara et al.
(1997). In our 1-box model of the troposphere, unidirec-
tional stratospheric loss is a proxy for the net troposphere-
stratosphere methane flux with associated effective fraction-
ation, εstratosphere, of magnitude(FST /Fnet)1δ13C in which
FST andFnet are the gross stratosphere-troposphere and net
methane fluxes respectively, and1δ13C is the contrast in
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δ13C(CH4) between the gross fluxes. The null bound for
εstratospherein Table 2 corresponds to a neglible re-entry flux
(i.e. transport-mediated loss). The mid-range estimate for
εstratosphereconservatively accommodates the above assess-
ments for1δ13C≈1‰ combined with plausible estimates of
the gross troposphere-stratosphere methane flux,FST +Fnet.
Based on an estimate by Wang et al. (2002) of the up-
ward advective mass flow across 100 hPa in the tropics of
1.4×1017 kg air yr−1 and a contemporary methane content
of 1.7 ppm in this flow, the gross upward methane flux would
be 130 Tg yr−1, implying FST ≈90 Tg yr−1. The Wang et al.
air-flow estimate is half an earlier estimate (Rosenlof and
Holton, 1993), so this upward methane flux carries appre-
ciable uncertainty. (An upward methane flux consistent with
the Rosenlof and Holton estimate would be almost half the
methane source at the surface and so would imply a fast mean
stratospheric turnover of methane). It should be noted that
a choice ofεstratospherevalue within the range−3±3‰ is
not material, imposing changes on the sink-weightedεtotal
of 0.2±0.2‰ and therefore enriching troposphericδ13C by
the same amount at steady state. By comparison, McCarthy
et al. (2001) assess that stratospheric chemistry and trans-
port enriches troposphericδ13C(CH4) by 0.5–0.6‰ at steady
state of which 0.5‰ is due to anthropogenic stratospheric
chlorine alone. The latter role has changed significantly in a
CFC-perturbed stratosphere, and Wang et al. (2002) reassess
tropospheric enrichment for 1992 due to stratospheric chlo-
rine without assuming steady state at 0.23‰ (0.18–0.54‰).
While the above assessment treats stratosphere-troposphere
exchange only superficially, it does suggest that the choice
of εstratospherein Table 2 is reasonable.

Although the chlorine sink in Table 2 is of minor and un-
certain magnitude, it discriminates strongly between isotopo-
logues and therefore exerts large “isotope leverage” onεtotal:
in its absence, the bottom-up estimate forεtotal in Table 2
would be−5.4±0.8‰. The chlorine sink has been invoked
to explain the largeδ13C seasonal amplitude observed in the
SW Pacific region (Allan et al., 2001a, b; Platt et al., 2004),
and a varying chlorine sink to explain inter-annual variabil-
ity in those amplitudes (Allan et al., 2005, 2007). However,
while this approach estimates the seasonal amplitude in the
putative chlorine sink that can account for the “seasonal KIE”
(Allan et al., 2001b), it only weakly constrains the annual-
mean chlorine sink (Allan et al., 2007; W. Allan, personal
communication, 2006).

Our approach is to select an apparent, or “top-down”, KIE
value, ε, for each GSIH that optimizes the match between
atmospheric observation and simulation. From the quality
of that match and through comparison with the “bottom-up”
estimateεtotal=−7.7±1.4‰, inferences can be drawn about
that GSIH and/or sink. This is analogous to applying a top-
down approach to better constrain the global source than by
bottom-up source aggregation.

Table 2. Typical construction of an aggregate sink for tropospheric
methanea.

Sink Strength εsink
Tg yr−1 ‰

OH 490±85 −4.65±0.75
soil 30±15 −20±2
stratosphereb 40±8 −3±3
chlorine 25±12 −60±1
total 585±88 –7.7±1.4

a Contemporary sink strengths and fractionations with 95% confi-
dence intervals (CIs) for first-order sinks. All sink strengths except
chlorine are from the IPCC Second Assessment Report (Schimel et
al., 1996); the Third Assessment Report (Prather et al., 2001) nei-
ther substantially updates these nor supplies uncertainty estimates.
The chlorine sink is from Allan et al. (2007) who cite 25 Tg yr−1

as a mid-point between bounds assessed at 13 and 37 Tg yr−1. The
value for eachεsink is literature based (see text) withεOH the mean
of two published values (Cantrell et al., 1990; Saueressig et al.,
2001). The CI in each individualεsink accounts for the spread in
measured values. CIs for the total sink and for the corresponding
εtotal are bottom-up calculations that assume all individual CIs to
be uncorrelated.
b The stratospheric sink strength is estimated from reactions of
methane with OH, O(1D), Cl in the stratosphere itself, all of which
discriminate against13CH4. Viewed as the net upward cross-
tropopause methane flux, the effective fractionation is estimated
from theδ13C contrast in the two gross fluxes, themselves poorly
determined. See Sect. 4.1 for the detail of this estimate.

4.2 Forward modelled13CH4

To each inventory component in each GSIH a representa-
tive δ13C signature is assigned (Table 1). The weighted sum
provides a “bottom-up”δ13C history, denotedδS(t), as com-
panion to each GSIH strength, enabling separate12CH4 and
13CH4 source histories to be derived.

Uncertainties in individual globalδ13C assignments, and
thence inδS(t), are difficult to assess and potentially sub-
jective. Few if any assignments are based on measurements
with wide spatial (or temporal) coverage, so that estimates
of a global-meanδ13C and its uncertainty tend to reflect the
distribution of measurements rather than the distribution of
emissions. Consequently, different compilations of uncer-
tainties can differ markedly, even while citing similar data
sources. For example, Hein et al. (1997, Table 8) quote 95%
confidence intervals (2 s.d.) in the range±2 to ±5‰ with a
δ13C value of−59±5‰ quoted for “swamps” (the dominant
sub-category of wetlands), whereas Quay et al. (1999, Ta-
ble 1) quote 1 s.d. in the range±2 to ±7‰, with −60±5‰
for wetlands. For the purposes of illustrating uncertainty
in δS(t), our judgement is to associate with each source a
95% confidence interval of±5‰ as being realistic even if
not rigorous. As long as uncertainties inδ13C assignments
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dominate over those in source strengths, the “bottom-up” un-
certainty inδS(t) will always be smaller than the±5‰; an
estimate for the pre-industrial source is±3.6‰ (Table 1).
Moreover, revising an individualδ13C value for a persistent
source such as wetlands within its±5‰ uncertainty will re-
sult mainly in translating theδS(t) pattern (i.e. changing its
offset) with a lesser effect on its time-dependence. Thus, that
pattern inδS(t) will be more robust than its actual magnitude.

From the constructed12CH4 and 13CH4 source histories
and the corresponding sink histories (withε specified), the
tropospheric12CH4 and13CH4 burdens are deduced by for-
ward modelling (Eq. 2). These can be transformed toC(t)

and companionδ13C evolutions, the latter denotedδA(t).
The former, re-expressed as a mixing ratio, recovers the MM
dataset. To first orderδA(t) is given byδS(t)−ε+ disequilib-
rium correction (Lassey et al., 2000), so that varyingε essen-
tially translates theδA(t) pattern parallel to the ‰-axis, and
for each GSIH an “apparentε” can be selected to optimize
the fit of δA(t) to 20th century data (Fig. 3a).

It is clear that for the E-H sources in particular, the
δA(t) pattern matches the observed pattern adequately for
ca. 1910–1990. For S&K the pattern match is less accept-
able, displaying in particular a rate of change ofδA(t) that
is systematically too small for ca. 1930–1950 then too great
for ca. 1950–1970. The poor fits before ca. 1910 may be
simply due to the less realistic source constructions in the
prior decades in combination with the slow responsiveness
of δ13C to source changes (Tans, 1997; Lassey et al., 2000),
and/or could be a result of a mis-assignedδ13C for wetlands
(discussed below).

All data reported in Fig. 3a are from Southern Hemisphere
(SH) sites. In particular, the post-1990 data rely heavily on
the NIWA record for Baring Head (BHD), New Zealand,
which is matched also by that for Scott Base, Antarctica
(Lowe et al., 2004). The BHD record is based on high fre-
quency sampling (∼20 yr−1) at a recognized clean-air sta-
tion, with data filtered for wind speed and direction. Clean-
air records of comparable frequency are unavailable for the
Northern Hemisphere (NH). The BHD record features an
“anomaly” in ca. 1992 in whichδ13C fell markedly by
∼0.2‰, followed by a slow recovery that a decade later has
still not attained pre-1992 levels. This anomaly has been
subjected to scrutiny (Lowe et al., 1997; Mak et al., 2000),
and while it remains ill-explained, trans-equatorial transects
(Mak et al., 2000) and NH observational records (Quay et
al., 1999) suggest that it was largely confined to the extra-
tropical SH, where available records cannot establish its ge-
ographical extent: for example, it is not visible in the low-
frequency Cape Grim air archives (Francey et al., 1999).

The SH observations are reported in Fig. 3a along with
simulated global means. It is well established that de-
seasonalised SH methane is isotopically heavier than its NH
counterpart by∼0.3‰ (Lowe et al., 1999; Quay et al., 1999;
Miller et al., 2002). Such a N-S gradient is expected because
with ∼75% of sources in the NH (Fung et al., 1991) and

12CH4 being removed faster than13CH4, methane in the SH
has been airborne longer, is less abundant, and thence is iso-
topically heavier than its NH counterpart. Thus, global-mean
δ13C histories would be∼0.15‰ lighter than the SH datasets
in Fig. 3a. With this “global adjustment” to data in Fig. 3a,
taken as 0.2‰, the apparentε for S&K, E-H v1.3 and E-H
v1.4 become−7.9, −6.7 and−7.2‰, respectively.

The apparentε values (Fig. 3a) generally agree well with
bottom-up estimation (Table 2). However, the latter is sensi-
tive to the magnitude of the poorly-quantified chlorine sink.
The chlorine sink strength in Table 2 bisects adjudged bounds
that are based on a postulated seasonal structure throughout
the marine boundary layer with a seasonal amplitude cali-
brated by SW Pacific data (Allan et al., 2007; W. Allan, per-
sonal communication, 2006). Without the chlorine sink the
bottom-up estimate forεtotal would be−5.4±0.8‰, while
for an intermediate chlorine strength of 10± 9 Tg yr−1 con-
sistent with Platt et al. (2004), that estimate would be−6.3±

1.2‰, an estimate close to that adopted elsewhere (Lassey et
al., 2005; Ferretti et al., 2007). Thus a weaker chlorine sink
would exacerbate the discrepancy between apparentε and
bottom-upεtotal by up to∼2.4‰. It is instructive therefore
to examine explanations that could collectively account for
that discrepancy in the presence of a weaker chlorine sink,
most involving an isotopically heavier source. In order of
likely decreasing importance, these include: (a) some GSIHs
may have unrealistic source mixes, especially the mix of bio-
genic, fossil, and pyrogenic methane; (b) one or moreδ13C
assignments for major inventory components are too light;
(c) the newly-discovered terrestrial-plant source (Keppler et
al., 2006) is unaccounted for; (d) the fractionation associated
in Table 2 with the dominant OH sink may be erroneous. We
consider these four contenders in turn.

GSIH mix. A global source with a greater proportion of
pyrogenic and/or fossil methane (ie, relatively less biogenic
methane) will be isotopically heavier and therefore require
a smaller apparent|ε| value. Pyrogenic methane in particu-
lar exerts appreciable isotopic leverage onδ13C in the global
source, especially from C4 vegetation as fuel (Chanton et
al., 2000). C4 vegetation includes savanna and other grasses
prevalent in Africa, South America and northern Australia,
together with agricultural crops such as maize and sugar
cane. Moreover, assessments of the quantity of biomass fuel
and its C3:C4 mix are highly uncertain (Kasischke and Pen-
ner, 2004; Mouillot et al., 2006), and the proportion of the
carbon fuel emitted as methane is highly variable (Andreae
and Merlet, 2001), with the result that the global pyrogenic
methane source and its meanδ13C signature are poorly deter-
mined. In addition, some fossil methane emissions such as
from abandoned coal mines (e.g. Kirchgessner et al., 2000),
or from natural gas seepages (Lacroix, 1993; Etiope and
Klusman, 2002; Etiope, 2004) are poorly quantified and may
be under-represented in the GSIH’s used here. Furthermore,
larger pyrogenic and/or fossil components will not only make
the E-H sources isotopically heavier, but the stronger global
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Fig. 3. (a) The modelled histories ofδ13C in atmospheric methane,δA(t), based on the three GSIHs of Fig. 2a combined withδ13C
assignments for individual sources (Table 1), and corresponding sink histories of Fig. 2b. Available data, all from the Southern Hemisphere
(SH), are also shown: air trapped in polar firn or ice as indicated; air archived at Cape Grim Observatory (Francey et al., 1999); contemporary
time series of annual means from Baring Head (updated from Lowe et al., 2004). The KIE value,ε, optimized separately for each source
history S&K, E-H v1.3 and E-H v1.4, is−8.1‰,−6.9‰ and−7.4‰ respectively; to these values should be added an adjustment of∼0.2‰
to “globalise” the SH datasets (see text, Sect. 4.2).(b) The source history ofδ13C, δS (t), used to generate panel (a) for S&K and for E-H
v1.4 (solid lines), compared with the correspondingδinv

S
(t) deduced by inverse modelling with smoothed atmosphericδ13C (dotted lines).

The corresponding history for E-H v1.3 is little different from E-H v1.4 apart from an offset in the range 0.4–0.8‰.

source will better match independent top-down assessments
(Prather et al., 2001).

Source δ13C assignments. Only for a major source such
as global wetlands (assignedδ13C value−60‰, uncertainty
∼5‰) can a reassignment ofδ13C materially and systemat-
ically affect the weighted meanδS(t) and thence the appar-
entε. Wetlands accounted for∼60% of the global methane

source in ca. 1900, declining to∼35% in ca. 2000. Mikaloff
Fletcher et al. (2004) assign a value−58‰ to δ13C of the
global wetland source which if adopted here for E-H v1.4
would raiseδS(t) by ∼1.2‰ in ca. 1900 declining to∼0.7‰
a century later. Thus, a re-assigned (heavier) wetlandδ13C
would reduce the apparent|ε|, and through a greater wetland
role nearer the beginning of the century could also improve
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the quality of the fit in those early years. No other source is
persistently prominent enough for a reassignedδ13C to mod-
ify δS(t) while substantially preserving its centennial pattern.

Plant-sourced methane. Inclusion into the source inven-
tory of the newly-discovered plant source (Keppler et al.,
2006) would strengthen the global source. However, with
a δ13C value close to that of the mean source (averaging
−50‰, according to Keppler et al. (2006), but dependent on
the emission mix from C3 and C4 vegetation), that inclusion
would have insufficient leverage to dramatically influence
δ13C in the global source. If however that source were in-
cluded at the partial expense of biogenic methane from wet-
lands or rice cultivation to avoid possible double-counting of
methane from those ecosystems, then the global source could
be heavier and the apparent|ε| correspondingly smaller. For
example, including 60 Tg yr−1 of global plant methane with
signature−50‰ into the contemporary inventory at the ex-
pense of 30 Tg yr−1 of biogenic methane (−60‰) would re-
sult in a global source that was both 30 Tg yr−1 stronger and
∼0.7‰ heavier.

Fractionation in the OH sink. Direct determinations of
εOH are inevitably laboratory based (Cantrell et al., 1990;
Saueressig et al., 2001) and therefore open to question
about transferability to the real-world atmosphere. Specif-
ically, in the laboratory setting OH is artificially generated
to artificially high OH density (∼1010 cm−3) over a lim-
ited range of reactant temperatures with a possibly signifi-
cant co-generation of other oxidants (e.g. O(1D)). Further-
more, those two most recent determinations differ signif-
icantly (−5.4±0.9‰ and −3.9±0.4‰, respectively, with
95% confidence intervals), a difference which Saueressig
et al. (2001) argue is not a consequence of interference by
O(1D). Thus the possibility that neither correctly reflectεOH
in the real atmosphere cannot be dismissed.

4.3 Inverse modelled13CH4

A growing body of13CH4 data from air extracted from po-
lar ice and firn allows an alternative approach to the evolving
mass balance. Sowers et al. (2005) and Ferretti et al. (2005)
have reported data from Antarctic sites for air ages spanning
the past two centuries and the past two millennia, respec-
tively. The post-1880 datasets are reported in Fig. 3a. From
these datasets can be derived a smoothed annualized time se-
ries for atmosphericδ13C that enable the12CH4 and13CH4
budgets to be closed by inverse modelling, yielding the cor-
responding sources,S12 andS13.

An atmosphericδ13C time series is generated by apply-
ing a smoothed fit to the combination of the Ferretti et al.
(2005) dataset (to 1976) and contemporary high-frequency
Baring Head dataset (annual means, 1988–2003) updated
from Lowe et al. (2004), with guidance from analyses of air
archived from Cape Grim during 1978–1994 (Francey et al.,
1999). The smoothing algorithm distinguishes variations in
δ13C that are not statistically proven from those that are well

supported. It specifically weakens the “anomaly” of 1988–
1994 in recognition of its possibly limited geographical ex-
tent. We refer to the annualized time series, 1700–2003, as
the Ferretti-extended dataset, which in combination with the
MM dataset enables separateC12(t) andC13(t) histories to
be derived. In conjunction with the corresponding sink histo-
riesλ12(t) andλ13(t) of Eq. (7) that are based on the apparent
ε values from forward modelling (Fig. 3a), inverse modelling
yields source historiesS12(t) andS13(t) (by solving Eq. (2)
for S12 andS13 in each time step). Their sum recovers the
supplied methane source historyS(t) and their ratio provides
a companionδ13C history,δinv

S (t).

Figure 3b reportsδinv
S (t) for S&K and E-H v1.4; that for

E-H v1.3 (defined only to 1990) has a similar pattern to E-H
v1.4. Note the significantly lighter S&K source throughout
the century except near 1960, which is due to a significantly
lower proportion of fossil methane in the S&K source.

Given that the forward modelledδA(t) fits the data quite
well over ca. 1910–1988, it is not surprising that inverse-
modelledδinv

S (t) employing the sameε provides a smoothed
match to the correspondingδS(t) over the same time inter-
val. The departure ofδinv

S (t) from δS(t) after ca. 1988 is a
direct reflection of the poor match betweenδA(t) for E-H
v1.4 and the BHD post-anomaly observations, leading to a
pronounced swing inδinv

S (t) towards a lighter source in the
early 1990s. Such a swing would have to be viewed as tenta-
tive at least until atmosphericδ13C values are better charac-
terized globally, and the inferred variations in sink strength
confirmed (Fig. 2b).

5 The radiomethane budget

By constructing a source history,S14(t), for each GSIH and
combining with the sink history (Eq. 6), the atmospheric his-
tory, C14(t), and its associated114C history, 1A(t), can
be deduced. To lowest order1A(t) is independent ofα.
The major challenge is in constructingS14(t), addressed in
Sect. 5.1. Section 5.2 compares the construction with avail-
able114C source data, followed by an examination of1A(t)

and its implications in Sect. 5.3.

5.1 Constructing the radiomethane source

The generation, emission and atmospheric oxidation of
methane is a pathway of the global carbon cycle. Ra-
diomethane is an intrinsic participant in that pathway, and
is present in all methane sources whose carbon has been de-
rived from atmospheric CO2 within the last few tens of mil-
lennia (14C mean life is 8267 yr). Fossil methane sources are
thus devoid of measurable radiomethane. For both biogenic
and pyrogenic sources the radiomethane has cycled through
the biosphere and accordingly we refer to it collectively as
“biospheric radiomethane” (BR).
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Fig. 4. The simulated history of114C in methane from biospheric sources,1BR(t), is shown for the biospheric lag-time distribution of
Eq. 8 with several choices for the mean lag time,τlag, in the range 2–20 years. This construction depends only upon the114C history in
precursor photosynthesised CO2, 1CO2(t), also shown (Hua and Barbetti, 2004), modulated by the lag-time distribution.

Radiomethane is additionally produced during routine
nuclear power generation, and vented to the atmosphere
(e.g. Kunz, 1985; Povinec et al., 1986; Veres et al., 1995).
We refer to this source as “nuclear power radiomethane”
(NPR), and return to it below.

Because114C is conserved during biochemical reactions
CO2 → biosphere and biosphere→ CH4 by virtue of the
fractionation adjustment of Eq. (4b), the114C value in a
biogenic or pyrogenic methane emission then depends only
upon: (a) the114C value in atmospheric CO2 at photosyn-
thesis of the included carbon; and (b) the time lapse between
the carbon being fixed by photosynthesis and being released
as methane. We refer to the time lapse as the “biospheric lag
time” and denote ittlag.

One would expect a wide rage oftlag values, from less
than a year (e.g. cattle consuming fresh grass that is quickly
fermented in the rumen, grasslands burned at the end of
the growing season) to many decades or longer (e.g. peat
methanogenesis, burned forests), so that each methane-
producing ecosystem and management regime would have a
characteristic distribution of lag times. With a dearth of data
from which to construct a lag-time distribution for any one
ecosystem, we postulate a simple distribution for the com-
posite biospheric methane source. Specifically, we apply an
exponential distribution of lag times given by:

F(tlag) = τ−1
lag exp(−tlag/τlag) (8)

in which τlag is the mean (and standard deviation) lag time
in this one-parameter distribution. This need not imply that
lag times for any one biogenic or pyrogenic inventory com-
ponent be distributed according to function (8). The lag-time
distribution is discussed further in Sect. 5.2.

Also required for constructing the BR history is a history
of 114C in atmospheric carbon dioxide, denoted1CO2(t).
Although global coverage of1CO2(t) measurements is poor,
time series are available in both hemispheres (e.g. Manning
et al., 1990; Levin and Kromer, 1997, 2004) and these can
be extended using proxy measurements such as of tree rings
(Stuiver et al., 1998; Hua and Barbetti, 2004). This en-
ables a globally-representative time series for1CO2(t) to be
constructed, and we adopt that of Hua and Barbetti (2004),
1955–2000, merged with a pre-1955 series based on the tree-
ring record of Stuiver et al. (1998) (Fig. 4). The distinc-
tive “pulse” commencing in ca. 1954 is due to14C generated
through nuclear weapon detonations in the atmosphere prior
to the Limited Test Ban Treaty of 1963 (Nydal and Lövseth,
1983). The “bomb14C” quickly oxidized to14CO, then to
14CO2, and thereafter participated in the carbon cycle. At-
mospheric14CO2 levels diminished steadily after peaking
in 1964–1965 as the radiocarbon transferred to other carbon
pools via photosynthesis and ocean dissolution, including in-
directly to the atmospheric radiomethane pool.

The114C history in biospheric methane sources, denoted
1BR(t), is a convolution of1CO2(t), the lag distribution (8)
and radioactive decay. For a particular GSIH the BR source
history (expressed in such units as GBq(14CH4) yr−1) fol-
lows by combining1BR(t) with the strength andδ13C of
the non-fossil components of the GSIH. To this BR source is
added the NPR source whose construction is now described.

NPR is generated principally via the17O(n,α)14C reac-
tion on oxygen in the oxide fuel and water coolant, and via
14N(n, p)14C on nitrogen dissolved in the coolant. In the
absence of sufficient data on emissions from nuclear facil-
ities to fully characterize the global NPR source strength
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Table 3. Annual electrical power production by pressurized water
reactors (PWRs)a.

Year Production Year Production
GWe.hr GWe.hr

1960 652 1983 538 260
1961 652 1984 661 753
1962 1698 1985 795 196
1963 1698 1986 886 692
1964 2713 1987 995 094
1965 2713 1988 1 093 808
1966 2955 1989 1 179 601
1967 8053 1990 1 215 946
1968 9977 1991 1 272 698
1969 13 346 1992 1 329 998
1970 19 002 1993 1 339 567
1971 30 010 1994 1 376 117
1972 42 085 1995 1 408 543
1973 59 420 1996 1 484 683
1974 98 083 1997 1 455 015
1975 167 544 1998 1 513 454
1976 188 409 1999 1 543 389
1977 251 768 2000 1 596 707
1978 284 655 2001 1 655 579
1979 277 913 2002 1 699 806
1980 328 540 2003 1 718 317
1981 424 485 2004 1 752 246
1982 465 855 2005 1 761 601

a Dataset kindly supplied by C. Tuniz and J. Mandula, Australian
Permanent Mission To UN organizations, Vienna (personal com-
munication, 2002 and 2006), and sourced from IAEA. Production
data for 1960–1969 are unavailable, and the entries above for those
years are installed capacities multiplied by the average load factor
of 44.5% for 1970–1974. Data include Soviet-designed PWRs for-
merly designated WWERs (Water-cooled Water-moderated Energy
Reactors).

and evolution, the standard approach has been to argue that
PWRs (pressurized water reactors) are the predominant NPR
source, and that the source strength is proportional either to
the electrical power generated by PWR facilities or to the
installed generating capacity as measures of the size of the
PWR industry. We express the constant of proportionality
in GBq(14CH4) per GWe-yr of electricity generated globally
by PWRs, and refer to it as the “NPR factor”, denotedφ.
That PWRs predominate as a source of NPR is due to the use
of hydrogen as a cover gas in PWRs that results in most of
the14C being vented as reduced species,14CH4, 14C2H6, etc
rather than as14CO2 (Wahlen et al., 1989). Some14C may be
retained in the fuel cladding and released during subsequent
fuel reprocessing (Kunz, 1985; Povinec et al., 1986).

Based on measurements at or near individual PWR facil-
ities, local estimates ofφ can be summarized as follows.
(i) Detailed measurements at two U.S. reactor sites (Kunz,

1985) yielded values forφ of 298 and 179 GBq(14CH4)

per GWe-yr generated. These values are based on the to-
tal gaseous14C effluent reported by Kunz, the proportion
of 14C as hydrocarbon (90% and 74% at the two sites),
and the14CH4 content of the hydrocarbon (77% and 68%).
(ii) Based on routine monitoring of emissions from a Soviet-
designed four-reactor facility in Hungary, 1988–1993, Veres
et al. (1995) estimate hydrocarbon emissions (14CnHm) at
740 GBq per GWe-yr generated, which accounted for 94%
of 14C emissions. That emissions are seemingly higher than
those from western-designed PWRs may be due to the use of
nitrogen solutes as chemical regulators in the primary coolant
(Veres et al., 1995). If, based on Kunz (1985),∼73% of
the hydrocarbons are14CH4, φ would be 540 GBq(14CH4)

per GWe-yr generated. (iii) Based on measurements from
a 200 m tower in The Netherlands combined with trajecto-
ries and transport modelling, Eisma et al. (1995) infer14CH4
emission of 260±50 (1 s.d.) GBq per year per GWe installed
in NW Europe, which with a European-average load factor of
72% implies a mean value forφ of 361±69 GBq(14CH4) per
GWe-yr generated.

The 3-fold range in measurement-based estimates forφ re-
ported above may reflect design, engineering and operational
differences among facilities, differing management regimes,
different effluent-sampling strategies, uncertain electricity
production data and load factors used, the varying propor-
tions of 14CH4 in the 14C effluent (which is the usual mea-
surement subject), and the extrapolation to annual emissions
and electrical generation. Even the universal proportionality
of NPR release to electricity production is poorly founded.

Noting the above uncertainties, we have elected to treat
φ as a time-independent global parameter to be fitted em-
pirically. An annual time series of global PWR-generated
electrical energy is compiled from IAEA data (C. Tuniz and
J. Mandula, personal communication, 2002 and 2006) (Ta-
ble 3). While the time series before 1970 is of lower quality,
this has minimal practical impact because electrical output
from PWRs grew 60-fold between 1970 and 1990.

5.2 Comparisons with source114C measurements

Simulations of1BR(t) (Fig. 4) are dependent upon the as-
sumed distribution (8) of lag times. An exponential distri-
bution is selected for its simplicity in the absence of guid-
ing data, having just one selectable parameter to which the
sensitivity of results can be tested. A disadvantage of such
simplicity is that its mean and standard deviation cannot be
varied independently (they are numerically equal). Neverthe-
less, the application of such a continuous distribution should
be more realistic than discrete distributions, such as the sin-
gle lag time of 1 yr for all sources by Manning et al. (1990)
and of 45 yr for wetland emissions by Quay et al. (1991), or
the 2-component “rapid” and “aged” fractions considered by
Wahlen et al. (1989).
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Table 4. Measured114C values in methane sources.

Year(s) Location 114C, ‰ Reference

Wetlands (various)
1986–88 NY, USA (43◦ N) 110–197 Wahlen et al. (1989)
1987 MN, Canada (59◦ N) 108–155 Wahlen et al. (1989)
1986 WV, USA (39◦ N) 156–203 Wahlen et al. (1989)
c. 1987 AK, USA 110±40 Quay et al. (1991)
c. 1987 Amazon 200±40 Quay et al. (1991)
c. 1987 MN, USA 230±60 Quay et al. (1991)
1988 AK, USA (61◦ N) −42–205 Martens et al. (1992)
1991 Thailand (6◦ N) 100±20 Nakagawa et al. (2002)
1991 MN, USA (47◦ N) 135–161 Chanton et al. (1995)
1993–94 MN, Canada (55◦ N) 148–275 Bellisario et al. (1999)

Rice paddies
1987 LA, USA (30◦ N) 104–181 Wahlen et al. (1989)
1990 Japan (36◦ N) 58–161 Tyler et al. (1994a)
1991 Japan (36◦ N) 127–155 Tyler et al. (1994a)
1991 Thailand (6◦ N) 270±10 Nakagawa et al. (2002)

Ruminants
1986–88 USA 176–210 Wahlen et al. (1989)

Termites
1987 USA 238±18 Wahlen et al. (1989)

Biomass burning
1987 USA 165–403 Wahlen et al. (1989)

It is instructive to compare1BR(t) simulations with mea-
sured114C in methane sources. Measurements are available
from wetlands, rice paddies, ruminant livestock, termites,
and from biomass burning (Table 4). For more detail, see
Wahlen et al. (1989) or summaries by Quay et al. (1991) or
Nakagawa et al. (2002).

Measurements by Wahlen et al. (1989) cover a variety of
sources, all during 1986–1988, and all in North America.
During those years1CO2(t) declined from 190‰ to 170‰
(global average, Fig. 4), which is supported by measurements
of 190‰ reported by Wahlen et al. (1989). Consequently,
a methane source with114C exceeding∼190‰ in 1986–
1988 must have been mainly photosynthesised after ca. 1958
(when1CO2(t) rose through 190‰), suggesting mean bio-
spheric lag times of up to∼30 years, whereas sources with
114C significantly less than 170‰ must have been largely
photosynthesised prior to ca. 1958. Sources characterized by
the lag distribution (8) withτlag≈6 years, a value that best fits
data for air extracted from polar ice (Sect. 5.3), would have
114C≈ 250–280‰ when measured in 1986–1988 (Fig. 4);
for smallerτlag the 114C values would be lower. Conse-
quently, the Wahlen et al.114C measurements for various
biogenic sources in the range 100–260‰ are generally con-
sistent withτlag≤6 years and/orτlag>30 years.

While the source measurements reported in Table 4 for ca.
1986–1988 are only partially compatible with lag distribu-
tion (8) andτlag≈6 years, those measurements are mainly

from northern mid-latitudes (and largely in the Americas)
and provide a very sparse coverage of global biogenic and
pyrogenic emissions. In the absence of a more detailed cov-
erage we apply distribution (8) as a characterization of the
global biospheric source.

5.3 The atmospheric radiomethane history

With radiomethane source and sink histories constructed, its
atmospheric history can be inferred through forward mod-
elling (Eq. 2), and1A(t) then constructed. The result for
E-H v1.4 is shown in Fig. 5a for theτlag values of Fig. 4. Also
shown in Fig. 5a are various114C measurement records
from firn-entrapped air and from the contemporary atmo-
sphere. The latter record includes annually-binned data since
1986, two thirds from the Southern Hemisphere (mainly
from BHD) though N-S gradients are not discernible (Quay
et al., 1999). (Data are binned in each hemisphere sepa-
rately, and the hemispheric means then averaged). The ear-
liest contemporary measurements are those of Libby in ca.
1950 (cited by Ehhalt, 1974), and a single measurement by
Bainbridge et al. (1961) in air collected in Gary, Indiana in
1960 that may have been contaminated by urban sources of
fossil methane.

It should be recognised that air samples extracted from
polar firn and ice are associated with a specific depth, and
embrace a range of air ages due to diffusion and bubble-
enclosure processes (Trudinger et al., 2002). An assigned
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Fig. 5. A simulated114C history in atmospheric methane,1A(t). Solid lines show the biospheric radiomethane (BR) only, and the dashed
lines show the augmentation from nuclear-power radiomethane (NPR) using a value for the NPR factor,φ, selected to optimise the fit to data
for a mean biospheric lag time,τlag, of 6 years. Two observational records are reported. The first record is a composite record that includes
230 data points in contemporary air since 1986 from both hemispheres, collated by Lowe et al. (2001) into annual bins that weight each
hemisphere equally. That record includes unpublished data kindly contributed by S. Tyler and M. Wahlen, as well as data from New Zealand.
Typical measurement uncertainties in the post-1986 binned data are±7‰ (1 s.d.) which is about the size of the marker, and these could
be magnified 2–3 times to account for the global representativeness of individual samples (based on the spread of individual measurements
where these are available in a single bin). The second observational record is based on air trapped in Antarctic firn at Law Dome (Etheridge
et al., unpublished data) for which uncertainties due to measurement and due to firn enclosure processes are of order±10‰ (1 s.d.). Each
firn-air datum additionally carries time uncertainty due to the distribution of air ages in each sample.(a) Simulations for E-H v1.4 for a
range ofτlag values and withφ = 190 GBq (GWe-yr)−1 for all τlag. (b) Simulations for S&K and E-H v1.4 are contrasted (E-H v1.3 is little

different from v1.4) forτlag=6 years, andφ=160 GBq (GWe-yr)−1 applied to S&K. Also shown in (b) is the “fossil fraction” in each source

construction (long-dash lines, RH scale), which is the source fraction that is derived from14C-free carbon in geological deposits.

mean air age therefore carries some uncertainty. Detailed
analysis of air properties as a function of time should there-
fore take place after transforming into a function of ice/firn
depth for the particular site. Analyses such as these of data in

Fig. 5, to be reported elsewhere (Etheridge et al., manuscript
in preparation), suggest a best-fit valueτlag=6 yr (uncertainty
≈50%). This value is largely determined by data from ca.
1960 to mid 1970s when the rise of the bomb14C pulse in
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1A(t) was particularly sensitive toτlag (Fig. 5a); the specific
datum for ca. 1972 is particularly influential.

The value for φ used with E-H v1.4 in Fig. 5a,
190 GBq (GWe-yr)−1, is visually selected to best match
available contemporary atmospheric data forτlag=6 yr. That
selection is insensitive toτlag in the range 4–10 yr, but for
larger τlag a largerφ would be appropriate. The selected
value is also within the range determined through direct mea-
surement at individual nuclear facilities (Sect. 5.1), though
near the low end of the range.

With τlag=6 yr and φ=190 GBq (GWe-yr)−1, the sim-
ulated NPR source comprises 30% of the total ra-
diomethane source (E-H v1.4 BR + NPR) of 49.4 mole yr−1

(114 TBq yr−1) in 2000.
From the shape of the propagating bomb14C pulse and

the appreciable role of NPR evident in Fig. 5a, it is clear that
without NPR emissions atmospheric114C would not have
been rising at all after the mid-1980s. Indeed, the rate of rise
of 1A(t) is directly attributable to the rate of growth of NPR
emissions, moderated by the rate of decline of the bomb14C
tail, above a baseline that is in proportion to the BR source
and thence inversely related to the fossil fraction. This is il-
lustrated in Fig. 5b which contrasts simulations for the E-H
and S&K GSIHs both withτlag=6 yr, and also reports the
fossil fractions in those GSIHs. The systematically smaller
fossil fraction for S&K during the 20 years to its 1994 end-
point imposes a higher114C baseline than for E-H, which
in turn calls for a weaker NPR source (φ smaller by 15%)
that fails to fully capture the rate of growth in1A(t) during
the early 1990s. Thus trading off a smaller BR for a larger
NPR leads to a higher rate of growth of1A(t) through the
1990s, so that a better fit to the observed growth rate requires
a GSIH with a larger fossil fraction than E-H in combination
with a largerφ.

From Fig. 5 it is clear that determinants of1A(t) fall
into four distinct eras: (1) prior to ca. 1960 it is anti-
correlated with the fossil fraction, with inter-annual varia-
tions smoothed by lag effects; (2) between ca. 1960 and 1975
the rate of rise of the bomb pulse in1A(t) is essentially de-
termined byτlag; (3) between ca. 1975 and 1990τlag and the
NPR source are both influential; (4) after ca. 1990, and pro-
vided thatτlag is less than∼15 years, the NPR source is the
dominant determinant of the rate of growth in1A(t) while
the fossil fraction influences the absolute level and therefore
the fittedφ. It will also be recalled that all ice and firn data
have smoothed air ages due to processes of air enclosure
(Trudinger et al., 2002). There are several corollaries to these
observations.

First,114C measurements in the pre-nuclear era can yield
estimates for the then-prevailing fossil fraction. Indeed,
Ehhalt (1974) made the first fossil fraction estimate at<20%
based on pre-1960 data. However, for such measurements
in the nuclear era, particularly after 1960, reliable fossil-
fraction estimates are more problematic because of the con-
founding roles of both the propagating bomb14C pulse and

the poorly quantified NPR source. Several investigators have
estimated the fossil fraction from114C measurements in the
1980s and 1990s (Lowe et al., 1988; Wahlen et al., 1989;
Manning et al., 1990; Quay et al., 1991, 1999), recognis-
ing the broad uncertainties that arise from those confounding
roles. A key finding of those investigations that is incorpo-
rated into IPCC emission inventories (Prather et al., 2001)
is that fossil methane sources comprise about 20% of the
contemporary global source (18±9% in the early 1990s, ac-
cording to Quay et al. (1999), in which the uncertainty is
dominated by a 30% uncertainty assigned to the NPR source
strength). We return below to the potential for recalculating
the fossil fraction.

A second corollary is that the rate of rise of114C dur-
ing ca. 1960–1975 could provide the best information on the
global distribution of biospheric lag times. Previous assump-
tions about lag times are as diverse as 1 yr postulated by
Manning et al. (1990) (in recognition of the possible short
lag time associated with wetland emissions) to 45 yr for wet-
lands by Quay et al. (1991). This work applies a distribution
of biospheric lag times with mean of 6 yr, although a single
datum for ca. 1972 is pivotal to this estimate. More data for
1960–1975 would help elucidate the lag time distribution.

A third corollary is that measurements of114C in the
post-1990 atmosphere could provide the best estimate of the
global-mean NPR factorφ, though this factor is also influ-
enced by both the prevailing fossil fraction and theτlag value
if it exceeds∼15 years. Our simulations to 1995 based on
E-H sources favour aφ of about 190 GBq (82 millimole)
14CH4 per GWe-yr of electricity generated by commercial
PWRs, an estimate dependent upon the fossil fraction in the
E-H GSIH of around 21–23%. However, none of the GSIHs
examined here fully capture the observed early-1990s rate of
growth in114C (Fig. 5). To further illustrate this, we con-
ducted a simulation test in which the GSIHs based on E-H
v1.4 and S&K were extrapolated smoothly toward stability
while maintaining the fossil fraction; Fig. 6 shows the sim-
ulations to 2000, exposing the failure to fully capture the
growth in 114C during the 1990s. To better capture this
growth in the absence of a marked trend in source compo-
sition would require a GSIH with a larger fossil component,
allowing NPR to take greater prominence.

With the possibility that Soviet-designed PWRs are
more prolific NPR emitters than those of Western design
(Sect. 5.1), a systematic change in the global mix of PWRs
could itself induce a time dependence onφ. However, an
analysis of the IAEA data aggregated in Table 3 for the post-
1986 era of atmospheric measurements reveals no significant
trend in the fraction of PWR-generated power from reactors
of Soviet design which averages 14.3±1.4% (1 s.d.).

The first and third corollaries suggest that ongoing atmo-
spheric time series in114C(CH4) would enable both the fos-
sil fraction and the NPR factor to be given more certainty
through concurrent estimation. This suggestion is addressed
in a companion paper (Lassey et al., 2007).
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Fig. 6. A magnification of Fig. 5b from 1980 in which simulations of S&K and E-H v1.4 are extrapolated from 1994 and 1995 respectively
through to 2000. The source extrapolations suppose that each source stabilises, nominally in 2004, while holding their 1994 or 1995
proportional compositions. The corresponding sinks are held constant at 1994 or 1995 values. Data uncertainties shown are as described
in the caption to Fig. 5:±7‰ for the binned contemporary measurements;±10‰ for the firn measurements, reflecting uncertainties in
diffusion and gravitational processes within the firn. The value forτlag is 6 years, andφ is 160 and 190 GBq (GWe-yr)−1 for S&K and E-H,
respectively.

6 Discussion and conclusions

This paper presents a comprehensive analysis of the evolu-
tion of the methane budget through the 20th century, using
model simulations to examine the evolving carbon-isotope
composition. The intent is to establish what information
about that evolution can be gleaned from isotope measure-
ments made in both contemporary air and air trapped in polar
firn and ice, and to what extent bottom-up source inventory
constructions are compatible with that evolution. Studies of
atmospheric methane from ice-entrapped air are now convey-
ing information on past source inventories through isotope
analysis made possible by new developments in mass spec-
trometry and in polar air extraction (Trudinger et al., 2002;
Ferretti et al., 2005; Sowers et al., 2005). However, the air-
sample size required for14CH4 analyses is still precluding
detailed14CH4 information over century time scales.

Global source inventory histories such as the EDGAR-
HYDE (E-H) compilations (Olivier and Berdowski, 2001;
van Aardenne et al., 2001; Olivier, 2002) constructed from
economic, industrial and agricultural indicators are generally
compatible with current knowledge on how the methane bud-
get has evolved. However, the global E-H source, especially
E-H v1.4, is weaker than IPCC assessments (Prather et al.,
2001), though still within the latter’s uncertainty range. By
extending that knowledge to includeδ13C measurements the
compatibility of the source mix with atmosphericδ13C can
be examined, leading to an “apparent” (top-down) isotope
fractionation. In the present work we have shown that the
global E-H source inventory for the 20th century is indeed

generally compatible with newly-emergentδ13C data from
air trapped in Antarctic ice (Ferretti et al., 2005), with one
notable caveat. The apparent fractionation in the global sink,
−6.7‰ and−7.2‰ for v1.3 and v1.4, respectively, is larger
in magnitude than commonly accepted for tropospheric OH
in tandem with stratospheric and soil sinks. However, such
fractionation is within the range reported by Allan et al.
(2005, 2007) who invoked active chlorine as an additional
highly-fractionating tropospheric sink to account for sea-
sonal amplitudes in mixing ratio andδ13C observed for the
SW Pacific region. Allan et al. concur with Platt et al. (2004)
that the chlorine sink plays a significant role at least in the
marine boundary layer. The present analysis lends support
to the role of chlorine, which is included in the bottom-up
sink construction of Table 2 and without which there would
be a discrepancy between the bottom-up and top-down frac-
tionations of∼2‰. Although such a discrepancy is not out
of range of sourceδ13C uncertainty (Table 1), only a sys-
tematic adjustment to the latter throughout the century could
preserve the main features of the pattern inδA(t).

Alternatively or additionally, a heavier source would re-
quire less sink fractionation. This could be achieved with
larger fossil and/or pyrogenic components, consistently with
arguments that natural gas seeps are appreciably under-
estimated (e.g. Etiope, 2004) and that carbon emissions from
biomass combustion may be under-estimated (e.g. Mouil-
lot et al., 2006). A revision of the fossil methane source
would also have to be compatible with estimates based
on 14CH4 data. Inclusion of the recently-discovered plant
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source (Keppler et al., 2006) in tandem with a reduction
in the strength of the wetland and rice sources to avoid
double-counting emissions from such ecosystems could both
strengthen the global source and make it isotopically heavier.

The more empirically based S&K source construction
(Stern and Kaufmann, 1996), while stronger than the E-H
sources, generally provides an inferior fit to 20th century
δ13C data (Fig. 3a).

Inter-comparing bottom-up and top-down assessments of
δ13C patterns imposes constraints on the methane budget and
its evolution that are the isotopic analogue of constraining the
global source using top-down estimation (e.g. Prather et al.,
2001). This enables a budget-balancingε to be estimated
from a century-long pattern (Fig. 3a), an approach that is
much more robust than for a budget isolated in time. In effect
the δA(t) pattern is accompanied by a ribbon of uncertainty
of order±3‰ wide, and the optimal apparent KIE,ε, min-
imises the mismatch between that pattern and the data record
(Fig. 3a).

In extending to the14CH4 (radiomethane) cycle, simula-
tions based on the E-H source are broadly compatible with
the sparse data available, but are not strongly challenged by
those data. This analysis exposes limitations and uncertain-
ties associated with using radiomethane data to constrain the
fossil fraction in the methane source after ca. 1960 AD. The
difficulty arises because the fossil fraction is only one deter-
minant of atmospheric radiomethane during the nuclear era.
Another determinant is biospheric carbon dynamics which
control the propagation of the bomb14C pulse from pho-
tosynthesis to methanogenesis (biogenic and pyrogenic). A
third determinant is the poorly-quantified nucleogenic pro-
duction and release of radiomethane from nuclear power fa-
cilities. Nevertheless, radiomethane data from the pre-1960
atmosphere could constrain fossil-fraction estimates from
contemporaneous anthropogenic activities and from natural
geologic sources (Ehhalt, 1974).

While the last two determinants confound fossil-fraction
estimation during the nuclear era, they nevertheless provide
opportunities. Radiomethane measurements in the atmo-
sphere of 1960–1975 can potentially quantify carbon res-
idence times in the biosphere between photosynthesis and
methanogenesis (“biospheric lag times”), while similar mea-
surements for the 1990s could elucidate both the strength of
the nuclear-power source (“NPR factor”,φ) and the fossil
fraction. The former suggests a mean biospheric lag time
of 6 yr (±∼50%). The latter, addressed in more detail in a
companion paper (Lassey et al., 2007), suggests that the E-H
sources for the 1990s, augmented by a natural source after
Houweling et al. (2000), may understate the fossil methane
source: a larger fossil fraction would enable the observed
growth in atmospheric14CH4 to be better simulated through
a larger role by nuclear-power radiomethane (largerφ). With
the availability of more and higher-resolution radiomethane
measurements in air extracted from polar ice and firn, the
roles of these determinants will be further clarified.

What do carbon isotopes tell us about how the methane
budget has evolved? Constructions such as E-H of the an-
thropogenic source history are generally consistent with the
reconstructed atmospheric history (from ice-entrapped air),
provided that one or both of the following apply: (a) an ac-
tive chlorine or other highly-fractionating sink is operative to
the extent of at least∼10 Tg yr−1 of global methane removal;
(b) the global methane source has a proportionately smaller
biogenic component (i.e. larger fossil and/or pyrogenic com-
ponents) than commonly recognised, perhaps partly due to
some aerobic plant emissions being mistaken for (anaerobic)
biogenic emissions, perhaps partly from under-estimated fos-
sil and/or pyrogenic emissions. Further isotopic data, par-
ticularly from ice-entrapped air, could further resolve these
ambiguities. Radiomethane measurements are only just be-
ginning to tightly constrain the methane budget, with strong
prospects of tighter constraints as more detailed and expan-
sive measurements become available. A companion paper
(Lassey et al., 2007) explores constraints currently imposed
by atmospheric radiomethane measurements.
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Bergamaschi, P., Bräunlich, M., Marik, T., and Brenninkmeijer,
C. A. M.: Measurements of the carbon and hydrogen isotopes
of atmospheric methane at Izaña, Tenerife: Seasonal cycles and
synoptic-scale variations, J. Geophys. Res., 105, 14 531–14 546,
2000.

Bousquet, P., Ciais, P., Miller, J. B., Dlugokencky, E. J., Hauglus-
taine, D. A., Prigent, C., van der Werf, G. R., Peylin, P., Brunke,
E.-G., Carouge, C., Langenfelds, R. L., Lathière, J., Papa, F.,
Ramonet, M., Schmidt, M., Steele, L. P., Tyler, S. C., and White,
J.: Contribution of anthropogenic and natural sources to atmo-
spheric methane variability, Nature, 443, 439–443, 2006.

Brenninkmeijer, C. A. M., Lowe, D. C., Manning, M. R., Sparks,
R. J., and van Velthoven, P. F. J.: The13C, 14C, and18O isotopic
composition of CO, CH4, and CO2 in the higher southern lati-
tudes lower stratosphere, J. Geophys. Res., 100, 26 163–26 172,
1995.

Cantrell, C. A., Shetter, R. E., McDaniel, A. H., Calvert, J. G.,
Davidson, J. A., Lowe, D. C., Tyler, S. C., Cicerone, R. J., and
Greenberg, J. P.: Carbon kinetic isotope effect in the oxidation of
methane by the hydroxyl radical, J. Geophys. Res., 95, 22 455–
22 462, 1990.

Chanton, J. P., Rutkowski, C. M., Schwartz, C. C., Ward, D. E.,
and Boring, L.: Factors influencing the stable carbon isotopic
signature of methane from combustion and biomass burning, J.
Geophys. Res., 105, 1867–1877, 2000.

Chanton, J. P., Bauer, J. E., Glaser, P. A., Siegel, D. I., Kelley, C. A.,
Tyler, S. C., Romanowicz, E. H., and Lazrus, A.: Radiocarbon
evidence for the substrates supporting methane formation within
northern Minnesota peatlands, Geochim. Cosmochim. Acta, 59,
3663–3668, 1995.

Conny, J. M. and Currie, L. A.: The isotopic characterization of
methane, non-methane hydrocarbons and formaldehyde in the
troposphere, Atmos. Environ., 30, 621–638, 1996.

Craig, H.: The geochemistry of stable carbon isotopes, Geochim.
Cosmochim. Acta, 3, 53–92, 1953.

Craig, H.: Isotopic standards for carbon and oxygen and correc-
tion factors for mass spectrometric analysis of carbon dioxide,
Geochim. Cosmochim. Acta, 12, 133–149, 1957.

Craig, H., Chou, C. C., Welhan, J. A., Stevens, C. M., and Engelke-
meir, A.: The isotopic composition of methane in polar ice cores,
Science, 242, 1535–1539, 1988.

Crowley, J. N., Saueressig, G., Bergamaschi, P., Fischer, H., and
Harris, G. W.: Carbon kinetic isotope effect in the reaction
CH4+Cl: a relative rate study using FTIR spectroscopy, Chem.
Phys. Lett., 303, 268–274, 1999.

Cunnold, D. M., Steele, L. P., Fraser, P. J., Simmonds, P. G.,
Prinn, R. G., Weiss, R. F., Porter, L. W., O’Doherty, S., Lan-
genfelds, R. L., Krummel, P. B., Wang, H. J., Emmons, L.,
Tie, X. X., and Dlugokencky, E. J.: In situ measurements
of atmospheric methane at GAGE/AGAGE sites during 1985–
2000 and resulting source inferences, J. Geophys. Res., 107,
doi:10.1029/2001JD001226, 2002.

Dentener, F., Peters, W., Krol, M., van Weele, M., Bergamaschi, P.,
and Lelieveld, J.: Interannual variability and trend of CH4 life-
time as a measure for OH changes in the 1979–1993 time period,
J. Geophys. Res., 108, 4442, doi:10.1029/2002JD002916, 2003.

Dlugokencky, E. J., Masarie, K. A., Lang, P. M., and Tans, P. P.:
Continuing decline in the growth rate of the atmospheric methane
burden, Nature, 393, 447–450, 1998.

Dlugokencky, E. J., Myers, R. C., Lang, P. M., Masarie, K. A.,
Crotwell, A. M., Thoning, K. W., Hall, B. D., Elkins, J. W., and
Steele, L. P.: Conversion of NOAA atmospheric dry air CH4
mole fractions to a gravimetrically prepared standard scale, J.
Geophys. Res., 110, D18306, doi:10.1029/2005JD006035, 2005.

Ehhalt, D. H.: The atmospheric cycle of methane, Tellus, 26, 58–70,
1974.

Eisma, R., Vermeulen, A. T., and van der Borg, K.:14CH4 emis-
sions from nuclear power plants in northwestern Europe, Radio-
carbon, 37, 475–483, 1995.

Etheridge, D. M., Steele, L. P., Francey, R. J., and Langenfelds,
R. L.: Atmospheric methane between 1000 A.D. and present:
Evidence of anthropogenic emissions and climate variability, J.
Geophys. Res., 103, 15 979–15 993, 1998.

Etheridge, D. M., Smith, A. M., Lowe, D. C., Trudinger, C. M.,
Langenfelds, R. L., Steele, L. P., Lassey, K. R., Levchenko, V. A.,
and Manning, M. R.: Sources of atmospheric methane during the
20th century from methane isotopic measurements in Antarctic
firn air, in: 8th Scientific Assembly of IAMAS, Innsbruck, Aus-
tria, pp. 106, 2001.

Etiope, G.: New directions: GEM – Geologic emissions of
methane, the missing source in the atmospheric methane budget,
Atmos. Environ., 38, 3099–3100, 2004.

Etiope, G. and Klusman, R. W.: Geologic emissions of methane to
the atmosphere, Chemosphere, 49, 777–789, 2002.

Ferretti, D. F., Miller, J. B., White, J. W. C., Etheridge, D. M.,
Lassey, K. R., Lowe, D. C., MacFarling Meure, C. M., Dreier,
M. F., Trudinger, C. M., van Ommen, T. D., and Langenfelds, R.
L.: Unexpected changes to the global methane budget over the
past 2000 years, Science, 309, 1714–1717, 2005.

Ferretti, D. F., Miller, J. B., White, J. W. C., Lassey, K. R., Lowe, D.
C., and Etheridge, D. M.: Stable isotopes provide revised global
limits of aerobic methane emissions from plants, Atmos. Chem.

Atmos. Chem. Phys., 7, 2119–2139, 2007 www.atmos-chem-phys.net/7/2119/2007/



K. R. Lassey et al.: Evolution of the methane budget and carbon isotopes 2137

Phys., 7, 237–241, 2007,
http://www.atmos-chem-phys.net/7/237/2007/.

Fiore, A. M., Horowitz, L. W., Dlugokencky, E. J., and
West, J. J.: Impact of meteorology and emissions on
methane trends, 1990–2004, Geophys. Res. Lett., 33, L12809,
doi:10.1029/2006GL026199, 2006.

Francey, R. J., Manning, M. R., Allison, C. E., Coram, S. A.,
Etheridge, D. M., Langenfelds, R. L., Lowe, D. C., and Steele,
L. P.: A history ofδ13C in atmospheric CH4 from the Cape Grim
Air Archive and Antarctic firn air, J. Geophys. Res., 104, 23 631–
23 643, 1999.

Fung, I., John, J., Lerner, J., Matthews, E., Prather, M., Steele,
L. P., and Fraser, P. J.: Three-dimensional model synthesis of
the global methane cycle, J. Geophys. Res., 96, 13 033–13 065,
1991.

Hein, R., Crutzen, P. J., and Heimann, M.: An inverse modeling
approach to investigate the global atmospheric methane cycle,
Global Biogeochem. Cycles, 11, 43–76, 1997.

Houweling, S., Dentener, F., and Lelieveld, J.: Simulation of prein-
dustrial methane to constrain the global source strength of natural
wetlands, J. Geophys. Res., 105, 17 243–17 255, 2000.

Houweling, S., Kaminski, T., Dentener, F., Lelieveld, J., and
Heimann, M.: Inverse modeling of methane sources and sinks
using the adjoint of a global transport model, J. Geophys. Res.,
104, 26 137–26 160, 1999.

Houweling, S., R̈ockmann, T., Aben, I., Keppler, F., Krol, M.,
Meirink, J. F., Dlugokencky, E. J., and Frankenberg, C.: Atmo-
spheric constraints on global emissions of methane from plants,
Geophys. Res. Lett., 33, L15821, doi:10.1029/2006GL026162,
2006.

Hua, Q. and Barbetti, M.: Review of tropospheric bomb14C data
for carbon cycle modeling and age calibration studies, Radiocar-
bon, 46, 1273–1298, 2004.

Kammen, D. M. and Marino, B. D.: On the origin and magnitude of
pre-industrial anthropogenic CO2 and CH4 emissions, Chemo-
sphere, 26, 69–86, 1993.

Karlsd́ottir, S. and Isaksen, I. S. A.: Changing methane lifetime:
Possible cause for reduced growth, Geophys. Res. Lett., 27, 93–
96, 2000.

Kasischke, E. S. and Penner, J. E.: Improving global estimates of
atmospheric emissions from biomass burning, J. Geophys. Res.,
109, D14S01, doi:10.1029/2004JD004972, 2004.

Keppler, F., Hamilton, J. T. G., Braß, M., and Röckmann, T.:
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