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Abstract. This paper summarizes and classifies the various2 Terminology

approaches to validation of remote measurements of atmo-

spheric state variables, and tries to recommend a clear anketx=(x1,---, xy)” be a vertical profile of an atmospheric
unambiguous terminology. The following approaches havestate variable, sampled on a discrete vertical gridvclti-
been identified: Intercomparison of individual profiles for ac- tude gridpoints, describing the true atmospheric state at the
curacy validation; statistical comparison of matched pairs ofaltitude resolution of the measurement to be validated. Let
measurements with respect to bias determination and precfurther #&=(%1, - --, ty)” be a measurement of. The ac-
sion validation; statistical intercomparison of randomly sam-curacy a of the measuremetitwe understand is the square
pled measurements by two instruments, and comparison ofoot of the expectation value of the squared differences of the
a single measurement to an ensemble of measurements. Agiue quantities;, and their measurements:

plicable statistics are shortly reviewed, and recipes for eval- a1 ((F1— x1)2)

uation of the co-incidence error due to less than perfect co- a (G2 —x2)2)

incidences are presented. An approach is suggested toquag— | =~ | = ) 1)
titatively validate profile measurements when full covariance :

matrices are unavailable. an (RN —xN)2)

The biash of a measurement is the expectation value of the
deviation of the measured and the true quantity:
1 Introduction b1
Validation of a data product we understand means to confirnp = b,z
the predicted accuracy of the data product. After a series
of self-consistence texts (e.Rodgers 2000, the key ele- by
ment of validation is a statistical analysis of the differencesDepending on the nature of the bias, it can also be multi-
between measurements of a new instrument to be validateglicative rather than additive and then is better reported as a
and of a reference instrument already validated. The purposgelative quantity:
is to detect and remove any potential bias of the new mea- £
surement, and to verify that the estimated precision of the bmuit.;1 o
new measurement characterizes the measurements correctly. bmuit.;2 ;—2 -

Without any validated and bias-corrected reference mea- ™" = : = : > ®)
surement available, it may also be helpful to intercompare bmult. N iy '_ 1
measurements by two or more non-validated instruments. ’ XN
This approach we call “cross validation”. While this ap-  1j the statistics as well as remote sensing literature there are
proach certainly is no validation in its rigorous sense, it still at |east two different definitions of “accuracy”. The definition in

= (X —x). @

may help to better characterize the data products. this paper is consistent with the one used by, Rargers(2000,
Haseloff and Hoffmani(1970 or Walther and Moorg¢2005, while

Correspondence tor. von Clarmann it is in conflict with Bevington (1969, whose “accuracy” corre-

(thomas.clarmann@imk.fzk.de) sponds to the quantity which is called “bias” here.
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The precisiorp of the measurement characterizes the repro
duceability of the measurement,

jal VG (£1))2) = ((x1—(x1))2
p2 V(2= (%2))2) = ((x2—(x2))2)

p=| . |= : . 4
PN VIGN=ENDD) —((en—(xn))?)

where the second term under the square root corrects for th

natural variability ofx. Accuracy, bias, and precision are

related by
2 2 2
a by P1
2 2 2
as b P5
= 5)
a]2V b2 p12v

Usually, remotely sensed data are provided along with care:
ful data characterization, which includes estimates of the ran;
dom error covariance matri®angom and the systematic er-
ror covariance matrixSsys. In the case of remote measure-
ments, these error estimates typically are the linear map-

ping of known uncertainties (measurement noise, model pa-

rameter uncertainties etc.) onto the retrieved quantities
(Rodgers 1990. This means, that these variances and co-
variances are ex ante estimates, i.e., they do not rely on an

statistical comparison with external data. If the measuremen%

includes a priori information, also the smoothing error, char-
acterized by the covariance mat®mooty representing the

T. von Clarmann: Validation

-accuracy. A useful strategy in validation is to first search for

a possible bias, to quantify the bias in order to allow its cor-

rection, and to finally validate the estimated precision. Op-

timally, also the causes of the bias will be understood and
removed. The scope of this paper, however, is restricted to
the detection and quantification of the bias, and the validation
of the precision estimates.

g Comparison of co-incident measurements
3.1 General aspects

Let xyva andxef be two vertical profiles of the same quan-
tity, measured by instruments “val” (instrument to be vali-
dated) and “ref” (independent reference instrument), respec-
tively. The profiles and related diagnostic data have to be
represented on a common grid, which usually implies regrid-
ding of one or both profilesQalisesi et al.2005. Further,

if the measurements include a priori information, both pro-
files have to be transformed to the same a priori profile, and
the smoothing error of the differenc8&moothdiff, has to be
estimated Rodgers and Connp2003. This smoothing er-

ror difference can be minimized or nullified using a method
proposed byRidolfi et al. (20063, or it can be restricted to
sub-scale differences by transformation of the data to a dedi-
cated representationdgn Clarmann and GrabowsliZ0086.

y Rodgers and Conn¢2003 suggest to quantify profile in-
ercomparison by application of,e test.

(10)

2 N 5 Teo—1,2 ~
= (Xval — Xref) Sdiff (Xval — Xref),

mapping of the difference between the a priori assumption
and the true state onto the measurement, contributes to thehere Sy is the ex ante estimate of the error covariance

total error budgetRodgers 2000, and we get for the total
error covariance matri$otal:

Stotal = Ss+r + Ssmooth= Ssys+ Srandom+ Ssmooth (6)

where Sgy is the sum 0fSandom and Sgys  The diag-
onal elements of these matrices are the related varianc
Ut%tahnzstotal;n,n, Uszys,,ZSsysn,n, Uéndomnzsrandomn,m and

2 . .
O smoothn =Ssmoothn, respectively.  The smoothing er-
ror can be composed of components constant with time
(“smoothsysn) and components randomly varying with time

(Uszmoothrandomn)- Validation then means to confirm the ex
ante error estimates by verification that forrafrom 1 toN

2 2

_ 2 _ 2
a, = Gs+r n T Gsmoothn = Ototat,n (7
2 _
b sysn + Osmoothsysn (8)
_ 2
pn - Urandomn + Usmoothrandomn' (9)

matrix of the differencetya—xret. The actual value of?2
allows to conclude if the differencasa—xref are consistent
with the ex ante estimates of the uncertainties of the differ-
ence, represented by its covariance ma&iy¢, or if there

is a significant inconsistency. The integral of thé prob-

gbility density function from the actual? to infinity yields

the probabilityPacd x 2) that the actuay 2 value occurs acci-
dently, i.e. that the differences can be explained by the error
estimates; the integral from zero to the actyalyields the
probablllty of a substantial difference. In particular, under-
estimation of the variances of the differences would lead to
a x2 value larger than its expectation value, which, in the
case of a regulaSyiss, is the number of comparison pairs. If
the probability of a substantial difference is above a certain
threshold, e.g. 95%, then the difference is significant at 5%
confidence level and there is statistical evidence that there is
something wrong with the data or related error estimates. If
this probability is below 95%, then the falsification has failed

This is not as easy as it might seem, because the true atmdecause the difference is not significant at the chosen (5%)

spheric stater, which is needed to evaluate precision, bias,
and accuracy with the formalism outlined above is not avail-

confidence level.
Usually, more than one pair of co-incident profiles is avail-

able. Instead, we use independent reference measuremenghle, and Eqg.X0) can be applied to a larger ensemble of

which allow to infer ex post estimates of bias, precision, and

Atmos. Chem. Phys., 6, 431432Q 2006

comparison pairs. For a large ensemblekoindependent
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intercomparison pairs, thg? test can either be performed Pgis(L, X%ax) of up to 95%, we cannot prove equivalence of
for L subsets of data or as one singlé test involving the  %ya andx et at a confidence level better than 50%, because
x? probability density function ofk degrees of freedom.

The division into subsets allows to check if thé values L'E“OO PacdL, (Xfax) = 0.5. (12)
found follow the expecteg? distribution. E.g.Migliorini

et al.(2004 have detected suspicious ozone profiles in theirKnowledge of all error terms contributing & is crucial
comparison ensemble by comparison of the expected and th@ allow a meaningful estimate of the significance of the dif-
found x2 distribution. The probability of disagreement for ferencestya—%rt. The ex ante estimate of the covariance

the complete ensemblePyis(L, Xr%ax)zl— PacdL, X%ax), matrix of the difference with elementsgis. ., ,, iS usually cal-
can be estimated according to the multiplication axiom, culated as

Sdifft = Sstr.val + Sstr.ref + Scoine + Ssmoothdiff » (13)
Pais(L, Xfaax) < Pais(L, Xfa" (11)

whereSginc describes the spatial and temporal co-incidence
error in terms of variances and co-variances, which are im-
wherey 2., is the largest 2 value found in the ensemble of portant to be quantified and considered in the case of less
comparison subsets, amiis(L, xZ,) is the related proba- than perfect co-incidences of the two measurements (see
bility of substantial disagreement in the subset whefg,is  Sect.3.2). If both the validation and the reference measure-
found. The drawback of this approach is that it is not suffi- ment have a common error source, this introduces correla-
cient in a sense that the probability estimate is based on théons. This applies e.g. when the same or correlated temper-
maximumy? value only and thus does not use all available ature profiles or spectroscopic data are used to derive both
information. This implies that this test is not very robust be- %,, and%s. In the case of such correlatiorSyj can be
cause it is very sensitive to outliers. For determination of evaluated as

Pacdx?) the singlex? test involving the complete ensem-

ble of comparison pairs is superior because of its inherentg;; — (, = <Ss;r,val» Cs+r,va|,ref> A, —nT

sufficiency. The safest is to combine both approaches. Dis- Csirvalret Sstr.ref

crepancies can then point at non-representative outliers in the +Scoine + Ssmoothdiff » (14)

comparison ensemble. h ) ] dwh o s th
. . wherel is Nx N unity and where matrixCs;, contains the
Large probabilities of substantial differences can haverelated covariance elements vl refm nTsir valmOsir refn

three different cau_sgs " 1. The ex_an_te error esnmgtes mal\ﬁetween the new measurement “val” and the reference mea-
have been too optimistic. 2. The initial ensemble size was

. . surements “ref”, wheresr val ref.m.» IS the correlation coef-
chosen 'too small and not representatlvg. In this case,za Iarg?fcient of the combined systematic and random errors of the
comparison ensemble may help to achieve a lafges(x ).

If, however, the initial sample was representative, even lar e}/alidation measurement at altitudeand the reference mea-
5 . P °p ' 996 urement at altitude. Comparison of two individual profiles
x < values will most probably occur in a larger ensemble, and

ol ; . . does not allow to distinguish between precision and bias val-
Pacdx %) will notimprove. Itis, of course, important to work

X : . idation.
with pre-defined random samples and not to adjust the sam-

p|29 or the sample size to the maximufged(x?). 3. Large 35 petermination of co-incidence error in time and space
x < can also be associated with a particular subset of the sam-
ple which can be characterized by some objective criterionysyally, only profiles are selected for comparison which
Migliorini et al. (2004, e.g. have found problems ig@ata  meet a certain co-incidence criterion in time and space or
from spectra suspected to be cloud contaminated. In such 8ny other adequate co-ordinatelike solar zenith angle, po-
case it may be appropriate to define a kind of data filter andentia| vorticity, equivalent latitude etc. The actual difference
to validate only the subset of the data which passes the fil-p 7 in this quantity is the mismatch, and the maximum al-
ter. There are, however, two traps in this approach: First, thggwed mismatch is the co-incidence criteria@max.
filter should not use the quantity to be validated itself as a Variability of most atmospheric state variables is com-
filter criterion. Second, the new analysis system, of WhiChposed of a functional term and a random term. The abun-
.the newly defined filtgr is a part, has to be validateq psing ajance of a certain species, for example, may have a typical
independent comparison ensemble. When the original samggirdinal dependence or a typical diurnal variation, which
ple is used, it will always be possible to_ tune the data fllter,c_1re superimposed by random fluctuations caused by the ac-
such that good agreement between the intercompared data g5 small-scale atmospheric situation. Whenever applica-
achieved. ble, the functional term should be corrected first by a cor-
While, in the case of good ex ante error estimates, we cerrection functionM, which can either be some appropriate
tainly can do better then just reject the hypothesis of inconsisparametrization, or alternatively a tabulated data set. With
tency at 5% confidence level, which still allows a probability dys and dret being the co-ordinates of the validation and

www.atmos-chem-phys.net/6/4311/2006/ Atmos. Chem. Phys., 6, 4320-2006
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reference measurements, respectively, the uncorrected refewhereser., », is an element of the random error profile co-

ence measuremeRtef uncorrectedS COrrected as variance matrixSe, of the reference data set of the state vari-
) . able x,. The factor of two accounts for error propagation
Xref = Xref,uncorrectedt M (dval) — M (dref) (15)  through the calculation of the differenc&er, which is as-

. - sumed constant and uncorrelated with geolocation, cannot be
and only the residual random part of the co-incidence er- 9 '

; N obtained from the scatter of the reference sample, because
ror with respect to the corrected reference measurefgnt : - . X
; . : the latter contains the natural variability we are trying to iso-
should be characterized by the covariance maSi¥inc . . :
. o late. Instead, a true ex ante estimate is needed, e.g. by error
Otherwise the co-incidence error may not follow a Gaus- . . o . -
. S ; . .. propagation calculation, sensitivity studies or similar means.
sian distribution, and errors due to systematic sampling dif- : .
: . The M terms account for the difference already explained by
ferences ind may inadvertently be treated as random co-

. . . e functional mismatch correction.
incidence errors. This may happen, e.g., if the abundance o In order t & (Ad) lar nouah for meaninaful stati
an atmospheric constituent which is characterized by a stron%C order to ge (Ad) large enough for meaningful statis-

diurnal change is observed by two instruments at instrument; S b'TL;ngAOJSCO;”C 'S” re_comrtninde_d, I-€- eva][uazt;(;n of
specific local times. An example of application of a cor- Scoine ([Ad1, Ady]) for all mismatches in a range fromd,

rection functionM is found in Ridolfi et al. (20068)who t0 Adz, where Soinc is sufficiently linear inAd. If such

use ECMWF (European Centre for Medium-Range Weathe bin [Ad1, Ad>] covers the entire co-incidence criterion,

Forecasts) temperature analyses to estimate the componeft: Ad1=0 andAd; equals the co-incidence criterion, itis no

of the differences between MIPAS and radiosonde temper!Onger necessary to care about thé-dependence Gcoinc

atures which are explained by mismatch in space and timel?Ut the mean co-incidence erBoine ~Scoinc (Ad) can be

A similar approach was chosen by Cortesi et al. (2806) used for the e.ntlre ensemble of cg-mudences.
ozone. Meteorological analyses, satellite measurements or mod-

To quantify the residual co-incidence error caused by finereled atmospheric fields can be used as reference data sets

structures ind than those accounted for by the correction to evaluate the co-incidence error on a larger scale. It is

function M, a sufficiently fine resolved typical reference data important to carefully assess any possible reduction of the
setx; of state variabler (d) is needed. Let the reference data

horizontal variability in these datasets through application

set contairk (Ad) independent pairs of data points separatedOf, background ora p_riori knowledge in the sense_of vari-
by the mismatchAd=dya—drer. Then, the co-incidence er- ational data assimilation (e.dde et al, 1997 or optimal

ror Seoine Can be evaluated as a functionsd as estimation retrievalsRodgers 1976, respectively. For de-
ome termination of small-scale temporal fluctuations stationary in

Scoinc:m.n (Ad) = situ measurements or ground-based remote sensing measure-
KAd) [ r . ments are better suited, while for small-scale spatial fluctua-
2 k=1 (Axr;m(Ad))k (Axr;n(Ad)> tions aircraft measurements are the first choice.

— Serr. diff- 16 . . ..
erdiff:m.n (16) Multi-dimensional co-incidence can be assessed

where pomponent-wisg by evalua?ion of Eq:_LGQ for eac.h co-
incidence direction (e.g. latitude, longitude and time) and
(Afr;m(Ad)) — summing up the respective co-incidence error covariance
k matrices. In the case where the variation of the state variable
(ﬁr;m(d)—ir;m(d+Ad)—Mm (d)+M,, (d+Ad)) (17)  under assessment is correlated between two of these dimen-
k sions, the summation has to be replaced by the following

K

and scheme:
tr- = inc: 1, Ceoinc:
<Axr,n(Ad))k Seoine = (1. 1) <§0Tomc,l CSO;n(.:,l,Z) a, |)T’ (20)
R R coinc;1,2> =coinc;2
(o0 (@ @+ Ad) =M, (@) + M, @+AD)) 5 (18)
where the subscripts of the covariance matrisgg...; and
m andn identify the profile gridpoints, and the cross-dimension covarian@®ginc:x,; denote the dimen-
sions along which the variabilities are analyzed. Such corre-
Serrdiff:m.n = 2Sert.m.n» (19) lations may apply, e.g., to the mixing ratio of an inert trace

gas the abundance of which is ruled by transport processes.

tion of temperature retrieved from MIPAS/ENVISAT atmospheric The e_)(lstence o_f.a preval_llng_dlrectl_on of wind in comblna-
Limb-emission measurements, Atmos. Chem. Phys. Discuss., ifion with a prevailing gradient in the field of the state variable

preparation, 2006b. then introduces such correlations.

3Cortesi, U., Blom, C., Blumenstock, Th., et al.: Co-ordinated Another option to handle co-incidence errors in
validation activity and quality assessment of MIPAS-ENVISAT dimensions is to define a norm of the following type
Ozone data, Atmos. Chem. Phys. Discuss., in preparation, 2006. which  transforms the multi-dimensional mismatch

2Ridolfi, M., Blum, U., Carli, B., et al.. Geophysical Valida-

Atmos. Chem. Phys., 6, 431432Q 2006 www.atmos-chem-phys.net/6/4311/2006/
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Ad=(Adi,...,Adr) to a scalar mismatch distance x3_p=(x3_p:1,-.., xg,D;L)T. Those elements are consid-
Ad: ered relevant, whose entries in the rows of either of the 3-
D averaging kernel matrices of the sizexL, Az_p ref and

A3 _pval, are non-zero, i.e., elements of the 3-D field which
are seen by at least one of both instruments. When reshap-
ing the 3-D field to the vectars_p, the ordering is arbitrary
wherew; are weighting factors reflecting the expected vari- but unambiguous and we use the notatitinj, ») for the-
ability of the state variable with the respective direction th element of the vector which represents the element of the

L
Ad= | (wAd)?, (21)
1

Steck et al. (2006) e.g., have used n-th altitude, and thé-th and j-th geolocation in the origi-
> > 5 nal 3-D field. Following the concept dtodgerg2000 but
Ad = \/Along + Ajge + (Atvw) (22) disregarding noise and other measurement errors, the atmo-

spheric state as seen by the instrument to be validated and the

where Ajpng and Ajy are longitudinal and latitudinal mis- !
reference instrument are

match distances) is the mismatch in timey,, is the typ-
ical windspeed. This particular norm holds for analysis ;
of transport-dominated abundances of trace species without
prevailing gradients and wind directions. and

3-Dval = A3-pva*3-D + (I —A3_pva)X3-D.a (23)

3.3 Smoothing %3 D ref = A3_D refx3-D + (I — A3_D ref)X3-D.as (24)

Additional complication arises if the measurements to be€Spectively, wheréis Lx L unity and wherers_p a is the
compared characterize air parcels of non-zero extension i§ommon a priori 3-D information which may be included
the direction ofd. In this case the smoothing error in direc- N the measurements. The differensgs_p of the measure-
tion of d and the co-incidence error can no longer be treatedMeNts caused both by spatial mismatch and different smooth-

as independent. Smoothing error and co-incidence error ar'd characteristics then is
errors of the same nature, since both characterize diﬁerence&is_D = (A3 D val — A3_p.red) (X3-D — X3.D.a) (25)
caused by the fact that two instruments observe different ' ’ e

parts of the atmosphere. The pure co-incidence error dewhere the smoothing component is accounted for by the de-
scribes the error component caused by the variation of theiation of each of the relevant sub-matricesAf_p from
atmospheric state over a distantd between the two dis-  unity, while the co-incidence component causedAw is
joint air parcels observed by the two instruments to be com-accounted for by the different placement of the relevant sub-
pared. Contrary to that, the smoothing error difference quanmatrices in the fullAz_p matrix. The difference profil&x
tifies the error component caused by the different weights ofat the nominal geolocatiofi, j) then has the elements
different parts within one air parcel observed by two instru-

ments. Both error terms can be estimated by one formalisn*» = AX3-D:1¢i,jin) (26)

which includes both the smoothing error application and the.l_his way to calculate the differences can be applied to the
co-incidence error application as well as the case of partly

. ) correction scheme suggested in Ep)(where the difference
overlapping air parcels.

Here we first discuss the quite general case that for bot M (dva)—M (drer) can be replaced by thas values from

q. (26) applied to theAxs p field from Eq. @5), where
e ot k- 1 Qenrted by he mogt. Furler, g5 2529
. 9 P ) can be used to calculate the: (Ad) terms in Eq. 16) which
considered, and where the observed air parcels may or may. . . . .
: I . : . used for a statistical estimate of the residual co-incidence

not overlap. Inclusion of additional dimensions (e.g. time)

. . . - . error after a possible correction. In the latter application, the
is straightforward and will not explicitly be discussed here. . . I,

. TR - . elementSey,,., Of the covariance matri®e,r describing the
Later, some convenient simplifications will be mentioned. v

In a first step, we store all relevant elements of part of the observed differences of pairs of profiles caused by
the 3-dimensional (3-D) fine-resolved field of the at- errors in the 3-D dataset itself rather than its variability/in

. ) . at a given geolocatiofi, j) are calculated as
mospheric state variable under assessment in a vector 9 9 0, /)

4steck, T., Blumenstock, T., Clarmann, T., Glatthor, N., Serdiff;im.n =
Grabowski, U., Hase, F., Hochschild, G.gpfner, M., Kellmann, (AS—D,vaI—AS—D.ref)SB—D(AS—D,vaI—A?,—D,ref)T) (27)
S., Kiefer, M., Kopp, G., Linden, A., Milz, M., Oelhaf, H., Stiller,
G. P, Wetzel, G., Zhang, G., Fischer, H., Funke, B., Wand, D. Y.,whereSz_p is the L x L covariance matrix representing the
Gathen, P., Hansen, G., Stebel, K., KyE., Allaart, M., Redondas  uncertainties of3_p. Equation {6) can then be extended to

Marrero, A., Remsberg, E., Russell lll, J., Steinbrecht, W., Yela, M., describe the combined smoothing and co-incidence error:
and Raffalski, U.: Validation of ozone measurements from MIPAS-

Envisat, in preparation, 2006. (Scoinc + Ssmoothm.n =

1, jm), G, i)

www.atmos-chem-phys.net/6/4311/2006/ Atmos. Chem. Phys., 6, 4320-2006



4316 T. von Clarmann: Validation

1 <i((A3*D val—A3_ D ref) (X3 r_Mst)) (28) ing kernel matrix is negligible. Various retrieval schemes use
K\i= ' ' ’ 1K), j ey, m) x3_p.a=0.
o <(A3—D aAs Do) (Fab r*MS—D)) ) .The gntries oA_g_D relateq to vertical sm(_)othin_g are con-

’ ‘ ' 1G (), j (),m) tained in the profile averaging kernel matrix, which often is
—(A3_D.val—A3_D.re)S3-D(A3_Dval—A3 D ref) s available as part of the diagnostics of the data sets under as-

sessment. For the elements related to horizontal smoothing
wherel((i(k), j(k), n) denotes the position of the point of the situation is different: For nadir sounders and the cross-
the 3 dimensional field in the vector, and whé(g), j(k), line-of sight component of limb sounders, related averaging
andm or n denote the horizontal nominal co-ordinates and components just are identical to the field of view function,
the altitude of thek-th sample pair used to evaluate the com- possibly widened by the horizontal smearing caused by the
bined co-incidence and smoothing error covariance matrixyotion of the instrument while the measurement is made.
M3 p is the 3-dimensional correction model tabulated in |f the field of view is narrower than the horizontal spac-
a vector according to the predefined reshaping conventiofing of gridpoints in the data s, this component can be
(M3-D)kG,jy=Mn(d(i, j)). ignored. The horizontal along-line-of-sight component can

If the Seir matrices vary between the data pairs over whichpe obtained e.g. from perturbational analysis or analytically
the summation in Eqs16) or (28) runs, this has to be taken from 2-D radiative transfer modelling and retrieval tools (see,
into account by appropriate weighting of the terms. e.g.Steck et al.2005 Carlotti et al, 2007). If the horizon-

If an ex ante estimate of the covariance matix pa  tal components oAs_p are not available, they can be ap-
which describes the variability and correlationsxef p is  proximated byRA, whereA is the vertical profile averaging
avaliable, the formalism proposed Wyodgers and Con- kernel matrix, andR the I x N dimensional ray-tracing oper-
nor (2003 for estimation of the smoothing error differ- ator, which maps altitudes, - - -, z, to along-track distances
ence can be directly applied to estimate the combined efdl’ -, dr according to the observation geometry. Elements
fect of smoothing error difference and co-incidence error,of A representing contributions from below the tangent al-
Scoinc +Ssmooth, at & given locationti, j), without evaluation  titude are assigned to the tangent point geolocation. This
of areference data séf: approximation, however, neglects both the mapping of any
horizontal smoothing error onto the retrieved profile, and the
asymmetry of the horizontal averaging kernel around the tan-
gent point of a limb viewing measurement. This approach
has been chosen by Ridolfi et al. (2006land Cortesi et
For particular cases the relationship of smoothing error andhl. (2006§ to account for the horizontal smoothing of MI-
co-incidence error can be simplified due to the nature of meaPAS in the co-incidence correction. These authors have used
surements to be compared. Further, the rigorous approactertically smoothed ECMWF fields as correction model in
often is not possible since the needed data are unavailablgsq. (15) and have considered the horizontal smoothing by
For example X, may not be available as sufficiently high the formalism of Eqs.25-26), whereAs_p ref Was assumed
resolved 3-D field but only as 1- or 2-dimensional cross-unity and wherex3_p 4 was zero.
section. Further, thAs_p averaging kernel matrix may not
be provided along with the data product. Sometimes the rig-
orous approach is inappropriate, because the given data se4s Bijas determination
are not accurate enough to justify the related effort. In this
case, the errors introduced by the approximations may ndo determine the bias between two measurement systems, a
longer be significant. statistical ensemble of measurements is needed. This ensem-

Obvious simplifications are: The instruments may soundble can either be composed Efmatching pairs of measure-
non-overlapping air parcels; this is reflected by disjoint non-ments or random samples &fand L measurements of each
zero entries in the 3-D averaging kernel matrices and, as aeasuring system, respectively.
consequence, correlation terms between the air parcels in
Eq. 27) turn zero. The reference measurement can be a poind.1  Statistical bias determination with matching pairs of
measurement, e.g. an in situ measurement, where no averag- measurements
ing kernel has to be considered; in this case, the reference
data sef, can first be smoothed by application of the matrix The mean difference between measurements to be validated
of vertical averaging kernels and the assessment of the horand co-incident reference measurements can be compared
izontal smoothing and co-incidence error then requires onlywith its statistical uncertainty in order to determine any bias
the horizontal components of the 3-D averaging kernel ma-between the measurement to be validated and the reference
trix. Further,Sz_p may have some diagonal structure, e.g. measurement and its significance. Wikh pairs of co-
because the errors are assumed uncorrelated in geolocatioriscident measurements available, the Bigg between these
Often the cross-line-of-sight component of the 3-D averag-measurements is estimated as (here and henceforth we use

Scoinc:m,n + Ssmooth;m,n = (29)

((AS—D,vaI—A3—D,ref)TSB—D.a(A3—D,vaI—A3—D,ref)> o o
1(i,j;m),l(i,];n)
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the”symbol to denote ex post estimates based on a statisticalre available and the uncertainties are known to vary within
comparison with reference data) the sample, the measurements can be weighted accordingly

K A
Zk=1(xval;k — Xref.k)
K

baift = (30)

The statistical uncertainty of the bias is characterized by the

related covariance matri$yas the elements of which are
estimated as

K ~ = A =
Zkzl(xvalgm,k - Xval;m)(xval;n,k - Xval;n)

Shiasmn =
biasm,n K(K _ 1)
K A = ~ =
Zkzl(xref;m,k - xref;m)(xref;n,k - xref;n) _

K(K —1)

K A = ~ =
Zk:l(xval;m,k - Xval;m)(xref;n,k - Xref;n) _

K(K —1)

K A = ~ =
Zk=1(xval;n,k - xval;n)(xref;m,k - xref;m)
K(K —1)
_Z/le()?val;m,k—)eref;m,k—Ediff:m)()eval;n,k—)Eref;n,k—};diﬁ;n) (31)
- K(K—1) ’
where
K A

= _1 X

Py LIy (32)
K

This assessment does not need any error estimatigg,ar
-’Afref-

The consistence df, and the ex ante estimate of the sys-
tematic errolosys, of the retrieved state parametéy, or of
l;diff;n andoyitt, sysn, respectively, can easily be checked (see,
e.g. Ridolfi et al., 20064 for application to MIPAS temper-
ature validation, or Cortesi et al., 2006or ozone valida-

tion). Evaluation of the significance of the bias then requires

x 2 statistics, where

((Bas) = (i Sysdair) = N. (33)

The consistency of the bias with the ex ante estimates of the

systematic error components can also be evaluated {3/ a
test:

(Xéag = (ifgiff (Suiff,sys + Soiad ~Lhaitr) = N.

Covariance matrixSyi,sys includes the systematic compo-
nents ofSyjs

(34)

Suiff, sys = Sval,sys + Srefsys + Ssmoothsys (3%)

Obviously, neither the root mean squares difference of pro-

files obtained from two measurement systems narkK of

the root mean squares difference are a measure of the signif-

icance of the bias.
If ex ante precision estimates of differences

Suiff . randon=Sval. randontt Sref. randontt Scoine +Ssmoothrandom (36)

www.atmos-chem-phys.net/6/4311/2006/

K

—1
(Z Sdiff,random)k

to determine the weighted bigz
bgr =

k=1

K

;
b

1 o o
Z Sdiff’randomk (xVal;k - xref;k) (37)

)

The bias uncertainty in terms of covariance matrix then is

K -1
L —1
Soias = stiff,randomk ’
k=1

which is an ex ante estimate. Thus, the uségf andSpias
as determined from Eqs38) and @7) for precision valida-
tion (see Sect) is not fully conclusive, because it depends
on typically unvalidated ex ante precision estimates.

The most probable estimate of the multiplicative bias from
a given sample oK measurement paitsl., x andXref., i,
each affected by an additive random error of constant expec-
tation is

(38)

N y .
baitt;n _ bdit;n D g1 fvaknk

K 4 2 - K A 1
—Zkﬂ;’ef"vk Krefn D _g—1 Xrefink

bt mult:n = (39)

This estimator gives larger weight to the ratios determined
from large xvai,.x and Xrer.n k, because their ratio is less
affected by the measurement error. The covariance matrix
Spiasmult. has the elements

v

) _ Tval;m.nOyvgl. ;m Oval: n
Sbiasmult.;m,n =

Xref;mXref;n
Xval;mXval;nTref.m,nOvet. ;y Oret.n

=2
xref;n

=2
xref;m

Xval;mOyg. , Oref. m'n.m

- 2 -
xref; mXrefin

Xval;n Oyl Oref,nF'm.n

e : (40)
Xref,nXref,m
where
K A ~
5— 1 & b = Zk:l(xval;m,k - xval;m)z (41)
val;m \/? val;m K(K — 1) ,
K A ~
v 1. Zk:l(xref;m,k - xref;m)z
Ovetym = Orefm = ’ (42)
’ VK K(K -1
K A = ~ =
Zk:l(xval;m,k - Xval;m)(xval;n,k - Xval;n)
val,m,n = 9 < > (43)
(K — 1)Uval;m0val;n
o Z}f:l(fref;m,k - Eref;m)(fref;n,k - )Tcref;n)
Frefm,n = s (44)

(K - 1)&ref;m5ref;n
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and 5 Precision validation
K ~ = A =
f— Li=1(vatmk — x"f";m)()fre'(‘"’k _ erf‘"), (45) 5.1 Precision determination with matching pairs of mea-
’ (K - 1)0val;mUref;n surements

This gives for the variances

.2 . The expectation value of the root mean squares difference of
Obiasmult;:n = sbiasm“'t snn a pair of measurements of the same atmospheric state is the
accuracy of the difference. In terms of variances and covari-
ances of a profile of differences, this means that

= 2
= x O'
( OVal.n*refin + ref.n*valn
x refn

— 2y 40 aI n ref ,,Xrefnxval n) (46) <(£Val;m - fref;m)(fvalgn - fref;n)) = Sdiff;m,n- (52)

The simplified expression For accuracy validation, this can be rewritten in termg &f

X __ Obiasn 47 statistics, where the actugf is evaluated from a sample of
Thretn = 2 (47)  sizek of profiles with N altitude gridpoints each:

ignores the uncertainty Gfre,,,. 2 R R Tl » R

Only if the expected errors of the differences are propor- (X )=<Z(xval;k_xfefzk) Saiff (¥val:k —%*ref.x))=K x N (53)
tional to reference values, the mean relative deviation of a k=1
state parameter, at altitude gridpoint is calculated as If, however, there is a biaBgi between the measurement

ZK Rvalnk—Rrefnk systems, this should be evaluated in a preceding step (see
ho— = k=1 Rretnk ] (48) Sect4, Eq.30) and removed in order to validate the precision
dliff, mult; K of the measurement rather than the accuracy. This leads to

is a better estimate of the multiplicative bias, because in thighe following x ? statistics:
case the uncertainty of each of the ratios is equal, requiring
equal weight of each ratio in the average. The elements of it%(z

K
- . Y Tl
: . = Xval-k —Xref-k —bdiff) " Sy
covariance matrix are calculated as ) <Z( vakk —%refk—Dbdiff )" Sgitr random

=1
Sbiasmult;m,n — (Xval;k—Xref.k—bdiff )
K Rvalmk—Frefm.k Rvalnk —Xrefin.k — _
Lt Pt ™ i) (4 (K=DN (54)
K(K—1) ’

S4iff random iS the random component & according to

4.2 Bias determination by statistical comparison of randomEg. (14) and bgir has been estimated from the same sam-
samples ple (see, e.g. Ridolfi et al., 2006kor application to MIPAS

temperature validation, or Cortesi et al., 2806r ozone

It is not necessary to use matched pairs for validation. Ranvalidation).

dom samples are sufficient but any sampling artefacts have \while Eq. 63) can be evaluated for single profilek (=

to be carefully excluded. A parametrization as suggested in), Eq. 64) needs a sample of profilex &1) in order to

Sect.3.2, Eq. (15 may help to reduce systematic sampling distinguish between precision and bias, unless an altitude-

errors.
. . . independent bi =(bgiff, ...,b is assumed, where
When two instruments provide large but independent, " abar=(bai ai)"

i.e. unmatched, random samples of measurements, the bias ZN 1 GRvatn — Zrefin)
n= : ;

can be determined as the difference of respective mean vakdift = N (55)
ues:
K & L & Equation b4) then reads
M —1 Xvalk —1 Xref.] = =
bdifr = Lizifvabk _ 2iz1kre = Xval — Xref, (50)

K L 2
. _ (x%)
whereK andL are the respective sample sizes. The respec-
tive covariance matrix has the elements

= ((ival —X ref—zdiff ) r S&# , random(fval—-’z'ref—zdiff )
=N-1 (56)

Z,f:l()%\,akm,k—ivahm,k)()?\,aL,,,k —Xvaln.k) 5.2 Precision validation by comparison of random samples

S:biaSm,n = K(K — 1) (51)
The scatter of a sample of measurements is composed of both
Zz 1(Rretnd — Fretm.t) (Rrefnd — Frefn, l) the measurement random error (characterized by covariance
L(L-1 matricesSrandomval OF Srandomref, fespectively) and the nat-
Obviously, any non-randomness of the samples can cause arral variability (characterized by its covariance matBygy).
apparent bias or hide an existing bias. The natural variability of two randomly sampled data sets,
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however, is the same, regardless if we observe the atmof What if full retrieval error covariance matrices are
sphere with the one or the other instrument. Thus, we have not available?

to verify
. . Without ex ante estimates of the profile covariances avail-
Sval,nat = Svalsample— Sval random able, we cannot draw any quantitative conclusion on the re-
= Sef,samp|e— Sref random liability of the retrieved profiles in the sense pf statistics.
_& (57) Often, however, after debiasing, there are at least no horizon-
ef.nat tal error correlations to be considered. Then, state variables
where the elements é/atsammeare can be compared angf statistics can be set up for a large

ensemble of size K of scalar measurements to be validated
Xvaln.k @nd reference measuremeritss, r at a single se-
lected altitudez(n). This corresponds to “map validation”
. instead of “profile validation”. All formulation discussed in
and where the elements 8. sampleare this paper then is applied to the particular case wierel.
L oA = . = x2-testing in this application leads to a valid conclusion on
> 121 (Rrefom,i—Xref.m) (Krefon, 1 —Xrefn) . (59) the reliability of a measuremetia,, at the selected altitude
L—-1 z(n). Of course, this procedure can be performed for all al-
Testing if related variances are equal can be performed witfiitudes of interest independently. We consider a profile mea-
the F-test (see, e.gPress et a).1989. Care must be taken surement system validated if we can validate the values at
that the samples are really random samples of the same pogach altitude. If, after debiasing, correlations in the time do-
ulation. Further, this strategy discussed here is particularlynain can be excluded, the rationale outlined above also can
sensitive to an artificial reduction of the variability of one be applied to time series validation. Ridolfi et al. (2066b)
of the measurement data sets through the use of retrievdlave combined the map validation and time series valida-
schemes involving Bayesian statistics, where each singléion approach by statistically analyzing differences between
profile is pushed towards some a priori information (see, e.gMIPAS temperatures and radiosonde temperatures from two
Rodgers 200Q for application of Bayesian statistics to re- Stations measured at various times. The statistical analysis
trieval theory). Beyond this, the result of tifetest is partic- ~ was peformed for altitude bins defined such that each MI-
ularly sensitive to deviations of the actual distributions from PAS limb scan (i.e. each profile) was represented only once
normal distributions. While the approach proposed here igh each bin, justifying to disregard any error correlations in
valid theoretically, these inherent traps make it difficult to altitude.
use, and the author is not aware of any actual application to
atmospheric measurements.

K .~ = ~ =
Zk:l(xval;m,k —Xval;m)(xval;n,k —xval;n)
K-1

(58)

Sval,samplen,n=

Sref,samplem,n =

8 Conclusions

6 Comparison of a single measurement with a random  Recipes and terminology for statistical validation of a profile
sample of measurements measurement system have been suggested which cover both
bias and precision validation and which are applicable to both
matched pairs of co-incident measurements and random sam-
les of measurements. Further, a recipe has been suggested
o validate profile measurements in a statistical rigorous way
even if their full profile covariance matrices are not avail-
able. While in real life it will not always be possible to apply
x% = (Fval — Zren” (Sval.ensemblet Sialsys+ Srefsir thgse a_pprpaches at full rigorosit_y, valll?dat.ion scigntists cer-
1= . tainly will find workarounds and simplifications. It is hoped
+Ssmoothdiff) ~ (Xval — Xref) (60)  that this paper at least supports better communication in the
whereSsmoothditf Characterizes the applicable smoothing er- Validation community by suggesting a more or less consis-
ror difference, an(é\/al,ensembleis the ex post ensemble co- tent terml_nology. Further, ad hoc vall_d_atlon a_ppro_aches may
variance matrix of the measurements to be validated. Its eleS€Ve their purpose better, once clarified which rigorous ap-

If only a single profile measurement is available which does
not co-incide with any of the measurements to be validated
it can be checked if this single profile measurement belong
to the distribution defined sample of sikeof the measure-
ments to be validated. The applicalyé test then uses

ments are calculated as proach they are meant to replace.
5 _ i (Bval:m k —Svatm) Gvatn k—Svatn) (61) AcknowledgementsThe author would like to thank S. Ceccherini,
"a"e”s‘emb'e"*”_kil K—1 : K.-H. Fricke, S. Mikuteit, M. Ridolfi, G. Stiller, and the reviewers

for helpful comments.

Again, considerations as outlined in the context of Bdf) (
may apply. Edited by: P. Hartogh
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