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Abstract. In this paper, we study the transport of air masses
to San Pietro Capofiume (SPC) in Po Valley, Italy, by means
of back trajectories analysis. Our main aim is to investigate
whether air masses originate over different regions on nucle-
ation event days and on nonevent days, during three years
when nucleation events have been continuously recorded at
SPC. The results indicate that nucleation events occur fre-
quently in air masses arriving from Central Europe, whereas
event frequency is much lower in the air transported from
southern directions and from the Atlantic Ocean. We also
analyzed the behaviour of meteorological parameters during
96 h transport to SPC, and found that, on average, event tra-
jectories undergo stronger subsidence during the last 12 h be-
fore the arrival at SPC than nonevent trajectories. This causes
a reversal in the temperature and relative humidity (RH) dif-
ferences between event and nonevent trajectories: between
96 and 12 h back time, temperature is lower and RH is higher
for event than nonevent trajectories and between 12 and 0 h
vice versa. Boundary layer mixing is stronger along the event
trajectories compared to nonevent trajectories. The absolute
humidity (AH) is similar for the event and nonevent trajec-
tories between about 96 h and about 60 h back time, but after
that, the event trajectories AH becomes lower due to stronger
rain. We also studied transport of SO2 to SPC, and conclude
that although sources in Po Valley most probably dominate
the measured concentrations, certain Central and Eastern Eu-
ropean sources also make a substantial contribution.

1 Introduction

New particle formation in atmosphere draws considerable at-
tention (Kulmala et al., 2004) due to the possible climate and
health effects of aerosols. Although widely studied, aerosol
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characterization is still hindered by our poor understanding
of the formation processes of secondary aerosols, which are
formed via gas phase condensation, and contribute to the rel-
ative abundance of primary aerosols formed via mechanical
or combustion processes. Sulphur, together with many nitro-
gen and carbon compounds, undergo gas-to-particle transi-
tion, and they are ultimately removed from the atmosphere
via aerosol deposition processes. Therefore, the lifetimes
and concentrations of these species are defined by aerosol
dynamics. Better understanding of new particle formation
will therefore contribute also to our comprehension of atmo-
spheric chemistry in general.

The causes of air pollution and particle formation episodes
are complex and depend on various factors including emis-
sions of precursors, pre-existing aerosols, meteorological pa-
rameters (in particular solar radiation, temperature and rel-
ative humidity), topography, and photo-chemical processes
(see, e.g. Kulmala et al., 2001, 2003). Air masses of differ-
ent origin poses different meteorological and chemical char-
acteristics, and therefore, from the Eulerian viewpoint, the
probability of occurrence of new particle formation events at
a given location and time depends not only on local emis-
sions, but on airflows and long range transport (Sogacheva et
al., 2005a).

The Po Valley in Northern Italy, which is characterized
by high industrial, urban and traffic emissions, has the coun-
try’s worst problems with air pollution, especially because
the weather conditions, typical for that area, have a tendency
to trap the pollutants, rather than to disperse them. This has
an extremely negative impact on air quality. New particle
formation is suppressed by high concentration of pre-existing
particles, because of increased condensation sink for vapours
that would otherwise nucleate to form new particles. It was
therefore rather surprising to discover that intensive nucle-
ation events actually occur frequently in the Po Valley (Laak-
sonen et al., 2005; Hamed et al., 2007). Here we investi-
gate, by means of back trajectories analysis, how new particle
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Fig. 1. Po Valley, San Pietro Capofiume (SPC) measurement sta-
tion.

formation is affected by the transport of the air masses of dif-
ferent origin.

Long-range transport of photochemical gaseous, air pol-
lutants and particulate matter has been studied extensively
in Europe during the last decades under the framework of
several national and international efforts. Many experimen-
tal research programs, e.g. EUROTRAC-2 (Kruger et al.,
2000), PIPAPO (Steinbacher et al., 2005a, b), MINATROC
(Putaud et al., 2004; Van Dingenen et al., 2005), free Tro-
pospheric campaign (Balkanski et al., 2003) have been car-
ried out over the Alps, the Apennines and the Po Basin area.
Several manuscripts have been published about the pollu-
tants at high elevation Alpine sites. Pichlmayer et al. (1998)
combined isotope analysis with back trajectories and found
out the pre-industrial and modern origin for nitrates and sul-
fates, respectively. Siebert et al. (1998) using trajectory anal-
ysis concluded that the Po Valley contribute to about 15%
of pollutants at Sonnblick (3106 m a.s.l.) and Jungfrau-
joch (3579 m a.s.l.) in summer and much less in winter.
Bertò et al. (2004) using back trajectories estimated the back-
tracking water vapour contribution to a precipitation event
over Trentino, Alpine target area, and concluded that most
of precipitation seems to be produced by air parcel resid-
ing over the Mediterranean Sea and the North African coast.
Bonasoni et al. (2000) using trajectory statistics revealed that
in warm season the highest background ozone concentra-
tion were related to air mass coming from northerly and
easterly latitudes, while the highest ozone values for non-
background conditions originated in Northern Italy and cen-
tral Europe. Wotawa et al. (2000) estimated ozone formation
along the trajectories crossing the Po Basin using measure-
ments in the Alps and the Apennines and 3-D backward tra-
jectories. They concluded that both emissions from nearby
areas and the European emission transported over the con-
tinent have to be considered. Steinbacher et al. (2005a, b)
presented the results of the measurements of aromatic com-

pounds, as well bimodal isoprene cycles during three mea-
surement campaigns.The meteorological conditions causing
air pollution episodes in the central Po Valley have been in-
vestigated by Finardi and Pellegrini (2004). The role of an-
ticyclonic weather type have been emphasized along with
weak winds and calms.

The aim of the present paper is to find out if there is any
preferable direction for air mass transport before the particle
formation starts at SPC and what meteorological conditions
along the air parcel trajectory dominate for cases when the
formation of new particle occurs at SPC. We also investigate
the transport directions for event and nonevent days against
the SO2 sources over the Europe, using EMEP data, and cal-
culated the SO2 potential emission sources.

2 Site description

The San Pietro Capofiume (SPC) measurement station
(44◦39′ N, 11◦37′ E) is located at 11 m a.s.l., about 30 km
northeast from the city of Bologna, in Po Valley (Fig. 1). The
Po Valley lies between the Alps to the north and the Apen-
nines Mountains to the south-south-west. The Alp mountain
chain, reaching elevations of well over 4000 m, extends from
the west to east, acting as a protection barrier against the cold
wind blowing from the north, giving rise to a climatic pattern
different from that of Central Europe.

The Po Valley axis is prevalently oriented west-east: this
maximizes the shading effect of the mountains on the bottom
of the valley, enhancing differences in radiation, flow and tur-
bulence over mountain slopes. The atmospheric circulation
in the Po Valley is characterized by the strong modification
of air flow due to high mountains that surround the valley on
three sides. The dynamic effects of mountains also have a
major impact on regional and local airflow patterns that im-
pact the climate of adjacent regions. The surface properties
and the presence of mountains and sea in the area lead to
the development of strong sea breezes, upslope winds, or the
combination of the two, depending on mountain/coast orien-
tation. The complex airflow configuration in the valley af-
fects significantly the temporal and spatial variation of pol-
lutant concentrations.

The local atmospheric circulation features, dominated by
calm and weak winds, often favour the development of criti-
cal pollution episodes (Finardi and Pellegrini, 2004).

Po Valley is densely populated, highly industrialized and
known to have a relatively high level of anthropogenic pollu-
tion. High levels of pollutants are reported for the Po Valley
region (“Provincia Bologna, Pianificazionee gestione della
qualit̀a dell’aria nella provincia di Bologna, parte prima: Va-
lutazione della qualita‘ dell’aria, 2003”, available athttp:
//www.provincia.bologna.it/ambiente/). Mineral dust trans-
portation episodes during the air mass transport from the
North African source region (Ansmann et al., 2003; Bona-
soni et al., 2004) often happen, increasing significantly the
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particle concentration. Another natural particulate source,
sea spray, is involved in heterogeneous reactions with anthro-
pogenic gaseous pollutants and may modify the processes
leading to gas to particulate conversion (O’Dowd et al., 1997,
2004).

3 Measurements of particle size distribution, gas con-
centrations and meteorological parameters

The particle size distribution measurements at SPC have been
ongoing since March 2002 and cover the period of three
years up to March 2005. The measurements at 3 m height
were carried out using a twin Differential Mobility Particle
Sizer (DMPS) system: the first DMPS measures particle size
distributions between 3–20 nm and the second one between
15–600 nm (Hamed et al., 2007). In addition to particle size
measurements, several gas and meteorological parameters
are being measured at SPC (at 3.5 m height and 1.5 m height,
respectively), including SO2, NO, NO2, NOx, O3, temper-
ature, relative humidity, wind direction, wind speed, global
radiation, precipitation, and atmospheric pressure (Hamed et
al., 2007).

4 Classification of the new particle formation events

The processes of particle formation and growth depend on
a combination of different factors, causing the intensity nu-
cleation events to be variable. When the formation of new
aerosol particles starts at (or near) the lowest measurable
particle size (diameter 3 nm) and subsequent growth of the
newly formed particles is observed for several hours, a day
is considered as a nucleation event day. The nucleation event
classification used here is based on event clarity, i.e. the num-
ber concentrations of the freshly formed particles, and their
formation and growth rates (for more details see Hamed et
al., 2007). The nucleation event classes 1, 2 and 3 refer to
strong, intermediate, and weak events, respectively. To min-
imize the uncertainty of the classification subjectivity, the
weak class 3 events were excluded from some calculations,
as will be detailed below.

The days with no particle formation are classified as non-
event days. The days which do not fulfill the criteria to be
classified as the event and nonevent days were combined into
one group, called undefined days. Table 1 summarizes the
numbers of nucleation event days (class 1, 2 and 3 events)
undefined and nonevent days, as well as the fraction (%) of
the different types of days.

5 Back trajectories analysis

To analyze the source and transport pathways of the air
masses arriving at SPC, the back trajectories analysis was
done for the period of measurements using the HYSPLIT4

Table 1. Number of nucleation event days (class 1, 2 and 3), unde-
fined and nonevent days, as well as the fraction (%) of the different
types of days.

Number of days % from total number
of operational days

event, class 1 45 5.9
event, class 2 91 11.8
event, class 3 143 18.6
undefined days 236 30.7
nonevent 254 33.0
Total 769 100.0

model, developed by NOAA/ARL (Draxler and Hess, 1998).
HYSPLIT 4 is a single particle lagrangian trajectory dis-
persion model. The model runs were made using Global
FNL meteorological archive with a spatial resolution of
191×191 km. The back trajectories were calculated typi-
cally 96 h backwards in time at 100-m arrival height above
ground level between 08:00 and 20:00 UTC with 2-h res-
olution. However, in some calculations we used only the
trajectories that arrived at 10:00 UTC, i.e. around the nucle-
ation event start time (Hamed et al., 2007). Some trajectories
were missing or shorter than 96 h in duration, since the FNL
archive data has some gaps when input meteorological data
are not available.

Current literature suggest that the error accompanying
HYSPLIT-generated trajectories can be estimated to be any-
where from 15% to 30% of the travel distance (Stohl, 1998;
Draxler and Hess, 2004). The uncertainty increases with
the length of transport, and the horizontal uncertainty four
days before the arrival at SPC can reach several hundreds
of kilometers. However, individual trajectories may have
much larger errors, especially since the model topography
and the real topography do not match exactly. Another po-
tential source of uncertainty is due to the regions of near-zero
wind velocity which were encountered in many of trajecto-
ries (Stohl et al., 1995). For the purposes of the present pa-
per, the accuracy of back trajectory calculations is sufficient
to reveal the differences in nucleation event frequencies for
air masses of different types and history.

Vertical position of the air parcel, mixed layer depth,
as well the air parcel properties along the trajectory such
as relative humidity, ambient temperature, and rain inten-
sity were estimated by HYSPLIT trajectory model using
the global FNL archive (http:www.arl.noaa.gov/ss/transport/
archives.html). The 6-hourly FNL archive data are gener-
ated by the NCEP GDAS (National Centers for Environmen-
tal Prediction Global Data Assimilation System) wind field
reanalysis. GDAS uses the spectral medium range forecast
(MRF) model for the prognoses. The FNL database con-
tains basic fields such as the u- and v-wind components,
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Fig. 2. Frequency (%, color) of the location of an air parcel in different direction sectors between the reference back time steps (contour line
for −12 h,−24 h,−48 h,−72 h,−96 h) for the different seasons ((a) – winter, (b) – spring,(c) – summer, and(d) – autumn) and for the
whole period of measurements(e).

temperature, and humidity at 13 vertical levels, from the
surface up to 20 hPa. For estimation of the water content,
which is an essential property affecting aerosol particle con-
densation and deposition processes (e.g. Vesala et al., 1997),
we calculated the absolute humidity for each back point of
the trajectory. We also calculated the vertical and horizontal
speed of air parcel to estimate if the air masses transfer rate
varies for different days classified according to nucleation
event clarity.

6 Air mass transport direction

To estimate the air mass main transport direction to SPC for
different seasons and the whole year we calculated the fre-
quency of the location of the reference (12, 24, 48, 76, and

96 h) back points in 60◦ degree sectors: north-east (NE), east
(E), south-east (SE), south-west (SW), west (W), and north-
west (NW). Also for each sector we calculated the mean trav-
elling distance between reference back points to estimate the
air mass travelling distance at different path sections.

At SPC the prevailing W to NE atmospheric flows are
clearly seen (Fig. 2). During winter the Westerlies are asso-
ciated with the subpolar low pressure zone which is located
over the ocean just to the south of Greenland and the Aleutian
Islands. The depression activity causes a variety of circula-
tion patterns over South Europe. Some of these patterns, gen-
erally accompanied by vertical atmospheric stability with to
temperature inversions and poor vertical mixing, are respon-
sible for accumulation of air pollutants, while others, as the
northerly flow, do not favour high pollutant concentrations.
The Western Mediterranean Basin is better ventilated due to
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frequent passages of travelling low pressure zones and their
frontal systems. However, as soon as anticyclonic conditions
develop, air pollution can be trapped within industrialized
valleys or in large, but confined air sheds (Millan, 2002).

More than 40% of the air masses arriving at SPC in win-
ter (Fig. 2a) have been originated or passed over the Atlantic
and Central Europe. The air mass transport distance is the
highest in that direction compared to other sectors. The ve-
locity of an air parcel decreases towards arrival point due to
the increasing influence of the surface roughness. The frac-
tion of the air flows originating from over the Western Europe
was about 20–25%. The frequency of the trajectories coming
from over Russia and Central Europe was much lower and
the travelled distance is on average much shorter than one for
the air masses coming from the NW. However, baric systems
and consequently the transport directions at each specific mo-
ment can be essentially different from those estimated by the
averaging.

In early spring, the high pressure conditions become more
favourable, forcing the low pressure belt to the north. The
amount of global radiation at SPC increases considerably
compared to winter period (Hamed et al., 2007). Sahara
brings forth dry hot air that expands across the Mediterranean
Sea northwards to the Alps and covers Italy. However the
frequencies of the SE to SW transport directions (Fig. 2b) re-
mains low (up to 15%). The travel distance decreases in all
directions but the NE, which remains to be the prevailing di-
rection in air mass transport. More than 25% of trajectories
arrive from that direction. Originating in the Eurasian land-
mass, the predominant air mass contains little moisture, and
as it passes from cooler to hotter regions the water carried
along is evaporated more rapidly than local cloud-forming
eddies can condense it.

Subtropical high pressure zone dominates in summer.In
anticyclonic circulation the subsiding air creates stable atmo-
spheric conditions, suppressing cloud development and pre-
cipitation. The cloudless conditions commonly experienced
during both the daytime and the night cause significant heat
gain and loss during the day. As a result the climate expe-
riences a large daily temperature range during summer. The
travel distance of air mass is the shortest in summer (Fig. 2c)
compared to other seasons in all the directions. The fre-
quency of the local wind low speed conditions (<2 m/s) is
significant for that period (Hamed et al., 2007). The influ-
ence of the underlying territories to the air mass properties is
strongest during that season.

In autumn high pressure belts drift back towards the
equator, and the weather becomes more dominated by the
rain-bearing low/pressure depression. The transport dis-
tance increases in north-west direction, whereas the distribu-
tion of the trajectories in all sectors becomes more uniform
(Fig. 2d). However, the west to northeast sectors still have
the highest (15% to 25%) frequency.

Thus, during the whole period of measurements (Fig. 2e)
the W, NW and NE air mass directions prevail and make up
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Fig. 3. Air parcel mean vertical height before the arrival at SPC for
nucleation event (class 1 and 2) and nonevent days.

from 15% to over 25% frequency each. The frequency of SE
and SW direction is lower (below 10%).

7 Meteorology along the trajectory

The effect of the meteorological parameters on aerosol parti-
cle formation has been widely studied. Nilsson et al. (2001)
investigated the effect of continental boundary layer evolu-
tion, convection and turbulence on aerosol formation. The
influence of meteorological parameters on nucleation events
is of interest as well (see, e.g. Boy et al., 2002; Lyubovt-
seva et al., 2005). Hellmuth (2006) investigated gas-aerosol-
turbulence interaction in the convective boundary layer and
concluded that the observations from the surface layer alone
are not consultive to elucidate the origin of newly formed
particles. Hyv̈onen et al. (2005) using data mining technique
found that aerosol particle formation events observed in bo-
real forests are connected with two variables, the condensa-
tion sink and relative humidity. Hamed et al. (2007) revealed
that the condensation sink values at SPC are lower on event
days than on nonevent days. In present studies we aimed to
find out the magnitude of the condensation sink in air masses
of different origin using back trajectories (for more details
see Sogacheva et al., 2005b); however, no significant dif-
ferences in condensation sink values measured at SPC de-
pending on air mass origin and transport direction have been
found (results are not presented).

While meteorological conditions favouring the new parti-
cle formation at SPC are relatively well understood (Hamed
et al., 2007), the air mass properties at the recipient and along
the trajectory for event end nonevent days are poor charac-
terized. However, the identification of the air mass prop-
erties favourable for the episodes of new particle formation
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Fig. 4. Difference in meteorological parameters between event and nonevent trajectories for different seasons (blue line – winter, green line –
spring, red line – summer, magenta line – autumn) and seasonal average (black line).(a) Air mass height,(b) Mixed layer depth,(c) Ambient
Temperature,(d) Relative Humidity,(e)Absolute Humidity,(f) Rain along the trajectory.

is important for understanding the processes leading to that
phenomenon. The air mass main properties, such as tem-
perature and humidity, established over a particular region
of the earth’s surface (air mass source region), undergo spe-
cific modifications while the air mass moves away from the
source region to the recipient. The acquired additional at-
tributes, in turn, depend on properties of the transition region
and the duration the air mass spent over that region. The spe-
cific character of the transition regions may result in drastic
changes in air mass properties even if they were originated
over the same region.

However, the vertical distributions of the meteorological
parameters also influence the air parcel properties. Stronger
compared with nonevent cases subsidence of air parcel dur-
ing on average last 12 h before the arrival at the SPC (Fig. 3)
foregoes the nucleation particle formation event and clarifies
the difference in the behaviour of several meteorological pa-

rameters, such as air mass height (Amh), mixed layer depth
(Mld), relative humidity (RH), rain (R), absolute humidity
(AH), and ambient temperature (Tamb) between event and
nonevent days (Fig. 4).

For all the seasons but for spring, the “event” air parcel, ar-
rived at SPC during the event day, starts on average to subside
at its point of origin (96 h back before the arrival) from the
lower height, compared to “nonevent” air parcel (Fig. 4a).
The maximum difference (up to 450 m) between the event
and nonevent air parcel heights at point of origin is observed
in winter. However, event parcels have a lower vertical veloc-
ity compared to nonevent parcels up to approximately 12 h
before the arrival, and, therefore, the average Amh difference
reverses at some point (between 77 h back point in summer
and 42 h back point in autumn on average) and event parcels
travel further to SPC higher than nonevent parcels. About
12 h before the arrival, a strong subsidence of the event air
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parcel starts, which may correspond to post-frontal synoptic
situation or anticyclone weather type with clear sky condi-
tions, when the temperature vertical gradient is higher. As
a consequence, the velocity gradient increases. The subsi-
dence warms the air by compression. Any clouds presented
quickly evaporate as the temperature of the air rises above its
dew point. For this reason, anticyclones usually bring fine,
dry and settled weather, particularly in summer.

The atmosphere boundary layer mixing around noon is
stronger along the event compared to nonevent trajectories.
The amplitude of the difference in Mld between event and
nonevent trajectories becomes higher on the way to recipient
except for summer and is about 350 m at SPC on seasonal
average (Fig. 4b). In winter the difference in Mld between
event and nonevent days reaches more than 600 m.

Ambient temperature of the air parcel (Fig. 4c) is lower
for event trajectories along the whole air parcel path, except
for several (up to 10) hours before arrival at SPC. This corre-
sponds well to the strong subsidence of event air parcel dur-
ing the last 12 h of its way. On seasonal average, the air mass
temperature during event days at the recipient is about 0.5◦

higher compared to nonevent air mass temperature. The tem-
perature difference at the recipient reaches a maximum value
in spring (2.7◦). The highest temperature difference (about
6◦) between the event and nonevent trajectories on the way
to recipient is observed in winter and summer, whereas at the
recipient the event air mass is about 1◦ colder compared to
nonevent air masses in that seasons.

Differences in relative humidity (Fig. 4d) and absolute hu-
midity (Fig. 4e) behave opposite to the ambient temperature
difference. As it was mentioned above, strong subsidence of
an air parcel together with the temperature increasing makes
the air parcel dryer during the event days. RH is about 5%
to 10% higher on seasonal average along event trajectories.
The difference in RH is smaller (less than 5%) in spring and
a little higher in winter (up to 15%). Being slightly higher for
event trajectories at 96 h back point, AH decreases compared
to that of nonevent cases at a distance, close to where the dif-
ference in rain along the back trajectory between event and
nonevent days for different seasons (Fig. 4f) becomes posi-
tive. Minor decrease in difference is observed during the last
12 h before the arrival. However, being related to the abso-
lute temperature as well, AH is considerably lover along the
event trajectory in summer compared to other seasons.

The mean meteorological parameters for event and non-
event days, such as Tamb and RH, calculated by Hysplit4
model at the recipient show a good agreement with the mea-
surement values of temperature and RH at the SPC station.
However, model estimation may have significant deviation
from the observations mainly due to the low (191×191 km)
resolution of the model. The temperature at the station at
10:00 UTC was higher for event days in all the seasons but
in summer, when no significant difference between event and
nonevent days was observed (Hamed et al., 2007). The RH
at the station was much lower during event days in all the
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Fig. 5. Median horizontal(a) and vertical(b) velocity of air parcel
averaged for different parts of trajectory (96 – 72 – 48 – 36 – 24 –
12 – 6 – 0 h back) for different group of days (blue line – nonevent
days, black line – undefined days, red line – event class1 days, ma-
genta – event class 2 days, green – event class 3 days). The points
are connected for clarity.

seasons but in summer, when the difference between event
and nonevent days was much smaller. The same tendency is
clearly seen in Fig. 4c.

The rain conditions leading to washout of water-soluble
gases and aerosols (Flossmann, 1985) are presented in
Fig. 4f. Precipitation occurred more often along the event
trajectories, whereas during the last 12 h of the path the pre-
cipitation along the event trajectories except for autumn was
close to 0 (not shown here). More intensive precipitation
along the event trajectories implies the role of the wet depo-
sition in the reduction of the condensation sink prior to parti-
cle formation event (Hamed et al., 2007). Thus, the meteoro-
logical conditions along the air parcel trajectory differ con-
siderably during approximately two days before the arrival.
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Fig. 6. Schematic figure of the sub-areas used in the probability
analysis.

The difference between air mass properties along event and
nonevent trajectories, which can be explained by the distinc-
tion in air parcel subsidence rate, becomes more significant
during the last 12 h before the air parcel arrives at the mea-
surement station. The subsidence causes sharp temperature
increase and RH decrease.

Having found the difference in travelled distance and in
subsidence height between event and nonevent trajectories,
we calculated the median horizontal and vertical velocities
of air parcels for event classes 1 to 3, nonevent and unde-
fined days trajectories to estimate if there is any dependence
between intensity of particle formation and the velocity of air
parcel, which indicates how fast the air parcel properties may
change along the trajectory.

Median horizontal velocity (Fig. 5a) decreases in the di-
rection to the recipient from the origin point of the trajectory
to the recipient.The decreasing of the horizontal velocity is
due to the increasing of surface roughness and friction ve-
locity in the direction from the Atlantic and northern Europe
to the central part of Europe, which is the most favourable
air mass transport direction. However, the horizontal ve-
locity for event class 1 days increases from 4.6 m/s in time
sector 72–48 h before the arrival to 5.7 m/s in time sector
48–36 h before the arrival. During the last day before the
arrival the increasing of horizontal velocity is also observed
for event classes 2 and 3 trajectories, while air parcel velocity
decreases monotonously along the nonevent and undefined
trajectories.

Median vertical velocity (Fig. 5b) does not change a lot for
the period between 96 and 48 h, but increases sharply dur-

ing the last 48 to 6 h before the arrival due to the air parcel
subsidence. The strongest vertical velocity (−0.013 m/s on
average) is observed in event class 1 trajectories in a time
period of 12–6 h. Event class 2 and 3 trajectories also show
higher values in this time period than undefined and nonevent
trajectories.

8 Probability of aerosol particle formation events

The analysis of the nucleation event probability at SPC as a
function of the air mass origin (48 h before arrival to the re-
cipient) and history was done for the area limited by 35◦ N
and 60◦ N in latitude and 5◦ W and 25◦ E in longitude. This
area was divided into 15 sub-areas of 10◦

×5◦ in longitudinal
and latitudinal direction, respectively (Fig. 6). We consid-
ered that the accuracy of the trajectory calculations is within
the size of the sub-area. Such a division allows us to esti-
mate the influences of small scale regions traversed by the
air masses on nucleation events at SPC, and to make a con-
clusions on synoptic scale regions impact (Central Europe,
Eastern Europe and Atlantic)on aerosol particle formation.

In the present investigation the air parcel passing over sev-
eral sub-areas (s) were registered in each sub-area through
which the trajectory passed. However the contribution of the
sub-area into air mass properties depends on how long the air
parcel travelled over the corresponding area. In Sogacheva
et al. (2005a), each passage of a trajectory through a given
subarea was registered with equal weight. Here we improve
this calculation by weighting a trajectory passage through a
subarea with the trajectory residence time (τev,s andτnev,s),
which provides an indication of the fractional time spent in-
side a specific sub-area relative to total time spent inside the
domain by air parcels for combined event classes 1 and 2
(evs) and for nonevent (nevs) trajectories, respectively:

evs=

e∑

1

1

τev,s

(1)

nevs =

ne∑

1

1

τnev,s

, (2)

wheree, ne− are numbers of event and nonevent trajectories
for sub-areas, respectively.

For each sub-area the probabilityPs of the event trajec-
tories as a function of event and nonevent trajectories was
calculated as:

Ps =
evs

evs + nevs

. (3)

The probability of the particle formation events as a func-
tion of the origin and history of the air masses arrived at
SPC is shown in Fig. 7. The numbers inside sectors in-
dicate the total number of event and nonevent trajectories,
passed over the corresponding sub-area. The number in sec-
tor 5 is the total number of event class 1 and 2 and nonevent
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Fig. 7. Probability of nucleation events. Trajectories are normalized by the residence time in each sub-area. Number in sub-area is the
number of event and nonevent trajectories, passed over that sub-area.

trajectories, arrived at SPC. On seasonal average (Fig. 7a)
the highest (more than 0.9) probability of new particle for-
mation events at the measurement station was observed in
northern atmospheric flow, in air masses originated over the
North Sea and Baltic Sea regions (sub-areas 13 and 15, re-
spectively). A high probability (more than 0.6) is observed
in the air masses originated and passed over north and north-
eastern Europe, i.e. over regions with large amount of an-
thropogenic sources of gaseous pollutants. In these areas the
contribution of the particles directly emitted by the combus-
tion processes and produced by the photochemical reactions
is very important (Bowman et al., 1995). The lowest proba-
bility of nucleation events (less than 0.1) is observed in the air
masses which reach SPC in other than northern atmospheric
flows (sub-areas 1 to 4 and sub-area 6). However, southern

transport of the air to SPC is observed seldom compared to
other directions (Fig. 2). The northern atmospheric flow is
the most favourable for new particle formation at SPC dur-
ing all the seasons, though the portion of event trajectories
in some sub-areas may change considerably from autumn-
winter to spring-summer seasons.

In winter, when the monthly frequency of the nucleation
events was the lowest compared to the other seasons (Hamed
et al., 2007), the Baltic Sea was the single sub-area, for which
the only event trajectories have been registered (Fig. 7b). The
probability of event trajectories in the other northern sub-
areas was very low (less than 0.4). No nucleation events have
been observed at SPC during southern air mass transport in
winter.

In spring (Fig. 7c) all the trajectories originating over the

www.atmos-chem-phys.net/7/839/2007/ Atmos. Chem. Phys., 7, 839–853, 2007
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Fig. 8. SO2 emission sources (Tg year−1, EMEP data base) and
event class 1(a), event class 2(b) and nonevent(c) trajectories for
the whole period of measurements.

Baltic Sea, Poland, Germany and north-west Spain were
event trajectories. The portion of event trajectories passed
over central Europe was also high (more than 0.6). In sum-
mer (Fig. 7d) the probability distribution was close to that in

spring, however the portion of the event trajectories passed
over central Europe was higher (up to 0.9).

In autumn (Fig. 7e), when the aerosol instrument at SPC
has malfunctioned the most (47% operational days in autumn
compared to 91% in winter, 76% in spring and 68% in sum-
mer), the probability of event trajectories in sub-areas 11 and
12 was the highest (equal to unity), whereas for the other
sub-areas it was very low (less than 0.3). No event trajecto-
ries were observed in western air flow.

9 Sulphur dioxide potential sources

Hamed et al. (2007) reported that SO2 concentrations ob-
served were higher on event days comparing with nonevent
days. As sulphuric acid has been suggested to be the key
species causing nucleation events (e.g. Kulmala et al., 2000,
2006), we decided to investigate the location of the distant
and local emission sources which may contribute to parti-
cle formation at SPC. Using back trajectories we aimed to
estimate how big fraction of SO2 can be transported from
European emission sources to SPC.

Sulphur dioxide, which is the predominant anthropogenic
sulphur-containing air pollutant, is released to the atmo-
sphere by various anthropogenic and natural sources, the ma-
jor ones being fuel combustion, industrial processes, volca-
noes, and dimethyl sulfate oxidation (Davidson et al., 1996).
SO2 reacts under tropospheric conditions via both gas- and
aqueous-phase processes and is also removed physically via
dry and wet deposition by the uptake of aerosols and clouds.
With respect to gas-phase reaction, oxidation of SO2 by OH
radical is dominant (Stockwell and Calvert, 1983). The life-
time of SO2 based on the reaction with the OH radical, at
typical atmospheric levels of OH, is about 10 days, while in
cloud-phase reactions lifetime decreases to as low as several
hours (Porter et al., 2002).

The combination of mesoscale circulations and local emis-
sions strongly influence the spatial distribution of SO2. As
shown in Figs. 8 and 9, a large fraction of event trajec-
tories before the arrival at SPC pass over Central Europe
which remains a strong source of anthropogenic emissions.
In our studies we focused on the estimation of how of-
ten the trajectories, divided to several groups according to
the event classification (nonevent, classes 1 and 2), passed
over the SO2 emission sources calculated by EMEP model
(http://www.emep.int/).

In the Fig. 8 we present the SO2 emissions and the air
parcel trajectories for event classes 1 and 2 (Figs. 8a and b,
respectively) and nonevent days (Fig. 8c), observed at SPC.
It is clearly seen that many of the event trajectories passed
on their way to SPC the SO2 emission source over Slovenia,
which has intensity more than 20 Tg year−1 and SO2 emis-
sion source in Veneto(up to about 15 Tg year−1).

The mean frequency and the mean travel distance for event
class 1 and 2 trajectories and nonevent trajectories are shown
in Fig. 9. The big fraction of event trajectories arrive at SPC

Atmos. Chem. Phys., 7, 839–853, 2007 www.atmos-chem-phys.net/7/839/2007/
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Fig. 9. Frequency (%, color) of the location of an air parcel in different direction sectors between the reference back time steps (contour line
for −12 h,−24 h,−48 h,−72 h,−96 h) for event(a) and nonevent(b) for the whole period of measurements.

from north-east direction, passing over Poland, Slovakia,
Check Republic, eastern part of Germany about three to four
days before the arrival, and passing over Slovenia at about
one to two days before the arrival (Fig. 9a). The distribution
of nonevent trajectories on the directions limited by 60◦ sec-
tors is more uniform (Fig. 9b). The fraction of north-eastern
nonevent trajectories is less compared to event trajectories,
whereas the fraction of western trajectories, which identify
the transport of air masses from Atlantic over France, in-
creases.

In order to investigate SO2 transport to SPC, we calculated
the potential (cumulative) SO2 concentration along the tra-
jectory for periods when the air parcel was within the mixed
layer (Hysplit 4 output) from the EMEP SO2 sources. For
each 0.5◦×0.5◦ grid areai, travelled by the air parcel, SO2
emission flux (Mg year−1) was converted to SO2 concentra-
tion ci (µg m−3), taking into account the residence time of
the air parcel in the corresponded grid area and mixed layer
depth. To get the air parcel residence time in a 0.5◦

×0.5◦

grid area we interpolated the trajectory 1-hour back points to
0.5◦

×0.5◦ grid, corresponding to the EMEP emission data
base.

The cumulative SO2 concentrationCcum was calculated as
a sum ofci concentrations overi areas, travelled by the air
parcel during timeti . The effect of SO2 removal from the air
parcel onCcum was taken into account using the parameterτ ,
which is considered being an analog to SO2 lifetime. Thus,

Ccum =

i∑

1

ci · exp
−ti

τ
. (4)

In the initial calculationsτ was considered as a lifetime with
respect to dry and wet deposition processes (10 days and 1.8
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Fig. 10. Modeled (blue line), using EMEP emission data and air
masses back trajectories (τ=24 h) and measured (black line) SO2
concentration, (µg m−3).

days, respectively), but because other processes, which may
influence SO2 concentration (especially dilution due to mix-
ing with cleaner air) were not taken into account,Ccum con-
centration deviated from measured SO2 values considerably.
To improve the agreement we decided to treatτ as an ad-
justable parameter, describing the effective decay timescale
of SO2 in the air parcel, in order to find the best fit ofCcum
to SO2 concentration value measured at the station.

As expected, the correlation between modeled and mea-
sured SO2 concentrations was low at all values ofτ . Rea-
sons for this include the annual averaging of EMEP data,
which conceals the well defined seasonal cycle with a win-
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Fig. 11. The fraction of the SO2 concentration (%) transported to
SPC (modeled using back trajectories and EMEP emission data).

ter maximum and summer minimum. Moreover, the accu-
racy of the trajectory analysis decreases in case of difficult
meteorological conditions and over the complex terrain, as
discussed above. It should also be kept in mind thatτ is a
parameter that describes removal and dilution processes in
an averaged and simplified manner. Thus, rather than try-
ing to determineτ based on direct correlations, we looked
for theτ value that best reproduces the statistical frequency
distribution of the measured SO2 concentrations. The best
agreement was found withτ=24 h. As shown in Fig. 10,
the modeled and measured distributions are reasonably sim-
ilar for the most part. The measured distribution shows a
tail of very high SO2 values absent from the modeled distri-
bution. One possible explanation for these high values are
instances when the measurement station is influenced by a
plume from a local strong emission source directly upwind
(Wang et al., 2006). In any case, only a small minority of
measured SO2 values represents high concentrations larger
than about 15µg m−3, and we therefore believe that our sim-
ple transport modelling withτ=24 h reproduces the measured
SO2 concentration range reasonably well.

Chin et al. (2000a) reported that in global models of atmo-
spheric sulfur cycle simulation SO2 lifetime is taken in the
size range of 1.8 to 2.6 days that is about 2 to 2.5 times higher
compared to the parameterτ in our calculations. However,
the model agrees within 30% with the regionally averaged
sulfate concentration measured over North America and Eu-
rope but overestimates the SO2 concentrations by more than
a factor of 2 there (Chin et al., 2000b).

We also estimated how much of SO2 can be transported to
the recipient whenτ=24 h. For each trajectoryj we consid-
ered the travelled 0.5×0.5◦ areai with concentrationc0,i,j ,
and calculatedcr,i,j , the concentration that remains in the at-

Fig. 12. The contribution of the SO2 emission sources (µg m−3)
to SO2 concentration at SPC (modeled using back trajectories and
EMEP emission data).

mosphere after timeti,j

cr,i,j = c0,i,j × exp(
−ti,j

24
), (5)

whereti,j is the travel time of the air parcelj from the source
areai to the recipient.

Afterwards we calculatedc%,i,j , the fraction of the trans-
ported concentration to the concentration over the areai

c%,i,j =
cr,i,j

c0,i,j

. (6)

For each areai we calculatedc%,i , the mean fraction of the
concentration, transported from the area to the recipient

c%,i =

j∑
1

c%,i,j

j
. (7)

The preliminary analysis of the contribution of different SO2
source areas to the concentration at SPC (Fig. 11) shows that
more than 40% of the emissions over the Po Valley reach
SPC, whereas the fraction of European SO2 emissions that
can be observed at SPC is 10% to 30% on average. This
means that the less distant SO2 source regions seem to be
more important for the SO2 concentration measured at SPC
than the emission sources in the Central Europe. Also the in-
crease (decrease) of SO2 emissions in Po Valley will change
the concentration at the station considerably compared to the
SO2 emission changes over Europe.

However, the real contribution depends not only on how
big fraction of the emission can be transported, but also on
the initial concentration of SO2 in the source areas. Hav-
ing estimated the mean concentration for 0.5×0.5◦ area from
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EMEP emissions fluxes data and mixing layer height (Hys-
plit 4 output for the trajectories), we calculated how much of
SO2 can be transported on average to the SPC from different
areas. The results (Fig. 12) show, that even if the fraction
of SO2 transported from the Central and Eastern Europe is
less than 20% (Fig. 11), the contribution of strong emission
sources nevertheless remains noticeable (up to more than
2µg m−3 from 0.5×0.5◦ area).

10 Conclusions

Air parcel trajectories have been analyzed to investigate
the history of air masses and possible link between the air
masses history and new particle formation events at San
Pietro Capofiume measurement station, Po Valley, Italy. By
means of trajectory analysis the SO2 emission sources in Eu-
rope have been estimated as a potential sources influencing
SO2 concentration at SPC.

Westerly to north-easterly air mass transport occurs more
frequently in all the seasons at SPC. Due to the low pressure
zone activity, horizontal transport is much stronger in winter
compared to summer. The velocity of an air parcel decreases
towards the arrival point due to the increasing influence of
the surface roughness.

With rare exception, mixed layer depth is higher along
the event trajectories. However, such parameters as tem-
perature and relative humidity, which along with origin are
determined by the elevation of the air parcel, have a rever-
sal differences between event and nonevent trajectories. We
found that, on average, event trajectories undergo stronger
subsidence than nonevent trajectories during the last 12 h be-
fore the arrival at SPC; the amplitude of the increasing of the
vertical velocity for event class 1 trajectories is the highest.
Higher temperature, lower rain, relative and absolute humid-
ity are also typical for event trajectories.

Nucleation events occur more frequently in air masses
arriving from Central Europe, whereas event frequency is
much lower in the air masses transported from both south-
ern directions and the Atlantic Ocean.

The SO2 emission sources in Europe have been consid-
ered as potential sources influencing SO2 concentration at
SPC. Air masses trajectories often pass over the polluted
(SO2) Slovenia region and over the Veneto emission sources,
east from the station. Po Valley SO2 source regions seem
to be more important in its contribution to the concentra-
tion at SPC than the emission sources in the Central Europe.
However, the contribution of strong emission sources over
the Central and Eastern Europe nevertheless is substantial.

References

Ansmann, A., B̈osenberg, J., Chaikovsky, A., Comerón, A., Eck-
hard, S., Eixman, R., Freudenthaler, V., Ginoux, P., Komguem,
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Bertò, A., Buzzi, A., and Zardi, D.: Back-tracking water vapour
contributing to a precipitation event over Trentino: a case study,
Meteorologische Zeitschrift, 13(3), 189–200, 2004.

Bonasoni, P., Stohl, A., Cristofanelli, P., Calzolari, F., Colombo, T.,
and Evangelisti, F.: Background ozone variations at Mt. Cimone
station, Atmos. Environ., 34, 5183–5189, 2000.

Bonasoni, P., Cristofanelli, P., Calzolari, F., Bonafè, U., Evange-
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land, based on back trajectory analysis, Boreal Environ. Res., 10,
479–491, 2005a.

Sogacheva, L., Dal Maso, M. and Kulmala, M.: Aerosol particle
number concentration and condensation sink study at Hyytiälä,
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