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Abstract. The new CHEM2D-Ozone Photochemistry Pa-
rameterization (CHEM2D-OPP) for high-altitude numeri-
cal weather prediction (NWP) systems and climate mod-
els specifies the net ozone photochemical tendency and its
sensitivity to changes in ozone mixing ratio, temperature
and overhead ozone column based on calculations from
the CHEM2D interactive middle atmospheric photochemical
transport model. We evaluate CHEM2D-OPP performance
using both short-term (6-day) and long-term (1-year) strato-
spheric ozone simulations with the prototype high-altitude
NOGAPS-ALPHA forecast model. An inter-comparison of
NOGAPS-ALPHA 6-day ozone hindcasts for 7 February
2005 with ozone photochemistry parameterizations currently
used in operational NWP systems shows that CHEM2D-OPP
yields the best overall agreement with both individual Aura
Microwave Limb Sounder ozone profile measurements and
independent hemispheric (10◦–90◦ N) ozone analysis fields.
A 1-year free-running NOGAPS-ALPHA simulation using
CHEM2D-OPP produces a realistic seasonal cycle in zonal
mean ozone throughout the stratosphere. We find that the
combination of a model cold temperature bias at high lati-
tudes in winter and a warm bias in the CHEM2D-OPP tem-
perature climatology can degrade the performance of the
linearized ozone photochemistry parameterization over sea-
sonal time scales despite the fact that the parameterized tem-
perature dependence is weak in these regions.

1 Introduction

In recent years, the world’s leading meteorological centers
have extended the vertical range of their numerical weather
prediction (NWP) and data assimilation (DA) systems from
the surface up through the stratosphere (∼10–50 km altitude)
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and lower mesosphere (∼50–65 km). Some have also added
stratospheric ozone (O3) as a prognostic trace constituent
to their models. Examples include the Integrated Forecast
System (IFS) of the European Centre for Medium Range
Weather Forecasts (ECMWF) (Untch et al., 1999; Dethof and
Holm, 2004), the Global Forecast System (GFS) of the Na-
tional Centers for Environmental Prediction (NCEP 2003),
the Goddard Earth Observing System (GEOS) of NASA’s
Global Modeling and Assimilation Office (GMAO) (S̆tajner
et al., 2001) and the prototype Navy Operational Global At-
mospheric Prediction System-Advanced Level Physics High
Altitude (NOGAPS-ALPHA) (Eckermann et al., 2004).

The addition of stratospheric ozone as a prognostic vari-
able is expected to improve overall forecast skill since global
NWP systems depend on assimilation of satellite-based tem-
perature measurements to provide accurate initial conditions.
These initial conditions are based on inversions of raw radi-
ance measurements that in turn depend on a priori specifi-
cation of the atmosphere’s radiative transmission character-
istics. Accurate stratospheric ozone forecasts can therefore
lead to improved operational radiance assimilation (Derber
and Wu, 1998; John and Buehler, 2004), improved upper tro-
pospheric and lower stratospheric winds through correlations
between ozone and dynamics (Peuch et al., 2000), and im-
proved radiative heating rates in NWP models (Jackson and
Saunders, 2002).

With the extension of NWP/DA systems into the upper
stratosphere, assimilation and advection alone cannot yield
accurate ozone forecasts – photochemical effects must also
be included. Due to the complexity of ozone photochem-
istry, it is not currently feasible to implement full ozone
photochemistry within a high-resolution operational global
NWP system. Instead, photochemical production and loss
rates for ozone are often specified using simpler parameteri-
zations based on output from offline zonally averaged two-
dimensional (2-D) models with complete photochemistry.
Until recently, the NASA GEOS and the NCEP GFS ac-
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counted for ozone photochemistry using production and loss
rates from the NASA Goddard Space Flight Center (GSFC)
2-D middle atmosphere model (Fleming et al., 2002). As
we will show, this method can produce significant low biases
in model ozone compared to observations in the middle and
upper stratosphere over a 6-day period. To remove such bi-
ases in NASA GEOS analyses (Riishøgaard et al., 2000), the
GSFC production rates have been adjusted to force model
ozone to relax towards an observed 2-D ozone distribution
(Bloom et al., 2005).

Other meteorological centers such as the ECMWF have
incorporated a more detailed ozone photochemistry parame-
terization in their NWP and DA systems (Dethof and Holm,
2004). The ECMWF parameterization is based on the for-
mulation ofCariolle and D̀eqúe(1986) (hereafter CD86) and
specifies not only the net photochemical tendency, but also
takes into account the effect of changes in the local mix-
ing ratio, temperature, and overhead ozone column, the lat-
ter being a proxy for changes in the incident photolyzing
UV irradiance. A preliminary inter-comparison of ozone
photochemistry schemes in the NOGAPS-ALPHA model
(McCormack et al., 2004) found that the original CD86
scheme (hereafter CD86 V1.0) consistently produced ozone
distributions with weaker zonal structure at northern mid-
latitudes than was observed, a feature also seen in operational
ECMWF IFS ozone forecasts. A recent study byGeer et al.
(2006a) also identified problems with the column sensitiv-
ity term in the CD86 parameterization that affected modeled
lower stratospheric ozone values primarily at high southern
latitudes in springtime.

Although more detailed evaluations of prognostic ozone
in NWP/DA systems are needed, the evidence to date indi-
cates that current methods used to parameterize ozone pho-
tochemistry in such systems need improvement. This arti-
cle introduces a new high-altitude, self-consistent, compu-
tationally efficient ozone photochemistry parameterization
that corrects some of the problems in existing operational
systems that assimilate and forecast ozone using the afore-
mentioned schemes. Section 2 presents a derivation of the
photochemistry parameterization and describes how its co-
efficients are computed using the CHEM2D photochemical
transport model. Section 3 describes the NOGAPS-ALPHA
NWP model used to test the photochemistry parameteriza-
tion. Section 4 presents results from several different sets of
numerical simulations to demonstrate the performance of the
new parameterization in both NWP and climate modeling ap-
plications. Section 5 summarizes these results and discusses
plans for future development of the photochemistry scheme.

2 CHEM2D ozone photochemistry

2.1 Background

The distribution of ozone throughout the middle atmosphere
(∼10–85 km) is determined by the balance between trans-
port effects and the rates of photochemical production (P )
and loss (L). Ozone production occurs through a 3-body re-
action involving molecular oxygen (O2) and atomic oxygen
(O). Ozone loss can occur through photolysis and through
a complex set of reactions involving atomic oxygen and ox-
ides of hydrogen (HOx), nitrogen (NOx), chlorine (ClOx),
and bromine (BrOx). This set includes reactions with very
fast and very slow rates, and there is a rapid cycling between
stratospheric ozone and atomic oxygen. These properties
make this system difficult to solve simultaneously for both
O3 and O. To aid in the numerical solution of this system,
it is common to develop solutions in terms of “odd oxygen”,
Ox (e.g.,Brasseur and Solomon, 1986), whose concentration
is defined as the sum of the concentrations of O3 and various
forms of O. Similarly, the NOx, ClOx, and BrOx radicals can
be regarded as short-lived members of larger families of total
reactive nitrogen (NOy), chlorine (Cly), and bromine (Bry).

Throughout the stratosphere, the majority of odd oxygen
is in the form of O3. The photochemical relaxation time for
odd oxygen,τOx , in the lower stratosphere (below 30 km) is
weeks to months, which is long compared to typical time
scales for horizontal and vertical transport. Thus Ox (and by
extension, O3) in the lower stratosphere can be considered a
passive tracer in numerical simulations over periods of days
to weeks. Above 30 km,τOx is on the order of several days or
less and thus photochemical processes become progressively
more important than transport effects with increasing height.

We define the local photochemical tendency of strato-
spheric ozone as the difference between the production and
loss rates(P−L). In CHEM2D-OPP,(P−L) is derived from
the odd-oxygen production and loss rates computed with a
photochemical model, then scaled by(1+p̂)−1, wherep̂ is
the partition ratio between the concentrations[O] and[O3],
to convert from an odd-oxygen net rate to an ozone net rate.

We next assume that(P−L) is primarily a function of only
three environmental variables: the local ozone mixing ratio,
r, the local temperatureT , and the overlying ozone vertical
column density,6. The local time rate of change of ozone
mixing ratio due to photochemistry is then

∂r

∂t
= (P − L)[r, T , 6]. (1)

Implicit in this assumption is the fact that the concentra-
tions of chemical families such as Cly, NOy, and Bry vary
slowly enough to be considered constant, and thus their con-
tribution to changes in(P−L) are small compared to the
effects of faster local changes inr, T , and6 (McLinden
et al., 2000). This assumption may not be strictly valid under
all conditions, for example, in the vicinity of the terminator
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at high latitudes in winter or due to heterogeneous chemi-
cal processing of air in the presence of polar stratospheric
clouds. In common with other linearized ozone photochem-
istry schemes, we will seek to parameterize the latter process
using different approaches (see Sect. 5 for details).

Linearization of the ozone photochemical tendency (1) has
become a standard method for climate and NWP models,
starting with the work ofCariolle and D̀eqúe(1986) and pro-
gressing to the similarly motivated works ofMcLinden et al.
(2000) andMcCormack et al.(2004). In those papers, the
linearization procedures were simply posited with little dis-
cussion of the theoretical basis for the linearization approach.
The following discussion describes the origins of this method
and its validation in the literature through extensive model-
data comparisons.

The linearization approach to photochemical production
and loss of stratospheric ozone goes back (at least) to the pi-
oneering work ofLindzen and Goody(1965), who derived
analytical expressions for the linearized photochemical pro-
duction and loss coefficients based on pure oxygen (Chap-
man) photochemistry. This type of analysis produces a lin-
earized version of the total time rate of change for ozone of
the form

drO3

dt
= −Ar ′

O3
− BT ′

− C6′, (2)

where the photochemical coefficientsA, B andC are derived
analytically. HererO3=r̄O3+r ′

O3
is ozone mixing ratio, the

sum of equilibrium and perturbation values, andT ′ and6′

are similarly defined perturbations of temperature and ozone
column density, respectively. This is the same equation de-
rived byLindzen and Goody(1965), except that they did not
consider photolysis perturbations and thus did not derive the
final column perturbation term in (2).

This linearizing analytical approach was generalized fur-
ther byBlake and Lindzen(1973) to include additional re-
actions with various nitrogen and hydrogen species, and ex-
tended still further byStolarski and Douglass(1985) by us-
ing an even larger subset of reactions that included chlorine
compounds. These later studies found that, despite the large
departures from pure oxygen chemistry, the linearization ap-
proach still produced a final tendency equation identical to
the Lindzen-Goody form given in (2) (though again without
the column term which these studies also did not consider).
However, with each successive extension to include a greater
subset of photolysis and reaction rate terms, the analytical
expressions for the photochemical coefficientsA andB be-
came much more complex.

An immediate advantage of linearized schemes was that
they provided a simple physical description of how environ-
mental perturbations can influence stratospheric ozone con-
centrations. This enabled further investigations into how
ozone perturbations fed back on temperature via radiative
cooling and on dynamics via transport (e.g.,Blake and
Lindzen, 1973; Strobel, 1977; Hartmann and Garcia, 1979;

Randel, 1993), leading to a number of theoretical predictions
to be tested with newly developed satellite measurements.
For example, in upper stratospheric regions, where ozone
photochemical time scales are typically much shorter than
dynamical time scales, dynamics can be ignored to first or-
der. This is equivalent to settingdrO3/dt=0 in (2). If we then
also ignore column perturbations, then from (2) linearized
ozone photochemistry predicts the following simplified re-
lationship between perturbations of ozone mixing ratios and
temperatures:

r ′

O3
= −

B

A
T ′, (3)

where the photochemical coefficientsB and A are locally
constant and both positive definite in the stratosphere. A
number of observational studies confirmed this predicted lin-
ear anti-correlation between ozone and temperature (3) (e.g.,
Barnett et al., 1975; Douglass et al., 1985; Froidevaux et al.,
1989; Smith, 1995). More elaborate observational assess-
ments used (2) to accurately describe the ozone response to
planetary wave-induced temperature perturbations with in-
creasing altitude, from dynamically controlled regions in the
lower stratosphere to photochemically controlled regions in
the upper stratosphere (e.g.,Randel, 1990; Salby et al., 1990;
Randel and Gille, 1991; Smith, 1995). In all these cases,
good overall agreement was found between the theoretical
predictions of linearized ozone photochemistry models and
the observations, provided the perturbations involved were
not too large in magnitude and transport effects were prop-
erly accounted for (e.g., Douglass and Rood, 1986).

In light of these results, and given the desire to extend the
schemes still further to include the complete set of ozone-
related chemical reactions and their rates, numerical solu-
tions became a more attractive option than increasingly com-
plicated analytical solutions. Starting with the work ofCari-
olle and D̀eqúe (1986), a method was developed which sim-
ply started with Eq. (2), and then computed linearized pho-
tochemical coefficientsA, B andC numerically using per-
turbation experiments with numerical models that contained
complete descriptions of radiation and chemistry, as dis-
cussed in the next section.

With this understanding, the latest generation of linearized
ozone photochemistry schemes (Cariolle and D̀eqúe, 1986;
McLinden et al., 2000; McCormack et al., 2004) can be
viewed as extensions of the previously validated lineariza-
tion approach to ozone photochemistry. Thus, we can ap-
proximate the unknown function(P−L)[r, T , 6] in Eq. (1)
by defining it about some reference statero, To, 6o, then ex-
panding it about this reference state using a first-order Taylor
series expansion.

www.atmos-chem-phys.net/6/4943/2006/ Atmos. Chem. Phys., 6, 4943–4972, 2006
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∂r(λ, φ, p, t)

∂t
= (P − L)o +

∂(P − L)

∂r

∣∣∣∣
o

(r − ro)

+
∂(P − L)

∂T

∣∣∣∣
o

(T − To)

+
∂(P − L)

∂6

∣∣∣∣
o

(6 − 6o) , (4)

whereλ represents longitude,φ represents latitude, andp
represents pressure as the model vertical coordinate. The
subscript “o” attached to(P−L) and its partial derivatives
in (4) refers to their values at the reference statero, To, 6o,
and are all zonally averaged quantities. Note the similarities
between (2) and (4).

The reference-state production and loss,(P−L)o, and the
various partial derivative terms about that state in (4) are
computed offline using a photochemical model in which the
reference state is either specified (for single-column models)
or is the equilibrium state of the model (for two-dimensional
models). These coefficients are then stored in tabular form
as functions of latitude, pressure, and month, with suitable
linear interpolation to the desired location. In practice, the
values ofro(φ, p, t), To(φ, p, t), and6o(φ, p, t) needed in
(4) are specified using climatologies based on different sets
of long-term observations. The following section provides
details of how the partial derivatives are computed using
the CHEM2D middle atmosphere photochemical-transport
model.

2.2 The NRL-CHEM2D model

The zonally averaged CHEM2D model features a fully inter-
active treatment of radiative, photochemical, and dynamical
processes in the middle atmosphere. As in earlier versions
(e.g., Summers et al., 1997; Siskind, 2000; Siskind et al.,
2003), the model grid points are spaced every 4.8◦ in latitude
from pole to pole and every 2.6 km in the vertical domain.
The radiative and photochemical calculations are performed
once per day, and the model dynamics are updated every 2 h.
The model has 47 vertical levels over the pressure range of
p=1000 hPa top=2×10−5 hPa (∼122 km altitude).

The dynamical framework of the model is based on the
Transformed Eulerian Mean (TEM) formulation, in which
the residual meridional circulation is driven by zonally av-
eraged sources of momentum and thermodynamic forcing
(Bacmeister et al., 1998). The momentum sources include
a parameterization for sub-grid scale gravity wave drag from
both stationary and non-zero phase speed gravity waves, the
Eliassen-Palm (EP) flux divergence associated with dissipat-
ing or breaking planetary waves, and parameterized vertical
mixing of momentum by gravity wave breaking and molec-
ular diffusion in the upper mesosphere (McCormack and
Siskind , 2002; Siskind et al., 2003). The thermal forcing

consists of the net radiative heating rate, prescribed tropo-
spheric heating representing latent heat released by convec-
tive activity that is not explicitly included in the model, at-
mospheric heating and cooling at the surface derived from
NCEP climatological temperature analyses, and eddy diffu-
sion of heat by breaking gravity waves in the mesosphere.

CHEM2D computes the net radiative heating using short-
wave (UV and near-IR) heating rates and longwave (IR)
cooling rates at and below 20 km from the CLIRAD scheme
(Chou et al., 2001; Chou and Suarez, 2002). The heating
rates above 40 km are computed using the same spectral dis-
tribution of UV transmittance as in the model photolysis
calculations, thus ensuring a consistent treatment of radia-
tive and photochemical processes in the middle atmosphere.
Cooling rates above 40 km are computed using the interac-
tive CO2 parameterization ofFomichev et al.(1998) that
allows for non-local thermodynamic equilibrium processes
in the model’s upper levels. The results from this scheme
are merged with the CLIRAD cooling rates using linearly
weighted averaging between 20 and 40 km.

The CHEM2D model photochemistry used to compute the
reference state ozone net tendency(P−L)o and its partial
derivatives (Eq.4) accounts for a total of 54 chemical species
(Siskind, 2000). Model reaction rates have been updated us-
ing the 2002 JPL values (Sander et al., 2003). As in pre-
vious versions, the model uses diurnally averaged photoly-
sis rates computed by averaging hourly J-values, and diur-
nally averaged reaction rate coefficients derived from pre-
computed night-day ratios of relevant species (Turco and
Whitten, 1978; Summers et al., 1997). Input solar flux used
for the CHEM2D photolysis calculations varies as a func-
tion of wavelength from 1200–8000̊A and includes Lyman-
α effects and both the Schumann-Runge continuum and
Schumann-Runge bands for O2 photolysis.

CHEM2D ozone and temperature fields are used in the
radiative heating calculations. The resulting diabatic heat-
ing, combined with momentum deposition by planetary scale
Rossby waves and gravity waves, drive the model’s residual
meridional circulation, which then redistributes the model’s
potential temperature and chemical constituents. The new
distributions of temperature and ozone subsequently feed
back into the model’s radiative heating calculations, ensur-
ing that the model ozone distribution is self-consistent with
the model radiative heating and transport.

2.3 Computation of CHEM2D-OPP photochemical coeffi-
cients: the net tendency

We compute the net odd oxygen tendency as

(P − L)Ox = (P − L)O3 + (P − L)O1D + (P − L)O3P, (5)

where the odd oxygen family includes O3 and both the ex-
cited (O1D) and ground state (O3P) forms of atomic oxygen.

It should be noted that (4) formally describes the ozone
tendency in terms of an expansion about a reference state (de-

Atmos. Chem. Phys., 6, 4943–4972, 2006 www.atmos-chem-phys.net/6/4943/2006/



J. P. McCormack et al.: CHEM2D-OPP linearized ozone photochemistry 4947

Fig. 1. CHEM2D values of the diurnally averaged net ozone photochemical tendency(P−L)o, in ppmv month−1, output on(a) 15 January,
(b) 15 April, (c) 15 July, and(d) 15 October.

noted with the “o” subscript). For the photochemical coeffi-
cients(P−L)o, ∂(P−L)o

∂r
, ∂(P−L)o

∂T
, and ∂(P−L)o

∂6
computed

with the CHEM2D model, the reference state is simply the
atmospheric state represented by the model at a given lati-
tude, altitude, and time of year. However, when implement-
ing (4) in an NWP or climate model, the perturbation terms
(r−ro, T −To, 6−6o) are often computed with respect to
a zonal mean climatological reference state (ro, To, 6o) de-
rived from observations, which can differ significantly from
the photochemical model reference state used to derive the
partial derivatives in (4). Such discrepancies can poten-
tially introduce systematic, non-physical biases into the pho-
tochemical parameterization.

To illustrate this point, we consider the ozone photochem-
istry parameterization used in the operational NCEP GFS
NWP model (until August 2006) and the NASA GEOS as-
similation system, where the local photochemical tendency
is expressed simply in terms of the model ozone mixing ra-
tio:

∂r

∂t
= (P − L) = P − L̃r. (6)

HereP and the ozone loss frequencyL̃ are computed with
an offline 2-D photochemical model (Fleming et al., 2002).

Normally, (P−L) is a relatively small quantity. However,
if the NWP model ozone distributionr differs substantially
from the original photochemical model ozone distribution
used to deriveP andL̃, the production rateP and the loss
rateL=L̃r are not self-consistent. This can lead to an artifi-

cial imbalance in the net photochemical tendency(P−L) in
(6). In the NCEP GFS, this imbalance produced a substantial
negative ozone bias compared to observations in the upper
stratosphere (Riishøgaard et al., 2000). To remove this bias
from NASA GEOS analyses, the ozone production rates have
been adjusted to force the DA system’s prognostic ozone
to relax back towards an observed 2-D ozone distribution
(Bloom et al., 2005). The CHEM2D-OPP parameterization,
in contrast, is based upon values ofP andL computed from
the same model odd oxygen distribution. This ensures the
ozone net tendency(P−L) is self-consistent and eliminates
the need for any such adjustments of the ozone production
rates.

CHEM2D-OPP is intended for use throughout the strato-
sphere and lower mesosphere. At the higher altitudes of this
region, atomic oxygen makes up an increasing share of the
odd oxygen mixing ratio. However, since NWP systems and
climate models use ozone, and not odd oxygen, as a prog-
nostic variable, the net ozone tendency for CHEM2D-OPP
is estimated by scaling CHEM2D values of(P−L)Ox and
its derivatives by the photochemical model partition ratio
p̂=[O]/[O3] such that

(P − L)O3 = (P − L)Ox(1 + p̂)−1
= (P − L). (7)

Hereafter, we will express the CHEM2D-OPP coefficients
in terms of this scaled reference state ozone net tendency
(P−L) unless otherwise noted.

Figure1 plots diurnally averaged values of the reference
state ozone tendency,(P−L)o, from the CHEM2D model

www.atmos-chem-phys.net/6/4943/2006/ Atmos. Chem. Phys., 6, 4943–4972, 2006



4948 J. P. McCormack et al.: CHEM2D-OPP linearized ozone photochemistry

Fig. 2. CHEM2D values of the diurnally averaged ozone photochemical relaxation timeτO3, in days, output on(a) 15 January,(b) 15 April,
(c) 15 July, and(d) 15 October. Contours drawn at 0.001, 0.01, 0.1, 1, 10, 30, 50, 100, 300, 500, and 1000 days. Shading denotes regions
whereτO3 exceeds 100 days.

on 15 January, 15 April, 15 July, and 15 October. The val-
ues are on the order of 1–3 ppmv per month, as expected for
the reference (equilibrium) state. In the tropical lower strato-
sphere (10–100 hPa), the net tendency is positive throughout
the year. The largest positive tendencies occur in the up-
per stratosphere (1–10 hPa) near 50◦–60◦ latitude in the win-
ter hemisphere. Large negative tendencies occur throughout
much of the year at levels above 0.1 hPa, with the excep-
tion of summertime polar regions where the net tendency is
positive. The altitude, latitude, and seasonal dependences of
(P−L)o in Fig. 1 are determined by odd oxygen production,
through O2 photolysis, and odd oxygen losses, through re-
actions involving the NOx, ClOx, HOx, and BrOx families
and long-lived constituents. The spatial and temporal dis-
tributions of these long-lived constituents are determined by
transport, and so the net tendency reflects the balance be-
tween photochemical and dynamical processes. As noted by
McCormack et al.(2004), CHEM2D estimates of(P−L)o
are in good overall agreement with other photochemistry
models (Cariolle and D̀eqúe, 1986; Fleming et al., 2002).

2.4 Computation of CHEM2D-OPP photochemical coeffi-
cients: partial derivatives

To evaluate the coefficient∂(P−L)
∂r

|o, we use the fact that this
term can be expressed in terms of the ozone photochemical

relaxation timeτO3, i.e.:

∂(P − L)

∂r

∣∣∣∣
o

= −τ−1
O3

. (8)

As shown in the Appendix, the ozone relaxation timeτO3 is
computed from the sum of CHEM2D odd oxygen loss rates
L involving reactions with NOx, ClOx, HOx, and BrOx.

Figure 2 plots the latitude and altitude variations of
CHEM2D diurnally averagedτO3 values for January, April,
July, and October. Throughout the entire lower stratosphere
(below∼30 km altitude or∼10 hPa) and within polar night,
τO3 exceeds 100 days and so ozone can be considered a
passive tracer in these regions (shaded in Fig.2). Above
∼10 hPa (∼30 km) in sunlit regions,τO3 becomes progres-
sively shorter compared to transport time scales, and so
ozone is controlled mainly through photochemistry. It fol-
lows that in the presence of a non-zero difference between
the model ozone mixing ratior and the assumed reference
(climatological) ozone mixing ratioro in the upper strato-
sphere, the second term on the right hand side of (4) will
quickly “relax” r towards the climatological valuero. In
this way, the relaxation coefficient∂(P−L)

∂r
|o acts as a strong

upper boundary constraint on the prognostic ozone variable.
This is especially true in tropical regions where model dy-
namics simulate large-scale ascent in the stratosphere that
transports ozone rich air from below. Without the relaxation
term, values of the model ozone mixing ratio in these regions
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Fig. 3. Temperature dependence of CHEM2D(P−L) for perturba-
tions of±20 K under March conditions at the equator. Dashed line
indicates least squares fit to the 41 km (blue) curve.

Fig. 4. The O3 column (6) dependence of CHEM2D(P−L) for
perturbations of±50% under March conditions at the equator.

of the upper stratosphere would become too large within sev-
eral days.

To evaluate the temperature and column ozone coeffi-
cients, ∂(P−L)

∂T
|o and ∂(P−L)

∂6
|o, respectively, the CHEM2D

model computes(P − L) for a given altitude, latitude, and
time of year simultaneously for two sets of reaction rates.
Both sets use identical model constituent fields, but one uses
a control value of temperature or column ozone, while the
other uses a perturbed temperature or column ozone amount.
For the coefficient∂(P−L)

∂T
|o, a series of these calculations are

performed wherein temperature perturbations between±20
K are introduced to the temperature-dependent odd oxygen
reaction rates (see Appendix), and the entire chemical sys-
tem is then solved with an iterative Newton-Raphson tech-
nique until the(P − L) values converge.

Figure3 plots the differences between the reference state
value of (P−L) and the perturbed values as a function of
the imposed temperature perturbations at three different alti-
tudes over the equator during January. The slope of the least
squares fit to this curve (dashed line) gives the value of the
temperature coefficient∂(P−L)

∂T
|o.

Similarly, the coefficient∂(P−L)
∂6

|o is evaluated by in-
troducing ozone column perturbations within the range
16=±50% in the CHEM2D UV transmission functions
used to compute the photolysis rate of molecular oxygen and
then performing a linear fit to the resulting sensitivity curve.
Figure 4 plots the differences between the reference value
and perturbed values of(P−L) as a function of the imposed
column ozone perturbation at three different altitudes over
the equator during March. Figures3 and 4 show that the
dependences of(P−L) on model temperature and overhead
ozone column are close to linear over the range of perturba-
tion values likely to be encountered in typical NWP appli-
cations (McLinden et al., 2000). Examination of additional
sensitivity curves (not shown) confirms this linear behavior
throughout the CHEM2D model domain and supports the
linearized expansion of(P−L) used by the CHEM2D-OPP
scheme in (4).

Figure 5 plots the altitude and latitude dependences
of the diurnally averaged temperature coefficient∂(P−L)

∂T
|o

throughout the year. Values of∂(P−L)
∂T

|o are negative
throughout the sunlit portions of the stratosphere and have
the largest magnitudes in the summer hemisphere between
1–10 hPa. The negative values of∂(P−L)

∂T
|o between ap-

proximately 100–0.2 hPa are qualitatively consistent with the
ozone-temperature anti-correlation derived analytically (see
Eq. 3) and observed repeatedly in satellite measurements
throughout the upper stratosphere. Above 0.2 hPa (∼60 km
altitude), the temperature coefficients change sign and in-
dicate a weak positive ozone-temperature correlation. This
change in sign in the mesosphere is qualitatively consistent
with the analytically-derived ozone-temperature relationship
of Stolarski and Douglass(1985). It is caused by the dimin-
ishing temperature dependence of HOx-related odd oxygen
loss with increasing altitude above the stratopause. HO2 is
a major source of the odd-hydrogen radicals that dominate
odd oxygen loss in the upper stratosphere and mesosphere.
In the upper stratosphere, the main sink for HO2 is through
reaction with OH at a rate that is inversely proportional to
temperature. In the mesosphere, the sink for HO2 is a series
of temperature-independent reactions with hydrogen. In the
absence of this temperature dependence in the HO2 sink, the
local temperature sensitivity of the odd oxygen mixing ratio
to changes in temperature on a constant pressure surface in
the mesosphere is instead determined largely by the partition
ratio p̂=

[O]

[O3]
∝ T 4.3 (seeStolarski and Douglass, 1985, their

Appendix A).

Figure 6 shows the altitude and latitude dependences of
the diurnally averaged ozone column coefficient∂(P−L)

∂6
|o
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Fig. 5. Altitude-latitude variations of the diurnally averaged CHEM2D-OPP temperature coefficient,∂(P−L)
∂T

|o (ppmv K−1 month−1) for
(a) January,(b) April, (c) July, and(d) October.

Fig. 6. Altitude-latitude dependences of the diurnally averaged CHEM2D-OPP ozone column coefficient,∂(P−L)
∂6

|o (ppmv day−1 DU−1)
for (a) January,(b) April, (c) July, and(d) October.
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throughout the year, expressed in terms of the change in
(P−L) per unit change in column O3. Here6 is expressed
in Dobson Units (DU=1 mili-atm-cm), which is the equiva-
lent depth per unit area of the vertically-integrated O3 num-
ber density normalized to standard temperature and pressure.
As with the temperature coefficient, values of the column co-
efficient have their largest magnitudes in the summer hemi-
sphere.

The column term∂(P−L)
∂6

|o in (4) approximates the lo-
cal ozone mixing ratio’s sensitivity to changes in the pho-
tolysis of molecular oxygen at wavelengths between 200–
250 nm, which is a major source of odd oxygen in the strato-
sphere (see Appendix). It is meant to account for the “self-
healing” feature of stratospheric ozone (e.g.,Cariolle and
Dèqúe, 1986). That is, ozone decreases at higher levels al-
low more photolyzing UV radiation through to lower levels,
where ozone production subsequently increases and offsets
the upper level ozone decrease. As a result,∂(P−L)

∂6
|o coef-

ficients are negative in sign, so that an increase in overlying
column ozone produces a local decrease in ozone production.

3 Prognostic ozone in the NOGAPS-ALPHA model

The two main components of NOGAPS are a global spec-
tral forecast model (GSFM) and the Naval Research Lab-
oratory Atmospheric Variational Data Assimilation System
(NAVDAS). NOGAPS-ALPHA is a prototype high-altitude
version of the NOGAPS GSFM (Eckermann et al., 2004).
This section offers a brief overview of the NOGAPS-ALPHA
GSFM and describes the implementation of the CHEM2D-
OPP photochemistry scheme.

3.1 NOGAPS-ALPHA model description

The prototype 60-level (L60) NOGAPS-ALPHA uses the
same hybrid vertical coordinate and top pressure of 0.005 hPa
as the L54 version used inMcCormack et al.(2004). Ad-
ditional levels in the L60 version were added near the
tropopause to be consistent with the vertical domain of the
operational L30 NOGAPS NWP model in this region. The
GSFM currently runs with either a T79 or T239 triangular
spectral truncation, equivalent to horizontal resolutions of
∼1.5◦ and∼0.5◦, respectively. The model time step1t is
240 s. The radiative heating and cooling rates are applied
every time step, but the full radiation calculation is only up-
dated every two hours to reduce the computational burden.
Sub-grid scale effects of middle atmosphere gravity waves
are parameterized either with Rayleigh friction (McCormack
et al., 2004) or with middle atmosphere gravity wave drag
schemes available for use in the model (Eckermann et al.,
2004).

The stratospheric radiative heating and cooling rate calcu-
lations in the operational NOGAPS GSFM utilize zonally av-
eraged monthly mean climatologies of O3 and H2O volume

mixing ratios. The O3 climatology is based on a combina-
tion of ozonesonde and satellite-based measurements (For-
tuin and Kelder 1998, hereafter FK98) extending from the
surface to 0.3 hPa. Above 0.3 hPa, the ozone climatology
is based on diurnally averaged mixing ratios output from
the CHEM2D model. It should be noted that use of di-
urnally averaged O3 mixing ratios leads to an overestimate
of the shortwave heating rates above 0.3 hPa in NOGAPS-
ALPHA, since there is a large diurnal cycle in ozone in this
region and radiative heating calculations should only use the
lower daytime ozone values (Eckermann and McCormack,
2006). The stratospheric H2O climatology combines zonal
and monthly mean values from the UARS Halogen Occulta-
tion Experiment (HALOE) version 18 data set (Harries et al.,
1996) for levels between 100–0.3 hPa and diurnally averaged
CHEM2D model output for levels above 0.3 hPa. NOGAPS-
ALPHA can use either climatological ozone or the model’s
prognostic ozone fields to calculate the radiative heating and
cooling rates. All results presented here utilize prognostic
ozone in the radiative heating and cooling rate calculations.

In this study NOGAPS-ALPHA is run in either “hindcast”
mode or “climate” mode. Unlike typical data assimilation
runs (Geer et al., 2006a) both modes are free-running sim-
ulations in which the atmospheric conditions are not regu-
larly updated from meteorological analyses. Only the spec-
ified surface boundary conditions (i.e., sea surface tempera-
tures, sea ice fraction, snow depth, etc.) are updated using
either 12-hourly or monthly mean fields for hindcast or cli-
mate mode, respectively, which are interpolated to the cur-
rent model time.

In the hindcast mode used here, NOGAPS-ALPHA is
initialized with a so-called “cold-start” procedure using
archived operational NOGAPS meteorological analyses and
surface boundary conditions for a particular date. This cold-
start procedure differs from the way operational NWP mod-
els are usually initialized, i.e., with output from a previous
forecast run that has been passed through an analysis system
to include the latest observations, thus preserving the intrin-
sic model resolution for all variables. Instead, the cold start
procedure combines operational NOGAPS analyses archived
on specified pressure levels (i.e., not hybrid model levels),
often at slightly degraded horizontal resolution, with zonally
averaged climatologies at upper levels where no operational
analyses are available. These combined initial fields are then
processed with a non-linear normal mode initialization rou-
tine to ensure that these fields are in dynamical balance (Eck-
ermann et al., 2004).

Archived NOGAPS analyses prior to June 2003 are based
on the Multivariate Optimum Interpolation (MVOI) DA sys-
tem (Goerrs and Phoebus, 1992) and extend from 1000–
10 hPa. Since June 2003, the operational analyses have been
generated from NAVDAS (Daley and Barker, 2001) and ex-
tend from 1013–4 hPa. Archived temperatures, horizontal
winds, and geopotential heights from the STRATOI analy-
ses supply initial conditions between 10–0.4 hPa (Goerrs and
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Phoebus, 1992). Above the 0.4 hPa level, initial temperature
and horizontal wind fields are extrapolated upwards from
the topmost analysis level and progressively relaxed with in-
creasing altitude to monthly zonal mean climatological val-
ues. The upper level temperature initialization procedure re-
laxes to values from the COSPAR International Reference
Atmosphere (CIRA86, see Fleming et al., 1990). The up-
per level horizontal wind initialization procedure relaxes the
zonal winds to the URAP climatological values (Swinbank
and Ortland, 2003), and relaxes the meridional winds to zero
at the model top. For details of the relaxation procedure, see
Eckermann et al.(2004).

After this initialization procedure the NOGAPS-ALPHA
model is run for 6 days, similar to the operational NOGAPS
forecasts. Spin-up of model fields from the cold-start ini-
tialization is not an issue between 1000–0.4 hPa where op-
erational analyses are available. Above this level there is
some spin-up as model dynamics evolve from their 2-D ini-
tial states, but the effect on the ozone hindcasts presented
in Sect. 4 is minimal. Most of the results presented in the
following section are taken from NOGAPS-ALPHA hind-
casts in the 132-h to 138-h time range in order to demonstrate
CHEM2D-OPP performance near the limit of the 6-day op-
erational NOGAPS forecast length. In addition, results in
Sect. 4 also include examples of hindcast ozone performance
over the 12-h to 144-h time range for a particular case on 7
February 2005.

In the climate mode used here, NOGAPS-ALPHA meteo-
rological fields are initialized using the same cold start pro-
cedure described above. In both hindcast and climate modes,
ozone fields from 1000–0.4 hPa are initialized using NASA
GEOS4 ozone analyses (S̆tajner et al., 2004) for a given date
and revert to zonally and diurnally averaged monthly mean
ozone values output from the CHEM2D model at altitudes
above the 0.4 hPa level. The main difference between hind-
cast and climate modes is in the specification of boundary
conditions. Climate simulations use NCEP/NCAR reanaly-
sis monthly mean sea surface temperature, ice concentration,
and snow depth fields averaged over the period 1979–1995
(Kistler et al., 2001).

3.2 Implementation of CHEM2D-OPP in NOGAPS-
ALPHA

The NOGAPS-ALPHA GSFM transports chemical con-
stituents using the same spectral advection method as for spe-
cific humidity and meteorological variables (Hogan and Ros-
mond, 1991; Eckermann et al., 2004). The model transports
both an “active” ozone field, to which the photochemistry pa-
rameterization is applied, and a “passive” ozone field, which
is not subjected to parameterized ozone photochemistry. All
ozone photochemistry parameterizations tested in this study
are applied to NOGAPS-ALPHA active ozone fields between
500–0.1 hPa; above this level the active ozone fields are
smoothly relaxed to the model 2-D ozone climatology as in

McCormack et al.(2004). Taking the difference between the
active and passive ozone fields provides a convenient method
to diagnose the performance of the photochemistry parame-
terizations that we utilize in the present study.

CHEM2D-OPP photochemical tendencies are applied to
the NOGAPS-ALPHA prognostic ozone field as inMcLin-
den et al.(2000). Defining the current photochemical steady
state ozone mixing ratiorss as

rss
≡ ro +

[
(P − L)o +

∂(P − L)

∂T

∣∣∣∣
o

(T − To) +

∂(P − L)

∂6

∣∣∣∣
o

(6 − 6o)

]
τO3, (9)

the mixing ratio tendency equation in (4) can be expressed
simply as

∂r

∂t
= −

(r − rss)

τO3

. (10)

However, whereMcLinden et al.(2000) employ the fol-
lowing analytic solution to (9),

r(t + 1t) = r(t) + [rss
− r(t)]

[
1 − exp

(
−1t

τO3

)]
, (11)

assumingτO3 andrss remain constant over the model time
step1t , here we have instead chosen to adopt a standard
backward-Euler solution of the form

r(t + 1t) = r(t) + [rss
− r(t)]

 1t
τO3

1 +
1t
τO3

 . (12)

The perturbation terms for O3 mixing ratio (r−ro), tem-
perature(T −To), and overlying ozone column(6−6o) in
(4) are computed as the differences between 3-D model fields
and their respective zonal mean (2-D) climatological values.
In the present study, the CHEM2D-OPP formulation em-
ploys the same 2-D O3 mixing ratio climatology described in
the previous section (i.e., the combined FK98 and CHEM2D
climatology) to specify bothro and6o.

Figure 7 plots these model O3 mixing ratio climatolo-
gies for January, April, July, and October. Figure8 plots
the CIRA86 temperature climatology. Figure9 plots values
of 6o computed from the O3 mixing ratio distributions in
Fig. 7. For implementation of the CHEM2D-OPP scheme in
NOGAPS-ALPHA, the climatological monthly zonal means
ro, To, and6o are interpolated or extrapolated in latitude,
pressure, and time to the corresponding model location and
day.

The FK98 and CIRA86 climatological data sets were cho-
sen because they were already used to initialize the model
at upper levels where meteorological and ozone analyses are
unavailable. However, some systematic biases exist in these
climatologies. For example, CIRA86 temperatures have a
5–10 K warm bias throughout much of the altitude region
between 20–50 km (Randel et al., 2004). Preliminary tests
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Fig. 7. Monthly zonal mean distributions ofro, the climatological O3 volume mixing ratio (ppmv), for(a) January,(b) April, (c) July, (d)
October.

Fig. 8. Monthly zonal mean temperatureTo (Kelvin) for (a) January,(b) April, (c) July, (d) October based on the CIRA86 climatology of
Fleming et al.(1990).
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Fig. 9. Monthly zonal mean climatological column ozone abundance6o (DU) for (a) January,(b) April, (c) July, (d) October.

Fig. 10. Map of 35 hPa temperatures from operational NOGAPS (NAVDAS) meteorological analyses at 12:00 UT on 7 February 2005.
Superimposed are Aura satellite tracks at 16:00 UT and 18:00 UT (orange lines) with selected MLS ozone profile locations highlighted by
filled black circles. The NASA DC8 flight track for this day is plotted in gold with numbers 1–10 denoting individual way points along the
flight starting at 14:00 UT and ending at 22:00 UT.

Atmos. Chem. Phys., 6, 4943–4972, 2006 www.atmos-chem-phys.net/6/4943/2006/



J. P. McCormack et al.: CHEM2D-OPP linearized ozone photochemistry 4955

of CHEM2D-OPP in NWP/DA systems show that the warm
bias in the CIRA86 temperatures can produce artifacts in
CHEM2D-OPP prognostic ozone fields through the tempera-
ture term. A recent study byGeer et al.(2006b) confirms this
result and demonstrates that these artifacts are especially pro-
nounced at high latitudes in winter. This issue is discussed
further in Sect. 4.2.

In addition, peak ozone mixing ratio values in Fig.7
for the tropical mid-stratosphere are consistently 1–1.5 ppmv
lower than corresponding peak ozone mixing ratios in the
extended Version 1.0 URAP climatology (see Wang et
al., 1999 andhttp://code916.gsfc.nasa.gov/Public/Analysis/
UARS/urap/home.html). This is due to the fact that the
FK98 stratospheric ozone climatology is based largely on So-
lar Backscatter Ultraviolet (SBUV) instrument data, which
have reduced vertical resolution compared to the more re-
cent ozone profile measurements used to compile the URAP
ozone climatology. Future work will compare CHEM2D-
OPP performance using different zonal mean ozone and tem-
perature climatologies to investigate the sensitivity of the
photochemistry parameterization to the choice of reference
state conditions.

4 Results

4.1 CHEM2D-OPP in NOGAPS-ALPHA: hindcast mode

This section presents a case study comparing NOGAPS-
ALPHA ozone hindcasts using CHEM2D-OPP with Aura
Microwave Limb Sounder (MLS) measurements of strato-
spheric ozone and available in-situ profile measurements
taken aboard the NASA DC8 flight of 7 February 2005 as
part of the Polar Aura Validation Experiment (PAVE). These
model-data comparisons are an important means of validat-
ing CHEM2D-OPP performance in an NWP model. Addi-
tional NOGAPS-ALPHA ozone simulations using the CD86
and GSFC photochemistry parameterizations implemented
in the ECMWF and NCEP forecast systems, respectively, are
used to assess CHEM2D-OPP performance relative to these
existing schemes.

Figure 10 plots 35 hPa temperatures from the opera-
tional 1◦

×1◦ NOGAPS MVOI meteorological analyses for
12:00 UT on 7 February 2005. Superimposed on the tem-
perature map are individual contours showing the location
of the coldest temperatures at this level. On this date, the
polar vortex was displaced south from the pole, and temper-
atures below 194 K extend as far south as 55◦ N over Hud-
son Bay. Also plotted in Fig.10 are MLS measurement lo-
cations at 16:00 UT and 18:00 UT (orange lines), and the
NASA DC8 flight track (shown in gold) of 7 February. The
northward leg of the DC8 flight track, along way points 3,
4, and 5 in Fig.10, matches up with the 16:00 UT MLS
flight track. Way points 9 and 10 along the southward leg
of the DC8 coincide with the 18:00 UT MLS flight track. As

Fig. 10 shows, the availability of both satellite-based MLS
and in-situ DC8 ozone profiles on this date provides an op-
portunity to evaluate CHEM2D-OPP performance relative to
other NWP model photochemistry schemes through a series
of model-data comparisons across a wide range of latitudes.

Five different NOGAPS-ALPHA hindcast experiments
were conducted, each one initialized at 00:00 UT on 2 Febru-
ary 2005 and run for 144 h. The model initialization and
boundary conditions are identical in all five experiments, as
described in Sect. 3.1. The only differences are in the indi-
vidual photochemical coefficients and the climatological ref-
erence state distributions of ozone mixing ratio (ro) and tem-
perature (To) used in the photochemistry parameterization
that is applied to the model prognostic ozone (see Eq.4). The
first experiment uses the CHEM2D-OPP scheme, the sec-
ond uses the original CD86 V1.0 coefficients (Cariolle and
Dèqúe, 1986), the third uses updated values of the CD86 co-
efficients (denoted as CD86 V2.1, D. Cariolle, personal com-
munication, 2006), the fourth uses the standard GSFC (de-
noted here as GSFC1) ozone production and loss rates (i.e.,
no temperature or column dependences), and the fifth exper-
iment uses the adjusted GSFC production rates (GSFC2) as
discussed in Sect. 2.3 (Bloom et al., 2005).

Figure 11a plots the zonally averaged 144-h NOGAPS-
ALPHA ozone mixing ratios from the CHEM2D-OPP ozone
experiment. Taking the difference between the NOGAPS-
ALPHA active and passive ozone fields provides information
on where the parameterized ozone photochemistry is hav-
ing the largest effect on the model’s prognostic ozone. Fig-
ures11b–f plot the zonally averaged differences between the
NOGAPS-ALPHA 144-h active and passive ozone fields for
each of the five photochemistry schemes tested here.

The difference between CHEM2D-OPP active ozone and
passive ozone (Fig.11b) is largest over the tropical re-
gions between 10–1 hPa, where passive ozone exceeds active
ozone by up to 1.5 ppmv. This is to be expected since up-
ward motion in the equatorial stratosphere transports ozone
rich air from the middle to upper stratosphere. Over the 6-
day model integration the passive ozone fields in the tropical
upper stratosphere will increase due to this upward transport,
while the parameterized ozone photochemistry will act to re-
duce ozone mixing ratios in this region, primarily through
the relaxation term∂(P−L)

∂r
|o. CHEM2D-OPP active-passive

ozone differences of∼+0.5 ppmv are also present at high
northern latitudes between 0.5–5 hPa. Downward transport
in this region may produce a decrease in passive ozone
that would be offset by photochemical production (see, e.g,
Fig. 1). However, one would expect that the impact of
the parameterized ozone photochemistry on the model’s ac-
tive ozone field would be small due to the reduced sunlight
and longer relaxation timeτO3 at the high winter latitudes
(Fig. 2). As discussed later in Sect. 4.2, systematic differ-
ences between model temperature and the specified reference
state temperature climatology,T −To, may also contribute to
the CHEM2D-OPP active-passive ozone differences at the
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Fig. 11. (a)Zonal mean ozone mixing ratios (ppmv) at hour 144 of a NOGAPS-ALPHA hindcast using CHEM2D-OPP ozone photochem-
istry initialized at 00:00 UT 2 February 2005. Panels(b) through(f) plot the zonal mean difference between active and passive ozone mixing
ratios computed from 144-h hindcast NOGAPS-ALPHA ozone fields using (b) CHEM2D-OPP,(c) CD86 V1.0,(d) CD86 V2.1,(e)GSFC1,
and (f) GSFC2 ozone photochemistry parameterizations.

Fig. 12.A comparison of 135-h NOGAPS-ALPHA ozone hindcasts (in ppmv), initialized at 00:00 UT on 2 February 2005 and valid 15:00 UT
7 February using CHEM2D-OPP photochemistry (black curve), CD86 V1.0 photochemistry (blue curve), original GSFC1 photochemistry
(green curve), and Aura MLS ozone profile measurements (red diamonds) along the 16:00 UT MLS flight track indicated in Fig.10.
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Fig. 13. As in Fig. 12, but plotting NOGAPS-ALPHA ozone profiles from a 138-h hindcast initialized 00:00 UT on 2 February 2007, at
locations along the 18:00 UT MLS flight track.

higher northern latitudes in this hindcast experiment.
Active-passive ozone differences from the CD86 V1.0 ex-

periment (Fig.11c) show negative values of up to 1 ppmv at
high southern latitudes near 5–10 hPa, and positive values ex-
ceeding 1 ppmv at high northern latitudes in the upper strato-
sphere and mesosphere. Results from the CD86 V2.1 exper-
iment (Fig.11d) are quite different, showing active-passive
differences of−2 ppmv in the tropical upper stratosphere
and+1.5 ppmv at high northern latitudes between 2–10 hPa.
The CD86 V2.1 active-passive ozone differences are quali-
tatively similar to the CHEM2D-OPP results in (Fig.11b),
although the large positive differences at the high northern
latitudes occur lower down in the stratosphere in the CD86
V2.1 experiment. In the following discussion we present a
series of diagnostic calculations showing that the large dif-
ferences between the CD86 V1.0 and CD86 V2.1 results are
due primarily to differences in the column (or “radiation”)
term ∂(P−L)

∂6
|o.

Results from the GSFC1 experiment (Fig.11e) show very
large negative values of the active-passive ozone difference,
indicating that the photochemical production and loss rates
are removing a large percentage of the ozone between 2–
10 hPa over a 6-day period. These results are consistent with
the low ozone biases in the GEOS ozone assimilation exper-
iments reported byRiishøgaard et al.(2000). When the ad-
justed GSFC2 photochemical rates ofBloom et al.(2005) are

used (Fig.11f), the largest negative active-passive ozone dif-
ferences in the tropical stratosphere are reduced by a factor
of 3, in better agreement with the CHEM2D-OPP and CD86
V2.1 results.

Next we compare the active ozone fields output from
the five NOGAPS-ALPHA hindcast experiments with Aura
MLS ozone profile measurements along the flight tracks
marked in Fig.10. Figures12 and13 compare NOGAPS-
ALPHA prognostic ozone simulations using the CHEM2D-
OPP, CD86 V1.0, and GSFC1 photochemistry parameter-
izations with MLS observations along the 16:00 UT and
18:00 UT MLS tracks, respectively, on 7 February 2005.
Figure 12 plots the six individual Aura MLS profiles indi-
cated on the 16:00 UT path in Fig.10, with Fig. 12a rep-
resenting the starting point of this path at 35.5◦ N latitude
and Fig.12f representing the final point at 60.4◦ N latitude.
The MLS ozone profiles represent the standard 240 GHz Ver-
sion 1.5 Level 2 product (Froideveaux et al., 2006) and range
from 215–0.46 hPa with a vertical resolution of∼3 km in the
lower stratosphere. Corresponding precision estimates for
each measurement are also plotted in Fig.12 as black hori-
zontal lines and typically range between 0.2–0.4 ppmv in the
stratosphere.

The NOGAPS-ALPHA prognostic ozone profiles in
Figs. 12 and 13 represent output at hour 135 (equivalent
to 15:00 UT) and hour 138 (18:00 UT), respectively, from
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Fig. 14. A comparison of 135-h NOGAPS-ALPHA ozone hindcasts, as in Fig.12, using CHEM2D-OPP (black curve), the updated CD86
V2.1 photochemistry (blue curve), and the adjusted GSFC2 production rates (green curve).

a T79L60 hindcast simulation initialized at 00:00 UT on 2
February. The T79 spectral truncation produces∼1.5◦ spac-
ing in latitude and longitude on the Gaussian model grid. The
NOGAPS-ALPHA ozone profiles in Figs.12 and13 all lie
within 0.75◦ latitude/longitude and within 1 h of the MLS
observations.

Comparison of the three 135-h NOGAPS-ALPHA ozone
hindcasts (valid 15:00 UT) with the 16:00 UT MLS profiles
in Fig. 12 shows that all three modeled ozone profiles agree
quite well with each other, and with the MLS data, below
the 10 hPa level from 10◦ N–40◦ N (Fig. 12a–d). At 50◦ N
and 60◦ N (Fig. 12e, f), the ozone hindcasts tend to overes-
timate mixing ratios from 10–30 hPa relative to MLS obser-
vations, with CHEM2D-OPP producing the highest mixing
ratios. Results from the different photochemistry parameteri-
zations are expected to agree below 10 hPa since transport ef-
fects dominate over photochemistry in the lower stratosphere
(see Fig.11). The agreement among the different NOGAPS-
ALPHA hindcasts and the MLS profiles in the lower strato-
sphere at the lower latitudes indicates that the model dynam-
ics are accurately capturing the large-scale flow in this re-
gion. Possible origins of the high-latitude disagreement are
discussed below.

Above the 10 hPa level, Fig.12 shows marked differences
between the output from the three photochemistry schemes.
The GSFC1 profiles all exhibit excessive loss and grossly

underestimate the ozone mixing ratios as compared to the
MLS measurements (see Sect. 2.3). The CD86 V1.0 results
exhibit an unusual vertical structure above the 10 hPa level,
which is most pronounced at the lower latitudes, and leads to
overestimates of the ozone mixing ratio at numerous points
relative to the MLS profiles. CHEM2D-OPP results above
10 hPa (∼30 km) show good agreement with MLS ozone at
the lower latitudes, but tend to overestimate ozone mixing
ratios at the higher latitudes (Fig.12e, f). Similar results
are also seen when we compare the 138-h NOGAPS-ALPHA
ozone hindcasts with the 18:00 UT MLS profiles (Fig.13). In
this case, however, the CHEM2D-OPP results overestimate
the peak in the ozone mixing ratio at 40◦ N (Fig. 13d) as well
as at the higher latitudes (Fig.13e, f).

We now present a second set of comparisons among
NOGAPS-ALPHA hindcasts using CHEM2D-OPP photo-
chemistry, the adjusted GSFC2 production rates and the up-
dated CD86 V2.1 scheme. Figures14and15show that when
thead-hocadjustments to the GSFC production rates are in-
cluded, the 135-h and 138-h GSFC2 hindcast ozone profiles
show much better agreement with MLS observations. The re-
sults with the updated CD86 V2.1 photochemistry no longer
show any jagged vertical structure above 10 hPa. As we will
show later, this is due to a reduction in the size of the ozone
column sensitivity term in CD86 V2.1. However, the CD86
V2.1 results do not necessarily represent an overall improve-
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Fig. 15. As in Fig. 14, but plotting NOGAPS-ALPHA ozone profiles 138-h hindcast initialized 00:00 UT on 2 February 2007, at locations
along the 18:00 UT MLS flight track.

ment from the CD86 V1.0 results, since they now tend to
overestimate ozone mixing ratios at the higher latitudes. For
example, Figs.12e and14e show that the CD86 V1.0 pho-
tochemistry produces better agreement with MLS profiles at
50◦ N and 52◦ W than the updated CD86 V2.1. Furthermore,
at the lower latitudes (e.g., Fig.14a–c and Fig.15a–c) the
CD86 V2.1 results are now consistently lower than the MLS
values between 1–5 hPa.

Next, we assess the zonal structure of the hindcast upper
stratospheric ozone fields using the CHEM2D-OPP, GSFC2,
and CD86 V2.1 photochemistry schemes. Figure16 com-
pares the NASA GMAO ozone analysis at the 5 hPa level
over the Northern Hemisphere for 12:00 UT on 7 Febru-
ary 2005 with the corresponding 132-h NOGAPS-ALPHA
ozone fields. At this time, the 5 hPa analysis (Fig.16a) shows
the lowest mixing ratios over a region displaced just off
the pole in the longitude sector from approximately 60◦ W–
60◦ E, while a region of higher ozone mixing ratios extends
from mid-latitudes up across the pole. While all three ozone
simulations in Fig.16 capture this general structure, there
are pronounced quantitative differences in the simulated high
and low values compared to the analysis.

These differences are more clearly seen in Fig.17, which
plots the difference between the GMAO analysis (denoted as
A) in Fig. 16a and the 132-h ozone hindcast fields (which
we denote as the “forecast” value, F) using passive ozone

(Fig. 17a), CHEM2D-OPP (Fig.17b), GSFC2 (Fig.17c),
and CD86 V2.1 (Fig.17d). The passive ozone simulation
exhibits higher A-F values over the Northern Hemisphere
than the three simulations with parameterized photochem-
istry, indicating that in this case ozone transport alone will
not accurately capture the evolution of upper stratospheric
ozone over a 5 day period. Among the results using the three
ozone photochemistry parameterizations plotted in Fig.17,
the CHEM2D-OPP results in Fig.17b show the lowest over-
all values of A-F. The GSFC2 results (Fig.17c) underpredict
ozone mixing ratios by more than 1 ppmv over an extended
region from 10◦ N–90◦ N. The CD86 V2.1 results (Fig.17d)
overpredict ozone values by more than 2 ppmv over a broad
region of North America and the Canadian Arctic, in general
agreement with the CD86 V2.1 results plotted in Figs.11and
15.

To further quantify the performance of the different pho-
tochemistry schemes used in NOGAPS-ALPHA for the 7
February test case, Fig.18 plots the mean and root-mean-
square (RMS) values of the A-F fields in Fig.17 aver-
aged over the latitude region from 10◦ N–90◦ N as a func-
tion of the forecast length from 144 h down to 24 h (suitable
initial conditions were not available to perform the 120-h
and 12-h hindcasts). The unscaled ozone production rates
in the GSFC1 scheme introduce large errors in the 132-h
NOGAPS-ALPHA prognostic ozone at 5 hPa, both in terms
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Fig. 16. Ozone mixing ratios (in ppmv) at 5 hPa from(a) the NASA GMAO ozone analysis valid 12:00 UT on 7 February, 2005, and
NOGAPS-ALPHA 132-h ozone hindcasts initialized 00:00 UT on 2 February 2005 using(b) CHEM2D-OPP,(c) GSFC2, and(d) CD86
V2.1 ozone photochemistry parameterizations. Polar projection extends to 10◦ N latitude.

of mean and RMS differences. Of the 4 remaining photo-
chemistry schemes tested, all produce similar results over
forecast periods from 24–72 h. The scaled GSFC2 and CD86
V1.0 results perform quite similarly over the entire range of
forecast times plotted in Fig.18, while CHEM2D-OPP pro-
duces the lowest values of mean and RMS A-F over fore-
cast periods from 72–144 h. Unlike the other photochemistry
schemes tested in this case, both the mean (Fig.18a) and the
RMS (Fig.18b) values of A-F from the CD86 V2.1 simula-
tions tend to increase with increasing forecast length, such
that at 132 h the RMS errors in the CD86 V2.1 case are com-
parable to the passive ozone case.

It is worth noting that the GMAO analysis is based primar-
ily on SBUV ozone measurements, as is the 2D stratospheric
ozone climatology ofFortuin and Kelder(1998) used forro
in CHEM2D-OPP. The NOGAPS-ALPHA simulations us-
ing CHEM2D-OPP will tend to relax the prognostic ozone
fields towards SBUV-based climatological values in regions
where ozone photochemistry is active and in the absence of
large temperature or column ozone fluctuations. This may
explain, in part, the relatively low mean A-F values from the
CHEM2D-OPP results in Fig.18a, and emphasizes how the
choice of background reference state can influence the per-
formance of a linearized ozone photochemistry scheme.

The results in Fig.18are based on a Northern Hemisphere

wintertime ozone distribution for one particular date and
time. A proper evaluation of the different photochemistry
schemes would require an extended period of comparison
with a full NWP/DA system (see, e.g.,Geer et al., 2006b).
Similarly, a detailed ensemble forecasting approach would be
useful to quantify intrinsic model uncertainty in the prognos-
tic ozone fields. Such computationally-intensive studies are
beyond the scope of the present work. However, based on the
results in Fig.18, it is reasonable to conclude that most of the
differences between the CHEM2D-OPP, GSFC2, and CD86
hindcast ozone profiles relative to the MLS observations in
Figs. 14 and15 equatorward of 50◦ N are within the range
of typical forecast errors. The differences between these
hindcast profiles and MLS observations poleward of 50◦ N
(specifically, Fig.14f and Figure15e,f), on the other hand,
exceed typical values of 132-h forecast errors in Fig.18.

We now examine possible reasons why the CHEM2D-
OPP and CD86 V2.1 results tend to overestimate the ozone
mixing ratios compared to MLS observations at 50◦ N and
60◦ N in Figs.14 and15. The fact that NOGAPS-ALPHA
prognostic ozone profiles with a temperature sensitivity term
(CHEM2D-OPP and CD86) show the poorest agreement
with MLS ozone in the 2–20 hPa region at the higher lati-
tudes suggests that the problem could be related to deficien-
cies in the NOGAPS-ALPHA simulation of temperatures
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Fig. 17. Difference between ozone analysis (A) valid 12:00 UT on 7 February 2005 and forecast (F) mixing ratios (in ppmv) at 5 hPa
from NOGAPS-ALPHA 132-h ozone hindcasts initialized 00:00 UT on 2 February 2005 using(a) no photochemistry (passive), the(b)
CHEM2D-OPP, the(c) GSFC2, and the(d) CD86 V2.1 ozone photochemistry parameterizations. Polar projection extends to 10◦ N latitude.

Fig. 18. The mean(a) and RMS(b) values of (A–F) from Fig.17 computed from NOGAPS-ALPHA 24–144 h hindcasts over the latitude
range 10◦ N–90◦ N using the CHEM2D-OPP (solid black line), GSFC1 (green crosses), GSFC2 (orange diamonds), CD86 V1.0 (purple
triangles), and CD86 V2.1 (blue squares) photochemistry parameterizations along with the passive ozone hindcast (dashed black line).
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Fig. 19. Profiles of the 135-h NOGAPS-ALPHA hindcast temperatures (black curve) at each of the six locations along the 16:00 UT MLS
flight track in Fig.12. Also plotted are reference temperature profilesTo from the CHEM2D-OPP scheme (gray curve),To profiles from the
CD86 V2.1 scheme (orange curve), and Aura MLS temperature observations at 16:00 UT on 7 February 2005 (red points).

Fig. 20. Diagnostic calculations of1r(P−L) (red curve),1rT (blue curve), and1r6 (orange curve) for the 135-h (15:00 UT) NOGAPS-
ALPHA hindcasts at 50◦ N, 52◦ W, corresponding to Fig.12e, using(a) CHEM2D-OPP,(b) CD86 V1.0, and(c) CD86 V2.1 photochemistry
schemes.
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within and near the polar vortex on this date. For example,
the NAVDAS analyses used to initialize NOGAPS-ALPHA
are based on the operational NOGAPS T239L30 system and
appear to have a cold bias over the polar regions (Eckermann
et al., 2006). Furthermore, many stratospheric models have
cold pole biases due to physical deficiencies and spatial reso-
lution limits (Austin et al., 2003). Large, systematic temper-
ature biases over time can manifest themselves as tempera-
ture perturbationsT ′ in (4) that progressively relax ozone to
a different state, even if the temperature coefficient itself is
relatively small. Another possibility is that the model does
not accurately simulate the time evolution of the polar vortex
and associated dynamical features in the ozone distribution
as the vortex is displaced southward during this stratospheric
polar warming period.

To examine further the possible effect of a cold bias in
NOGAPS-ALPHA hindcast temperatures on the parameter-
ized ozone photochemistry at the high northern latitudes
between 2–20 hPa, Fig.19 plots temperature profiles from
the 135-h NOGAPS-ALPHA hindcast at the six locations
along the 7 February 16:00 UT MLS flight track in Fig.12.
Also plotted in Fig.19 are climatological temperature pro-
files used to specify the reference state temperatureTo in the
CHEM2D-OPP (gray curve) and CD86 V2.1 (orange curve)
ozone photochemistry schemes, and Aura MLS temperature
profiles at each location for this date and time. The MLS tem-
peratures come from the Version 1.5 standard product, which
uses the 118 GHz retrieval for levels between 316–1.41 hPa
and a combination of the 118 GHz and 190 GHz retrievals
between 1–0.001 hPa. Preliminary comparisons with other
satellite observations and meteorological analyses show a
warm bias in MLS temperatures that increases from 1–2 K
in the lower stratosphere to 2–4 K near 10 hPa; above 10 hPa
the MLS warm bias oscillates between 1–3 K (Froideveaux et
al., 2006). At the lower latitudes (Fig.19a–d), there is good
agreement between the 135-h hindcast NOGAPS-ALPHA
temperatures and Aura MLS temperatures below the 0.1 hPa
level where the CHEM2D-OPP photochemistry is applied.

At 50◦ N (Fig. 19e), NOGAPS-ALPHA hindcast tem-
peratures in the upper stratosphere are consistently lower
than MLS observations, with temperature differences of
∼5 K near 5 hPa and∼10 K near 1 hPa. Similarly, at
60◦ N (Fig. 19f), NOGAPS-ALPHA hindcast temperatures
are colder than MLS observations by∼10 K near 3 hPa and
∼20 K near 1 hPa.

However, the temperature differences between the model
and the reference state temperatures are of greater conse-
quence for model prognostic ozone. Figure19shows that the
135-h NOGAPS-ALPHA hindcast temperatures are colder
than the CIRA86 climatological values used to specifyTo

in CHEM2D-OPP. At 50◦ N and 20 hPa, where NOGAPS-
ALPHA prognostic ozone values are higher than MLS obser-
vations (Figs.12 and13), NOGAPS-ALPHA temperatures
are 10–20 K colder thanTo (gray curve in Fig.19). As the
following discussion shows, this difference between model

and reference state temperatures produces a high ozone bias
in the model prognostic ozone fields through the temperature
term in Eq. (4).

Figure5 shows very small negative values of the temper-
ature coefficient∂(P−L)

∂T
|o are present in the stratosphere at

high northern latitudes during winter due to the temperature
dependence of the odd oxygen loss rates, which continue to
operate in polar night. The combination of large (10–20 K)
negative temperature perturbations and longer lifetimes (τO3)
(Fig. 2) produces a large positive ozone mixing ratio ten-
dency in the lower and middle stratosphere. To illustrate
this effect we perform a series of off-line single column di-
agnostic calculations to determine the relative roles of the
net tendency, temperature, and column ozone coefficients on
the model prognostic ozone. From Eqs. (9–12), over a given
model time step1t the photochemistry relaxes ozone mixing
ratiosr to the current steady-state ozone mixing ratiorss at
the photochemical relaxation rateτO3. We can examine the
contribution to the steady-state mixing ratio from each of the
three terms in (9) by defining the following relations:

rss
(P−L) = ro + (P − L)oτO3,

rss
T = ro +

[
∂(P − L)

∂T

∣∣∣∣
o

(T − To)

]
τO3,

rss
6 = ro +

[
∂(P − L)

∂6

∣∣∣∣
o

(6 − 6o)

]
τO3. (13)

From (12), we can compute the change in ozone mixing ra-
tio 1r=r(t+1t)−r(t) over the model time step1t for each
of the contributions in (13), i.e.:

1rP−L =
[
rss
P−L − r(t)

] 1t
τO3

1 +
1t
τO3

,

1rT =
[
rss
T − r(t)

] 1t
τO3

1 +
1t
τO3

,

1r6 =
[
rss
6 − r(t)

] 1t
τO3

1 +
1t
τO3

. (14)

Figure20compares the individual terms1rP−L, 1rT , and
1r6 , in (14) at 50◦ N, 52◦ W (e.g., Figure12e) for a value
of 1t=1 h. Each term uses 135-h NOGAPS-ALPHA hind-
cast ozone mixing ratio and temperature profiles to specify
r, T , and6. Figure20a plots1rP−L (red curve),1rT (blue
curve), and1r6 (orange curve) based on the CHEM2D-
OPP values of the photochemistry coefficients and associ-
ated reference state climatologies (FK98 forro, CIRA86 for
To). The profiles show that the CHEM2D-OPP tempera-
ture term1rT is the leading contributor to a net increase
in ozone, which is slightly offset by a negative contribution
from 1rP−L altitudes below the 4 hPa level (∼38 km). Fig-
ures20b and20c plot the same terms computed using the
CD86 V1.0 and CD86 V2.1 coefficients and climatologies,
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Fig. 21. Cross section of Ertel’s potential vorticity in potential vorticity units (PVU) along the DC8 flight path of 7 February 2005, derived
from (a) NASA GMAO meteorological analyses (data courtesy of NASA Goddard Space Flight Center, Code 613.3), and from(b) 138-h
T239L60 NOGAPS-ALPHA hindcast vorticity fields initialized 00:00 UT 2 February 2005 and valid at 18:00 UT 7 February. White contour
denotes the 2 PVU contour indicating the approximate tropopause altitude.

Fig. 22. Ozone mixing ratios in ppmv from(a) the AROTAL instrument aboard the NASA DC8 flight on 7 February 2005, plotted versus
geometric altitude and from(b) a 138-h T239L60 NOGAPS-ALPHA ozone hindcast with CHEM2D-OPP photochemistry plotted versus
geopotential height at locations along the DC8 flight track.
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respectively. We see that the CD86 V1.0 scheme in Fig.20b
produces positive values of the1rT term that are compara-
ble to the CHEM2D-OPP value in Fig.20a, and1r6 values
that are negative below the 5 hPa level and then rapidly be-
come large and positive above the 5 hPa level. These large
1r6 values are present at all latitudes and are the source
of the jagged vertical structure above 10 hPa (∼30 km) seen
in the NOGAPS-ALPHA hindcast ozone profiles generated
with the CD86 V1.0 scheme (Figs.12 and13). The updated
CD86 V2.1 results (Fig.20c) show a large positive tempera-
ture tendency peaking near 3 hPa but, unlike the CD86 V1.0
results in Fig.20b, there is now little contribution from the
column term.

Values of the column sensitivity term∂(P−L)
∂6

|o in the up-
per stratosphere are smaller in the CD86 V2.1 scheme than
in the CD86 V1.0 scheme. This explains the smoother ozone
profiles above the 10 hPa level in the hindcasts generated
with the CD86 V2.1 scheme (Figs.14 and 15). A conse-
quence of the smaller ozone column term in the CD86 V2.1
scheme is that there is no longer a large negative column per-
turbation offsetting the positive temperature perturbation. As
a result, the CD86 V2.1 ozone hindcasts at 50◦ N, 52◦ W
(Fig. 14e) show better agreement with the CHEM2D-OPP
results than the CD86 V1.0 results (Fig.12e).

The fact that the 135-h T79L60 NOGAPS-ALPHA ozone
hindcasts at 50◦ N overestimate the ozone mixing ratios be-
tween 30–10 hPa, as compared to the 16:00 UT MLS obser-
vations (see Figs.12e and14e), regardless of the photochem-
istry parameterization suggests that the model dynamics may
not be accurately simulating some small-scale structure in the
ozone profile at this location. We examine this possibility
further by comparing higher resolution T239L60 NOGAPS-
ALPHA ozone hindcasts with airborne ozone measurements
from the 7 February DC8 flight. To illustrate the dynami-
cal conditions encountered by the DC8 aircraft on this date,
Fig. 21a plots values of Ertel’s potential vorticity (EPV) be-
tween 15–25 km derived from NASA GMAO meteorologi-
cal analyses along the 7 February 2005 DC8 flight track. At
16:00 UT (way point 4 in Fig.10), the DC8 encounters in-
creasing EPV values, indicating that the aircraft has crossed
the vortex “collar” region and is entering the high-EPV air
within the polar vortex. Figure21b plots EPV from a 138-h
T239L60 NOGAPS-ALPHA hindcast valid at 18:00 UT on
7 February. The sharp changes in EPV seen in the GMAO
EPV fields as the DC8 crosses the vortex collar region after
16:00 UT and again just prior to 20:00 UT are not as well-
defined in the NOGAPS-ALPHA EPV fields.

To illustrate the relationship between EPV and ozone
along the 7 February flight track, Fig.22a plots the ozone
mixing ratio profiles measured with the Airborne Raman
Ozone Temperature and Aerosol Lidar (AROTAL) (Burris
et al., 2002) on board the DC8. AROTAL profiles within the
vortex and collar regions are characterized by highly local-
ized regions of low ozone between 20–25 km. Figure22b
displays a contour map of T239L60 NOGAPS-ALPHA 138-

h hindcast ozone profiles using the CHEM2D-OPP scheme,
valid at 18:00 UT, following the DC8 flight path. Despite
the higher horizontal resolution in the T239 configuration,
the NOGAPS-ALPHA hindcast ozone fields do not repro-
duce the dynamical structure in the AROTAL ozone pro-
files (Fig. 22a). In particular, the model does not capture
the observed localized regions of lower ozone mixing ra-
tio (<4 ppmv) between 22–25 km from 16:00 UT–18:00 UT
in Fig. 22a. Thus the high ozone values in the 16:00 UT
NOGAPS-ALPHA hindcasts for at 50◦ N relative to MLS
observations in Figs.12e and14e are also due in part to dif-
ficulties in modeling small-scale dynamical features in the
ozone distribution related to horizontal and vertical mixing
in the region of the vortex collar.

4.2 CHEM2D-OPP in NOGAPS-ALPHA: climate mode

Since the time scale for ozone photochemistry is quite long
(>100 days) in the lower stratosphere (see Fig.2), any sys-
tematic biases in the linearized photochemistry parameter-
ization should not affect model prognostic ozone for typi-
cal NWP/DA applications in this region. In the NWP case,
forecasts are typically 5–10 days in length, a period much
shorter than the effective ozone relaxation time in the lower
stratosphere. In the DA case, frequent updates of assimi-
lated ozone fields with observations (e.g., every 6 h) should
correct any systematic biases introduced by the parameter-
ized photochemistry. NWP/DA systems are therefore bet-
ter suited for testing CHEM2D-OPP in the middle and up-
per stratosphere where the ozone distribution is controlled
largely through photochemical effects (Geer et al., 2006b).
Model simulations over seasonal time scales (i.e., longer than
∼100 days) are needed to quantify possible systematic biases
in CHEMD-OPP affecting lower stratospheric ozone.

To fully test CHEM2D-OPP performance throughout the
entire stratosphere, we have conducted a 1-year free running
T79L60 NOGAPS-ALPHA simulation in climate mode.
This particular experiment was initialized with archived
MVOI and STRATOI meteorological fields and GMAO
ozone for 20 December 2001 using the climate run config-
uration described in Sect. 3.1. The CHEM2D-OPP pho-
tochemistry was applied to NOGAPS-ALPHA prognostic
ozone fields between 500–0.1 hPa. Outside of this altitude
range the prognostic ozone fields were constrained to model
climatology.

Earlier NOGAPS-ALPHA tests of CHEM2D-OPP in cli-
mate mode produced unrealistically large values of zonal
mean prognostic ozone from 1–10 hPa near 65◦ latitude in
both hemispheres during late winter and early spring (not
shown). This effect was caused by the combination of an
overall warm bias in the CIRA86 stratospheric temperatures
and the cold bias in model temperatures at the high winter
latitudes (see Sect. 4.1). Because the sign of the temperature
term is negative (Fig.5), the persistent large negative tem-
perature perturbations (T −To) produced large positive ozone
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Fig. 23. Monthly mean ozone mixing ratios (ppmv) from a free-running T79L60 NOGAPS-ALPHA climate experiment using CHEM2D-
OPP photochemistry with a modified temperature term for(a) January,(b) April, (c) July, and(d) October.

Fig. 24.Monthly mean ozone mixing ratios (ppmv) from the extended URAP climatology for(a) January,(b) April, (c) July, and(d) October.
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perturbations over the course of the winter. A similar effect
was noted over high southern latitudes during the August–
November period in an extended data assimilation run using
CHEM2D-OPP (Geer et al., 2006b).

Normally, the relaxation term in (4) would quickly act
to reduce these erroneously high ozone values between 1–
10 hPa. However, in polar night, the ozone relaxation
time τO3 at these altitudes is quite long (Fig.2), allow-
ing the effects of these systematic temperature biases to
grow unchecked in the long-term climate experiments un-
til later in spring when the ozone relaxation time becomes
much shorter. To eliminate the effect of systematic high-
latitude temperature biases on NOGAPS-ALPHA prognos-
tic ozone in climate mode during polar night, the CHEM2D-
OPP scheme was modified so that the temperature term is set
to zero at night poleward of 65◦ latitude.

Figure23 plots monthly zonal mean values of NOGAPS-
ALPHA prognostic ozone for January, April, July, and
October with the modified CHEM2D-OPP photochemistry.
For comparison, Fig.24 plots corresponding monthly mean
ozone mixing ratios from the extended URAP ozone cli-
matology. There is generally good agreement between the
monthly mean NOGAPS-ALPHA and URAP ozone fields.
Areas of poor agreement occur in the lower stratosphere at
high southern latitudes in July, when the model underpredicts
zonal mean ozone mixing ratios, and in October when the
model overpredicts zonal mean ozone mixing ratios. In the
July case, the disagreement is the result of model dynamics
producing both excessive descent of ozone-poor air within
the polar vortex between 10–1 hPa and inadequate horizontal
mixing by planetary wave activity in the lower stratosphere
near 100 hPa. In the October case, the model ozone does not
capture the springtime ozone hole due to the lack of heteroge-
neous chemical effects in the parameterized photochemistry.

Another area of disagreement between the model and
URAP climatological ozone values is at the peak of the ozone
profile over the tropical regions, where the model values are
consistently 1–2 ppmv less than the peak URAP value. This
can be attributed to the use of the FK98 ozone climatology
to specify the reference state mixing ratio valuesro. As dis-
cussed in Sect. 2, the FK98 climatology tends to underes-
timate the peak ozone value as compared to various UARS
ozone measurements. Since the ozone relaxation timeτO3 is
short in the tropical upper stratosphere throughout the year,
CHEM2D-OPP is consistently relaxing the prognostic ozone
fields to a reference state with a peak value lower than the av-
erage conditions represented in the URAP climatology. Ad-
ditional climate simulations using different start dates and
initial conditions produced results very similar to those in
Fig. 23. The choice of reference ozone distributionro in
CHEM2D-OPP appears to be of more importance than the
choice of initial conditions for NOGAPS-ALPHA simula-
tions of one month or longer.

5 Conclusions

This study provides a detailed description of a new lin-
earized parameterization of gas-phase ozone photochemistry,
known as CHEM2D-OPP, which is based on output from
the NRL CHEM2D photochemical transport model. As
with earlier schemes, CHEM2D-OPP consists of four coeffi-
cients describing the residual ozone photochemical tendency
(P−L) and its sensitivity to local changes in ozone mix-
ing ratio, temperature, and overhead ozone column amount
(see Figs. 1, 2, 5, and 6). CHEM2D-OPP performance
was tested using short-term (hindcast) and long-term (cli-
mate) NOGAPS-ALPHA model simulations and the results
compared with both observations and results from identical
model simulations using earlier ozone photochemistry pa-
rameterizations.

In the hindcast experiments, we compared NOGAPS-
ALPHA prognostic ozone fields at 5 hPa issued over a range
of forecast times from 24–144 h with NASA GMAO ozone
analyses over the Northern Hemisphere for the 7 February
2005 test case to quantify the performance of the different
photochemistry schemes relative to each other and to the case
with no ozone photochemistry (i.e., passive ozone). In terms
of the mean and RMS values of A-F (analysis - forecast),
the adjusted production rates in the GSFC2 scheme are an
improvement over the GSFC1 rates. The CHEM2D-OPP,
GSFC2, and CD86 (V1.0 and V2.1) schemes all yield sim-
ilar performance over forecast lengths from 24–72 h. Both
GSFC2 and CD86 V1.0 exhibit similar performance from
24–144 h, while the CD86 V2.1 performance noticeably de-
grades at forecast times longer than 72 h. Overall, the
CHEM2D-OPP scheme produces the lowest mean and RMS
values of A-F for this case.

In comparing NOGAPS-ALPHA hindcast ozone profiles
with Aura MLS observations, we find that the updated CD86
V2.1 scheme (Figs.14 and 15) does not produce the arti-
facts in the ozone profile above 10 hPa that are seen in the
CD86 V1.0 results (Figs.12 and13) due to a much smaller
ozone column sensitivity. This smaller ozone column sen-
sitivity, however, no longer offsets the large positive ozone
tendencies at latitudes poleward of 50◦ N produced by the
temperature sensitivity term (Fig.20). The result is that the
ozone hindcasts using the CD86 V2.1 photochemistry pa-
rameterization now exhibit a high bias poleward of 50◦ N
near 10 hPa (∼30 km), and a low bias equatorward of 30◦ N
near 1 hPa (∼50 km), relative to both the MLS observations
(Figs. 14 and 15) and hindcasts using CD86 V1.0 photo-
chemistry (Figs.12 and13). In this regard, the CHEM2D-
OPP photochemistry provides better agreement with MLS
observations at and above 10 hPa than either version of the
CD86 photochemistry for the 7 February 2005 test case pre-
sented here.

Results from both the NOGAPS-ALPHA hindcast and
climate experiments show that the performance of the
CHEM2D-OPP scheme can depend on the choice of clima-
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tology to specify the reference state temperature distribution
(To). A warm bias in the CIRA86 temperatures (Randel et
al., 2004), when combined with model temperatures that are
consistently too cold at high winter latitudes, produced large
negative temperature perturbations that led to a high ozone
bias at high latitudes in winter. Modifying the CHEM2D-
OPP temperature term such that it is set to zero during polar
night eliminated this high latitude ozone bias in the year-long
NOGAPS-ALPHA simulation. However, a more satisfactory
long-term solution would be to eliminate the systematic high-
latitude temperature biases by using an updated temperature
climatology and improving the model dynamics at high lati-
tudes in winter.

Because linearized ozone photochemistry depends on the
reference state ozone and temperature distributions, we are
currently investigating methods to improve CHEM2D-OPP
performance for both NWP and DA applications through the
choice of different reference state ozone mixing ratio and
temperature distributions. For example, as Fig.19 shows,
there can be very large differences (i.e., 20 K or more) be-
tween the background temperature distributions represented
by conventional zonal mean climatologies and observed
temperatures at high winter latitudes during a stratospheric
warming period. These large differences approach the up-
per limit of temperature perturbations over which the lin-
earization approximation is valid for the ozone photochemi-
cal tendency equation. We are conducting ozone DA system
tests using “adaptive” time-varying background ozone and
temperature distributions computed directly from analyses in
place of the conventional climatologies in CHEM2D-OPP in
order to determine if the adaptive climatologies can reduce
systematic differences between forecast and observed ozone.

Despite the inherent limitations of replacing a complex,
nonlinear system of photochemical reactions for ozone with a
simpler linearized approximation, constraints on computing
resources preclude a full treatment of ozone photochemistry
in operational high altitude NWP and DA systems for the
time being. Furthermore, there are a wide range of middle at-
mospheric modeling applications where a fully coupled pho-
tochemical model is not required. This study demonstrates
the utility of CHEM2D-OPP for a fast, accurate description
of ozone photochemistry in both NWP and climate applica-
tions. As a result of this and other pilot studies, a version
of CHEM2D-OPP was integrated into the operational NCEP
GFS on 22 August, 2006 as a replacement for the original
GSFC photochemistry parameterization.

We conclude by presenting a short description of pro-
posed modifications to the CHEM2D-OPP formulation that
are likely to offer improved capabilities for these types of
applications. One proposed modification of CHEM2D-OPP
will account for the diurnal cycle in ozone above the 0.1 hPa
level. This would improve NOGAPS-ALPHA mesospheric
shortwave heating rate calculations and correct our model’s
high temperature bias compared to Aura MLS temperatures
in this region (e.g.,Sassi et al., 2005). Another proposed

modification is to include the direct effects of variations in
solar irradiance. This term would quantify the ozone re-
sponse to small changes in solar UV at wavelengths impor-
tant for ozone photochemistry, such as those observed over
the 27-day solar rotation period and, possibly, the longer 11-
year cycle. Finally, CHEM2D-OPP can be modified to ac-
count for the effects of ozone losses via heterogeneous reac-
tions on polar stratospheric cloud (PSC) particles, ideally by
using an additional “cold tracer” in NOGAPS-ALPHA (Had-
jinicolaou and Pyle, 2004) to track the temperature history of
air parcels relative to a specified PSC activation temperature.
We anticipate testing this approach using CHEM2D-OPP in
an ozone assimilation system to determine how the parame-
terization of heterogeneous ozone loss impacts the quality of
the ozone assimilation in the polar lower stratosphere.

To obtain the CHEM2D-OPP coefficients and view the
latest version information, seehttp://uap-www.nrl.navy.mil/
dynamics/html/chem2dopp/chem2dopp.html.

Appendix A

Calculation of CHEM2D-OPP coefficients

This appendix describes the details of the CHEM2D model
calculations used to produce the CHEM2D-OPP linearized
photochemical coefficients in (4). CHEM2D model calcu-
lations of the net odd oxygen tendency(P−L)Ox account
for the production of odd oxygen by photolysis of molecu-
lar oxygen and odd oxygen loss through reactions involving
oxides of hydrogen (HOx), nitrogen (NOx), chlorine (ClOx),
and bromine (BrOx). Neglecting transport, a simplified ver-
sion of the odd oxygen continuity equation can be written in
the form (see, e.g., Stolarski and Douglass, 1985):

∂[Ox]

∂t
= 2J2[O2]−(k1[OH] + k2[HO2])[O]−2k3[NO2][O]

−2k4[ClO][O]−k5[BrO][O]−k6[O][O3]−

(k7[OH] + k8[HO2])[O3]−k9[Br][O3] ,(A1)

where it is assumed that[ClO] and [Cl] are in equi-
librium, as are [NO2] and [NO], and minor reactions
(e.g., ClO+hν→Cl+O, CH3O2+NO→CH3O+NO2) are
neglected (Brasseur and Solomon, 1986). Although the
CHEM2D model contains the full set of odd oxygen reac-
tions, for simplicity’s sake, we have only listed the dominant
loss mechanisms in (A1).

Table A1 lists these nine dominant odd oxygen loss reac-
tions and their rate constants used to compute the odd oxygen
photochemical relaxation timeτOx . The loss rates for these
reactions are represented asLi, i=1 . . . 9. The CHEM2D
values ofLi for each reaction are output at all model latitudes
and altitudes on the fifteenth day of each month. Figure A1
plots CHEM2D vertical profiles ofLi over the equator on 15
March in units of cm−3s−1. The odd-oxygen relaxation time
τOx is determined from the sum of the loss rates from all
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Fig. A1. Vertical profiles of individual CHEM2D odd oxygen loss rates (cm−3s−1) for 15 March over the equator, used to compute the
photochemical relaxation timeτO3.

Fig. A2. (a)Vertical profiles of CHEM2DJ2 andJ3 photolysis terms for production of atomic oxygen in both ground state and excited state
(O(1D)) for March conditions at 30◦ N; (b) the absolute reduction inJ2 from (a) for an imposed 10% increase in overhead column ozone at
each model vertical level;(c) as in (b) but for the percentage reduction inJ2.

www.atmos-chem-phys.net/6/4943/2006/ Atmos. Chem. Phys., 6, 4943–4972, 2006



4970 J. P. McCormack et al.: CHEM2D-OPP linearized ozone photochemistry

Table A1.

Table A1. CHEM2D Odd Oxygen Loss Reactions for Computing
τO3

Reaction (αi ) k, cm3 molecule−1 s−1

1. O+OH→O2+H (1) 2.2×10−11e−120/T

2. O+HO2→OH+O2 (1) 3.0×10−11e−200/T

3. O+NO2→NO+O2 (2) 5.6×10−12e180/T

4. O+ClO→Cl+O2 (2) 3.0×10−11e−70/T

5. O+BrO→Br+O2 (1) 1.9×10−11e230/T

6. O+O3→2O2 (2) 8.0×10−12e−2060/T

7. O3+OH→O2+HO2 (1) 1.7×10−12e−940/T

8. O3+HO2→OH+2O2 (1) 1.0×10−14e−490/T

9. O3+Br→BrO+O2 (1) 1.7×10−11e−800/T

nine reactions asτOx=[Ox]6αiLi , where[Ox]=[O3+O] is
the photochemical model odd oxygen concentration,6αiLi

represents the sum of the individual loss rates, and the fac-
tor αi is the total number of odd oxygen atoms lost per re-
action. For example, the first loss reaction in Table A1 re-
moves one odd oxygen molecule per hydroxyl radical so that
α1L1=k1[OH]. ScalingτOx by the ratio[O3]

[Ox]
using the ozone

and odd oxygen concentrations from the CHEM2D model
gives the ozone relaxation timeτO3, which is stored offline in
a look-up table as a function of latitude, pressure, and time of
year. The CHEM2D-OPP scheme in the NOGAPS-ALPHA
model reads in the values ofτO3 and converts them to values
of the linearized photochemistry coefficient∂(P−L)

∂r
=−τ−1

O3
.

Table A1 lists the temperature-dependent reaction rates
for odd oxygen loss in the middle atmosphere. Evaluation
of the temperature dependence can be performed analyti-
cally (Stolarski and Douglass, 1985) or numerically, as in the
CHEM2D-OPP scheme. Numerical solutions for the tem-
perature dependence are obtained by introducing a tempera-
ture perturbation1T in the reaction rates while holding the
concentrations of the long-lived species (e.g., O2, CH4, Cly,
NOy) fixed, and then computing new corresponding values of
(P−L)Ox . As described in the text, the relation1(P−L)Ox

versus1T computed with the CHEM2D model (Fig.3) pro-
duces estimates of the coefficient∂(P−L)

∂T
|o after scaling by

(1+p̂)−1.
The photolysis termsJ2 andJ3 both depend on the over-

head integrated ozone column amount6O3(z). Ozone pho-
tolysis viaJ3 is a sink for O3 but a source for O, therefore
it does not enter explicitly into the net odd oxygen tendency
(P−L)Ox (see Eqs.A1 and5) in the main text). To compute
the sensitivity term∂(P−L)

∂6O3
|o, values of the overhead ozone

column6O3 used to calculate the CHEM2D photolysis fre-
quencyJ2 are perturbed by±50% while the concentrations
of all other constituents are held fixed. Using this method,
the column term expressed here is simply the sensitivity of

the rateJ2[O2] to changes in the overhead ozone column
amount.

Figure A2a plots CHEM2D values ofJ2 andJ3 for March
conditions at 30◦ N; the reduction inJ2 for an imposed 10%
increase in6O3 is plotted in Fig. A2b. Since an increase
in 6O3 decreasesJ2 in (A1), the sign of the column term
∂(P−L)
∂6O3

|o is negative throughout the stratosphere (see Fig.6).

An increase in6O3 also reducesJ3, meaning less ozone is
lost through photolysis. However, this has a zero net ef-
fect on the odd oxygen tendency since ozone photolysis is a
source of atomic oxygen as well as a sink of ozone. This dif-
fers from the photolysis perturbation termC derived from the
linearized set of Chapman (i.e., oxygen-only) photochemical
reactions in earlier studies (e.g.,Hartmann, 1978), where it
is assumed that[O] remains in photochemical equilibrium in
the upper stratosphere (i.e., above 10 hPa) where ozone pho-
tochemistry is fast. Under this assumption the ozone concen-
tration can be expressed as

[O3]eq=

(
J2k1[O2]

2
[M]

J3k3

) 1
2

. (A2)

This relationship does not hold for generalized ozone pho-
tochemistry (see, e.g.,Brasseur and Solomon(1986), their
equations 5.251–5.253). Because of the increased complex-
ity of the generalized ozone balance when reactions with
HOx, NOx, ClOx, and BrOx are included, a more tractable
approach for determining the column sensitivity term is to
estimate∂(P−L)

∂6O3
|o numerically by computing the change in

the model odd oxygen tendency1(P−L)Ox in response to
imposed changes in column ozone16O3 while holding other
variables, (i.e.,[Ox], T , other constituents, transport) fixed,
as illustrated in Fig.4.
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