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Abstract. The AIDA (Aerosol Interactions and Dynam-
ics in the Atmosphere) aerosol and cloud chamber of
Forschungszentrum Karlsruhe can be used to test the ice
forming ability of aerosols. The AIDA chamber is exten-
sively instrumented including pressure, temperature and hu-
midity sensors, and optical particle counters. Expansion
cooling using mechanical pumps leads to ice supersatura-
tion conditions and possible ice formation. In order to de-
scribe the evolving chamber conditions during an expansion,
a parcel model was modified to account for diabatic heat and
moisture interactions with the chamber walls. Model results
are shown for a series of expansions where the initial cham-
ber temperature ranged from−20◦C to −60◦C and which
used desert dust as ice forming nuclei. During each expan-
sion, the initial formation of ice particles was clearly ob-
served. For the colder expansions there were two clear ice
nucleation episodes.

In order to test the ability of the model to represent the
changing chamber conditions and to give confidence in the
observations of chamber temperature and humidity, and ice
particle concentration and mean size, ice particles were sim-
ply added as a function of time so as to reproduce the ob-
servations of ice crystal concentration. The time interval
and chamber conditions over which ice nucleation occurs is
therefore accurately known, and enables the model to be used
as a test bed for different representations of ice formation.

1 Introduction

The ice formation mechanism, whether by homogeneous
freezing of solution droplets or heterogeneous nucleation on
insoluble aerosols, affects the properties of cirrus and mixed-
phase clouds. This is because, in the absence of secondary
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ice formation processes, such as the Hallet and Mossop
(1974) rime-splintering mechanism, the initial ice nucle-

ation mechanism determines the ice particle number con-
centration. The mean particle size and therefore precipita-
tion, microphysical processes such as aggregation and parti-
cle growth, and cloud radiative properties are all affected by
the initial ice nucleation.

There is evidence that even for temperatures colder than
-38C, not all ice is produced by homogeneous freezing, a
small amount of ice is sometimes formed by heterogeneous
nucleation. Aircraft observations suggest that initial ice for-
mation in mid-latitude cirrus can occur at relative humidities
lower than the homogeneous freezing threshold (see Heyms-
field et al., 1998). Seifert et al. (2003) showed that the size
distribution of the residual aerosols after cirrus ice crystals
have been evaporated was not that expected for homoge-
neous freezing alone. Aircraft observations of orographic
wave clouds have also implied that ice crystals can be initi-
ated by heterogeneous nucleation (Jensen et al., 1998; Field
et al., 2001), although homogeneous freezing is the dominant
process.

Particles that might initiate ice formation in cirrus clouds
include black carbon soot, mineral dust and ammonium sul-
phate aerosols. Aircraft emissions, fossil fuel and biomass
burning are sources of soot, while mineral dust is derived
from the Earth’s surface. Dust from the Saharan desert ad-
vected across the Atlantic was observed to act as ice nuclei
in the aircraft campaign CRYSTAL-FACE (Cirrus Regional
Study of Tropical Anvils and Cirrus Layers – Florida Area
Cirrus Experiment) (Sassen et al., 2003; DeMott et al., 2003;
Cziczo et al., 2004). Analysis of the ice crystal residuals
from the aircraft campaign INTACC (Interaction of Aerosol
and Cold Clouds) described in Targino et al. (2006) showed
that when heterogeneous nucleation was observed, mineral
dust was more prevalent. Roberts and Hallet (1968) showed
that desert dust can be good deposition nuclei.

Kärcher and Lohmann (2003) developed a parametrisation
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of cirrus cloud formation by heterogeneous nucleation and
considered possible ice nuclei properties. They concen-
trate on immersion freezing as the dominant heterogeneous
nucleation mode for cirrus formation at cold temperatures
(<235 K).

The heterogeneous ice nucleating ability of desert dust
samples was investigated in the AIDA (Aerosol Interactions
and Dynamics in the Atmosphere) aerosol and cloud cham-
ber. This allows the aerosol concentration and size distri-
bution, and the ambient temperature, pressure, humidity and
rate of cooling to be controlled and made similar to upper tro-
posphere conditions. Haag et al. (2003) showed the relevance
of AIDA for cirrus studies by using numerical simulations of
homogeneous freezing processes in the AIDA chamber. The
measured temperature, pressure and total water time-series
was used to constrain the model, and the measured initial
aerosol size distribution was an input. The homogeneous
freezing process and partitioning of water between gas and
ice phase was explicitly simulated and tested by the model.
Prescribing the temperature, pressure and total water histo-
ries, eliminates the need for the heat and vapour fluxes from
the chamber walls to the bulk gas. A different way to de-
scribe the evolving chamber conditions during an expansion
is to run an parcel model with diabatic terms representing
heat and water vapour flux terms which are derived from
observations. This method leads to a more self-consistent
model and is the basis for this paper.

Firstly, ice particles are added to the model as a function
of time so as to reproduce the observations of ice crystal con-
centration. The agreement between the model and the obser-
vations of chamber relative humidity and temperature, and of
the ice particle concentration and average diameter improves
the confidence in these measurements and in the estimates
of the wall fluxes of heat and water vapour. The time inter-
val and chamber conditions over which ice nucleation occurs
is therefore accurately known. By establishing the ability of
the model to describe the evolving chamber conditions, it can
then be used as a test bed for different representations of het-
erogeneous ice nucleation. Ice particles can then be initiated
by means of explicit nucleation acting on aerosol, in order to
determine whether or not the simulated process is consistent
with the observations.

In Sect. 2 the operation of the AIDA aerosol and cloud
chamber is described. Section 3 describes the chemical com-
position and size distribution of the desert dust samples. Sec-
tion 4 describes the instrumentation that is used in this study.
Section 5 describes the microphysics model with wall heat
and vapour fluxes. Section 6 presents a series of observa-
tions together with the model results,a summary of the cham-
ber conditions for which the ice particles are initiated. The
conclusions are then in Sect. 7.

2 The AIDA chamber and the experimental procedure

A detailed description of the AIDA chamber, the instruments,
and the experimental procedure are described in Möhler et al.
(2003). AIDA is a large cylindrical chamber made of 2 cm
thick aluminium walls, within a thermally isolated contain-
ment. The chamber is 7 m high, has a diameter of 4 m and
a volume of 84 m3. The interior of the containment can be
cooled and maintained to any temperature between ambi-
ent and−90◦C by ventilation of air cooled in heat exchang-
ers. This containment defines the initial temperature in the
aerosol chamber. A fan within the chamber achieves a well-
mixed environment where the inhomogeneity in temperature
is less than±0.2 K and the humidity variability is less than
±3%. The chamber pressure is controlled by two large me-
chanical pumps.

Typically the chamber is operated so that there are sev-
eral ice nucleation experiments during the day, each using
the same aerosol sample. First, the chamber is cleared of
any aerosols from previous experiments by pumping down
to below 1hPa and flushed with dry synthetic particle free
air. A controlled amount of water vapour is then added to the
evacuated chamber which is then filled with dry synthetic
air to atmospheric pressure. This leads to an aerosol back-
ground concentration of less than 0.1 cm−3. The chamber
is then cooled slowly to the experiment starting temperature
using the thermal containment heat exchangers. Once the
gas temperature falls below the frost point, water vapour de-
posits onto the chamber walls. The ice coating on the cham-
ber walls means that the vapour pressure immediately next to
the wall is the ice saturation vapour pressure. Heat, from the
mixing fan in the chamber means that the gas temperature is
slightly higher than the wall temperature, and therefore all
experiments start at just below ice saturation. This ice coat-
ing is not uniform over all the chamber walls. Expansion
cooling using mechanical pumps then leads to ice supersatu-
ration conditions. The pumping rate can be varied, but typi-
cally the pressure is reduced from 1000 hPa to 800 hPa over
a few minutes. The equivalent ascent rates are from 1 ms−1

to 10 ms−1, and enable both orographic wave clouds, where
updrafts of up to 5 ms−1 (Jensen et al., 1998; Field et al.,
2001) have been observed, and the lesser convective updrafts
in cirrus generating cells up to to be simulated. The cham-
ber pressure is however, substantially higher than in cold cir-
rus. Even higher rates of expansion cooling can be reached
for short time periods by expansion into an evacuated vol-
ume of about 4 m3. (The expansions 19–21 reach 20 ms−1

as shown in Table 1.) The first expansion is carried out with
no aerosol sample in the chamber in order to characterise the
background conditions. After adding the aerosol sample, the
number concentration and size distribution is measured using
standard aerosol instrumentation.

The cooling rate deviates from that expected if the expan-
sion was adiabatic. This is caused by the increasing heat
flux from the 2 cm thick aluminium chamber walls. (See
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Table 1. Experiment list grouped into four temperature regimes. The ice concentrations are the SID non-spherical concentration increased
by a factor of 1.4. For expansions 27–29, 40–42 and 22–24 there is a second ice initiation phase.

Expansion Dust Initial Equivalent KT First ice nucleation mode Second ice nucleation mode
sample aerosol updraft Temperature Ice concentration Temperature Ice concentration

(cm−3) (ms−1) () (◦C) (cm−3) (◦C) (cm−3)

Temperature regime I: Single nucleation mode
44 SD2 38.4 4.0–3.0,2.5–2.0 3.7 –60.7 42.5
45 SD2 9.0 4.0–3.0,2.0–2.0 3.7 –60.6 8.7

Temperature regime II: Two overlapping ice nucleation modes
26 AD1 99.3 5.2–4.0 3.8 –51.7 21.5
27 AD1 60.2 5.2–4.0 3.8 –52.0 3.0 –54.6 13.5
28 AD1 36.4 4.0–2.8 3.8 –52.4 1.3 –55.2 4.6
29 AD1 24.1 4.0–2.8 4.1 –52.4 1.1 –55.7 3.8
40 SD2 89.4 4.5–4.0 4.0 –50.8 2.5 –52.4 12.2
41 SD2 53.3 4.0–3.5,2.4–2.3 4.1 –50.9 0.5 –53.1 7.5
42 SD2 32.4 4.0–3.2,2.5–2.3 4.0 –50.6 0.3 –53.6 6.7

Temperature regime III: Two separate ice nucleation modes
22 AD1 115.9 6.0–4.3 4.3 –39.8 0.5 –40.7 12.0
23 AD1 78.8 6.0–4.2 4.2 –40.2 0.8 –42.2 7.0
24 AD1 56.8 7.0–5.0 4.2 –38.9 1.0 –41.8 12.2
25 AD1 37.3 4.5–3.0 3.9 –39.0 0.5

Temperature regime IV: Single nucleation mode, Liquid water observed
18 AD1 180.6 11.0–8.5 4.5 –28.4 10.0
19 AD1 129.2 20.0,10.0–8.0 4.3 –29.2 10.5
20 AD1 89.1 20.0,9.5–8.5,1.5–2.0 4.3 –30.9 4.3
21 AD1 63.8 20.0,9.5–8.5,1.5–2.0 4.4 –31.6 4.0

Möhler et al. (2005) for a discussion of the heat fluxes.) Fig-
ures 1a and 1b shows the chamber pressure and the resultant
cooling for an example chamber expansion. The equivalent
updraft of an adiabatic air parcel undergoing the chamber
cooling rate is also shown, and is given by,

w = −
Cp

g

dTg

dt
(1)

whereTg is the chamber bulk gas temperature. The updraft,
w, is used to force the parcel model. The wall temperature
remains approximately constant during the pumping due to
the large heat capacity of the chamber walls. Eventually the
gas temperature reaches an equilibrium value where the ex-
pansion cooling and the heat flux from the warmer walls bal-
ance.

During the expansion cooling there is also a water vapour
flux from the ice coated chamber walls into the gas volume.
For some expansions, the change in total mixing ratio is com-
parable to the condensate mixing ratio, (Fig.1c). Because the
wall temperature is always almost constant during the expan-
sions, the water vapour pressure above the ice-coated cham-
ber walls is also constant. The vapour pressure in the bulk
gas, however, is reduced by the decreasing pressure and tem-

perature during the expansion. Once liquid or ice particles
are formed, the particle diffusional growth also reduces the
bulk gas water vapour pressure. This varying difference in
vapour pressure leads to a water vapour flux from the cham-
ber walls to the bulk gas. During the chamber expansion the
total water mixing ratio is therefore not constant.

3 Aerosol description

Two dust samples were collected from the ground, in the
Takla Makan desert in China (referred to as Asian dust AD1)
and north of Cairo city (Saharan dust SD2). The details of the
elemental composition and aerosol size spectra are in Möhler
et al. (2006). X-ray fluorescence analysis showed that sil-
icon, aluminium and calcium oxides where abundant. The
aerosols which were added to the chamber were selected by
dry dispersion of the dust samples and inertial removal of
particles greater than 2 µm diameter. The size distributions
of the aerosols were approximately log-normal with a range
between 0.1 and 2 µm, mode diameter of 0.3 to 0.5 µm and
standard deviation of 1.6 to 1.9.
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Fig. 1. An example chamber expansion (experiment 28) showing
the chamber pressure change(a), and the resultant cooling(b). The
effect of the wall vapour flux is shown in panel(c). The time axis
is plotted in seconds relative to the start of pumping. There is also a
decrease in chamber pressure before the actual expansion starts due
to the particle probes sampling the chamber gas.

4 Instrumentation

The AIDA chamber is extensively instrumented including
pressure, temperature and water vapour sensors, and opti-
cal particle counting probes and aerosol characterisation de-
vices (see M̈ohler et al., 2003 and M̈ohler et al., 2005). The
gas and chamber wall temperatures are measured with an ar-
ray of platinum resistance thermometers and thermocouples.
The variation between all measured temperatures is less than
±0.3 K. The instruments used in this study are the total wa-
ter and water vapour sensors, aerosol characterisation and the
small ice detector (SID).

4.1 Total water mixing ratio

A chilled mirror hygrometer (MBW) measures the frost
point. The chamber air is sampled through a heated tube
so that any ice or liquid particles are rapidly evaporated and
hence this instrument can be used to measure the total water
mixing ratio in the chamber.

Fig. 2. SID measurements for expansion 45 (Saharan dust, where
the chamber gas temperature decreased from−60◦C to−65◦C). (a)
shows the asphericity,Af , for every particle sampled,(b) the diam-
eter, and(c) a histogram ofAf for particles sampled after 200 s.

The sampling efficiency is estimated to be 100% for ice
and liquid particles below 7 µm diameter. As long as the to-
tal ice water content is small compared to the total water con-
tent the error from not sampling all the larger ice particles is
small. For the expansions shown here, this is the case be-
cause the total number concentration of ice particles is low.
Additionally, the important model phase is the ice nucleation
time-period and the ice particles are small (but growing).
Figure 4 shows an expansion where during the nucleation in-
terval, most ice particles are less than 7 µm and also the total
condensate mass mixing ratio is an order of magnitude less
than the water vapour mixing ratio. Figure 5 shows many ice
particles above 7 µm during the second ice nucleation mode,
but the total condensate mixing ratio is still an order of mag-
nitude less than the water vapour. Figure 6 shows lots of
large ice particles present (just after the ice nucleation), and
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the relative humidity will be underestimated. The possible
underestimate of relative humidity, however, does not change
the conclusions regarding the ability to model the onset of ice
nucleation. For the conditions observed here, the frost point
accuracy is estimated to be±0.1 K.

4.2 Water vapour

The water vapour pressure inside the chamber is directly
measured by a tunable diode laser (TDL) hygrometer. In
order to significantly reduce systematic errors caused by un-
certainties in the absorption lines, the TDL is corrected by
comparison with the cooled mirror hygrometer prior to each
expansion. The estimated error is±1.3% at 220 K to±1.7%
at 190 K, which for the ice saturation ratio is±4.0% at 220 K
and±6% at 190 K. For this study, the TDL water vapour is
used only as a consistency check after the model has run. In
future studies, the corrected TDL water vapour might be used
directly as an input to the model, similar to how the pressure
is used.

4.3 Aerosols

The aerosol number concentration is measured by a conden-
sation particle counter (CPC) where particles less than 2 µm
diameter are sampled with 100% efficiency. Ice particles that
are formed during the chamber expansion evaporate in the
warm sample tube. When the ice particles are formed on
insoluble aerosols, the residual after evaporation can enter
the CPC. The non-quantified size dependent loss in the sam-
pling tube, however, means that the total aerosol concentra-
tion when there are ice particles present has a large error.

4.4 Small particle phase, size and concentration

Particle concentrations and mean particle size are measured
using a laser scattering device, the small ice detector (SID),
described by Hirst et al. (2001). The SID can count and size
particles above 1 µm diameter and discriminate between liq-
uid water drops and ice particles. The probe has six photo-
detectors arranged azimuthally at a 30◦ forward scattering
angle. One photo-detector acts as a trigger, and the variation
in the signals from the other five photo-detectors is used to
determine the particle phase. The photo-detector signal vari-
ation is specified by an asphericity factor,Af , defined by

Af = k

√

∑

i=1,5 (<E> −Ei)
2

<E>
(2)

whereEi is the i’th photo-detector signal, and k is a constant
set so thatAf is in the range 0–100. Spherical liquid water
drops scatter the laser uniformly in azimuth and therefore
should give a low asphericity value. Ice particles, which are
non-spherical, scatter the laser non-uniformly and therefore
give a high apshericity. A nominal threshold ofAf =12 is
chosen (this allows good discrimination between liquid water

Fig. 3. Empirically derivedKT for each chamber expansion.

drops and ice particles from in-situ aircraft observations in
Stratocumulus and Cirrus clouds).

The particle radius,R, is derived from the mean photo-
detector signal using the power law,

R = a <E>0.51 (3)

wherea is estimated by comparing the measured bulk liquid
water content obtained with hot wire probes in Stratocumulus
cloud with that obtained by the SID. The SID size estimation
is therefore only correct for spherical liquid droplets.

Because of the detector noise, not all small ice particles
have an asphericity above theAf =12 threshold. This is
shown in Fig. 2 which is one of the coldest expansions us-
ing Saharan desert dust where the chamber gas temperature
decreased from−60◦C to −65◦C. In Fig. 2a, the solid line
at Af =12 is drawn to separate the non-spherical from the
spherical particles. The particle diameters in Fig. 2b show
the ice crystals being initiated between about 30 and 160 s.
The SID particle diameter is only calibrated for spherical
particles, but does indicate the trend towards increasing non-
spherical particle diameter. In Fig. 2c, the histogram ofAf

for the particles sampled after 200 s, shows that around 70%
of the small ice particles are classified as non-spherical. In
the modelling studies described here, the SID non-spherical
concentration is therefore increased by a factor of 1.4.

5 Parcel model with heat and vapour fluxes

The parcel model is a detailed microphysics size-resolving
model modified to include heat and vapour fluxes from the
chamber walls. The unmodified parcel model (described in
detail in Cotton and Field (2002) considers an adiabatic par-
cel of air containing a conserved mass of water being lifted
by a variable updraft. The parcel model was also used in the
Cirrus Parcel Model Comparison (CPMC) project as part of

www.atmos-chem-phys.net/7/243/2007/ Atmos. Chem. Phys., 7, 243–256, 2007
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Fig. 4. Temperature regime I: Single nucleation mode. Model-observation comparison for Saharan dust (Expansion 45). The expansion
starts at 0 s. Only one ice nucleation mode is observed with ice particles initiated between 30 and 160 s, as indicated by the light grey vertical
shading. The two thick grey lines on panel(g) are the model concentration for all ice particles, and for ice particles with diameter greater
than 3 µm.

the GEWEX Cloud System Studies on cirrus clouds (GCSS
WG2) which compared results from various parcel models
over a range of updraft velocities and CCN spectrum (see
Lin et al., 2002). The vapour pressures of water over ice and
supercooled water are the updated (1957) Goff derivations
(see Murphy and Koop., 2005 and references therein).

For the model initialisation, we simply assume that all the
aerosol measured in the AIDA chamber using the CPC can
act as CCN. The dry CCN size spectrum was lognormally
distributed between 0.1 and 2.0 µm diameter, with a mode
of 0.4 µm, with the total concentration given by the initial
CPC aerosol concentration. All chamber expansions were
modelled with this CCN distribution, and were allowed to
deliquesce and if the humidity is high enough activate to

drops. The SID probe will not necessarily detect all the larger
aerosols because the size threshold for detection is for liq-
uid drops, not dry aerosol. The effect of including the CCN
was only important for expansions 18–21 (listed in Table 1)
where liquid drops were observed before any ice particles.

5.1 Wall heat flux

The wall heat flux contributes to the rate of change of gas
temperature. The heat flux diabatic term is assumed to be
proportional to the temperature difference between the gas
and chamber wall,

dTg

dt

∣

∣

∣

wallflux
=

KT

Cp

[

Tw − Tg

]

(4)
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Fig. 5. Temperature regime II: Two ice nucleation modes. Model-observation comparison for Asian dust (Expansion 28). There are two
distinct nucleation modes, with ice initiated between 40 and 100 s and between 170 and 230 s, as indicated by the light and dark grey vertical
shading.

whereKT is simply chosen on an expansion by expansion
basis to give the best fit to the gas temperature. The detailed
physics of the heat flux is contained withinKT . Figure 3
shows theKT term for each expansion. The horizontal er-
ror bar represents the range of temperature observed during
the expansion, the vertical bar is the estimated error onKT .
There is a good correlation ofKT with temperature.

5.2 Wall water vapour flux

The water vapour flux contributes to the rate of change of
total water mixing ratio,qT . The water vapour flux can be
included in different ways. The first is analogous to the for-
mulation of the wall heat flux, i.e. the vapour flux is pro-

portional to the difference in vapour pressure just above the
chamber wall and in the bulk gas,

dqT

dt

∣

∣

∣

wallflux
= KV

0.622

Pρair

[

es,i(Tw) − σies,i(Tg)
]

(5)

whereKV is a constant,es,i is the ice saturation vapour pres-
sure andσi is the ratio of the ice vapour pressure in the bulk
gas to the ice saturation vapour pressure. Because the wall
temperature,Tw, is always almost constant during the expan-
sions when the chamber wall is completely ice-coated, the
saturation vapour pressure,es,i(Tw), is also constant. This
parametrisation does not work well for all chamber expan-
sions.

www.atmos-chem-phys.net/7/243/2007/ Atmos. Chem. Phys., 7, 243–256, 2007
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Fig. 6. Temperature regime III: Two nucleation modes. Model-observation comparison for Asian dust (Expansion 24). There are two
nucleation modes, but they are not as distinct as for expansion 28. The two thick grey lines on panel(g) are the model concentration for all
ice particles, and for ice particles with diameter greater than 3 µm.

A second approach is to calculate the vapour flux from the
heat flux assuming a boundary layer. This will be expanded
further in a later paper.

An alternative approach to parametrising the wall vapour
flux is to assume that the MBW hygrometer measures the
chamber total water mixing ratio accurately. This is reason-
able since significant errors are expected only when the total
condensate mass is large compared with the water vapour
mixing ratio. So the presence of large ice particles does not
necessarily invalidate this method. In all of the expansions,
especially during the ice initiation phase, the total conden-
sate mass mixing ratio is an order of magnitude less than the
water vapour mass mixing ratio, and therefore any error in
not sampling large particles is negligable. While Fig. 5 and

Fig. 6 both show large ice particles and therefore a signifi-
cant condensate mass mixing ratio, it is mostly after the ice
nucleation phase. Here the MBW sampling inefficiency of
large ice particles leads to the small discrepency in conden-
sate mass mixing ratio, but this does not affect the conclusion
regarding the ability to model the expansion during the ice
initiation phase.

The model is constrained by the measured total water con-
tent at each time-step during the expansion. Any differences
in ice concentration between model and chamber will result
in a different partitioning of the total water between ice and
vapour. This will in turn be manifested as a difference be-
tween the model vapour mixing ratio and that measured by
the TDL. For only some of the expansions, each water vapour

Atmos. Chem. Phys., 7, 243–256, 2007 www.atmos-chem-phys.net/7/243/2007/
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flux method gives similar results. The reason for the dis-
crepency between the different methods for most of the ex-
pansions is due to the fact that the ice layer on the chamber
walls is not uniform and that not all the chamber surface is
covered with ice. The third method is used for the results
described here.

5.3 Ice initiation method

In order to test the ability of the model to reproduce the
observations, ice particles may be added to the model as a
function of time so as to reproduce the SID particle number
concentration (scaled by 1.4), rather than initiating ice parti-
cles by means of explicit nucleation acting on aerosol. The
ice particles are initiated in the smallest ice particle size bin
(0.1 µm). When run in this way, the model is then provid-
ing a test of the assumptions used within it which determine
the diffusional growth rate of ice. These include the crys-
tal capacitance and the water vapour accommodation coeffi-
cient. If these parameters were grossly in error, the model
would not reproduce the observed water vapour evolution
even when constrained to the observed total water and ice
initiation. Because the ice crystals are less than a few tens of
micron diameter and there is no habit information, the crys-
tals are assumed to be sphere. The capacitance is always
assumed to be 1.0 and the ice density is 1.0 g,cm−3. The
ice deposition coefficient is 0.24, following Sassen and Dodd
(1988). The sensitivity to the capacitance and deposition co-
efficient is shown in Sect. 6.6.

6 Observations and model results

Table 1 lists some details of the chamber expansions for
both dust samples, with the chamber temperature covering
a range of−20◦C to −65◦C. The expansions are divided
into four temperature regimes. For the first, regime I (expan-
sions 44–45) only one nucleation mode is observed, while for
regimes II and III (expansions 26–42 and 22–25) two nucle-
ation modes are generally observed. The last, regime IV (ex-
pansions 18–21) reaches water saturation, and liquid water is
observed. This division in regimes is done just for organisa-
tional purposes and no assumption is made that different ice
nucleation modes occur in each regime, and in fact there is a
continuum of behavior in regimes II and III.

Figures 4–7 show the modeled and observed data from ex-
ample chamber expansions, one from each of the four tem-
perature regimes. Panel (a) shows the chamber pressure and
equivalent updraft. In all cases, the start of the expansion
is at zero seconds. Prior to this, the pressure decreases very
slowly due to the continuous sample flow through the parti-
cle probes. The pressure change has been converted into an
updraft assuming adiabatic expansion in order to force the
parcel model. The pumping rate during each expansion was
often varied, giving a step-change in the equivalent updraft.

Panel (b) shows the chamber bulk gas and wall temperatures.
The wall temperature is constant but the bulk gas tempera-
ture deviates from that expected if the expansion was adia-
batic because of the significant wall to bulk gas heat flux.
However, the modeled gas temperature (the thicker grey line)
using a parametrised heat flux with a constantKT as defined
by Eq. (4) enables a good match with the observations. Panel
(c) shows the mass mixing ratio of the total water content
(measured using the MBW) and the total condensate mix-
ing ratio calculated as the difference between the total and
water vapour mixing ratio (measured using the TDL). The
model is constrained to follow exactly the total water con-
tent measurement. The pressure (and hence updraft), tem-
perature and total water mixing ratio have been adjusted to
fit, so there is no surprise about the good agreement. The
condensate mixing ratio depends, however, on the validity
of the model microphysics. Panel (d) shows the observed
and modeled relative humidity w.r.t. ice, RHice, and w.r.t. wa-
ter, RHwater. The agreement with the TDL derived humidity
is confirmation that the model correctly partitions the wa-
ter between vapour and condensate. The chamber humidity
starts just below ice saturation because of heat sources within
the bulk gas (mainly mixing fans). For some expansions the
chamber walls were not coated in ice and the initial humid-
ity starts much lower than ice saturation. Panel (e) shows
the measured asphericity factor,Af , of all particles sampled
by the SID. The lineAf =12 is drawn to separate the non-
spherical from the spherical particles. Panel (f) shows the
SID particle diameter together with the modeled mean di-
ameter (thick grey line). Panel (g) shows the SID particle
concentrations, for non-spherical (Af >12, solid line) and
for all particles (dashed line), averaged over 10 second time-
intervals. The modeled ice particle concentration, where the
diameter is greater than 3 µm and for all sizes above 1 µm,
are shown by the two thick grey lines. The SIDAf does not
discriminate the particle phase for diameterss below around
3 µm.

The onset and duration of ice nucleation is estimated from
the broad swath of SID particle diameters and from the SID
non-spherical particle concentration. The light grey vertical
shading just indicates this ice particle initiation time interval.
If there is also a second distinct ice nucleation mode, this is
indicated by a darker grey band. The ice nucleation scheme
in the model simply initiates ice particles at a constant rate,
shown in panel (g) (thick grey lines) through this time inter-
val, so that at the end the ice crystal concentration matches
the SID non-spherical particle concentration scaled by 1.4
(as listed in Table 1). Panel (h) shows the evolution of RHice
with temperature during the cooling (expansion) phase. The
thick grey shading on the curve indicates the period when ice
crystals are added to the model. The model temperature and
humidity is used because of uncertainties in the measured
humidity.
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Fig. 7. Temperature regime IV: One nucleation mode, liquid water observed. Model-observation comparison for Asian dust (Expansion 19).
Note that panel(g) now has a logarithmic scale in order to more clearly show both liquid and ice concentrations. The two thick grey lines on
panel (g) are the model concentration for all ice particles, and for ice particles with diameter greater than 3 µm. The thick dashed grey line is
the model drop concentration with diameter greater than 3 µm.

6.1 Temperature regime I: single nucleation mode

Figure 4 shows the coldest expansion using Saharan desert
dust (Expansion 45) where the chamber gas temperature de-
creased from−60◦C to−65◦C. At 200 s, the pumping rate is
reduced leading to a reduction in the equivalent updraft from
3 to 2.5 ms−1. Before 30 seconds, most particles are less
than 3 µm diameter withAf <12, and are larger introduced
aerosol particles. The broad swath of particle diameters in
panel (f) coincident withAf >12 indicates that ice particles
are being initiated between 30 and 160 s. The increasing par-
ticle diameter trend is modelled well. However up to 300 s,
the model overestimates RHice and underestimates the con-

densate mass mixing ratio. Since the model total water mix-
ing ratio is constrained to follow the measured values (from
the MBW), this suggests that the model ice crystals are grow-
ing too slowly after nucleation. This leaves excess water sub-
stance in the vapour phase and insufficient condensate. This
can result from errors in key factors that control depositional
growth rate, such as the ice crystals capacitance and deposi-
tion coefficient.

6.2 Temperature regime II: two ice nucleation modes

Figure 5 shows the expansion using Asian desert dust (Ex-
pansion 28) where the chamber gas temperature decreased
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from −50◦C to −57◦C. The chamber pumping rate is now
constant throughout the expansion and the maximum rela-
tive humidity is reached before the expansion pumping stops.
Ice crystal depositional growth causes the chamber humidity
to decrease at 260 s. The SID probe asphericity factorAf

(panel e) and estimated diameter (panel f) indicate two dis-
tinct ice nucleation modes. The first nucleation mode occurs
near the start of the expansion pumping, where conditions
are just above ice saturation and is indicated by the light grey
vertical shading. The second nucleation mode occurs later,
but still below water saturation and is indicated by the dark
grey vertical shading. Early, during the ice crystal growth
phase, the modelled relative humidity agrees well with the
observations, and only when the ice crystals begin to evap-
orate does the humidity diverge. This is the third in a series
of expansions during one day using the same aerosol sample.
In the next (expansion 29) there is a more obvious seperation
between the nucleation modes and in the earlier expansion
27 the modes overlap.

6.3 Temperature regime III: two nucleation modes

Figure 6 shows the expansion using Asian desert dust (Ex-
pansion 24) where the chamber gas temperature decreased
from −35◦C to−45◦C. The pumping rate leads to an equiv-
alent updraft of around 6 m s−1. Similar to expansion 28
from temperature regime II, the SID asphericity and diam-
eter imply two ice nucleation modes. The first nucleation
mode occurs near the start of the expansion pumping, where
conditions are just above ice saturation and is indicated by
the light grey vertical shading, while the second nucleation
mode occurs later, but still below water saturation and is in-
dicated by the dark grey vertical shading. For all expansions
in this temperature regime, the two ice nucleation modes are
not clearly seperated apart from an increase in ice nucleation
rate.

6.4 Temperature regime IV: one nucleation mode, liquid
water observed

Figure 7 shows the expansion using Asian desert dust (Ex-
pansion 19) where the chamber gas temperature decreased
from −20◦C to −32◦C. This expansion reaches water sat-
uration and both water drops and ice particles are observed.
The chamber pumping rate is very fast and the equivalent up-
draft is around 10 m s−1. The SID asphericity and diameter
show that between 110 and 170 s the chamber is dominated
by spherical water drops. At 110 s the chamber reaches water
saturation as shown in panel (d). The SID asphericity and di-
ameters also indicate that ice particles are present during this
liquid dominated interval. The ice particles are produced at
some time during this liquid dominated interval, not before
which implies that water condensation is required for ice ini-
tiation for these expansions.

6.5 Ice nucleation characteristics of all chamber expan-
sions

Figure 8 shows the changing environmental conditions in-
side the chamber and highlights when the ice nucleation is
occurring (as for panel (h) in the earlier figures) for all the
expansions in each of the four temperature regimes. Each
line represents the model humidity and temperature, rather
than the measured values. The range over which the first
nucleation mode occurs is shown by the thicker light-grey
line, the second mode by the dark-grey line. Also shown are
lines which characterise homogeneous freezing and immer-
sion freezing parametrisations. The homogeneous freezing
lines use the Koop et al. (2000) water activity parametrisa-
tion. The lines show the critical humidity at which half the
drops freeze in 10 s, for a radius of 0.5 and 5 µm assuming
ammonium sulphate. The dashed line is from Zuberi et al.
(2002) and is the critical ice saturation for freezing of ice in
aqueous ammonium sulphate drops with kaolinite and mont-
morillonite dust inclusions. This line is specific for certain
size drops and dust concentrations which are not the same as
in these expansions.

Expansions in each of the temperature regimes show dif-
ferent ice nucleation modes. The cold expansions in tem-
perature regimes II and III (−60◦C<Tg<−40◦C), typically
show two ice nucleation modes active over different time in-
tervals. The first nucleation mode starts at low ice supersatu-
rations and may be deposition nucleation. The second mode
may also be deposition nucleation onto a subset of the dust
particles, or if there is a soluble component forming on the
aerosols, immersion or homogeneous freezing. This is dis-
cussed in Field et al., 2006. The warm expansions in temper-
ature regime IV (Tg>−35◦C), show no ice crystals are initi-
ated before liquid water droplets are formed. The ice nucle-
ation mode is immersion or condensation freezing. The cold-
est expansions in temperature regime I (Tg<−60◦C) show
only one ice nucleation mode which starts at low ice super-
saturation and is probably deposition nucleation.

The expansions 22–24 (Asian dust AD1) and 40–41 (Saha-
ran dust SD2) show that the onset of ice nucleation occurs at
lower relative humidity for each successive expansion. The
expansions 26–29 (Asian dust AD1) show an increased sep-
aration between the ice nucleation modes for each successive
expansion. During these expansions, there is aerosol process-
ing with the ice forming nuclei being conditioned in some
way to nucleate at lower relative humidities after each evap-
oration.

6.6 Sensitivity of the model-observation agreement to dif-
ferent ice nucleation parametrisations

What is the sensitivity of the model-observation agreement to
different more “physically-based” ice nucleation parametri-
sations and to the crystal growth parameters–crystal capaci-
tance and ice deposition coefficient? Figure 9 shows models
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Fig. 8. Chamber temperature and humidity when ice nucleation
occurs, indicated by the light- and dark-grey bands. Panels(a)–(d)
cover the four temperature regimes I–IV defined in Table 1. The
dashed line is immersion-freezing following Zuberi et al. (2002)
(micron sized kaolinite particles in 20 to 50 micron ammonium sul-
phate drops), and the two parallel lines are homogeneous freezing of
aqueous ammonium sulphate following Koop et al. (2000) (0.5 and
5 micron sized drops). The single solid line is for water saturation
conditions.

results for expansion 44 where the chamber temperature
starts at−60◦C and the relative humidity does not reach the
homogeneous freezing threshold. There is only one clear
ice nucleation mode, which starts just above ice saturation.
The green and red lines are for models parametrising depo-
sition nucleation following Meyers et al. (1992) where the
number of ice nuclei are increased (by a factor of 1000) to
give the observed final ice concentration. This increase is
just because the initial aerosol concentration that is inserted
into the chamber is not representative of the atmosphere.
The difference between these models is the value of the ice
crystal capacitance (C=1 for the green line, andC=0.8 for
the red). Decreasing the capacitance slows the ice crystal
growth, enabling higher ambient humidities, which in turn
leads to higher ice crystal concentrations. The relative hu-
midity rises above what is observed. This might suggest that
the depositional growth rate in the model is too small (and
could be increased by changing the capacitance value or the
accommodation coefficient). However, the unknown scale
factor was abritrarily set, so the final ice crystal concentra-
tion will not give any information regarding the capacitance.
The mustard line represents the model when ice nucleation
is parametrised following M̈ohler et al. (2006) which fits the
observed nucleation rate to

dnice

dt
= naa

dSi

dt
(6)

wherena is the aerosol particle concentration,Si is the ice
relative humidity anda is a fit parameter. This nucleation
is only active above some threshold ice relative humidityS0.
For expansion 44,a=1.7 andS0=1.0. This gives a much bet-
ter fit to the relative humidity, mean particle diameter and ice
crystal concentrations. The ability to discriminate between
different ice nucleation parametrisations is also dependant
on knowing the SID ice crystal size threshold. Figure 9c
shows, for each model run, two concentrations. One is for all
ice crystals and the other for ice crystals greater than 3 µm
diameter. The low temperatures and therefore low crystal
growth rates for this expansion, means that the uncertainty in
SID size threshold affects the discrimination much more than
warmer, more humid homogeneous freezing expansions.

The sensitivity of the model-observation agreement to dif-
ferent ice deposition coefficients and ice crystal capacitances
is shown in Fig. 10. The total ice water content and the re-
sultant relative humidity are sensitive to these crystal growth
parameters.

7 Conclusions

The AIDA cloud simulation chamber enables the onset of ice
nucleation to be clearly observed (as shown inHaag et al.,
2003 and Field et al., 2006). Desert dust samples from Sa-
hara and Asia were tested in multiple chamber expansions
between−20◦C and−60◦C. The ice nucleation character-
istics were varied. For many expansions, two separate ice
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Fig. 9. Expansion 44 (Saharan dust SD2) with initial chamber tem-
perature−60◦C. On each panel, the black line represents the ob-
servations (for the diameter, it is the median of all particles with a
diameter greater than 3 µm). The purple line is for the model with
the ice nucleation modes parametrised as before, by just inserting
ice particles to match the SID observations. The green and red lines
are for models which assume deposition nucleation following Mey-
ers et al. (1992) and the mustard line using Eq. (6). On panel(c),
there are two lines of each colour. The left-most line is the concen-
tration of all ice crystals and the right-most line only ice crystals
greater than 3 µm.

nucleation events were observed, while for the warmest ex-
pansions, no ice crystals were initiated before liquid water
droplets were formed. A parcel model which incorporates
heat and water vapour flux from the chamber wall into the
bulk gas was developed to give confidence to the measured
particle concentrations and chamber humidity and temper-

Fig. 10. Expansion 28 (Asian dust AD1) with initial chamber tem-
perature−50◦C, reaching−57◦C. There are four model runs each
with a different ice deposition coefficient or crystal capacitance. For
each model run, the same number of ice particles are inserted dur-
ing the intervals highlighted by the two grey bands. The black line
represents the observations (for the diameter, it is the median of all
particles with a diameter greater than 3 µm). The red line is for the
default deposition coefficient of 0.24. The purple line is for a higher
deposition coefficient of 1.0. This has the highest growth rate. The
green line is for a low deposition coefficient of 0.05. All these three
model runs have the default ice crystal capacitance of 1.0. For the
final model run in mustard, the crystal capacitance is reduced to 0.5.
The growth rate is now too low and the resultant relative humidity
too high.

ature. The heat flux is a simple parametrisation while the
water flux uses the measured total water as a constraint. The
model then partitions the water between vapour and conden-
sate according to microphysics assumptions. In order to test
the self-consistency of the observations and to better deter-
mine the relative humidity, ice particles where added to the
model as a function of time so as to reproduce the SID par-
ticle number concentration, rather than initiating ice parti-
cles by means of explicit nucleation acting on aerosol. The
model reproduces the observations for all expansions very
well. The temperature and relative humidity conditions over
which ice nucleation is occurring and the number concentra-
tion and size of ice crystals are all well specified.

Future work will include running the model with im-
proved ice nucleation parametrisations developed from these
and later measurements. The later measurements include the
ice nucleating ability of dust particles with soluble coating.
For these later measurements, a new version of the SID
probe with lower noise and better shape discrimination will
be used.
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