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Abstract. Atmospheric aerosols play significant roles in cli-

matic related phenomena. Size, density and shape of par-

ticles affect their fluid-dynamic parameters which in turn

dictate their transport and lifecycle. Moreover, density and

shape are also related to particles’ optical properties, influ-

encing their regional and global radiative effects. In the

present study we have measured and compared the effective

densities of humic like substances (HULIS) extracted from

smoke and pollution aerosol particles to those of molecu-

lar weight-fractionated aquatic and terrestrial Humic Sub-

stances (HS). The effective density was measured by compar-

ing the electro mobility and vacuum aerodynamic diameter

of aerosol particles composed of these compounds. Charac-

terization of chemical parameters such as molecular weight,

aromaticity and elemental composition allow us to test how

they affect the effective density of these important environ-

mental macromolecules. It is suggested that atmospheric ag-

ing processes increase the effective density of HULIS due to

oxidation, while packing due to the aromatic moieties plays

important role in determining the density of the aquatic HS

substances.

1 Introduction

Tropospheric aerosols alter climate (Hansen et al., 2005;

Kaufman et al., 2005, 2002; Koren et al., 2005; Lohmann et

al., 2006; Poschl, 2005; Ramanathan et al., 2001), visibility

(Cheng and Tsai, 2000; Malm et al., 2003) and human health

(Huang et al., 2003; Kappos et al., 2004; McDonnell et al.,

2000). The key for understanding how atmospheric aerosols

affect these issues depends on our knowledge of their physi-

cal and chemical properties. Aerosol properties such as size,

shape, density, hygroscopic growth under subsaturation con-

ditions, activation to cloud condensation nuclei (CCN) under
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supersaturation conditions and optical properties are all ruled

by the coupling between the “chemical composition” of the

particle and the “physical processes” the particle undergoes.

It is now recognized that organic compounds comprise a

substantial mass fraction of tropospheric aerosols, up to 90%

in some cases (Jacobson et al., 2000; Kanakidou et al., 2005;

Novakov and Penner, 1993). The organic fraction is com-

posed of hundreds to thousands of individual species (Sax-

ena and Hildemann, 1996), many of them contributing only

a small fraction to the overall particle mass. The organic frac-

tion is often classified on the basis of water solubility, with

the water soluble organic carbon (WSOC) fraction making

up the major portion of atmospheric organic matter (Fac-

chini et al., 1999; Saxena and Hildemann, 1996; Zappoli

et al., 1999). Between 20–70 wt% of the water soluble or-

ganic carbon (WSOC) fraction are high molecular weight

(HMW) polycarboxylic acids (Graber and Rudich, 2006, and

references therein); a heterogeneous mixture of structures

containing aromatic, phenolic and acidic functional groups

(Decesari et al., 2001; Diallo et al., 2003; Gysel et al., 2004;

Kiss et al., 2002; Krivacsy et al., 2001; Mayol-Bracero et al.,

2002; Varga et al., 2001). These heterogeneous structures

bear a certain resemblance to humic substances (HS) from

terrestrial and aquatic sources. Therefore, these aerosol-

associated compounds are referred to in the atmospheric

chemistry literature as HUmic-LIke Substances (HULIS).

The chemical and physical properties of aquatic and terres-

trial HS have been extensively studied due to their important

role in affecting soil properties and their presence in water

bodies. However, to the best of our knowledge, measure-

ments of their bulk densities are scarce and were mostly per-

formed in solution, hence they are affected by pH and ionic

content. As far as we know the bulk density for both terres-

trial and aquatic HS has never been measured directly. Since

these species are inhomogeneous mixtures, and often are not

separated from other soil components and since they are as-

sumed to be dissolved in the water, the literature usually
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refers to their partial specific volume (Benedetti et al., 1996;

Jones et al., 1995; Reid et al., 1990). In the last decade, the

interest of atmospheric sciences in these substances has ex-

panded due to the resemblance of atmospheric HULIS to HS

in chemical nature and physical properties (Gelencser et al.,

2000; Hoffer et al., 2004; Kiss et al., 2002).

The chemical properties of both terrestrial and aquatic HS

and atmospheric HULIS have been investigated during the

last decade. A few experimental and modeling studies have

tried to connect chemical characterization to physical atmo-

spheric properties such as: 1) CCN activity (Dinar et al.,

2006b; Svenningsson et al., 2005), 2) hygroscopicity (Bad-

ger et al., 2006; Brooks et al., 2004; Chan and Chan, 2003;

Dinar et al., 2006a; Gysel et al., 2004; Svenningsson et al.,

2005) and 3) optical properties (Hoffer et al., 2006; Schkol-

nik and Rudich, 2006). Even though terrestrial and aquatic

HS have long been studied and the importance of HULIS in

atmospheric aerosol is recognized, as far as we know, no re-

port of their density has been published.

Generally, the density of a particle is an important phys-

ical property, because it relates the aerodynamic diameter

with the Stokes diameter, which equals the geometric di-

ameter in case of a compact sphere. It relates the particle’s

volume (which is typically calculated from sizing measure-

ments) with the mass or with the number of moles of the

substrate. Thus density of a particle affects its fluid-dynamic

parameters which dictate its transport and lifecycle (such as:

terminal velocities under acting forces in viscous media, co-

agulation, distance of transport from source, dry deposition).

Density of particles is related to: 1) the solute effect in the

(mass based) Köhler equation for droplet activation, 2) the

water content of particles, 3) particle optical properties (Tang

and Munkelwitz, 1994), and finally 4) the density can be used

as a tool to monitor chemical transformation in the particle

(Katrib et al., 2005). Nevertheless, until recently very few

studies report on aerosol densities, probably due to techni-

cal limitation in direct experimental measurements. Up to

date, the density of a particle was deduced based on knowl-

edge of its chemical composition (Hasan and Dzubay, 1983)

or derived separately by measuring aerosol mass and aerosol

volume (Hanel and Thudium, 1977; Pitz et al., 2003). In

recent years, new methods have been applied for measur-

ing particles’ effective density mostly by combining differ-

ent aerosol measurements techniques (McMurry et al., 2002;

Murphy et al., 2004). The most recently used approach for

measuring particles density is based on combined measure-

ments of the electric mobility diameter (db) and the aerody-

namic diameter (da), from which the particle effective den-

sity ρeff can be derived (DeCarlo et al., 2004). The effective

density can be related to particles’ bulk density under some

assumptions about the particle average dynamic shape fac-

tor χ̄ (DeCarlo et al., 2004; Jayne et al., 2000; McMurry et

al., 2002; Slowik, 2004; Zelenyuk et al., 2005; Zelenyuk and

Imre, 2005), which is a measure of how spherical the particle

is.

In the present study we report on the measured effective

densities for HULIS isolated from atmospheric aerosols, for

Fulvic Acid (FA) and for Humic Acid (HA) samples from

aquatic and terrestrial sources. Since these samples have

been chemically characterized and intensively studied for

their sub-saturation hygroscopic growth (HG) (Dinar et al.,

2006a) and CCN activity under supersaturation conditions

(Dinar et al., 2006b), we aim here on correlating between

measured effective density of the particles to their chemical

and physical properties.

2 Experiment

2.1 Samples description

2.1.1 HULIS samples

Atmospheric HULIS compounds were isolated from col-

lected aerosol particles. Aerosols were sampled during an

aerosol sampling campaign which started on the night of

an extensive, nation-wide wood burning event and contin-

ued later into the summer with sampling of pollution par-

ticles. The collected samples were: 1) Fresh smoke parti-

cles (termed hereafter “LBO-night”) sampled throughout the

night (26–27 May 2005) with average PM10 mass concen-

trations near the sampling location of 300–400 µg m−3, 2)

slightly aged wood burning smoke particles (termed here-

after “LBO-day”) which were sampled during daytime, fol-

lowing the nighttime fires (27 May 2005), with PM10 mass

concentrations of 60–180 (µg m−3) and, 3) Pollution parti-

cles (called hereafter “3WSFA”) which were collected dur-

ing daytime only over a three week period (26 July to 16

August 2005), with average PM10 mass concentration of

about 25 µg m−3. The “LBO-night” sample is dominated

by freshly emitted smoke particles, without photochemical

processing. The “LBO-day” sample is dominated by smoke

particles (as concluded from the high aerosol mass concen-

trations and the dark color of the collected particles), but

could have undergone moderate processing via photochemi-

cal reactions and mixing with photochemical pollution. The

“3WSFA” sample contains the prevailing local photochem-

ical pollution aerosol particles, and is assumed to repre-

sent aged particles. Operationally-defined FA were extracted

from the filters and separated from the other particles’ com-

ponents by an isolation procedure developed on the basis of

the scheme used by the International Humic Substances Soci-

ety (IHSS) for aquatic HS (http://www.ihss.gatech.edu), and

adapted for air-borne particulate matter collected on quartz

fiber filters. Briefly, filters are subjected to consecutive water

and water-base extractions; FA HULIS (by definition solu-

ble at any pH) were separated from other water soluble and

base-soluble aerosol organic and inorganic species by pref-

erential absorption onto an XAD-8 resin, followed by elu-

tion in a basic solution. The eluant was cation-exchanged on
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an H+-saturated cation-exchange resin (AG MP-50, Bio-Rad

Laboratories) to produce protonated acids, and then freeze-

dried. At stages where oxidation can occur, an inert atmo-

sphere (N2) was applied. The freeze-dried samples are stored

at room temperature in darkness under vacuum. 18 MOhm

Mill-Q water was used for all solutions throughout the study.

For detailed sampling and extraction procedures see Dinar et

al. (2006b).

2.1.2 Humic substances samples

Two HS reference samples were also used as model for atmo-

spheric HULIS, Suwannee River Fulvic Acid (SRFA, IHSS

code 1R101F) and Pahokee Peat Humic Acid (PPHA, PP

soil, IHSS code 2BS103P, for extraction procedure see Dinar

et al. (2006b) and Swift (1996) and the protocol of the IHSS,

http://www.ihss.gatech.edu/). The SRFA was chosen since

several previous laboratory studies referred to it as a repre-

sentative of atmospheric HULIS (Abdul-Razzak and Ghan,

2004; Brooks et al., 2004; Chan and Chan, 2003; Fuzzi et

al., 2001; Haiber et al., 2001; Kiss et al., 2005; Mircea et

al., 2002; Nenes et al., 2002; Rissman et al., 2004; Sam-

burova et al., 2005; Svenningsson et al., 2005). Pahokee Peat

HA was chosen because it extends our knowldege into hu-

mic acid, which may also be representative of some of the

higher molecular weight species in atmospheric aerosol par-

ticles. Both HS samples were de-ashed and cleaned from low

molecular weight organic acids and inorganic species (Di-

nar et al., 2006b). This was verified by ion chromatographic

analysis.

The SRFA and PPHA samples are known to contain com-

pounds with a wide distribution of molecular weights. In

order to study how effective density depends on molecular

parameters, both HS samples were coarsely divided accord-

ing to the effective size of the molecules in solution using

ultra-filtration. Five size fractions of water-soluble material

denoted F1, F2, F3, F4, and F5, from low to high MW re-

spectively, were obtained for each sample.

2.2 Samples characterization

The SRFA samples were characterized by various means (es-

timated mean molecular weight was characterized by UV ab-

sorption, elemental analysis, and surface tension measure-

ments (unpublished results)). The HULIS samples were

also characterized in a similar manner. It is explicitly as-

sumed that the UV correlations for SRFA hold for fulvic

acid HULIS studied here. Detailed description and discus-

sion of the characterization used and its results can be found

in Dinaret al. (2006b).

2.3 Aerosol generation

All investigated aerosols were prepared by nebulizing aque-

ous solutions: 20–50 mg/L for ammonium sulfate (AS), am-

monium bisulfate (ABS), glucose, and HS samples (bulk and

fractions), and 10–20 mg/L for atmospheric HULIS samples.

Monodisperse polystyrene latex spheres (PSL, Duke Scien-

tific, density 1.05 g/cm−3) solutions were prepared by di-

luting the commercial stock. The solutions were atomized

using a TSI constant output atomizer (TSI-3076) operating

at 30 PSI (∼3 standard liters per minute (SLM)) with dry

particle-free synthetic air (mixed liquid nitrogen and oxygen,

Linde 6.0) generating a polydisperse distribution of droplets

of mean diameter ∼0.3 µm.

2.4 System setup and the measurement principles

Aerosols’ effective density was measured based on the rela-

tionship between electric mobility and vacuum aerodynamic

diameters (db and dva respectively). The electromobility di-

ameter db for particles of arbitrary shape is given by (com-

pare DeCarlo et al., 2004):

db = dve ·
Cc(db)

Cc(dve)
· χb (1a)

where dve is the particle volume equivalent diameter, χb

is the dynamic shape factor for the regime in the selecting

DMA, Cc(d) is the Cunningham slip correction factor. The

aerodynamic diameter da for particles of arbitrary shape and

density is given by (compare Baron and Willeke, 2001):

da = dve

√

1

χb

ρp

ρ0

Cc(dve)

Cc(db)
(1b)

where ρp and ρ0 are particle density and unit density. When

the aerodynamic diameter is measured under vacuum (dva ,

vacuum dynamic diameter, χva dynamic shape factor in the

vacuum dynamic regime), i.e. in the so called molecular

regime, Eq. (1b) can be simplified to: (DeCarlo et al., 2004;

Slowik, 2004; Zelenyuk et al., 2005)

dva =
ρp

ρ0
·

dve

χva

(2a)

For spherical particles (χ=1) of density ρp db=dve=dp with

dp being the geometrical diameter. Combining Eqs. (1a) and

(2a) yields the expression for the particle density of spheri-

cal particles derived from simultaneous measurements of the

electromobility and the vacuum aerodynamic diameters:

ρp = ρ0
dva

db

(2b)

For aspheric particles there is need to account for shape ef-

fects on db and dva . For χ>1, db increases (since the drag

forces of the drift in the electrical field increase with as-

phericity), whereas dva decreases (since with increasing ir-

regularity the effective density decreases due to the increas-

ing ratio of dve to dStokes of the sphere made of the same

mass and the same density ρp). This behavior makes the

ratio dva /db very sensitive to changes in particles’ χ . If χ

is unknown, it is still possible to define an effective density,

www.atmos-chem-phys.net/6/5213/2006/ Atmos. Chem. Phys., 6, 5213–5224, 2006
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Fig. 1. A schematic illustration presenting the system setup used for density measurements. The top box presents the aerosol generation

part from solution to a dry and charged polydisperse aerosol flow. The flow is then introduced to the size selection DMA resulting with

a narrow size-selected aerosol flow which is split to the AMS (measures the vacuum aerodynamic diameter) and the SMPS (measures the

electromobility diameter).

ρeff, (Jimenez et al., 2003) where ρ0 is the standard density

(1 g cm−3):

ρeff = ρ0
dva

db

(3)

with

ρeff = ρp · S′ (4)

and

S′
=

Cc(dve)

Cc(db)
·

1

χb · χva

(5)

Detailed discussion of the relations between particles density,

morphology and their effect upon electromobility and aero-

dynamic diameters is discussed by DeCarlo et al. (2004), Ze-

lenyuk et al. (2005), Slowik et al. (2004), Katrib et al. (2005),

McMurry et al. (2002) and Park et al. (2003, 2004).

The experimental apparatus is shown in Fig. 1. A humid

polydisperse droplet flow is produced by nebulizing aque-

ous solutions. In previous experiments we identified the

need to let the particles equilibrate for a few minutes in a

buffer volume after nebulizing and before drying (Dinar et

al., 2006a, b). The conditioning step affected the particles

diameter of activation under supersaturated conditions, and

avoided compaction of the particles upon drying in dehydra-

tion experiments at sub-saturated conditions (i.e. reaching

growth factors less than one) (Dinar et al., 2006a). There-

fore we employed conditioning also in the present experi-

ments; the fresh flow of droplets reached equilibrium with

the surrounding environment in a 2-l conditioning bulb be-

fore entering a silica gel diffusion drier. The resulting dry

polydisperse aerosol flow (relative humidity (RH) <3%) was

neutralized using a 85Kr neutralizer, and then size selected

by a differential mobility analyzer (DMA, TSI Inc., Model

3071). This yields a narrow monodisperse size distribution

with a known electromobility diameter db. Particles ranging

between db of 85–150 nm (organics) and 80–230 nm (ammo-

nium salts) were selected by the DMA, which was operated

with 3 SLM dry sheath flow of RH<3%. Upon exiting the

DMA, the dry monodisperse aerosol flow of 0.38 SLM was

split, 0.3 SLM was directed to a second DMA operating as

a scanning mobility particle sizer (SMPS, TSI Inc. 3071)

Atmos. Chem. Phys., 6, 5213–5224, 2006 www.atmos-chem-phys.net/6/5213/2006/
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Table 1. Effective densities measured for the validation compounds. The reciprocal of the Jayne shape factor (ratio between the effective

density to the bulk/crystalline density), 1/S is also presented. For small χ , and for particles in the range 100–200 nm in diameter the square

root of 1/S is a good estimate of the dynamic shape factor, χ .

Effective density (g cm−3) 1/S Bulk density

(g cm−3)

Literature

Ammonium sulfate (AS) 1.75±0.03 1.01±0.02 1.77 Depends on particle size

(Zelenyuk et al., 2005)

Ammonium bisulfate (ABS) 1.74±0.02 1.03±0.01 1.79 1.74 (Tang et al., 1994)

1.77 (Zelenyuk et al., 2005)

Glucose 1.53±0.02 1.00±0.02 1.54 1.56 (CRC handbook)

1.54 (MSDS)

in conjugation with a condensation particle counter (CPC,

TSI Inc., Model 3022A), and 0.08 SLM were directed to an

aerosol mass spectrometer AMS (Aerodyne Research Inc.)

(Jayne et al., 2000). The SMPS determined db of the selected

particles, while dva of the particles was simultaneously deter-

mined in particle time of flight (PToF) mode by the AMS.

3 Results and discussion

3.1 DMA and AMS calibration and system setup validation

The first DMA and the SMPS DMA were calibrated for mea-

suring mobility diameters ranging from 50 to 199 nm using

a set of certified polystyrene latex (PSL) spheres (Duke Sci-

entific; 50, 81, 102, 152, 199 nm). By careful control of the

flows and relative humidity, the aerosol size mode was highly

reproducible and a daily calibration curve was applied for the

entire mobility diameter range under investigation. It is noted

however that the DMA transfer function has a systematic un-

certainty of ±3% from the mean diameter.

The AMS alternated between acquiring mass spectra (MS)

and PToF mode (Jayne et al., 2000). In the MS-mode the

mass range 10–300 amu was scanned over the entire parti-

cle population, while in the PToF mode, the size-dependent

velocity distribution of the particles after expansion into the

vacuum was determined by detecting a few specific masses.

Using the MS-mode, the composition of the non-refractory

fraction of the particles was measured and a few selected

mass peaks that represent the material studied were selected

(PSL – 28, 44, 64, 91 and 104, organics – 28, 38, 41, 44 and

64, and for ammonium salts – 15, 16, 17, 18, 28, 48 and 64).

Then, the quadrupole mass spectrometer (QMS) was tuned

to these mass peaks and the time of flight between a chopper

and MS-detector was measured. Since we have calibrated

the AMS PToF using PSL (see below) with a m/z of 104 and

measured our samples using m/z of 44 for organic and 64 for

sulfates a shift in the ions traveling time inside the quadruple

mass spectrum can occur. This systematic shift can reach up

to 40 µs (104–44 transition and 20 µs for 104–64 transition)

resulting with a systematic error of underestimation between

<5% and <4% for 100 to 200 nm dva of organics, respec-

tively. For sulfate, the systematic error would be <3% at

100 nm and <2% at 200 nm dva . The results present below

were not corrected for this shift and we consider this error

as a systematic possible error which does not effect the high

precision of our experimental error.

The conversion of PToF to aerodynamic diameter employs

an empirical calibration curve (Jayne et al., 2000; Jimenez

et al., 2003). Calibrated polystyrene latex spheres of 102,

152 and 199 nm were used for generating a calibration curve

every day and in addition validation tests were performed

using the same PSLs between sample runs. The calibra-

tion curves were verified using ammonium sulfate (AS), am-

monium bisulfate (ABS) and glucose particles which have

known bulk densities. For each sample at least three different

sizes were measured (mobility diameters 88, 98 and 128 nm,

respectively), in addition each size was measured for three

cycles integrating for 5 to 15 min (depending on the signal in-

tensity). Table 1 summarizes the measured effective densities

and the reciprocal of Jayne factor, S, for 60–230 nm (mobil-

ity diameter) AS, ABS and glucose particles. The derived ef-

fective densities agree well with literature values hence con-

firming the calibration procedure with very high certainty of

±2%.

3.2 Verification with ammonium sulfate and effects of

aerosol generation

Using transmission electron microscopy (TEM) (Dick et al.,

1998; Li et al., 2003; Perry et al., 1978), multi-angle light

scattering (Dick et al., 1998; Perry et al., 1978) and by mea-

suring particle beam divergence (Huffman et al., 2005) it

was shown that by spraying and drying AS solutions, mildly

aspherical particles with some significant variability form.

Huffman et al. (2005) noticed that the lift shape factor of

such AS particles increases with particle size ranging from

110 to 320 nm. The decrease in ρeff (caused by an increase

www.atmos-chem-phys.net/6/5213/2006/ Atmos. Chem. Phys., 6, 5213–5224, 2006
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Fig. 2. The effect of particles shape on the AMS PToF values can

be seen by the above figure emphasizing the relation between AS

particles effective density (left axis, black squares) and the recip-

rocal of Jayne shape factor (right axis, red circles), as a function

of particle mobility diameter (tested for particles ranging from 80–

230 nm). The small values of the reciprocal Jayne shape factor and

the effective density above the bulk density (1.77 g/cm3) are a re-

sult of the statistic error (±2%) which can deviate between values

of 1.73 to 1.81 for spherical particles and can even be broaden for

non spherical particles. The lines are to guide the eye only.

of χ) with increasing particle size have recently been demon-

strated also by Zelenyuk et al. (2006) for AS particles with

160–500 nm mobility diameter. Figure 2 presents both the

changes in the effective density of AS particles ranging from

80 to 230 nm (mobility diameter) and their coupled 1/S val-

ues. In the size range 80 nm to 120 nm, our measured effec-

tive density scatter ±2% around the literature value and for

sizes >160 nm, our results show excellent agreement with

Zelenyuk et al. (2005).

In previous experiments (Dinar et al., 2006a, b) we rec-

ognized the importance of conditioning the AS, SRFA and

HULIS aerosol prior to drying (Sect. 3.3). In the present

study it was found that conditioning had the same effect on

AS, HULIS and SRFA particles, but a different effect on

ABS particles. In the PToF mode of the AMS, single and

multiple charged particles of the same electromobility class

are separated according to their different vacuum aerody-

namic diameter. Unconditioned AS particles yield a com-

plex, multi peak size spectrum, they exhibit wide peaks with

shoulders and a shift to shorter flight times compared to con-

ditioned AS particles (Fig. 3). This behavior was eliminated

by conditioning, yielding narrower and more stable size dis-

tributions. This indicates changes in particle morphology as

discussed also in Zelenyuk et al. (2005). For ABS, condi-

tioning resulted in different relative intensities of the single

and multiple charged particles (Fig. 4). This can be attributed

to high hygroscopicity of ABS, which retained residual wa-

ter even at low relative humilities <3% (Tang and Munkel-

witz, 1994). This is corroborated by the fact that densi-

ties obtained from particle measurements are slightly lower

(ρ=1.74 g/cm3) than for crystalline ABS (ρ=1.79 g/cm3).

The agreement of our effective densities with literature

values (Sect. 4.1) and the sensitivity to second order effects

of the conditioning step (Sect. 4.2) give us confidence that

we are able to determine the effective densities of HS and

atmospheric HULIS sample to better than 2%.

3.3 The effective density of SRFA bulk and fractions

In previous investigations we compared between molecular

weight-fractionated SRFA samples and HULIS samples for

their: 1) ability to act as CCN (Dinar et al., 2006b) and

2) subsaturation water uptake (Dinar et al., 2006a). In the

present study we measured the particle effective density of

particles of the same samples. It is inherently assumed here

that the SRFA, PPHA and the atmospheric HULIS samples

are spherical (i.e. the particle shape factor is assumed to be

1). This assumption relies on a study by Hoffer et al. (2006)

who showed SEM image of spherical HULIS dry particles

produced in a similar manner to this study (i.e. they were ex-

tracted from biomass burning aerosols and were nebulized).

Table 2 summarizes the calculated effective densities, av-

erage molecular weight and aromaticity for all SRFA sam-

ples. Since it is expected that FA are the products of frag-

mentation of large HS (HA) (Diallo, 2003, #181) we have

added for comparison in Table 2 the measured effective den-

sities of three PPHA samples (bulk, F2 and F5).

Figure 5 presents the relationship between the measured

SRFA fractions density values and the average molecular

weight (A) and aromaticity (B). It can be seen that the ef-

fective density of the SRFA fractions increases with its av-

erage molecular weight (Fig. 5a) and with the extent of aro-

maticity of the fraction (Fig. 5b). Figure 6 shows the relation

with the carbon to oxygen ratio (C/O, taken from the ele-

mental analysis as given in Table 3) (A) and with acidity (B).

Since intermolecular interactions are the basis for molecular

arrangement and packing which determine functional prop-

erties of agglomerates of molecules and the morphology of

solids, it is expected to find correlations between the parti-

cles’ chemo-physical properties and its density. Overall there

is a tendency of the effective density to increase with increas-

ing oxygen content and the oxygen to carbon ratio (Fig. 6a)

and to decrease with increasing acidity (Fig. 6b). These ob-

servations together with previous results (Dinar et al., 2006a,

b) are consistent with an overall behavior where the higher

molecular weight fractions are less hygroscopic, more aro-

matic and better packed.

The trends in the correlations between effective density

and these physical and chemical parameters are consistent

with having less H-or more O-atoms with increasing MW.

If we take acidity as a measure of the number of carboxylic

groups, which can form H-bonds of some strength, and thus

of overall H-bond importance, the increase of the density
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Table 2. Summary of the measured effective densities for the HS. For SRFA both number averaged molecular weight (MN ) and aromaticity

are estimated based on UV correlation see Dinar et al. (2006b). Average molecular weight and aromaticity of PPHA samples were not

determined since the UV correlation used is based on studies with FA samples (Dinar et al., 2006b).

Sample MN Aromaticity (%) Effective density (g cm−3) Literature value

SRFA Bulk 570 20 1.47±0.02 ∼1.5 (IHSS)

SRFA F1 450 12 1.39±0.02

SRFA F2 520 16 1.42±0.01

SRFA F3 620 23 1.49±0.02

SRFA F4 720 30 1.52±0.01

SRFA F5 740 32 1.51±0.01

PPHA Bulk 1.52±0.02 Estimated to be 1.66 (Benedetti et

al., 1996)

PPHA F2 1.56±0.01

PPHA F5 1.58±0.03

Table 3. The organic components elemental analysis of the SRFA samples (Dinar et al., 2006b).

Sample
N C H S O C/O H/C

% % % % % Mole ratio Mole ratio

F1 0.54±0.01 54.78±0.03 5.24±0.05 n/a 39.44 1.85 1.15

F2 0.63±0.003 50.86±0.11 4.71±0.06 0.44±0.17 43.37 1.56 1.11

F3 0.67±0.006 50.63±0.35 4.33±0.11 0.31±0.11 44.07 1.53 1.03

F4 0.77±0.05 52.17±0.71 4.56±0.19 0.31±0.18 42.20 1.64 1.05

F5 0.73±0.01 49.71±0.34 4.01±0.13 0.40±0.24 45.16 1.47 0.97

Bulk 0.68±0.02 53.36±1.03 4.88±0.05 0.26±0.12 40.82 1.75 1.10

with decreasing acidity suggests that H-bonds are either

not the major intermolecular interaction which affects the

particles’ compaction trend or the H-bonds lead to looser

structures owed to directional requirements of H-bonding.

The second strongest intermolecular interactions may be at-

tributed to the presences of aromatic moieties which are

known to be weaker and less defined. These interactions have

multiple points of intermolecular contact with variable ge-

ometries and may contain a vast range of different functional

groups (Hunter et al., 2001). Moreover, these interactions

play a crucial part in biomolecules and pure organics self-

assembly (Azriel and Gazit, 2001; Hunter et al., 2001; Whit-

ten et al., 1998). Harmata and Barnes (1993) who also stud-

ied the packing and density of a complex organic substance

concluded that the high densities observed indicate the effi-

ciency of the packing, which are dominated by edge-to-face

stacking of aromatic moieties. While this is not a proof, it

illustrates that aromatic moieties can dominate stacking (and

thus density) for a large complex molecule. The question re-

mains, if such an effect – obviously less pronounced in the

mixture of HULIS molecules – can explain the observation.

3.4 The effective density of HULIS

In addition to the SRFA samples, Fig. 5 also presents the re-

lationship observed between the effective densities and the

average molecular weight and the aromaticity of the three

HULIS samples (see Table 4). This comparison supports our

earlier conclusions (Dinar et al., 2006a, b) that SRFA and

HULIS probably represent two different and distinct chem-

ical populations. This distinction between SRFA and atmo-

spheric HULIS is further demonstrated in Fig. 7 which shows

the relation between the CCN dry diameter of activation at

super-saturation 0.2, 0.52 and 1.03% to effective density for

both SRFA and the HULIS samples extracted from ambi-

ent particles (Dinar et al., 2006b). Both samples show rela-

tionship between average molecular weight and aromaticity

(Fig. 5). However, while SRFA effective densities increase

with the average molecular weight and aromatic percent, the

HULIS samples have an opposite tendency showing a reduc-

tion in effective density with increasing average molecular

weight and aromatic percentage. Unfortunately, due to the

small amount of these samples we were not able to conduct

elemental analysis.

However, we postulate that as the samples age (mostly

by oxidation) in the atmosphere, there is a reduction in the
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Figure 3. The effect of conditioning on the vacuum aerodynamic diameter spectrumFig. 3. The effect of conditioning on the vacuum aerodynamic diameter spectrum of different size selected (84–171 nm) AS particles. The

black line represents the vacuum aerodynamic diameter of size selected AS particles following conditioning. The red line shows the spectrum

without conditioning. Multiply charged particles are indicated.
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Figure 4. The effect of conditioning after atomizing on the vacuum aerodynamic diameter Fig. 4. The effect of conditioning after atomizing on the vacuum aerodynamic diameter spectrum of different size selected (84–129 nm) ABS

particles. The black full line presents the vacuum aerodynamic diameter of size selected ABS particles which have undergone conditioning

fallowed atomizing. For each size selected figure the red dashed line shows the spectrum without conditioning. Multiply charged particles

are indicated.
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Table 4. Summary of the measured densities for FA-HULIS samples. Both number averaged molecular weight and aromaticity are estimated

based on UV correlation as the SRFA samples (Dinar et al., 2006b).

HULIS samples MN Effective density (g cm−3) Aromaticity (%) Literature value (Hoffer et al., 2006)

LBO-Night 610 1.50±0.01 20 1.50 ±0.02

LBO-Day 410 1.72±0.03 10 1.57±0.03

3WSFA 500 1.57±0.03 16
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sult, the role of aromaticity decreases and the change in the

oxidation state increases the hygroscopicity and the density.

A similar trend in increasing effective density with photo-

chemical aging may partly explain the observation of Pitz et

al. (2003) who also observed an increase in particles’ effec-

tive density from morning to the afternoon, due to change in

chemistry and shape.

Only a few studies focused so far on determination of the

density of ambient aerosol particles and its change due to ag-

ing in the atmosphere. All of them, though, estimated and

measured the density of aerosol particles without detailed

analysis of the chemical composition of these aerosols (Mc-

Murry et al., 2002; Pitz et al., 2003). Some of the studies

focused on soot which has a low effective density, due to

it’s “fluffy” structure (McMurry et al., 2002; Slowik, 2004).

As far as we know our results about the density of HULIS

from biomass burning and pollution aerosols can be com-

pared only to a recent study by Hoffer et al. (2006) who

measured the density properties of HULIS extracts from

day time and nighttime biomass burning smoke particles

from Brazil. Hoffer et al. (2006) found that HULIS ex-

tracted from the nighttime smoke particles have a lower

density then the daytime HULIS extracts, 1.50±0.02 and
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1.57±0.03, respectively (Hoffer et al., 2006). The density

of HULIS extracted from the pollution particles in this study

(1.57±0.03 g cm−3) is close to the mean apparent particle

density measured for urban aerosols in Germany by Pitz et

al. (1.6±0.5 g cm−3) (Pitz et al., 2003).

Interestingly, comparison between the fresh wood burn-

ing HULIS extracts (LBO-Night) with the nighttime sam-

ple studied by Hoffer et al. (2006) indicate that both night

samples have similar density, 1.50±0.02 g cm−3. These val-

ues are close to the density of cellulose (1.5 g cm−3) and

its derivatives, starch (1.53 g cm−3, CRC handbook), sugar

(1.59 g cm−3, CRC handbook) levoglucosan (1.6 g cm−3,

ALDRICH) and other carbohydrates such as glucose (which

was measured by us to be 1.53±0.02 g cm−3), possibly im-

plying the presences of carbohydrates-like components in the

LBO-Night HULIS extract. The HULIS extracted from the

daytime smoke samples have a higher effective density of

1.57±0.03 g cm−3. The LBO-day sample in this study had a

higher effective density, 1.72±0.03 g cm−3. The difference

may be attributed to mixing between fresh and photochemi-

cally aged smoke in Brazil, while our collected particles dur-

ing day time did not contain fresh smoke particles. As far as

we know direct measurements of the density of daily average

air pollution HULIS have not been conducted.
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