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Abstract. Spectral aerosol light absorption is an impor-
tant parameter for the assessment of the radiation budget
of the atmosphere. Although on-line measurement tech-
niques for aerosol light absorption, such as the Aethalometer
and the Particle Soot Absorption Photometer (PSAP), have
been available for two decades, they are limited in accuracy
and spectral resolution because of the need to deposit the
aerosol on a filter substrate before measurement. Recently, a
7-wavelength (λ) Aethalometer became commercially avail-
able, which covers the visible (VIS) to near-infrared (NIR)
spectral range (λ=450–950 nm), and laboratory calibration
studies improved the degree of confidence in these measure-
ment techniques. However, the applicability of the laboratory
calibration factors to ambient conditions has not been inves-
tigated thoroughly yet.

As part of the LBA-SMOCC (Large scale Biosphere atmo-
sphere experiment in Amazonia – SMOke aerosols, Clouds,
rainfall and Climate) campaign from September to Novem-
ber 2002 in the Amazon basin we performed an extensive
field calibration of a 1-λ PSAP and a 7-λ Aethalometer uti-
lizing a photoacoustic spectrometer (PAS, 532 nm) as refer-
ence device. Especially during the dry period of the cam-
paign, the aerosol population was dominated by pyrogenic
emissions. The most pronounced artifact of integrating-plate
type attenuation techniques (e.g. Aethalometer, PSAP) is due
to multiple scattering effects within the filter matrix. For
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the PSAP, we essentially confirmed the laboratory calibra-
tion factor by Bond et al. (1999). On the other hand, for
the Aethalometer we found a multiple scattering enhance-
ment of 5.23 (or 4.55, if corrected for aerosol scattering),
which is significantly larger than the factors previously re-
ported (∼2) for laboratory calibrations. While the exact rea-
son for this discrepancy is unknown, the available data from
the present and previous studies suggest aerosol mixing (in-
ternal versus external) as a likely cause. For Amazonian
aerosol, we found no absorption enhancement due to hygro-
scopic particle growth in the relative humidity (RH) range
between 40% and 80%. However, a substantial bias in PSAP
sensitivity that correlated with bothRH and temperature (T)
was observed for 20%<RH<30% and 24◦C<T<26◦C, re-
spectively. In addition, both PSAP and Aethalometer demon-
strated no sensitivity to gaseous adsorption. Although very
similar in measurement principle, the PSAP and Aethalome-
ter require markedly different correction factors, which is
probably due to the different filter media used. Although
on-site calibration of the PSAP and Aethalometer is advis-
able for best data quality, we recommend a set of ”best prac-
tice” correction factors for ambient sampling based on the
data from the present and previous studies. For this study,
the estimated accuracies of the absorption coefficients deter-
mined by the PAS, PSAP and Aethalometer were 10, 15 and
20% (95% confidence level), respectively.
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1 Introduction

The Intergovernmental Panel on Climate Change (Penner
et al., 2001) has identified radiative forcing by aerosols as
one of the major uncertainties in the global radiation bud-
get. While light scattered by aerosols cools the atmosphere
(negative radiative forcing), absorbed electromagnetic radi-
ation contributes to a positive radiative forcing. In addition
to the direct heating of the atmosphere due to light absorp-
tion, there is a semi-direct effect as a result of the enhanced
dissipation of clouds in the vicinity of heated aerosol layers
(Ackerman et al., 2000; Penner et al., 2001). The latter may
have significant implications on regional and global precip-
itation patterns. Despite its significance, light absorption by
atmospheric aerosol is relatively poorly characterized in part
due to a lack of reliable instrumentation.

Aerosol light scattering and absorption can be character-
ized by the scattering and absorption coefficients,σ s and
σ a , respectively, which describe the decrease of light inten-
sity per distance and are therefore given in units of inverse
meter (or here inverse megameter 1 Mm−1=10−6 m−1). For
aerosols in the diameter range between 10 nm and∼2.5µm,
as considered here, bothσ s andσ a are complex functions
of particle size and shape as well as the degree and kind of
mixing with other particles (internally and externally mixed)
(Bohren and Huffman, 1983; Fuller et al., 1999). While re-
liable in-situ measurement techniques for light scattering by
aerosols have been available for several decades (Heintzen-
berg and Charlson, 1996), light absorption is by nature a
more elusive property, since during the absorption process
photons are converted into thermal energy, which makes it
impossible to detect them directly. Historically, two main
approaches have been applied to experimentally determine
σ a , namely the filter-based attenuation and the difference
method (Horvath, 1993). The former involves deposition of
aerosols onto a filter substrate and measuring the change in
light attenuation through the filter as sample aerosol is de-
posited. Commercially available instruments of this type are
the Aethalometer™ (Hansen et al., 1984) and Particle Soot
Absorption Photometer (PSAP) (Bond et al., 1999). How-
ever, due to aerosol-filter interactions these instruments re-
quire site-specific calibration factors (Liousse et al., 1993;
Petzold et al., 1997; Ballach et al., 2001; Arnott et al., 2005)
that have most frequently been determined by intercompar-
ison measurements with the difference method. The dif-
ference method determines light absorption of particles in
their suspended state from the difference of extinction and
scattering typically measured by an optical extinction cell
and an integrating nephelometer, respectively. (Reid et al.,
1998; Bond et al., 1999; Weingartner et al., 2003; Arnott et
al., 2005). Employing the difference method for field stud-
ies is problematic due to the low absorption coefficients en-
countered under ambient conditions (frequently less than the
detection limit of about 20 Mm−1) and the large measure-
ment uncertainties (>25%; Schnaiter et al., 2005) for single

scattering albedos typical for ambient aerosols (larger than
∼0.7). Recently, Petzold and Schoenlinner (2004) have in-
troduced a novel filter-based absorption technique, the multi-
angle absorption photometer (MAAP), that measures not just
light transmission through (as the Aethalometer and PSAP)
but also angular reflection from an aerosol-laden filter and
combines it with a two-stream-approximation radiative trans-
fer scheme to account for filter-particle interactions (Petzold
et al., 2005).

All methods described above are not only sensitive to light
absorption but also to scattering effects that have to be ade-
quately accounted for to yield reliable absorption values. In
contrast, the photoacoustic spectrometer (PAS) (Truex and
Anderson, 1979) is sensitive to absorption only, since it mea-
sures an acoustic signal that originates from the thermal re-
sponse of irradiated particles due to light absorption. The
measurements are performed on aerosols in their suspended
state, i.e., filter artifacts do not occur. Recent laboratory cali-
bration experiments with kerosene- and spark-generated soot
have shown excellent agreement (better than 10%) between
the PAS and the difference method (Schnaiter et al., 2005;
Sheridan et al., 2005; Virkkula et al., 2005). In addition, un-
like any other absorption technique the PAS can be calibrated
on-site with a calibration gas (Arnott et al., 2000).

This study is the first of two parts on spectral light ab-
sorption by ambient aerosols in the Amazon Basin measured
during the SMOCC field campaign from 9 September to 14
November 2002. Part I reports on the field intercompar-
ison of a 7-λ Aethalometer (λ=450 to 950 nm) and a 1-λ

PSAP (565 nm) with a 1-λ photoacoustic spectrometer (PAS,
532 nm) as reference device. The principle, operation and
performance of all three absorption instruments are briefly
discussed and the multiple scattering and filter loading cor-
rection for the Aethalometer and PSAP are determined. Fi-
nally, for the latter two devices, the effects of relative humid-
ity, single scattering albedo and gaseous adsorption onto the
filter substrate are investigated. A detailed discussion of the
spectral absorption properties of Amazonian aerosol will be
provided in the Part II of this paper.

2 Experimental

2.1 Measurement site and period

¿From 9 September to 14 November 2002 the Large Scale
Biosphere-Atmosphere Experiment in Amazonia – Smoke,
Aerosols, Clouds, Rainfall and Climate (LBA-SMOCC)
campaign was conducted in the state of Rondônia, Brazil
(Andreae et al., 2004). The measurement station was lo-
cated on the Fazenda Nossa Senhora Aparecida (10.76◦ S,
62.32◦ W, 315 m a.s.l.), a pasture site in the south-western
part of the Amazon Basin about 50 km north-west of Ji-
Parana (10.88◦ S, 61.85◦ W, 235 m a.s.l.;∼110 000 inhab-
itants) (Andreae et al., 2002). While the area around
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FNS is predominantly grassland, the site is affected by the
widespread vegetation fires due to fire-assisted land-clearing
activities in the Amazon Basin during the dry season (June–
October). The measurement period was selected such that
both dry season and wet season data could be collected. Here
we will distinguish between three periods: the dry period
from 9 September to 8 October (end of dry season), a dry-
to-wet transition period from 9 October to 30 October, and
the wet period from 1 November to 14 November (begin-
ning of wet season). While the dry period is heavily in-
fluenced by biomass burning events, this burning signature
is significantly reduced in the transition period and reaches
even lower levels in the wet season.

2.2 Setup

A comprehensive suite of aerosol, gas phase and meteoro-
logical parameters was measured during the SMOCC cam-
paign. Here we focus on instrumentation for aerosol light
absorption measurements. As mentioned above, aerosol light
absorption was measured with three different instruments: a
1-λ photoacoustic spectrometer (PAS, 532 nm), a 1-λ Parti-
cle Soot Absorption Photometer (PSAP, Radiance Research,
565 nm) and a 7-λ Aethalometer (AE30, Magee Scientific,
450 to 950 nm). In addition, two integrating 1-λ nephelome-
ters (Radiance Research, M903, 545 nm) were used to mea-
sure aerosol light scattering (Chand et al., 2006).

The aerosol inlets (Rupprecht & Patashnick; inlet for the
TEOM 1400) were located∼1 m above the roof top of the in-
strument hut (∼7 m above the ground). They were equipped
with a 1.5 or 10µm impactor, i.e., we sampled particu-
late matter either below 1.5 or 10µm aerodynamic diameter
(PM1.5 and PM10, respectively).

The PSAP, PAS and one of the nephelometers were sam-
pling from the same Rupprecht & Patashnick PM10 inlet
equipped with an additional 1.5µm impactor. Prior to parti-
cle detection the aerosol was dried toRH<45% by a Nafion
membrane counter-flow drier (Permapure, Inc.) and then
passed through the 1.5µm impactor. The particle loss in the
Nafion drier (<5% for 50 nm<Dp<700 nm) and the cut-off
characteristics of the 1.5µm impactor were experimentally
determined after the campaign with dry ammonium sulfate
particles. Both the absorption and scattering coefficient (σ a

andσ s , respectively) were corrected for line losses (on aver-
age∼2.5%) utilizing the measured particle loss, the dry par-
ticle size distributions and the Mie code described by (Guyon
et al., 2003a). Particle loss in the connecting stainless steel
transport lines was considered negligible in the size range of
interest for aerosol optical properties (30 nm to 10µm diam-
eter), since for each instrument the length of the connecting
tubing was below 10 m and the flow conditions were kept
laminar. All flow rates were regularly calibrated to an es-
timated accuracy of about 2% with a positive displacement
flow meter. The sampling flow rates of the PSAP, PAS and
nephelometer were 0.2–0.4, 0.8 and 1.0–1.2 L min−1, respec-

tively. Although the flow rates for the PSAP and nephelome-
ter were smaller than specified by the manufacturer (to allow
for more efficient drying of the sample flow and longer life-
time of the PSAP filter) we have not seen a systematic change
in instrument response when the flow rate was increased to
manufacturer specifications (PSAP: 1 to 4 L min−1; neph-
elometer: 10 L min−1). The time resolution of the PSAP,
Aethalometer, PAS and nephelometers was 1 min,∼15 min,
10 s, and 1 min, respectively. For the calibration of the PSAP
and Aethalometer using the PAS, we converted all data to the
sampling rate of the slowest device, the Aethalometer. The
Aethalometer and the other nephelometer were operated with
non-dried PM10 aerosol at a flow rate of about 6.6 L min−1

and 7 L min−1, respectively. We will refer to these operat-
ing conditions as “ambient”, although the term “non-dried”
is more accurate, since the absence of an active drying pro-
cedure led to operational relative humidities (RH) that were
somewhat lower than ambientRH due to slightly elevated in-
strument temperatures, especially during nighttime. While
during the dry and warm daytime conditions ambient and
instrumentRH were within a few percent, the differences
reached about 20% during nighttime when ambientRH was
close to 100%, but instrumentRH only reached about 80%.

Since the Aethalometer and the PAS were operated under
differentRH conditions and from inlets with different cut-off
diameters (PAS: PM1.5; Aethalometer: PM10), we have to
consider these differences when comparing the Aethalome-
ter with the PAS. The effect ofRH on Aethalometer per-
formance is negligible as will be discussed below. Regard-
ing the size cut-off we utilized the size-segregated aerosol
mass information provided by a collocated MOUDI impactor
(Marple et al., 1991). The relative mass contribution of the
1.8 to 10µm size segment (stage 2+3 of the MOUDI im-
pactor) to PM10 (stages 2 to 10) was on average 7.6% (dry
period) and 14.9% (transition period). Considering that most
of the absorbing material (black carbon) is found in PM1.5
and that the mass specific absorption cross section decreases
with size for supermicron particles (Horvath, 1993), the cut-
off-related systematic difference between Aethalometer and
PAS signal is expected to be considerably less than 8 and
15% for the dry and transition period, respectively. We will
see below that these difference are negligible compared to
other effects. Since the PSAP and PAS were operated from
the same inlet, no such considerations are necessary for the
PSAP. Unless stated otherwise, all data are referenced to
1000 hPa and 298.2 K.

2.3 Photoacoustic spectrometer (PAS)

2.3.1 Principle of operation

The photoacoustic spectrometer (PAS) determines aerosol
light absorption by converting the absorbed energy into
an acoustic wave detected by a sensitive microphone (Ter-
hune and Anderson, 1977). While passing aerosol through
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an acoustic resonator, a power-modulated laser periodically
heats the aerosol, which leads to periodic thermal expansions
and hence pressure pulses (acoustic wave). Using a cali-
brated microphone the pressure amplitudePm of this acous-
tic wave is measured and the nominal absorption coefficient
σPAS,raw can be calculated according to (Rosencwaig, 1980)

σPAS,raw = Pm

π2Aresf0

PLQ̃ (γ − 1)
, (1)

whereAres, f0, andQ̃ are the cross sectional area, the acous-
tic resonance frequency, and the quality factor of the res-
onator, respectively, andPL andγ are the modulated aver-
age laser power and the ratio of the isobaric and isochoric
specific heats of the carrier gas (γair=1.4), respectively.

2.3.2 Technical details

The device used here, a refined version of the PAS described
by Arnott et al. (1999), was optimized for atmospheric appli-
cations by maximizing the signal to noise ratio. The PAS uti-
lizes a frequency-doubled diode-laser-pumped Nd:YAG laser
(λ=532 nm), which is power-modulated by a chopper at the
resonance frequency of the acoustic resonator (f0=1500 Hz).
The modulated laser power ofPL

∼=60 mW is continuously
monitored (after passing through the resonator) by a photodi-
ode mounted on an integrating sphere. The length and cross-
sectional area of the resonator are 24.86 cm and 2.18 cm2,
respectively. To avoid potential systematic errors due to tem-
perature and pressure drifts inf0 andQ̃(∼75), bothf0 and
Q̃ are continuously measured and optimized for acoustic res-
onance utilizing a piezoelectric disc. SincePm, PL, f0 andQ̃

are directly measured by the PAS, all parameters of Eq. (1)
are known and the absorption coefficient can be calculated
without any device-specific calibration factor as typical for
most filter-based absorption techniques. From the experi-
mental uncertainties in these measurement parameters we es-
timated the overall uncertainty ofσPAS,raw as 5%. To opti-
mize the signal to noise ratio (and hence the lower detec-
tion limit) the acoustic noise was minimized passively by
(1) using absorbing materials, (2) avoiding turbulent flow
conditions and sharp bends in the connecting tubing, (3) in-
stalling an acoustic filter at the inlet of the resonator (two vol-
umes with different acoustic resonance frequency, i.e., low
and high pass filters in series) and (4) acoustically isolat-
ing the sample pump from the resonator by a critical ori-
fice. It is also noteworthy that, while the sample flow rate
(here 0.8 L min−1) affects the response time of the PAS (here:
<10 s), it does not enter Eq. (1), i.e., the sample flow rate is
irrelevant for the measuredσ a .

2.3.3 Calibration and intercomparison with difference
method

In general the acoustic signal of the PAS may originate from
absorbing particulate or gaseous components. Hence, in

contrast to filter-based absorption techniques, photoacoustic
sensors can be calibrated utilizing the well-known absorp-
tion properties of gaseous components. Recently, Arnott et
al. (2000) have introduced a calibration procedure, which
does not require any information beyond the data stream
provided by the PAS itself. To rationalize this method it
is important to note that during normal operation of the
PAS, the extinction of the laser light in the acoustic res-
onator is due to both absorption and scattering effects by
particulate and gaseous components, while the acoustic sig-
nal responds to absorption only. By introducing a particle-
free absorbing calibration gas (here∼1000 ppm NO2 in air;
σ a∼330 000 Mm−1) particulate effects are eliminated and
the extinction of the laser light and the acoustic signal depend
on gaseous effects only. Since for the calibration gas, scat-
tering is small (Rayleigh scattering coefficient∼10 Mm−1 at
normal conditions) compared toσ a , both the mitigation of
the laser light and the acoustic signal solely depend on ab-
sorption, i.e., Lambert-Beer’s law can be used to derive a
reference absorption valueσLB

PL = PL,0 exp(−σLBL) , (2)

whereL (=0.2486 m) is the optical length of the resonator
andPL andPL,0 are the laser intensities with and without
NO2 in the resonator, respectively, that can be determined by
the photomultiplier of the PAS. It is evident from Eq. (2) that
σLB is completely independent of the photoacoustic signal of
the PAS and that neither the concentration nor the absorption
cross section of NO2 is required. The only requirement is
that, on the one hand, the NO2 concentration is large enough
to neglect Rayleigh scattering and to introduce a measurable
change inPL and, on the other hand, the NO2 concentration
is small enough not to exceed the linear response range of
the microphone. As mentioned above, for the SMOCC cam-
paign, we used∼1000 ppm of NO2 in synthetic air as cali-
bration gas, which corresponded to an absorption coefficient
of σPAS,raw ∼330 000 Mm−1. By progressively diluting the
calibration gas with filtered air, we confirmed that the micro-
phone was linear up to at least 330 000 Mm−1, i.e., over a
dynamic range of more than five orders of magnitude.

Figure 1 illustrates a PAS calibration cycle where
each of the data points represents an averaging pe-
riod of ∼6 s. The zero signal is determined with
particle free air. When the particle free air is re-
placed by the calibration gas (at measurement point 10),
the photoacoustically determined absorption coefficient
(σPAS,raw; see Eq. 1) increases abruptly from 0.5±1.2 Mm−1

to 330 000±3000 Mm−1 (average and standard devia-
tion), while the laser intensity (after passing through
the resonator) decreases fromPL,0=61.631±0.009 mW to
PL=56.870±0.014 mW, which according to Eq. (2) corre-
sponds toσLB=323 000±1000 Mm−1. When at measure-
ment point 24 the PAS is purged with particle free air again,
bothσPAS,raw andPL return to their initial values. Compar-
ing σPAS,raw andσLB we find thatσPAS,raw is 2.2% larger

Atmos. Chem. Phys., 6, 3443–3462, 2006 www.atmos-chem-phys.net/6/3443/2006/



O. Schmid et al.: Field calibration of aerosol absorption measurement techniques 3447

0.0E+00

1.0E+05

2.0E+05

3.0E+05

4.0E+05

0 5 10 15 20 25 30 35

Measurement Number

 σ
PA

S,
ra

w
 (M

m
-1

)

56

57

58

59

60

61

62

63

64

P
L (

m
W

)

~ 1000 ppm NO2(Particle free) air

σPAS,raw
PL

(Particle free) air

Fig. 1. Response of the PAS during a NO2 calibration cycle, where
σPAS,raw (stars) andPL (triangles) are the photoacoustically deter-
mined absorption coefficient and the laser power, respectively.

thanσLB (at a precision of 1.0%), which is well within the
estimated overall uncertainty of the PAS (5%). Again we
note that this simple two-point calibration procedure does not
rely on any external calibration standard nor does it require
exact knowledge of the NO2 concentration or any other in-
formation not provided by the data stream of the PAS.

As an additional measure of quality assurance we per-
formed laboratory experiments with various types of aerosols
comparing the absorption coefficient of the PAS to the dif-
ference of extinction (σ e) and scattering (σ s) determined
by an optical extinction cell, the Long Path Optical Extinc-
tion Spectrometer (LOPES), and an integrating nephelometer
(TSI, model 3563), respectively. To optimize the accuracy of
the difference method, systematic biases due to e.g. the fi-
nite acceptance angle of the extinction cell and the angular
non-idealities of the nephelometer were taken into account
(Schnaiter et al. 2005). Figure 2 depicts the measured ab-
sorption coefficients for pure soot particles (solid symbols)
and soot particles coated with non-absorbing materials (or-
ganic and inorganic; open symbols), where the organic coat-
ing was produced by ozonolysis ofα-pinene, which among
other organic compounds generates pinic and pinonic acids
(Saathoff et al., 2003). The absorption coefficients measured
by the PAS and the difference method agree well for both
pure soot particles (Diesel and spark-generated [PALAS]
soot) and coated soot particles (slope = 0.972±0.022). This
confirms the results from a previous laboratory study which
was performed on pure soot and biomass burning aerosols
(Schnaiter et al., 2005).

2.3.4 Data reduction and accuracy

The main sources for systematic uncertainties of the PAS un-
der field conditions are zero point instabilities and the cross-
sensitivity to ambient NO2. Since this may result in a vari-
able zero-point offset, the instrument offset was repeatedly
determined by zero calibrations using filtered (particle-free)
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Fig. 2. Comparison of absorption coefficients determined by the
PAS and the difference method (extinction minus scattering,σ e –
σ s) for both pure (Diesel and spark-generated (PALAS) soot) and
coated soot particles (internally mixed aerosols).

ambient air for 10 to 30 min (at least) twice a day. We
corrected for the NO2 cross-sensitivity utilizing the ambi-
ent NO2 mixing ratios continuously measured by a Model
42CTL NO/NOx monitor (Thermo Environment Instruments
Inc.) (Kirkman et al., 2002). For the same Nd:YAG
laser as used here, Arnott et al. (2000) determined a NO2
specific absorption coefficient of 0.306±0.015 Mm−1 ppb−1

(156 000±1000 Mm−1 for 509 000±25 000 ppb of NO2) at
846 hPa and 294.7 K. Hence, the NO2-induced PAS offset
can be expressed as

σNO2 = 0.306
p

846hPa

294.7K

T
cNO2Mm−1ppb−1

= BNO2
p

T
cNO2, (3)

where the lump constant BNO2 equals
0.107±0.005 K hPa−1 ppb−1 Mm−1 and p, T and cNO2
are the operating pressure, temperature and NO2 (volume)
mixing ratio, respectively. Based on these considerations
each time layer of the PAS data was corrected for zero offset
and NO2 sensitivity according to

σPAS = σPAS,raw − σ0 − BNO2

(
p

T
cNO2 −

p0

T0
cNO2,0

)
, (4)

whereσPAS,raw is given by Eq. (1) andσ 0 and cNO2,0 are
σPAS,raw andcNO2 during the PAS zero calibration, respec-
tively. Since the zero calibration is performed with particle-
free, but not NO2 denuded air, it is also necessary to include
thecNO2,0 term which accounts for the NO2 bias inσ 0. Dur-
ing the dry period of the SMOCC campaign, the period with
the largest NO2 contribution, an average of 6.5% of the PAS
signal could be attributed to NO2. However, since not the ab-
solute NO2 concentration but the deviation fromcNO2,0 en-
ters Eq. (4), the NO2 correction term was typically less than
1% ofσPAS, except for a few instances where sudden drastic
changes in pollution levels intermittently enhanced the NO2
correction term to up to 20%.
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In addition to NO2 interference, the PAS data may be bi-
ased by (partial) aerosol volatilization due to laser-induced
particle heating, since the latent heat of vaporization would
reduce the amount of laser energy generating the acoustic
wave and hence reduce the apparentσPAS (Raspet et al.,
2001). For a PAS similar to the one used here, Arnott et
al. (2003) showed that for atmospheric aerosol with a del-
iquescence point ofRH∼60% the volatilisation effect was
negligible (<10%) up toRH levels of about 80%. Consider-
ing the relatively small average hygroscopic diameter growth
during SMOCC (<1.04 forRH<45%; (Rissler et al., 2006)),
we anticipate no bias in the PAS signal due to water evapo-
ration. This is corroborated by the absence of a phase shift
between PAS microphone signal and oscillating laser power
during the SMOCC campaign, which also indicates a neg-
ligible PAS bias due to mass transfer effects (Arnott et al.,
2003).

Based on these considerations we estimate the accuracy
of the PAS under field conditions as better than 10% (95%
confidence level) forσPAS>10 Mm−1, which is larger than
the 5% accuracy achieved under controlled laboratory condi-
tions, since it includes the uncertainties due to unavoidable
instabilities in operating conditions. For averaging periods
of 5, 15 and 60 min, the instrument noise (precision) was
1.1, 0.7 and 0.4 Mm−1 (95% confidence level), respectively,
which results in a lower detection limit (three times the 1σ

noise level) of 1.6, 1.1 and 0.6 Mm−1, respectively.

2.4 Aethalometer

2.4.1 Principle

The 7-λ Aethalometer (AE30, Magee Scientific) measures
light attenuationATN at seven wavelengths (450, 571, 590,
615, 660, 880, and 950 nm, where the 571 nm channel had
to be discarded for reasons discussed below) through an
aerosol-laden quartz filter based on (Hansen et al., 1984)

ATN = 100 ln

(
I0

I

)
, (5)

whereI andI0 are the light intensities transmitted through
the particle-laden and a blank spot of the filter, respectively.
If aerosol is deposited onto the filter for a time period1t, the
attenuation coefficientσATN is given by

σATN =
A

100Q

1ATN

1t
, (6)

whereA is the area of the aerosol-laden filter spot andQ

is the volumetric sampling flow rate. The standard output
protocol of the manufacturer provides equivalent black car-
bon mass concentrationBCATN (g m−3), which is determined
from σATN according to

BCATN =
σATN

αATN
(7)

and

αATN

[
m2g−1

]
= 14 625

/
λ [nm], (8)

where the spectral mass specific attenuation cross-section
αATN is based on a calibration at 880 nm utilizing the
Malissa-Novakov method, a solvent-based thermal desorp-
tion method for elemental carbon analysis (Gundel et al.,
1984). Since the reliability of thermal desorption methods
is still under debate (Schmid et al., 2001), we avoid the re-
sulting uncertainties by limiting our investigation toσATN ,
the primary measurement parameter of the Aethalometer.
Hence, each 15 minBCATN value was converted intoσATN
according to Eqs. (7) and (8).

2.4.2 Relating attenuation and absorption

It is well-known thatσATN is generally larger thanσ a due to
optical interactions of the filter substrate with the deposited
aerosol (Petzold et al., 1997; Kopp et al., 1999; Ballach et
al., 2001; Weingartner et al., 2003; Arnott et al., 2005). The
most significant filter-particle interactions and the resulting
biases are: (1) multiple scattering of light at the filter fibers
enhances the optical path length and hence imposes a positive
bias onσATN , (2) enhanced absorption of scattered light with
increasing filter loading reduces the optical path length and
hence reducesσATN , and (3) the filter reflectance (scatter-
ing in backwards hemisphere) and hence the measured ATN
depends on the optical properties of the deposited particles
(bias inσATN depends on physico-chemical properties of the
particles).

Recently, Weingartner et al. (2003) (henceforth referred to
as W2003) have shown that the absorption coefficient deter-
mined by the Aethalometer (σ aeth) can be expressed as

σaeth=
σATN

C R (ATN)
, (9)

where the constant factorC (≥1) corrects for multiple light
scattering effects within the filter andR(ATN) (≤1) accounts
for the “shadowing” effect due to filter loading (decrease in
Aethalometer sensitivity). Since the shadowing factor (R) is
small for lightly loaded filters (ATN<10), C can be deter-
mined from (W2003)

C =
σ10

σPAS
, (10)

whereσ 10 represents allσATN values with ATN<10 (i.e.,
R≈1) andσPAS is the PAS-based (reference) absorption co-
efficient. Furthermore, the loading correction can be ex-
pressed as (W2003)

R (ATN) =

(
1

f
− 1

)
ln ATN − ln 10

ln 50− ln 10
+ 1, (11)

where the shadowing factorf is a parameter that depends
on the type of aerosol and ATN is measured directly by the
Aethalometer (W2003). Setting ATN=10 for all ATN values
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smaller than 10,R is equal to unity, i.e. the loading is so small
that there is no effect of filter loading on the performance of
the Aethalometer. On the other hand, for ATN>10, R de-
creases with ATN. The steepness of this decrease depends on
the factorf . As seen from Eq. (11), iff =1 we find thatR is
equal to unity independent of ATN, i.e. the aerosol deposited
onto the filter has no effect on the Aethalometer performance.
On the other hand, iff >1 we find thatR becomes smaller
than unity, since the absorbing components of the deposited
aerosol reduce the amount of multiple scattering within the
filter matrix, i.e.,f can be described as “shadowing” param-
eter. For the SMOCC data, the factorf can be determined
by fitting Eq. (11) to the measuredR values given by

Rmeas(ATN) =
σATN (ATN)

σPASC
. (12)

Here Rmeas can be interpreted as the loading dependent
Aethalometer sensitivity that is unity for a pristine filter and
decreases with increasing filter loading.

2.4.3 Effect of aerosol scattering on attenuation

W2003 found no significant dependence ofσ aeth (<1%) on
the scattering component of the sample aerosol (σ s) for am-
monium sulfate. The enhanced scattering effect (up to 5%)
for organic carbon particles produced by ozonolysis ofα-
pinene was interpreted as an artifact due to a small (but un-
known) absorption component of the organic carbon parti-
cles. On the other hand, Arnott et al. (2005) (henceforth re-
ferred to as A2005) reported a dependence of the Aethalome-
ter signal onσ s . The reason for this discrepancy is unknown,
but we will see below, that it is irrelevant for the calibration
performed here. Based on their findings A2005 suggested
the following expression for the Aethalometer derived ab-
sorption coefficientσ aeth

σaeth=
σATN − msσs

C∗ R (ATN)
, (13)

wherems represents the fraction of the aerosol scattering co-
efficientσ s that is erroneously interpreted as absorption and
C∗ andR(ATN) are the multiple scattering and loading cor-
rection, respectively. The asterix onC∗ indicates that the
magnitude of the multiple scattering correction introduced by
A2005 differs from that defined by W2003 (C in Eq. 9) due
to the scattering term. By equating Eqs. (13) and (9) (both
equations refer to the absorption coefficient derived from the
Aethalometer data) the relationship betweenC andC∗ can
be expressed as

C∗
=

C (σATN − msσs)

σATN
. (14)

Eq. (14) indicates thatC∗ represents the multiple scattering
correctionC corrected for aerosol scattering. Using the defi-
nition of the single scattering albedo

ω0 =
σs

σs + σaeth
, (15)

we can substituteσ s in Eq. (14) by

σs =
ω0

1 − ω0
σaeth, (16)

yielding

C∗
≈ C

[
1 −

msω0

C (1 − ω0)

]
, (17)

where the approximationσATN /σ aeth≈C was used, i.e., we
neglected the loading factorR (see Eq. 9), which is close to
unity (0.9±0.1 at 532 nm) as will be shown below. Equa-
tion (17) shows that the aerosol scattering effect (ms term)
increases withω0 and decreases withC (multiple scattering
from the filter matrix). Obviously, in absence of aerosol scat-
tering effects (ms=0 and/orω0=0),C∗=C.

Providedms is known, Eq. (13) instead of Eq. (9) could
be used for the field calibration of an Aethalometer. As men-
tioned above, while W2003 found no significant scattering
effect (ms<0.01), A2005 reported much higherms values
of 0.052 (atλ=521 nm) for ammonium sulfate as challenge
aerosol. Due to the considerable uncertainty inms , we will
base our calibration efforts on Eq. (9), but use Eq. (17) to
estimate the effect of aerosol scattering on the multiple scat-
tering (filter matrix) correctionC.

2.4.4 Spectral dependence of calibration factors

Since none of the seven Aethalometer channels (σATN,i
with i=1, 2,. . . ,7) matches the wavelength of the PAS
(λPAS=532 nm),σ aeth(and henceσATN) has to be converted
to λPAS according to

σATN = σATN,0

(
λPAS

λ0

)−αATN

, (18)

where the attenuation̊Angstr̈om exponentαATN was calcu-
lated from two Aethalometer channels using

αATN = −
logσATN,0 − logσATN,1

logλ0 − logλ1
. (19)

Analogous toαATN , the Ångstr̈om exponents of absorption
(αa) and scattering (αs) are defined by replacingσATN by
σ a andσ s in Eq. (19), respectively. Here,λ0 andλ1 were
equal to 590 and 450 nm, respectively, unless stated oth-
erwise. For illustration of theλ-dependence ofσATN and
ATN, Fig. 3 depicts a time series ofσATN (lines) and ATN
(triangles) for three of the seven Aethalometer wavelengths,
namely 450, 590 and 880 nm, represented by the colors blue,
green and red, respectively. Once ATN (590 nm) reaches
∼75, the Aethalometer automatically forwards the filter tape,
ATN is set to zero (here at about 04:00) and the new filter
spot remains exposed to the sample flow until ATN (590 nm)
reaches∼75 again. BothσATN and ATN increase with de-
creasing wavelength. The average attenuationÅngstr̈om ex-
ponentαATN , derived from Eq. (19), was about 1.5. Please
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Fig. 3. Time series of attenuation coefficients (lines) and attenuation
(triangles, secondary axis) forλ=450, 590 and 880 nm (blue, green,
and red, respectively).

note that the sensitivity of the Aethalometer decreases with
increasing ATN. This can be seen from Fig. 3, where at
about 04:00 the filter tape forwards and theσATN traces show
a step-increase that is most pronounced forλ=450 nm, the
trace with the larges ATN values. We will correct for this
loading effect as described below.

Since our reference instrument operated atλPAS=532 nm,
we can only derive the Aethalometer correction factorsf

and C for λPAS. Application of these factors to all seven
Aethalometer channels my introduce systematic biases es-
pecially for λ=950 nm, the wavelength most different from
532 nm. Hence, it is important to investigate the spectral de-
pendence off andC.

For a wide variety of soot particles (internally/externally
mixed; fresh/aged), W2003 showed that the dependence of
the filter loading correctionR on ATN is independent ofλ,
i.e., the shadowing factorf is a weak function of wavelength
(see Eq. 11). While the meanf values ranged from 1.15
to 1.65 depending on the type of challenge aerosol,f was
constant to within 0.09 (absolute) for a given aerosol type
(W2003; excluding the atmospherically not relevant case for
PALAS soot), i.e., for a given ATN value,R was constant
to within 11.8%. Obviously, for ATN=0,R is equal to unity
independent off and hence, averaged over an entire filter
cycle, the effect of the wavelength dependence off on R

is considerably smaller than 10% even for the most affected
channel (450 nm). Thus using aλ-independentf value intro-
duces Aethalometer biases much smaller than the calibration
uncertainty (∼20%; see Sect. 3.2.5) in any of the AE30 chan-
nels and hence, the wavelength dependence off is negligi-
ble for most atmospheric applications. In response to some
recent misinterpretations of this finding (Kirchstetter et al.,
2004) we emphasize again that this does not mean that the
loading correction (R) itself is wavelength independent. As
seen from Eq. (11)R increases with ATN and since ATN in-
creases with decreasingλ as seen from Fig. 3,R increases
towards the UV range.

Regarding the multiple scattering correctionC, W2003
found only a minor difference of<10% when comparing
the 450 and 660 nm channels and they suggested thatC can
be considered constant. A similarly modest dependence of
C∗ on λ (5% increase from 470 to 660 nm) was reported by
A2005. However, in contrast to W2003, A2005 reported a
non-negligible aerosol scattering correction factor (ms), i.e.,
C andC∗ are not directly comparable. Hence, one should
convertC∗ into the overall correction factorC as given by
Eq. (17)

C = C∗
+ ms

ω0

1 − ω0
. (20)

A2005 provideλ-specificC∗ and ms values for a slightly
different set of wavelengths as used here (see their Table 1
and our Table 1; they referred toC∗ andms asM andα,
respectively), but ourC∗ andms values at 532 nm are well
approximated by their 521 nm values, i.e., for the purpose of
this study we assumeC∗

532=C∗

521 andms,532=ms,521. Using
Eqs. (15) and (16) we can describe the wavelength depen-
dence ofω0 as

ω0,λ =

σs,ref

(
λ

λref

)−αs

σs,ref

(
λ

λref

)−αs

+ σa,ref

(
λ

λref

)−αa

=

ω0,ref

(
λ

λref

)−αs

ω0,ref

(
λ

λref

)−αs

+
(
1 − ω0,ref

) (
λ

λref

)−αa
, (21)

where we assumed thatσ s andσ a scale according toλ−αs

andλ−αa , respectively, withαs andαa being theÅngstr̈om
exponents for scattering and absorption, respectively. Here,
the reference wavelengthλref is 532 nm (or 521 nm, if the
data by A2005 are used). For the SMOCC data,ω0,ref=0.92
and αs=2 (Chand et al., 2006). Choosing a reasonable
range ofÅngstr̈om exponents for absorption (αa=1, 1.5 or
2) (Kirchstetter et al., 2004) we can now calculateC from
Eqs. (20) and (21) for wavelengths between 370 and 950 nm
as given in Table 1. Obviously,C increases withλ, but the
degree of increase depends onαa . To parameterize this de-
pendence we have plotted ln(C) versus ln(λ/nm) for αa=1,
1.5 or 2 (see Fig. 4a) and performed a quadratic fit for each
αa value

ln (C) = A
(
ln

(
λ
/

nm
))2

+ B ln
(
λ
/

nm
)
+ D. (22)

Since Eq. (22) can be transformed into

C

Cref
=

λA ln(λ/nm)+B

λ
A ln(λref/nm)+B

ref

, (23)

the dependence ofC on λ can be expressed by the coef-
ficients A and B that depend onαa , where again for the
SMOCC dataλref=532 nm. As seen from Fig. 4b a quadratic
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Table 1. Calculation ofC according to Eq. (20) usingC∗ andms as given by A20051 (Arnott et al., 2005). Forω0 (521 nm) andαs we
assumed 0.92 and 2, respectively.

C at various wavelengths (nm) Ratios ofC for various wavelength pairs

αa 370 470 521 590 660 880 950 660/470 660/521 521/470 950/521
1 2.355 2.656 2.677 2.730 2.827 2.933 2.925 1.065 1.056 1.008 1.093

1.5 2.270 2.626 2.677 2.770 2.909 3.144 3.179 1.107 1.087 1.019 1.187
2 2.198 2.599 2.677 2.812 3.000 3.420 3.523 1.154 1.121 1.030 1.316

1 The parametersC∗ (andms) were taken from the Table 1 of A2005 (they referred toC∗ andms asM andα, respectively) and given here
in ascending order of wavelength (from 370 to 950 nm): 1.813 (0.0335), 2.073 (0.0457), 2.076 (0.0523), 2.104 (0.0616), 2.182 (0.0713),
2.226 (0.1038), 2.199 (0.1148).

y = -0.227x2 + 3.121x - 9.655
R2 = 0.979

y = -0.192x2 + 2.801x - 9.021
R2 = 0.990
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0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

5.8 6 6.2 6.4 6.6 6.8 7 7.2 7.4

ln(λ/nm)

ln
(C
)

αa = 1.0

αa = 1.5

αa = 2.0

Fig. 4a. Double logarithmic plot ofC versusλ for absorption
Ångstr̈om exponentsαa=1.0 (black), 1.5 (red) and 2.0 (green). The
symbols represent the data by A2005 (see Table 1) and the lines are
quadratic fits.

fit of A andB versusαa provides

A = 0.102α2
a − 0.187αa − 0.141 and

B = −1.275α2
a + 2.564αa + 1.827, (24)

respectively. Using Eqs. (23) and (24) we can now determine
C for any givenλ andαa . The good agreement between cal-
culated and measuredC values is depicted in Fig. 4c that
compares theC values listed in Table 1 (normalized toC521)

and the corresponding fit curves forαa=1, 1.5 or 2. The max-
imum deviation between data and fit is less than 3%. We note
as caveat that Eq. (24) was derived for the parameters of the
SMOCC data (ω0,ref=0.92 andαs=2), but the procedure de-
scribed here can be applied to any set ofω0,ref andαs values.

2.5 PSAP

The Particle Soot Absorption Photometer (PSAP; Radiance
Research) described by Bond et al. (1999) (henceforth re-
ferred to as B1999) measures aerosol light absorption at
nominally 565 nm from the light transmitted through an
aerosol-laden quartz filter, very similar to the principle of
the Aethalometer. Using the difference method (at 550 nm)

y = 0.102x2 - 0.187x - 0.141
R2 = 1.000

y = -1.275x2 + 2.564x + 1.827
R2 = 1.000
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Fig. 4b. Dependence of the coefficients A and B (see Eq. (23)) on
the absorption̊Angstr̈om exponent (αa).
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Fig. 4c. Spectral dependence ofC normalized toCref (hereC521)

for three different absorption̊Angstr̈om exponentsαa=1.0, 1.5 and
2.0. The symbols and lines represent the data (as given in Table 1)
and curve fits (see Eqs. (23) and (24)), respectively.

as reference B1999 calibrated the PSAP with pure nigrosin
and ammonium sulfate particles as well as internal mixtures
of both. Analogous to the calibration equation used for the
Aethalometer (see Eq. 13) they found
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σPSAP,Bond =
σraw,PSAPKQKA − K1σs

K2

=
σraw,PSAPKQKA

K2 + K1
ω0

1−ω0

, (25)

whereσ raw,PSAP is the absorption coefficient reported by the
PSAP (includes a manufacturer-provided filter loading cor-
rection (B1999)),KQ andKA are the correction factors for
flow rate and sample deposit area, respectively, and the cal-
ibration constantsK1 and K2 are given byK1=0.02±0.02
andK2=1.22±0.2 (95% confidence level), respectively. The
last expression in Eq. (25) was derived by applying Eq. (16),
whereσ aeth was substituted byσ raw,PSAP. During SMOCC
we used the PSAP output signal (σ raw,PSAP) given on a log-
arithmic voltage scale and the flow rate was artificially set
to a constant internal value of 0.5 L min−1, which did not
correspond to the true flow rate, but made it simple to cor-
rect for the true flow rateQ by using KQ=0.5/Q(±3%),
whereQ is given in L min−1. Similarly the true diameter
of the sample deposit spot (4.86±0.20 mm) deviated from
the internally assumed value of 5.1 mm, which resulted
in KA=(4.86/5.1)2=0.91±0.07. Comparing to Virkkula et
al. (2005a) (henceforth referred to as V2005a) who mea-
suredKA=0.97±0.04 we find that this is within the reported
unit-to-unit variability of about 20% (Reid et al., 1998; An-
derson et al., 1999; Mader et al., 2002; Wex et al., 2002;
Arnott et al., 2003; Guyon et al., 2003a, b).The fact thatK2
does not depend on ATN implies that the loading correction
provided by the manufacturer was confirmed at least up to
ATN=35 (which corresponds to a transmittance of 0.7). The
Bond correction effectively converts the PSAP wavelength
from 565 to 550 nm, since their reference device operated at
550 nm. Although B1999 recommend a minimum PSAP fil-
ter transmittance of 0.7 (ATN=35), we found no bias down
to 0.5 (ATN=70) a result that was also reported by V2005a
and Guyon et al. (2003b). Hence we included all data with
ATN<70 in the present study. Assuming the uncertainties
in KQ, KA, K1 andK2 are purely random and applying the
laws of error propagation to Eq. (25) the accuracy (95% con-
fidence level) of the Bond correction is given by

1σPSAP,Bond

σPSAP,Bond
=√√√√√√(

1KQ

KQ

)2

+

(
1KA

KA

)2

+

(1K2)2+

(
1K1

ω0
1−ω0

)2

(
K2 + K1

ω0
1−ω0

)2
. (26)

For an averageω0 of 0.92 (as applicable for the SMOCC
data), we can estimate the accuracy of the Bond corrected
SMOCC data as 23% using the uncertainties ofKQ, KA, K1
andK2 given above.

3 Intercomparison and field calibration of PSAP and
Aethalometer

For the field calibration of the PSAP and Aethalometer with
the PAS, we only included PAS data that showed no statisti-
cally significant zero drift for three consecutive zero calibra-
tions, which typically occurred over the course of 24 h. This
resulted in about 105 and 95 h of calibration data from the
dry (17 September to 8 October) and transition (9 to 30 Oc-
tober) period, respectively. Since we observed no significant
dependence of the calibration factors on period, we based
the PSAP and Aethalometer calibration on the entire 200 h
of PAS data. Due to the low pollution levels throughout the
wet period of the SMOCC campaign, the wet period is ex-
cluded from the PSAP and Aethalometer calibration, but will
be discussed separately below.

3.1 PSAP

As a first approximation we applied the Bond correction
(Eq. 25) to the PSAP using the (dry) scattering coefficients
(at 545 nm) determined by the nephelometer connected to the
same inlet as the PSAP. Performing a linear regression on
5 min averages ofσPSAP,Bond andσPAS we found a slope of
0.76 (R2=0.813), i.e., changes in PSAP response were on
average about 24% lower than changes inσPAS (data not
shown). Accounting for the difference between the refer-
ence wavelength of the Bond correction (550 nm) and the
PAS (532 nm) using aλ−1.5 dependence reduced the slope
to 0.72, which is outside the 95% confidence level of the
Bond correction (∼23%). On the other hand, our analysis
revealed no systematic dependence ofσPSAP,Bond on either
filter loading (ATN<70) or particle single scattering albedo,
i.e., the Bond correction adequately accounted for these ef-
fects. However, we found a systematic dependence on op-
eratingRH and temperature (T) as well as onσPAS andσ s .
As seen from Fig. 5a, the ratio ofσPSAP,Bond andσPAS was
about constant for 35<RH<45% (σPSAP,Bond/σPAS=1.18; or
1.24, if the PAS is corrected to 550 nm). On the other hand,
for low RH between 20% and 30%,σPSAP,Bond/σPAS mono-
tonically decreased withRH down to about 0.67 (0.70 for
550 nm). As seen in Fig. 5b, a similar trend is observed for T,
whereσPSAP,Bond/σPAS is positively correlated to T between
24 and 26◦C and then remains about constant (slight negative
correlation) for 26◦C<T<31◦C. It is important to note that
during the SMOCC campaign all lowRH and T data were
gathered during night due to a higher efficiency of the Nafion
drier and lower ambient temperatures. Consequently, most
of the low and highσPSAP,Bond/σPAS values resulted from
nighttime and daytime measurements, respectively. Hence,
any parameter that shows a significant diel variation will cor-
relate withσPSAP,Bond/σPAS. This includesσPAS and σ s ,
since we consistently observed elevated pollution levels dur-
ing nighttime due to the formation of a shallow nocturnal
boundary layer (Rissler et al., 2006). SinceRH, T, σPAS and
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σ s are not independently varying parameters, it is not clear
which of these parameters (or any other parameter with a
pronounced diel variation) is mainly responsible for the ob-
served systematic trend in the PSAP data (see Figs. 5a and b).
However, laboratory measurements indicate thatσPSAP,Bond
does not depend onσPAS or σ s (V2005a). To our knowl-
edge a rigorous investigation of a potential PSAP sensitivity
to RH and T has not been performed yet. A more detailed
discussion of this issue will be provided below (Sect. 4). For
now, we point out that our data do not conclusively identify
a specific parameter as cause for the observed bias.

On the other hand, the correlation with bothRH and T
is strong enough to provide reasonably accurate correction
factors for the observed trends. ChoosingRH as governing
parameter the correction factorKRH was determined by fit-
ting the normalized PSAP data to a second order polynomial
(solid line in Fig. 5a)

KRH = σPSAP,Bond/σPAS

= −0.9212 + 0.1047RH− 0.0013RH2, (27)

where RH varies between 20 and 43%. ForRH>43%
we usedKRH=K43=1.18. Hence, the PSAP-derived ab-
sorption coefficientσPSAP (converted to λPAS=532 nm)
was calculated fromσPSAP=σPSAP,Bond/KRH. Figure 5c
shows excellent correlation (R2=0.954) and agreement
(slope=0.945±0.042) of σPSAP with σPAS, where we ne-
glected PAS values smaller than 4 Mm−1 to avoid poten-
tially large uncertainties near the lower detection limit.
Hence, applying anRH-dependent correction factor (KRH)

to the Bond-corrected PSAP data adequately accounts for
the PSAP artifacts observed during SMOCC. It is also note-
worthy that during nighttimeRH (and T) oscillated on a
time scale of about 25 min and an amplitude of∼1.0%
(absolute) due to fluctuations in the room temperature (air-
conditioner turned periodically on and off). TheseRH (and
T) oscillations frequently (not always) induced oscillations
in σPSAP,Bond that were significantly larger than predicted
by Eq. (27). We eliminated these oscillations by applying a
running average over one oscillation period. The fit parame-
ters given by Eq. (27) are based on these oscillation-corrected
data. After removal of these oscillations we did not observe
any systematic difference between day and night data that
could not be described by the singleRH correction equa-
tion given above. We estimate the accuracy and precision
(95% confidence level) ofσPSAP (532 nm) (5-min averages)
as about 15% and 12%, respectively.

3.2 Aethalometer

As mentioned above the operating conditions of the
Aethalometer (AE30) differed from those of the PAS in that
the Aethalometer was sampling under ambient conditions
(no drier) from a 10µm inlet (PAS: 1.5µm impactor). Based
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Fig. 5. (a) and(b) Dependence of the Bond corrected normalized
PSAP absorption coefficient on relative humidity (RH) and operat-
ing temperature (T), respectively.(c) Correlation of the Bond and
RH corrected PSAP absorption coefficientσPSAPwith σPAS.

on MOUDI impactor data the average effect of the different
cut-off diameters on total aerosol absorption has been esti-
mated as less than 8 and 15% for the dry and transition pe-
riod, respectively. A potential systematic effect ofRH on the
Aethalometer performance will be investigated below.

For the following analysis, the 590 nm channel of
the Aethalometer was converted to 532 nm according
to Eqs. (18) and (19) usingλ1=450, λ0=590 nm and
λPAS=532 nm (=λref). Although the AE30 has a 571 nm
channel that is even closer to 532 nm than the 590 nm
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Fig. 6. Experimental determination of the multiple scattering factor
C532 for the Aethalometer according to Eq. (10). The solid line
represents the arithmetic mean (=5.23) of the ratio ofσ10 andσPAS
at 532 nm.

channel, it had to be discarded, since for unknown reasons
it was consistently too low by about 20%.

3.2.1 Multiple scattering and loading correction

Following Eq. (10) the multiple scattering correction factor
C532=5.23±0.17 was determined from the arithmetic mean
(95% confidence level of the mean) of the ratios ofσ10 and
σPAS (see Fig. 6), where again we limitedσPAS to values
larger than 4 Mm−1. The multiple scattering correction is by
far the most important effect when inferringσaethfrom σATN .

The effect of filter loading on Aethalometer sensitivity
is depicted in Fig. 7. Each measurement cycle of the
Aethalometer begins with an acclimatization phase during
which a pristine spot of the filter tape is put into place and
the measured ATN (triangles) is defined as 0, i.e., the light
intensity (I ) measured through the sample spot is set equal
to the intensity transmitted through a clean reference spot
(I0, see Eq. 5). With continuing exposure to the sample flow
increasing amounts of (absorbing) aerosol deposit onto the
filter spot and the resulting “darkening” of the filter progres-
sively increases the light attenuation ATN (open triangles).
At a predefined ATN value of∼75 (λ=590 nm) the filter tape
is automatically forwarded to expose a new pristine filter spot
(ATN∼0) to the sample flow and the cycle starts again. Fig-
ure 7 shows a time series of five consecutive filter changes.
For each time layer, we calculated the Aethalometer sensitiv-
ity (Rmeas; solid diamonds) from Eq. (12) usingC532=5.23.
Fitting the numerical expression of the sensitivity (R(ATN);
see Eq. 11) toRmeasyields the fit parameterf =1.20, where
we setR(ATN)=1 for ATN<10 to be consistent with the as-
sumption adopted for determiningC532 from Eq. (10). For
comparison, we also plotted the fit based on the more rig-
orously derived form of the loading correction presented by
A2005 (dashed line; see their Eq. 27) that shows a very simi-
lar result. As seen in Fig. 7, the loading effect accounts for a
maximum sensitivity reduction of about 20% at 532 nm. The
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Fig. 7. Illustration of the effect filter loading (ATN, open trian-
gles) on Aethalometer sensitivity (R) for the 590 nm channel con-
verted to 532 nm (data points were numbered consecutively). The
measured sensitivity (solid diamonds) was fitted according to the
expressions provided by Weingartner et al. (2003) (blue line) and
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poor correlation coefficient between data and fit (R2
∼0.5) is

a result of the relatively small effect of filter loading (<20%
at 532 nm) compared to the multiple scattering correction
factor of 5.23. Hence, small fluctuations inC532 may ob-
fuscate the filter loading effect. As discussed below possible
culprits for such fluctuations are instrument instabilities and
sensitivities toRH, ω0, and gaseous adsorption.
With C532=5.23 we can now use Eqs. (23) and (24) to find

Cλ and hence use Eqs. (9) and (11) to convertσATN to σaeth
for each Aethalometer channel (as mentioned above,f =1.20
is independent ofλ) provided theÅngstr̈om exponents for
absorption (αa) is known. However, sinceαa is not known,
we use the following iterative procedure: 1) useαATN (from
Aethalometer data) as first approximation forαa , 2) calculate
σ aeth,λ from Eqs. (9) and (11) and (23), 3) derive a refined
αa value based onσ aeth,λ and 4) repeat steps 2 and 3 until
σ aeth,λ converges. During the SMOCC campaign,αATN was
typically around 1.5. Applying the above procedure we find
αa=1.82, 1.91, 1.94 and 1.95 for iterations one through four,
i.e., no more than four iterations are required to achieve con-
vergence. It is noteworthy thatαa=1.95 is consistent with the
values of 1.8 to 1.9 and 2 reported by Schnaiter et al. (2005)
and Kirchstetter et al. (2004) for biomass burning particles,
respectively. For comparison, usingms=0 as suggested by
W2003 (ms=0) yields averageαa values of about 1.5. Hence,
this can be interpreted as support for thems factors provided
by A2005. We note that the values near 1.5 that were also
reported by Schnaiter et al. (2005) are not considered rele-
vant here, since they correspond to particle size distributions
with unrealistically large count median diameters (∼350 nm;
here: CMD<200 nm (Rissler et al., 2006)). Additional lab-
oratory calibrations should be performed to resolve the ap-
parent discrepancies in thems calibration factors. In the fol-
lowing we will utilize the calibration factors by A2005 to
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estimate the spectral dependence ofC (see Table 1).
With αa=1.95 we find from Eq. (24) thatA=−0.1178 and

B=1.982 and with Eq. (23) we can write

Cλ = C532
λ−0.1178 ln(λ/nm)+1.982

532 nm−0.1178 ln(532)+1.982
, (28)

i.e., C450= 4.79,C590= 5.50,C615= 5.61,C660= 5.80,C880
= 6.54 andC950= 6.73. Hence, for the five Aethalometer
channels between 450 to 660 nm,Cλ increases by 10.9, 15.9
and 21.6% forαa=1.0, 1.5 and 2.0, respectively. Conse-
quently, for the SMOCC campaign withλref=532 nm, as-
suming aλ-independentC (= C532) value for the Aethalome-
ter channels between 450 and 660 nm introduces an error in
σ aeth of less than±5.5, ±7.9 and±11.2% forαa=1.0, 1.5
and 2.0, respectively. For the worst case (950 nm),C is ex-
pected to be 9.0, 19.0 and 31.5% larger thanC532 for αa=1,
1.5 and 2, respectively, i.e., except for possiblyαa=1.0, the
wavelength dependence ofC can not be neglected. This
seems to be in contradiction to W2003 who concluded from
the small (up to 10%) increase inCλ from 450 to 660 nm for
soot particles (withαa∼1.0), that the spectral dependence of
C is negligible. As seen from Table 1 their measurements are
consistent with A2005 (10.9% increase inC for this case),
but their conclusion is limited to the spectral range between
450 and 660 nm as discussed above.

In summary, we argue that for the SMOCC dataf is
equal to 1.2 independent of wavelength, whileC depends
on wavelength and, consequently, the best Aethalometer ac-
curacy is obtained, ifCλ is calculated from Eq. (28). On
the other hand, assumingC to be independent of wave-
length (Cλ

∼=C532) for the five AE30 channels between 450
and 660 nm does not introduce systematic errors larger than
±11%, a bias that is much smaller than the calibration un-
certainty (∼20%; see Sect. 3.2.5). However, for the 850 nm
and 950 nm channels Eq. (28) should be used. This restric-
tion can be relaxed for sample aerosol withαa

∼=1.0, where
Cλ

∼=C532 does not introduce biases larger than 9%.

3.2.2 Dependence on sampling period

Since the Aethalometer response is known to depend on
aerosol properties and hence on sampling location (Petzold
et al., 1997; Arnott et al., 2005), it is conceivable that the
correction factorsC andf varied with pollution level and
sampling period. UsingC532=5.23 andf =1.20, Figs. 8a and
b show the ratio ofσ aeth (at 532 nm) andσPAS as a function
of the pollution level (indicated byσPAS) for both the dry
and transition period of the SMOCC campaign, respectively,
where the seasonal mean values of 0.943 and 1.034, respec-
tively, are indicated by horizontal lines. While there is no
systematic dependence ofσ aeth/σPAS on σPAS for the tran-
sition period, there is a small negative trend for the dry pe-
riod, which will result in a 13% difference in slopes derived
from the linear regression ofσaethandσPAS (data not shown)
given by σaeth=0.87 σPAS (Mm−1)+0.98 Mm−1 (R2=0.91)
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Fig. 8. Dependence of the normalized corrected Aethalometer
data on pollution level (represented byσPAS) and sampling period,
namely the dry(a) and transition period(b).

andσaeth=1.00σPAS (Mm−1)+0.49 Mm−1 (R2=0.73) for the
dry and transition period, respectively. The larger slope (and
arithmetic mean ofσaeth/σPAS) for the transition period is
consistent with the previously discussed enhanced aerosol
mass bias (8% and 15% for the dry and transition period,
respectively) induced by the difference in inlet cut-off diam-
eters (10µm versus 1.5µm). However, despite these small
differences we conclude that there is no systematically sig-
nificant dependence of the Aethalometer correction factors
on sampling period. Thus, unless stated otherwise, we will
henceforth not distinguish between dry and transition period.

For the wet season, it was impossible to calibrate the
Aethalometer and PSAP, mainly due to the poor signal-to-
noise ratio and the unavoidable small drifts in zero offset of
the PAS. Hence, for lack of a better alternative, we recom-
mend to apply the correction factors derived for the dry and
transition period also to the Aethalometer and PSAP data of
the wet period.

3.2.3 Dependence on relative humidity

As mentioned above, while the PAS was operated un-
der dry conditions (RH<45%), the sample air supplied to
the Aethalometer was not actively dried, i.e., it closely
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formance. Depicted are the mean and 95% confidence level of the
ratios of ambient and dry absorption coefficients as measured by the
Aethalometer (σaeth) and the photoacoustic spectrometer (σPAS),
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approximated ambient conditions. Figure 9 depicts the
Aethalometer-based ambient absorption coefficient (σaeth)

normalized to dry absorption (σPAS) as a function ofRH. For
eachRH segment, the mean and 95% confidence level of the
mean was calculated. It is evident that there is no statisti-
cally significant dependence ofσaeth on RH at least forRH
between 40 and 80%.

3.2.4 Dependence on single scattering albedoω0

The effect ofω0 on the Aethalometer signal can be assessed
based on Eq. (17). Laboratory studies by W2003 and A2005
reportedms values of∼0.008 and 0.055 (at 550 nm), re-
spectively, for purely scattering aerosol (i.e., up to 5.5% of
aerosol light scattering is erroneously interpreted as absorp-
tion). During the dry and transition period of the SMOCC
campaign,ω0 was approximately constant at 0.92±0.02
(Chand et al., 2006). Using Eq. (17) withms=0.055 as an
estimated upper limit of the aerosol scattering effect, we can
attribute up to 13.0±3.5% of the observed multiple scatter-
ing correctionC532 (=5.23) to aerosol light scattering, i.e.,
the multiple scattering factor corrected for aerosol scattering
is given byC∗

532=4.55. Hence, compared to multiple scatter-
ing within the filter matrix (C∗

532=4.55) the effect due to the
scattering properties of the aerosol is relatively small. While
for urban pollution, this effect can be expected to be even
smaller (smallerω0), the scattering contribution for desert
dust and (maritime) background is likely to be larger. Using
ω0,550=0.965 as a typical average value for background air
and desert dust (Dubovik et al., 2002).C∗

532 would have to
be increased by about 40% to account for aerosol scattering
effects, i.e.C532∼6.4.

Finally, we note that, since the small variability inω0
(±0.02) during SMOCC translates into a relatively small ef-
fect onC532 (3.5%), it would have been impossible to distin-
guish the aerosol scattering (ms) from the multiple scattering

effect of the filter substrate, i.e., it is impossible to derive a
value forms from the SMOCC data.

3.2.5 Gaseous adsorption onto the filter

Gaseous adsorption onto quartz filters is a well-known phe-
nomenon that potentially enhances the multiple scattering ef-
fect of the filter, and hence introduces a positive bias inC

(Kirchstetter et al., 2001). To our knowledge, there has been
no previous study of this phenomenon for either the PSAP or
the Aethalometer.

The intuitive approach for an investigation of this effect is
to look for systematically enhancedC values for large pollu-
tion levels. However, since each Aethalometer measurement
cycle begins with an acclimatization phase, which exposes
the (initially) clean filter spot to ambient air without tak-
ing data, and references the measured attenuation to the zero
value obtained during this acclimatization phase, a potential
dependence ofC on pollution level is eliminated. This ex-
plains why we found no statistically significant dependence
of C532 on sampling period despite the substantially higher
pollution levels during the dry period with an averageσ a

(550 nm) of 22.9 and 7.5 Mm−1 for the dry and transition
period, respectively (see Fig. 8).

However, if gaseous adsorption introduces a bias intoC

it can be detected according to the following rationale. Let
us assume that at timet0 the filter is in equilibrium with the
gas phase, i.e., there is no net transport of gas molecules to
or from the filter. If the pollution level changes at timet1,
there will be a net transport of gas molecules to or from the
filter depending on whether the pollution level increases or
decreases, respectively. Furthermore, if gaseous adsorption
is present and has an effect onC and if the relaxation time
for adsorption/desorption is smaller than the averaging time
of the Aethalometer (here 15 min) one would expect a sys-
tematic dependence of the relative gradient ofC on the gra-
dient in pollution level. Expressing the gradient ofC (here
C532) at time layer i as

1C

C
=

Ci+1
− Ci(

Ci+1 + Ci
)
/2

(29)

and using the gradient in CO as proxy for changes in pollu-
tion level

1CO

CO
=

COi+1
− COi(

COi+1
+ COi

)/
2

(30)

we found no correlation (R2<0.1) between the relative gradi-
ents inC and CO. The same result was found, if NO2 instead
of CO was used as proxy for the pollution level. Perform-
ing this analysis also for the PSAP yielded the same result
(R2<0.04). It is important to note that we do not suggest
that NO2 or CO actually adsorb to the filter; these compo-
nents only serve as a proxy for pollution events driven by
photochemistry and/or biomass burning. Although we can
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not rule out the possibility that there are adsorbing gaseous
components that do not correlate well with CO or NO2, this
analysis suggests that neither the Aethalometer nor the PSAP
suffer from significant measurement artifacts due to adsorp-
tion of gaseous components.

3.2.6 Accuracy

The accuracy ofσaethis determined by the accuracy ofC. As
mentioned above, for wavelengths between 450 and 660 nm,
Cλ can be approximated byC532 with an estimate accuracy
and precision (95% confidence level) of about 20% and 30%
(15-min averages), respectively, except for the 571 nm chan-
nel, which was systematically too low. For wavelengths
larger than 660 nm (here 880 and 950 nm), this level of ac-
curacy can only be maintained, ifC532 is converted intoCλ

using Eq. (28). The Aethalometer accuracy is lower than the
PSAP accuracy to account for additional uncertainties due to
wavelength conversion (uncertainties inαa) and the use of
different inlets.

4 Discussion

4.1 PSAP

The PSAP was used in numerous field studies (Reid et al.,
1998; Anderson et al., 1999; Mader et al., 2002; Wex et al.,
2002; Arnott et al., 2003; Guyon et al., 2003a, b). Most of
these studies accounted for instrument artifacts due to flow
rate, spot size and aerosol scattering using the calibration
factors by B1999. For Amazonian aerosol, we found that
the Bond correction did not account for a bias that scaled
well with RH and T (see Figs. 5a and b). As seen in Fig. 5c
this bias can be accounted for by using aRH dependent cor-
rection factor (see Eq. 27). In this section we compare these
findings to other PSAP calibration studies.

V2005a has essentially confirmed the Bond correction for
external mixtures of kerosene soot and ammonium sulfate
particles. However, the observed deviations for pure soot
(from a kerosene lamp) and for purely scattering particles
resulted in the derivation of a new (ω0 dependent) loading
correction. Since the Bond calibration was performed with
spherical particles (internal mixtures of nigrosin and ammo-
nium sulfate), inconsistencies for fractal-like soot agglomer-
ates as described by V2005a are conceivable. Unfortunately,
V2005a was unable to derive a “unified” correction scheme
that would be applicable to all types of aerosols used (ammo-
nium sulfate, PSL, soot, and external mixtures thereof). Dur-
ing the∼1.5 day period of their outdoor experiment in Reno,
NV, V2005a reported PSAP absorption coefficients that were
by 16% and 22% higher than the reference absorption at
530 nm where using their own correction scheme (1-λ PSAP
correction parameters) and the Bond correction, respectively.
This compares well with the +18% bias ofσPSAP,Bond re-
ported in this study forRH>30% (Fig. 5a). To our know-

ledge, there are only two more PSAP field calibrations with
a true in-situ reference method such as the difference method
or the PAS. The study by Reid et al. (1998) did not account
for PSAP artifacts, since it was performed prior to B1999
and Arnott et al. (2003) found thatσPSAP,Bond was by a fac-
tor of 1.61 larger thanσPAS (532 nm) for rural aerosols from
the North Central Oklahoma.

None of the previous PSAP calibrations reports a system-
atic dependence of the PSAP performance onRH and/or T.
On the other hand, there is evidence for aRH sensitivity of
the PSAP. For instance, Arnott et al. (2003) reported an er-
ratic response of the PSAP for rapidly changingRH (also
seen by us) and Guyon et al. (2004) had to discard PSAP
data, if RH exceeded 92%. Changes inRH may affect the
amount of water that condenses into the cavities of the filter
matrix. As a consequence the optical properties of the fil-
ter may change and hence filter-based absorption techniques
may depend onRH. In addition, hygroscopic aerosol growth
may “truly” enhance aerosol light absorption due to the op-
tical interaction between aerosol core and coating (Fuller et
al., 1999), but for ambient aerosol absorption enhancement
factors larger than about 1.1 are difficult to justify at least for
RH<80% (Redemann et al., 2001). As seen from Figs. 5a
and b the normalized PSAP response (σPSAP,Bond/σPAS) in-
creased by a factor of 2 for an increase inRH from 20 to 30%
and/or an increase in T from 24 to 26◦C, respectively. Hence,
we conclude that the observed bias is an instrument artifact
of either the PSAP or the PAS. As mentioned above, there
is both theoretical and experimental evidence for the absence
of anRH sensitivity of the PAS forRH<80% (Raspet et al.,
2001; Arnott et al., 2003) and the moderate dependence of
the PAS signal on T is accounted for by repeated acoustic
calibrations (every 10 min) as described above. In addition,
comparison of the Aethalometer and the PAS has not shown
any RH or T dependent bias. Hence, we attribute the ob-
served bias ofσPSAP,Bond/σPAS to a systematic error of the
PSAP.

As mentioned above bothRH and T displayed a pro-
nounced diel variation such that most of the lowRH and T
values were encountered during nighttime sampling. The re-
sulting correlation ofRH and T makes it impossible to con-
clusively decide whether the observed PSAP bias is due to
RH or T or both. The significant scatter in both Figs. 5a and
b suggests that there is possibly a sensitivity of the PSAP to
bothRHand T or may be even to another – as yet unidentified
– parameter. As mentioned aboveσPSAP,Bond/σPAS did
not show any correlation with filter loading (for transmit-
tance>0.5, i.e., ATN<70) or single scattering albedo (for
0.85<ω0,550<0.95). Furthermore, laboratory measurements
indicate thatσPSAP,Bond does not depend onσPAS or σs

(V2005a). To our knowledge a potential PSAP sensitivity
to RH and T has not been systematically investigated yet.
If RH is the culprit, the drastic change nearRH=20% may
be a result of a wettability threshold of the PSAP filter near
RH=20%. On the other hand, it is also conceivable that there
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is a temperature sensitivity of the PSAP electronics and/or
optics that results in the observed drift of the PSAP. This is-
sue should be explored further in a laboratory study under
controlledRH and T conditions. For the purposes of this
study, it is sufficient to adjust the Bond-corrected PSAP data
with the factorKRH (Eq. 27). The resulting PSAP-derived
absorption coefficient (σPSAP) showed excellent agreement
(<6%) and correlation (R2=0.954) with the reference absorp-
tion coefficient (σPAS) (see Fig. 5c).

In summary, we conclude that the Bond correction is gen-
erally quite adequate for most ambient aerosols (∼25% ac-
curacy) with three possible exceptions: (1) purely fractal-like
agglomerates, (2) purely scattering particles (i.e.,ω0 close to
unity) and (3) varyingRH and/or T conditions (forRH<30%
and T<25◦C; see Figs. 5a and b). In this study nighttime
PSAP data had to be corrected by aRH-dependent correc-
tion factor.

4.2 Aethalometer

For Amazonian aerosol, the Aethalometer calibration
revealed a multiple scattering correction factor of
C532=5.23±1.04 (or C∗

532=4.55±0.91, if corrected for
aerosol scattering effects according to A2005, i.e., 13% of
C532 can be attributed to aerosol scattering effects) and a
much less significant bias due to filter loading (0.76<R≤1
at 532 nm). Previous calibration studies reportedC values
clustering around 2 or 4 depending on the type of challenge
aerosol (W2003, A2005). For pure candle light soot parti-
cles and external mixtures of soot and ammonium sulfate,
A2005 foundC∗ values between 1.8 and 2.2 (depending
on wavelength). On the other hand, they reportedC∗

521=3.7
for ambient (urban) aerosols. Similarly, the laboratory
study by W2003 foundC∗

532=2.14 (hereC=C∗, since, in
contrast to A2005, W2003 considered the dependence of
the Aethalometer performance on aerosol light scattering
as negligible) for both pure soot (Diesel and PALAS) and
external soot mixtures with ammonium sulfate (independent
of wavelength). On the other hand, for soot (Diesel and
PALAS) particles coated with organic carbon (internally
mixed aerosol) theirC∗ value increased to 3.6 which is very
similar to 3.7 and 4.55±0.91 as reported for ambient aerosol
by A2005 and by the present study, respectively. We remind
the reader that the value of 4.55 can be considered an upper
limit due to the (unaccounted) positive bias (estimated as<8
and 15% for the dry and transition period, respectively) re-
sulting from the larger cut-off diameter of the Aethalometer
inlet.

Both A2005 and W2003 offered possible explanations for
the factor of∼2 difference inC∗. A2005 hypothesized that
variable particle preloading of the filter during the automati-
cally performed filter acclimatization phase prior to any mea-
surement might be responsible for the enhancedC∗ value
under ambient conditions. However, in light of a maxi-
mum loading correction of no more than 30% (∼550 nm), as

was consistently reported by W2003, A2005 and the present
study, a factor of 2 difference inC∗ seems hard to justify.
On the other hand, W2003 speculated that adsorption of
semi-volatile organic gaseous components onto the filter ma-
trix might have artificially enhanced the multiple scattering
within the filter matrix. However, as shown in Sect. 3.2.4,
we found no indication for gaseous adsorption effects during
the SMOCC campaign.

Although we are unable to resolve this issue conclusively,
we offer a different explanation for the observed difference in
C∗. The significance of the aerosol mixing state for light ab-
sorption is well known from Mie theory for coated particles
(Bohren and Huffman, 1983). Petzold et al. (1997) argued
that, for internal mixtures of black carbon (BC) and some
mainly scattering material, the Aethalometer response may
be enhanced by up to about a factor of 2 (for BC contents of
about 3%) compared to external mixtures (as was the case for
the laboratory calibrations by W2003 and A2005). Hence,
we suggest that the observed difference inC∗ may possibly
be a result of attenuation enhancement due to internal mix-
ing. This notion is corroborated by the fact that the Bond
correction of the PSAP, that demonstrates good applicability
to ambient aerosol, was performed with internal mixtures of
nigrosin and ammonium sulfate (V2005a).

In summary, we suggest that in absence of an on-site cali-
bration standard,C∗

532 values of 2.1 and 4.0 (average of 3.7,
3.6 and 4.55) should be used for pure or external mixtures
of soot and internal mixtures of soot, respectively. The addi-
tional bias due to aerosol scattering can be taken into account
by using Eq. (20) with thems factors provided by A2005 (see
Table 1). For particles with small absorptionÅngstr̈om expo-
nents (αa

∼=1),Cλ can be approximated byC532 (<10%). For
αa values up to 2 (as found during SMOCC), we found that
Cλ can be approximated byC532 (<11%) for the five AE30
channels between 450 and 660 nm. However, for the 880
and 950 nm channel, the spectral dependence ofC should
be accounted for by using Eq. (23). Since the fit coeffi-
cients of Eq. (23) depend onω0 andαs , these coefficients
are aerosol-specific and therefore they should be calculated
for the aerosol under consideration as described here for the
SMOCC data (ω0,550=0.92,αs=2).

The filter loading correction factorR depends on attenu-
ation and hence onλ. At the highest loading prior to the
automatic filter change (ATN=100, 75 and 40 for 450, 532
and 950 nm)R is 0.76, 0.8 and 0.85 forλ=450, 532, and
950 nm, respectively, i.e., the measured attenuation coeffi-
cient on a pristine filter is 32, 25, and 18% larger than on a
fully loaded filter, respectively. This is consistent with the
values reported by W2003, i.e., in contrast toC, R (and
hencef ) does not seem to depend on the mixing state of
the sample aerosol. Furthermore, W2003 showed that the
shadowing factorf (see Eq. 11) is related toω0 by f =A(1–
ω0)+1, whereA=0.86±0.1. Usingω0=0.92 (observed during
SMOCC) yieldsf =1.07±0.01. Although this value is some-
what lower than experimentally determined value of 1.2, it
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results in a less than 10% bias inσaeth, if we average over
an entire filter cycle. W2003 acknowledged that the reliabil-
ity of A is limited due to significant scatter in the data and
the validity ofA is possibly limited to “dark” aerosol, since
most of their measurements were performed forω0<0.6 and
the few data points withω0>0.6 have large error margins.
Hence the apparent inconsistency betweenf andω0 is not
surprising especially, if we also consider thatf not only de-
pends onω0 but on how deep the aerosol is embedded into
the filter matrix (A2005), which may depend on particle size
and morphology as well as on sampling flow rate.

In contrast to the PSAP, the Aethalometer shows no de-
pendence onRH (or T) within the experimental uncertainty
at least forRH between 40 and 80% (Fig. 9). Similar to
artifacts due to gaseous adsorption,RH related Aethalometer
artifacts should be at least partially accounted for by the filter
acclimatization phase. Thus, one might conclude from Fig. 9
that there is no hygroscopic absorption enhancement. This is
consistent with the previously mentioned theoretical predic-
tions of Redemann et al. (2001), who estimated the hygro-
scopic absorption enhancement factor atλ=550 nm as∼1.1
atRH=80% for sulphuric acid coated soot particles with a re-
alistic lognormal size distribution (geometric mean diameter
and standard deviation of 0.12µm and 1.5, respectively). In
light of the small hygroscopic diameter growth factor of less
than 1.08 (RH=80%) for Amazonian aerosols (Rissler et al.,
2006), we consider this absorption enhancement factor (1.1)
to be an upper limit for our study. However, we add as an
important caveat that the Aethalometer may not be capable at
all of accurately measuring the electromagnetic focusing ef-
fect of absorbing particles enclosed by a liquid coating, since
the shape (and hence the optical properties) of the partially
liquid particle is expected to change upon deposition onto a
filter substrate.

Finally, in Figs. 10a and b we compare 1 h averages of
PSAP and Aethalometer (adjusted to 532 nm) data for the dry
and transition period, respectively. It is evident that the in-
struments are well correlated for both periods (dry:R2=0.88;
transition: R2=0.90) and, forcing the linear regression line
through the origin,σPSAP is by about 9.8% larger (slope =
1.098±0.047) and 2.5% smaller (slope = 0.975±0.030) than
σ aeth for the dry and transition period, respectively. Con-
sidering that Fig. 10 represents more than 2 months of data,
while the calibration of the PAS and PSAP was based on
only 200 h, the agreement of the instruments is quite satis-
factory and the slopes agree within the estimated instrument
accuracies. On the other hand, the correlation is weaker
for σa>40 Mm−1. We attribute this to the scarcity of PAS
data for this absorption range as seen from Figs. 5c and
8. Hence, we add as a caveat that the reliability of the
PSAP and Aethalometer calibration is somewhat weaker for
σa>40 Mm−1, although even in this range the agreement be-
tween PSAP and Aethalometer is better than 25%, the esti-
mated 2σ level based on the instrument accuracies.

5 Conclusions

A 1-λ PSAP (Particle Soot Absorption Photometer, 565 nm)
and a 7-λ AE30 Aethalometer (450–950 nm) were compared
to a PAS (photoacoustic spectrometer, 532 nm) based on
200 h of collocated ambient sampling at a rural site in the
Amazon Basin during the dry and wet-to-dry transition pe-
riod of the LBA-SMOCC campaign in 2002. The data are
heavily influenced by biomass burning events. To ensure
data quality we verified the PAS accuracy of 10% in the field
following the calibration procedure described by Arnott et
al. (2000) using NO2 as calibration gas.

The calibration of the PSAP with the PAS essentially con-
firmed the Bond correction (B1999), except for a previously
not reported bias that correlated well withRH and/or T for
low RH (20 to 30%) and T values (24 to 26◦C). Although the
data presented here does not provide conclusive evidence that
the PSAP is sensitive toRHand/or T, we were able to account
for an observed systematic bias in the PSAP data using a
RH dependent correction factor. The manufacturer-provided
loading correction was found adequate for transmissions
down to 0.5 (ATN<70). For the limited range of single scat-
tering albedos encountered here (0.85<ω0,550<0.95), noω0
sensitivity was observed. Based on field calibrations we es-
timated the accuracy (95% confidence level) of the Bond-
corrected PSAP data as about 25%. With the additional on-
site PAS calibration, the value improved to about 15%.

For Amazonian haze particles, the multiple scattering cor-
rection factor of the Aethalometer at the reference wave-
length of 532 nm wasC532=5.23±1.05 or, if aerosol scatter-
ing effects are subtracted,C∗

532=4.55±0.91. The loading cor-
rection (0.7<R<1) was adequately described by Eq. (11) us-
ing a shadowing factor off =1.2. Based on the limited avail-
able information in the literature, we argued that the shadow-
ing factorf =1.20 is independent of wavelength (bias<10%)
and the wavelength dependence ofC can be parameterized
using the data by A2005, if the single scattering albedoω0
(at a reference wavelength) and the scatteringÅngstr̈om ex-
ponentαs are known (Eqs. 23 and 24). This parameterization
showed thatCλ can be approximated byC532 to better than
11%, if either the absorption̊Angstr̈om exponentαa is close
to unity (i.e. soot-dominated aerosol) or the spectral range is
limited to between 450 to 660 nm. For the Amazoninan haze
aerosol withαa near 1.95,Cλ was calculated for each of the
seven Aethalometer channels based on Eqs. (23) and (24).
Not accounting for the spectral dependence ofC would lead
to a positive bias of about 30% in the 950 nm channel and
a substantially reducedαa value of about 1.5. We also note
that, for unknown reasons, the 571 nm channel of the AE30
Aethalometer was consistently by about 20% too low. For all
other channels, the (2σ) accuracy was estimated as 20%.

We found no sensitivity of the PSAP and Aethalome-
ter to gaseous adsorption onto the filter matrix. In addi-
tion, except for the aforementioned instrument artifact of
the PSAP that correlated well withRH (and T), we found
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Fig. 10. Comparison of the absorption coefficients (at 532) mea-
sured by PSAP and Aethalometer for both the dry(a) and transition
period(b).

also no dependence of aerosol absorption (σa) onRH. While
the absence of an hygroscopic absorption enhancement for
RH≤80% is consistent with theoretical predictions (Rede-
mann et al., 2001), it is questionable whether humidified par-
ticles deposited onto a filter substrate display the same opti-
cal properties as in the suspended state.

This study shows that, while laboratory calibration ex-
periments are useful, on-site calibrations of the PSAP and
Aethalometer are required for ambient measurements to en-
sure data quality. Although both PSAP and Aethalometer
are based on the integrating-plate method, the conversion
of the measured attenuation (σATN) into absorption (σa) re-
quires different correction parameters due to the different fil-
ter types used. If an on-site calibration cannot be provided,
we offer the following suggestions for retrieving absorption
coefficients from PSAP or Aethalometer data:

1) For the 1-λ PSAP, the Bond correction (Eq. 25) can be
applied with an expected uncertainty of about 25% (2σ)

andRH and T should be kept constant to avoid potential
RH and T induced biases.

2) For the 7-λ Aethalometer, the situation is more compli-
cated. We suggest a multiple scattering correction factor
C∗

532 of either 2.1 for pure and externally mixed soot

(e.g., near a combustion source) or 4.0 for internally
mixed aerosol (e.g., for aged ambient aerosol). If con-
comitant measurements of spectrally resolved aerosol
scattering are available, Eq. (20) can be used to deter-
mineC532. Otherwise, the additional bias due to aerosol
scattering can be approximately accounted for by in-
creasing theC∗

532 values by 10% for non-background
air (10% corresponds toω0,550∼0.90) to yield C532
values of 2.3 and 4.4 for externally and internally
mixed aerosol, respectively. For background and desert
dust regions an increase of about 40% (corresponds to
ω0,550∼0.965), i.e.,C532 values of 2.9 or 5.6, may be
more realistic. If the absorbing component of the sam-
ple aerosol is mainly due to soot from internal combus-
tion engines,αa is close to 1 (Kirchstetter et al., 2004),
i.e.,Cλ

∼=C532 (<11% bias) for 450 nm<λ<950 nm. On
the other hand, if the absorbing aerosol component
mainly results from biomass combustion,αa is closer to
2 (Kirchstetter et al., 2004) and at leastC880 andC950
should be calculated from Eq. (28). The loading correc-
tion R is given by Eq. (11) withf =1.2 forω0,532∼0.9
and for ω0,532 smaller than about 0.85,f can be es-
timated fromf =0.86(1–ω0,532)+1 as recommended by
W2003. Now Eq. (9) can be used to yield absorption
coefficients with an estimated (2σ) accuracy of about
25%.
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