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Abstract. In this technical note we present the exact form of
the Zeldovich factor for heterogeneous nucleation on spheri-
cal pre-existing particles. We study the error caused by pla-
nar pre-existing surface approximations, which have been
used in our earlier heterogeneous nucleation model and else-
where in the literature. We also test the significance of widely
used approximations for cluster surface area and circumfer-
ence. We conclude that the approximations do not affect the
predicted onset saturation. Especially for small pre-existing
particles the nucleation rates calculated with the exact and
approximative models differ significantly.

1 Introduction

Formation of new aerosol particles via gas-to-particle con-
version plays an important role in the atmosphere of Earth
as well as that of planet Mars. In homogeneous nucle-
ation molecular clusters are formed spontaneously from the
vapour, whereas in heterogeneous nucleation clusters form
on the surfaces of pre-existing particles, for example dust,
thus facilitating the start of their condensational growth. Nu-
cleation rate, or in the heterogeneous nucleation the nucle-
ation probability, is the quantity accessible to laboratory and
field measurements. The barrier for critical cluster forma-
tion, in other words the formation free energy, is the key
quantity in predicting particle formation rate, and thus the-
orists focus on predicting it accurately. Nucleation rate is
proportional to the exponential of the formation energy, and
the kinetics of the cluster growth is described by two pre-
exponential factors: the average growth rate of a critical
cluster and the Zeldovich factor. The Zeldovich factor cor-
rects among other things for the fact that some clusters that
have reached the critical size still decay to smaller sizes. In
one-component nucleation the homogeneous Zeldovich fac-
tor has a simple, well known analytical form, and an expres-
sion for the heterogeneous Zeldovich factor in the case of
planar pre-existing surface has also been presented in the lit-
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erature. In this note we present a formula for the hetero-
geneous Zeldovich factor in the case where the pre-existing
condensation nuclei are spherical.

2 Theory

In our previous article on one-component nucleation in the
Martian atmosphere published in Journal of Geophysical Re-
search – Planets (M̈aätẗanen et al., 2005) we derived a form
of the one-component Zeldovich factor only applicable for
a planar pre-existing condensation nucleus (CN) surface.
Pruppacher and Klett (Pruppacher and Klett, 1997, pp.202)
state that the Zeldovich factor can be expressed as

Z =

√

1ϕ∗

3πkT (N∗)2
(1)

for arbitrary geometries for which the surface area of the
cluster,A, is proportional toN2/3, whereN is the number
of molecules in the cluster.1ϕ is the formation energy of
the cluster,∗ stands for the critical cluster,T is the tem-
perature andk is the Boltzmann constant. Equation (11)
in our paper M̈aätẗanen et al. (2005) is based on equation
(1), and shows a relation between the homogeneous and
heterogeneous Zeldovich factors. For a planar CN surface
A ∝ N2/3, and the geometric factorsf=1ϕhet/1ϕhom and
fn∗=Nhet/Nhom are equal, in which case relation (1) in fact
simplifies intoZhet= 1√

f
Zhom.

Here we derive the exact Zeldovich factor for one-
component heterogeneous nucleation in the case of curved
pre-existing surface; in this case the cluster surface area is
not proportional toN2/3. We also present some modelling
results on its effect on nucleation. It should be noted that
the formulation presented inMäätẗanen et al. (2005) is well
applicable for large pre-existing particles acting as CN, and
thus the approximation does not affect the results of paper
Määtẗanen et al. (2005), but for small CN the differences may
be large.
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Fig. 1. The geometry of heterogeneous nucleation: a critical cluster
of radiusr on the surface of a pre-existing particle of radius Rp.

The Zeldovich factor is by definition

Zhet =

√

−1

2πkT

[

∂21ϕhet

∂(Nhet)2

]∗
. (2)

To obtain an explicit form for the Zeldovich factor we have
to take the second derivative of formation free energy, which
can be written

1ϕhet = 1ϕhet
surf +1ϕhet

vol

= σg,l2πr
2(1 − cosψ)

+ (σl,sol − σg,sol)2πR
2
p(1 − cosφ)

+ 1µNhet (3)

For simplicity of terminology we speak about a liquid cluster
forming on a solid CN, but the formulae are applicable also
to the case of solid cluster forming on a solid CN. In Eq. (3)
σg,l is the gas-liquid surface tension,σl,sol andσg,sol are re-
spectively the liquid-solid and gas-solid surface energies,r is
the radius of the cluster andRp the radius of the pre-existing
particle. 1µ is the chemical potential difference between
gas and liquid, both at the gas pressure. We have used the
equimolar surface condition (Ono and Kondo, 1960; Laak-
sonen et al., 1999) for all the phase interfaces, which means
that the total number of molecules in the clusterNhet equals
the number of molecules in the hypothetical bulk liquid since
surface excess contributions are set to zero. The geometry of
heterogeneous nucleation is shown in Fig. 1.

The anglesφ andψ can be expressed as

cosφ =
Rp − r cosϑ

d
=
X −m

dX
(4)

and

cosψ=
Rp cosφ−d

r
=−

r − Rp cosϑ

d
=

−(1−Xm)
dX

(5)

where

d2=r2+R2
p−2rRp cosϑ=r2(1+X2−2Xm) ≡ r2d2

X. (6)

andX=Rp/r andm= cosϑ , whereϑ is the contact angle
between the cluster and the pre-existing surface, as defined
by Young’s equation

cosϑ = m =
σl,sol − σg,sol

σg,l
. (7)

Now using (4), (5), (6) and (7) the surface termσg,l2πr2(1−
cosψ)+(σl,sol−σg,sol)2πR2

p(1− cosφ) can be written as

1ϕhet
surf = 2πσg,l

(

r2 −mR2
p

+
r3 − r2Rpm− rR2

pm
2 + R3

pm
√

r2 − 2rRpm+ R2
p



 . (8)

We can easily calculate the first derivative of the volume
term1µNhet

∂1ϕhet
vol

∂Nhet
= 1µ. (9)

The first derivative of the surface term can be taken using the
chain rule

∂1ϕhet
surf

∂Nhet
=

(

∂1ϕhet
surf

∂r

)

(

∂r

∂Nhet

)

=

(

∂1ϕhet
surf

∂r

)(

∂Nhet

∂r

)−1

. (10)

From (10) it is seen that we also need the dependence of the
number of molecules on the cluster radius, which can be ac-
quired by expressing the heterogeneous cluster volume with
the help of the geometry as

V het =
π

3
r3(2 − 3 cosψ + cos3ψ)

−
π

3
R3
p(2 − 3 cosφ + cos3 φ). (11)

We can expressNhet using the formulae (4), (5), (6) and
(11), and the liquid phase molecular volumevl , as

Nhet =
V het

vl
=

π

3vl

(

2r3 − 2R3
p (12)

+
2r4 − 2r3Rpm− r2R2

p(m
2 − 1)− 2rR3

pm+ 2R4
p

√

r2 − 2rRpm+ R2
p

)

.

Now we can calculate both derivatives needed in Eq. (10)

∂1ϕhet
surf

∂r
= 2πrσg,l · (13)
(

2 +
(1 −mX)[2 − 4mX − (m2 − 3)X2]

(1 − 2mX +X2)3/2

)
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and

∂Nhet

∂r
=

πr2

vl
· (14)

{

2 +
(1 −mX)[2 − 4mX − (m2 − 3)X2]

(1 − 2mX +X2)3/2

}

.

Combining the results (9), (14) and (15) we can see that the
first derivative of the formation free energy is

∂1ϕhet

∂Nhet
=

∂1ϕhet
vol

∂Nhet
+
∂1ϕhet

surf

∂r

(

∂Nhet

∂r

)−1

(15)

= 1µ+
2σg,lvl
r

.

This natural result explicitly confirms that (in the one-
component case) setting the first derivative of the formation
free energy to zero gives the Kelvin equation. The second
derivative of the formation free energy thus becomes

(

∂21ϕhet

∂(Nhet)2

)

=
−2σg,lvl
r2

(

∂r

∂Nhet

)

=
−2σg,lvl
r2

(

∂Nhet

∂r

)−1

=
−2σg,lv2

l

πr4





1

2 + (1−mX)[2−4mX−(m2−3)X2]
(1−2mX+X2)3/2



 . (16)

Inserting this result into (2) we can acquire the exact form of
the Zeldovich factor

Zhet =
vl

πr∗2

√

σg,l

kT

√

√

√

√

1

2 + (1−mX)[2−4mX−(m2−3)X2]
(1−2mX+X2)3/2

= Zhom

√

√

√

√

4

2 + (1−mX)[2−4mX−(m2−3)X2]
(1−2mX+X2)3/2

. (17)

It should be noted that the heterogeneous Zel-
dovich factor Zhet reduces to the homogeneous one
Zhom=vl/(2πr∗2)

√

σg,l/(kT ) in the case whenm=−1 (CN
surface completely non-wetting) orX=0 (radius of the CN
approaches zero), as it should.

The paper M̈aätẗanen et al. (2005) included also two other
approximations. The cluster circumference was approxi-
mated in the nucleation rate expressions (8) and (12) of ref-
erence M̈aätẗanen et al. (2005) asπr sinϑ , which is again
an approximation for a planar pre-existing surface. The cor-
rect form for a spherical pre-existing particle is 2πRp sinφ,
where sinφ can be calculated with the help of Eq. (4).

The direct vapour desorption approach for the growth rate
of the embryo was presented in the comparison of the mod-
els. The formula (14) in M̈aätẗanen et al. (2005) includes an
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Fig. 2. The exact (long-dashed line for 1µm and dotted line for
10 nm) and the approximative (solid line for 1µm and short-dashed
line for 10 nm) Zeldovich factors as a function of saturation ratio.

approximation also mentioned in the text: the cluster cap sur-
face area has been approximated asπr2. The real cap surface
area can be easily calculated as

Ahet = 2πr2
(

1 +
r − Rp cosϑ

d

)

. (18)

3 Model results

We conducted some of the model runs described in paper
Määtẗanen et al. (2005) again with the exact formulations in-
cluded in the model. Here we present results for CO2 nu-
cleation only. The model runs were made in the Martian
atmospheric conditions with 95.32% CO2 atmosphere, and
the temperature range in the runs was 100–150 K. The pre-
existing particle radiusRp was 1µm which is near the mean
radius of Martian dust near the surface. Here some runs were
made also using a radiusRp of 10 nm to test the effect of
the planar surface approximations for small pre-existing par-
ticles.

Figure 2 shows that the exact Zeldovich factors are some-
what larger than the approximations for a planar surface, and
the difference grows when the critical cluster gets smaller
with increasing saturation ratioS. It can also be seen that
the difference is smallest at the saturation ratios between 1
and 2 where nucleation onset happens, and thus the conclu-
sion is that the inaccurate Zeldovich factor does not affect the
prediction of nucleation onset significantly.

Figure 3 shows the nucleation rateJ and the nucleation
probabilityP calculated for 1µm pre-existing particles with
both the exact and the approximative models. The nucleation
rates differ very little, and the nucleation probabilities reach
values near unity at the same saturation ratio. The difference
in nucleation probabilities is seen only for very small values
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of P (note the logarithmic scale). The onset (P exceeds 0.5)
happens at the same values ofS for both models.

Figure 4 shows the nucleation rate as a function of the sat-
uration ratio for four different CN radii. The difference be-
tween the exact and approximative formulations is small, but
visible, and especially so for small pre-existing particles.

Figure 5 shows the difference in the cap surface areas cal-
culated with the approximationπr2 and the exact formula-
tion given by Eq. (18). The difference increases with de-
creasing saturation ratios, which is natural, since the critical
cluster is largest with small values ofS and thus the error
in the cap surface area is also largest. It can be seen that
for different pre-existing particle sizes the behaviour of the
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Fig. 5. The exact (dotted line for 10 nm and long-dashed line for
1µm) and the approximative (short-dashed line for 10 nm and solid
line for 1µm) cluster cap surface areas as a function of saturation
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error is different. The plot shows that for 10 nm and 1µm
pre-existing particles the approximated cap surface areas are
equal, as it should since the approximate area does not de-
pend on the pre-existing particle size. With the exact ap-
proach the influence of the pre-existing particle size on the
cap surface area is clearly seen.

4 Conclusions

The theory of heterogeneous nucleation is not complete with-
out a correct form for the Zeldovich factor. We present
an analytical expression for the Zeldovich factor in one-
component heterogeneous nucleation with spherical conden-
sation nuclei. This result absolves us from the unnecessary
approximation of using the homogeneous Zeldovich factor,
or the heterogeneous factor for planar pre-existing surface,
when the condensation nuclei are small. We tested the dif-
ference in numerical results obtained using approximate and
accurate Zeldovich factor in a case of CO2 nucleation in
Martian atmosphere described in our earlier paper Määtẗanen
et al. (2005). The exact Zeldovich factor give larger nucle-
ation rates than the approximate, but the difference is less
than one order of magnitude. The difference is smallest be-
tween saturation ratios one and two, and thus the onset of
nucleation is well predicted even with the approximate Zel-
dovich factor. As expected, the inaccuracy of the approx-
imate method increases when the size of the condensation
nuclei decreases, but it is clearly detectable even with nuclei
of one micron radius.
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