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Abstract. We have measured the extinction and absorption
cross sections of carbon particles emitted by a propane diffu-
sion flame both in an aerosol chamber and on size-segregated
samples deposited on optical windows. The absorption cross
section, the single scattering albedo, and theÅngstr̈om ex-
ponent show drastic dependencies both on the C/O ratio and
on the particle size. This is interpretated as being due to the
appearance of nucleation modes of smaller organic particles
at higher C/O ratios, which were detected by SMPS mea-
surements and partially by TEM analysis. The spectral range
of the validity of the absorption power-law (Ångstr̈om expo-
nent) model is investigated by vacuum ultraviolet extinction
measurements. These measurements give also indications for
a preferentially aromatic nature of the OC component of the
flame products.

1 Introduction

Soot aerosol emitted by combustion processes, like fossil-
fuel and biomass burning, directly affects the radiative bal-
ance of the earth’s atmosphere by scattering and absorption
of short-wave solar radiation. In climate research, combus-
tion aerosols are usually classified in two major components,
namely black carbon (BC) and organic carbon (OC), which
refer to the absorbing and non-absorbing carbon fractions of
the aerosol. While this classification is based on the opti-
cal properties of the carbonaceous material, most classifica-
tions in source characterisation studies rely on the thermal
behaviour of the emitted combustion aerosol. Here, OC and
elemental carbon (EC) refer to the carbon fractions that ther-
mally desorb in oxygen-free and oxygen-containing atmo-
spheres. EC measurements are often treated as equal to BC
ignoring the possibility that also OC, according to the des-
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orption definition, may have a significant absorption (Bond
et al., 2004).

It is well known that BC aerosol is the most efficient ab-
sorbing aerosol in the atmosphere with a mass-specific ab-
sorption cross section (σabs) in the visible spectral region of
about 7.5(±1.2) m2/g (Bond and Bergstrom, 2006). In sev-
eral laboratory and field studies it was found that BC aerosol
emitted from high-temperature combustion processes has a
low σabsspectral dependence of about∼λ−1 (Schnaiter et al.,
2003; Kirchstetter et al., 2004). The mass specific and spec-
tral absorption properties of OC aerosol are less well known.
However, there is evidence thatσabsof low-temperature com-
bustion aerosol, e.g. from biomass burning, is lower and ex-
hibits a much stronger spectral dependence than aerosol from
high-temperature combustion processes, such as diesel soot
(Kirchstetter et al., 2004). Usually,σabs, or more precisely
the absorption coefficientbabs, is measured by filter-based
techniques like the Particulate Soot Absorption Photometer
(PSAP) or the Aethalometer, which have systematic filter-
induced errors (Bond et al., 1999; Weingartner et al., 2003).
Due to these systematic errorsbabsvalues measured by such
filter-based methods are generally enhanced compared to the
values measured for airborne particles and, therefore, have
to be corrected based on a simultaneous measurement of the
aerosol scattering coefficientbsca.

There exist two methods for measuringbabs on airborne
particles, namely the Photoacoustic Spectrometry (PAS) and
the difference method (DM). While PAS measuresbabs di-
rectly, DM relies on a simultaneous measurement of the
aerosol extinction and total scattering coefficientsbext and
bsca. Since both methods are not as sensitive as the filter-
based methods they are usually applied in laboratory inves-
tigations or in environments with high aerosol concentra-
tions like in biomass burning plumes. Current PAS instru-
ments operate at single wavelengths, while the DM has been
successfully applied to deduce multiwavelengthbabs values
of soot containing aerosols (Schnaiter et al., 2003). This
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Fig. 1. Dependence of the particle composition (OC and EC con-
tent) on the C/O atomic ratio in the burner. Full symbols indicate
measurements on samples from the NAUA chamber, open symbols
indicate samples taken directly behind the CAST burner. The up-
per scale gives the C/O ratio normalised to the stoichiometric ratio
of 0.3. The stoichometric ratio separates fuel-lean (normalised C/O
ratio <1.0) and fuel-rich (normalised C/O ratio>1) burner condi-
tions.

was achieved by combining a three-colour integrating neph-
elometer (TSI, mod. 3563) with the aerosol extinction spec-
trometer LOPES measuringbext wavelength-resolved from
200 nm to 1000 nm (Schnaiter et al., 2005).

In the present study the DM described bySchnaiter et al.
(2005) was utilised to deduce spectral absorption proper-
ties of combustion aerosol emitted from a propane diffu-
sion flame operated at different combustion conditions, i.e.
at different C/O ratios. Additional spectroscopic measure-
ments were performed on size-segregated samples deposited
on CaF2 substrates to investigate in particular the spectral ab-
sorption properties of the OC aerosol fraction. This approach
allows one to also measure the absorption cross section over
a larger wavelength range, which gives some insight into the
physical reasons for the absorption variability and the valid-
ity of the Ångstr̈om exponent approach.

2 Combustion aerosol

Combustion aerosol was generated within a co-flow diffu-
sion flame of propane and air (Combustion Aerosol Stan-
dard, CAST, Jing-CAST Technologies). By variation of the
propane-to-air ratio (C/O atomic ratio) CAST allows the gen-
eration of carbonaceous aerosols with OC to total carbon
(TC) mass ratios which vary over a broad range from a few %
to more than 80% (Fig.1). CAST was operated with the fol-
lowing flow parameters: 0.06 SLM propane (fuel), 7.5 SLM

Fig. 2. Number size distribution measured by SMPS for an aerosol
produced by the CAST at C/O=0.40. The vertical lines indicate the
size ranges deposited on impactor stages 1 and 2 for the cases of
compact spherical particles and fractal aggregates, respectively (see
Sect.4.1and Sect.4.2).

nitrogen (quenching gas), 20 SLM synthetic air (dilution af-
ter quenching). The co-flow of the oxidation air (synthetic
air) was chosen according to the desired C/O ratio and thus
varied from 0.44 SLM (C/O=0.98) to 1.76 SLM (C/O=0.24).
Note that we use the C/O atomic ratio to describe the op-
eration conditions of the burner rather than the fuel-to-air
volume ratio. The C/O ratio is calculated from the actual
fuel-to-air ratio, i.e. the actual flow conditions of the burner
by

C/O = 7.16×
ff

fair
(1)

with ff andfair the standard volumetric flows of the propane
fuel and the oxidation air, respectively.

Prior to the chamber experiments described in the next
section, the CAST aerosol emission was characterised in a
separate study. For this purpose, the number concentration
and size distribution of the combustion aerosol was mea-
sured directly behind the CAST output via a 1:100 dilu-
tion stage composed of two 1:10 stages (PALAS, VKL 10),
to avoid a significant particle coagulation in the instrument
lines. Dilution-corrected number concentrations in the range
from 1×107 cm−3 to 5×107 cm−3 were measured by a con-
densation particle counter (CPC, TSI mod. 3022A). Maxi-
mum particle emission was found at a C/O ratio of about
0.5. Number size distributions in the 10 nm to 800 nm size
range were measured by a scanning mobility particle sizer
(SMPS) composed of a differential mobility analyser (DMA,
TSI mod. 3071) and another CPC (TSI mod. 3010). The mo-
bility equivalent median diameter was found to decrease with
increasing C/O ratio starting from values between 300 nm
and 340 nm for the C/O ratios 0.25 and 0.29 to less than
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Fig. 3. Number size distribution of CAST aerosol produced at
C/O=0.40 and sampled from the chamber after the initial strong co-
agulation phase. The measured distribution is well reproduced by
assuming lognormally distributed equivalent diameters.

40 nm for the highest C/O ratio of 1.0. However, for C/O ra-
tios between 0.33 and 0.44 bi- and trimodal size distributions
were measured, with one or two nucleation modes in addition
to the soot mode (Fig.2). We assign these nucleation modes
to condensed PAH compounds, which are produced in the
hotter regions of the flame and which survive the transition
to the colder flame regions where they can condense either
homogeneously or heterogeneously on the surfaces of the the
soot particles. Particles composed of condensed PAH com-
pounds have been detected in flames by several authors us-
ing mass spectrometry and transmission electron microscopy
(Fletcher et al., 1998; Dobbins et al., 1998; Homann, 1998;
Vander Wal, 1998). More recently,Slowik et al.(2004) anal-
ysed aerosols generated in a premixed propane/O2 flame by
means of an Aerodyne aerosol mass spectrometer. They
found at higher C/O ratios of the flame, i.e. at lower flame
temperatures, an increasing amount of PAH compounds in
the emitted aerosol. A maximum PAH mass fraction of about
50% was deduced. Moreover, their further analysis of the
aerodynamic aerosol properties indicated a compact particle
shape of the condensed PAHs/soot mixtures in contrast to
the open-structured soot aggregates. Our TEM analysis of
the CAST aerosol (Fig.4) indeed has revealed two morpho-
logically different particle types: (a) soot aggregates formed
from very small individual particles (diameter about 30 nm)
and (b) spherical particles of up to 120 nm diameter. In Fig.4
both types are visible. Some of the large spherical type b
particles are indicated by arrows in the micrograph. They are
either attached to the soot aggregates or appear individually
or in small aggregates. Apparently, they represent the nucle-
ation modes observed in the CAST emission for C/O ratios
larger than 0.33, especially the larger nucleation mode II. The
nucleation mode I particles should be of about the same size
as the individual soot grains. Such a separate mode of small

Fig. 4. TEM image showing the morphologies of carbonaceous
aerosol particles produced at C/O=0.45. The arrows indicate larger
spherical particles either isolated or attached to the soot aggregates.
The long structures to which the particles are attached are bars of
the supporting film.

isolated grains, however, has not been seen with the TEM.
This can be understood considering that the TEM sample was
sampled from the aerosol chamber after the aerosol has been
strongly aged by coagulation (see Sect.3.2).

3 Aerosol chamber measurements

3.1 Methods

The experiments were conducted at the stainless steel aerosol
chamber NAUA of Forschungszentrum Karlsruhe (Fig.5).
The chamber has a volume of 3.7 m3 and is equipped with
a comprehensive set of aerosol instruments. Number con-
centration and size distribution of the aerosol in the chamber
were measured by the set of devices mentioned in the pre-
vious section. Due to the high initial particle concentrations
of 105 cm−3, the sample air of these instruments was diluted
1:10 with synthetic air.

The spectral extinction coefficientbext(λ) was measured
in the spectral range fromλ=230 nm toλ=1015 nm by the
aerosol extinction spectrometer LOPES. LOPES was oper-
ated in combination with a three-colour integrating neph-
elometer (TSI, model 3563) measuringbsca(λ) atλ=450 nm,
550 nm and 700 nm. By subtractingbsca from bext the ab-
sorption coefficientbabs(λ) could be determined at the three
nephelometer wavelengths, including a careful correction
of the systematic errors of the TSI 3563 nephelometer as
already discussed inSchnaiter et al.(2005). However, since
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Fig. 5. Schematic representation of the aerosol chamber setup.

we had particle diameters of less than 300 nm in our experi-
ments the systematic errors of the nephelometer were found
to be low (less than 5%). Thus, the main errors in the pre-
sented optical quantities are due to the instrument noise of
LOPES (4×10−5 m−1) and the accuracy in the determina-
tion of the mass concentration.

Quartz filter samples for off-line thermographic carbon
analysis were collected directly from the non-diluted output
of CAST as well as from the aerosol chamber. Resulting
TC mass concentrations of the aerosol in the chamber were
used to convert the correspondingbext(λ) andbabs(λ) results
to the mass specific extinction and absorption cross sections
σext(λ) andσabs(λ). Thermographic carbon analysis was ac-
complished according to the German VDI-guideline 2465,
part 2 (VDI , 1999). We used a thermal carbon analyser sys-
tem developed at the Institute of Environmental Technology
of the Technical University of Berlin (Ulrich et al., 1990).
Combustion aerosol samples were deposited on quartz fibre
filters (Munktell, type MK 360) which have been prefired at
650◦C for at least 12 h prior to sampling. According toUlrich
et al. (1990), the filter samples were analysed without any
pretreatment by the following three-stage temperature proto-
col of 8 min duration. In the first stage, low-volatile OC com-
pounds of the aerosol were volatilised in a 350◦C helium flow
(purity grade 5.0), catalytically oxidised, and the carbon frac-

tion determined as CO2 by NDIR spectrometry. The carbon
fraction was classified as OCI. In the second stage, remaining
OC compounds were volatilised at 650◦C in a helium flow
and were classified as OCII. In the last stage, the remain-
ing sample was burned in a 650◦C oxygen flow (purity grade
4.8). The detected carbon fraction was classified as EC. Be-
fore switching from helium flow in stage two to oxygen flow
in stage three the sample was cooled down to 300◦C. High
heating rates of 12◦C s−1 were applied to reduce charring
of hydrocarbons, in particular during stage two. However,
charring of OC cannot completely ruled out which should be
keep in mind when comparing our EC/OC ratios with results
of other thermal methods. Despite this possible bias, at least
the observed trend in the EC/OC ratio with varying burning
conditions, i.e. the C/O ratio, is reliable. The instrument is
routinely calibrated by injecting known doses of CO2 (pu-
rity grade 4.5). From these calibrations a precision of better
than 7% can be deduced. A detection limit of about 1µg EC
or OC per sample were determined by analysing a series of
blank filters.

Samples for transmission electron microscopy (TEM)
were prepared on nickel grids with Lacey carbon support film
utilising a self-constructed impactor with a cut-off diameter
of 0.1µm by courtesy of M. Ebert, University of Darmstadt,
Germany. The grids were analysed utilising a Carl Zeiss

Atmos. Chem. Phys., 6, 2981–2990, 2006 www.atmos-chem-phys.net/6/2981/2006/
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Fig. 6. Specific extinction (solid lines) and absorption (squares) cross sections derived for NAUA aerosol samples produced at different C/O
ratios. The absorption values originate from extinction and total scattering (nephelometer) measurements (difference method, see Sect.1).
Dashed lines represent power laws fitted through the measured absorption cross sections.

EM 902 A TEM operating at an accelerating voltage of 80 kV
with a point resolution of 1 nm.

3.2 Procedure

Before adding the aerosol to the chamber, CAST was oper-
ated for at least 20 min at a C/O ratio of 0.29 to achieve stable
burning conditions. According to the desired C/O ratio, the
flow of the oxidation air was then chosen between 0.72 SLM
and 1.50 SLM. Experiments were conducted at C/O ratios of
0.29, 0.35, 0.40, 0.45, 0.5 and 0.61. Due to the high car-

bon mass emissions of 100 to 200 mg m−3 in case of low
C/O ratios (0.29 to 0.45), the aerosol was diluted with syn-
thetic air in a 1:10 dilution stage before adding it to the cham-
ber. At the higher C/O ratios the CAST aerosol was added
non-diluted. The chamber was evacuated, flushed, and pre-
filled with synthetic air before each experiment. Combustion
aerosol particles were then added to the chamber by pumping
20 SLM CAST aerosol through the chamber volume where it
was mixed with the chamber air by a mixing fan. Depending
on the C/O ratio the time for enriching the chamber air to a
number particle concentration of about 2×105 cm−3 varied

www.atmos-chem-phys.net/6/2981/2006/ Atmos. Chem. Phys., 6, 2981–2990, 2006
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Table 1. Overview of the optical properties deduced from the aerosol experiments in the NAUA chamber.

C/O OC/TC [%] ω450 ω550 ω700 σ550
abs [m2/g] αabs αsca

0.29 8.5±2.9 0.27±0.01 0.25±0.01 0.22±0.01 5.5±0.7 1.01±0.01 1.70±0.03

0.35 16.0±5.0 0.33±0.01 0.31±0.01 0.27±0.01 5.2±0.4 1.10±0.02 1.76±0.03

0.40 30.2±4.5 0.43±0.02 0.41±0.02 0.37±0.02 3.8±0.5 1.56±0.03 2.16±0.05

0.45 50.8±7.7 0.53±0.01 0.51±0.02 0.46±0.04 2.1±0.5 2.20±0.16 2.84±0.06

0.50 49.0±4.1 0.70±0.02 0.76±0.02 0.80±0.02 1.4±0.5 3.49±0.12 2.22±0.11

0.61 66.6±5.9 0.85±0.04 0.96±0.05 1.06±0.12 0.2±0.6 9.34a 2.95±0.20

a deduced in theλ=450−550 nm spectral region

between 20 min and 2 h. At such high particle concentra-
tions, the aerosol ages very rapidly by coagulation. To avoid
a significant coagulation-induced change in the aerosol size
distribution during the sampling time of LOPES (10 min), a
decrease of the number concentration to at least 7×104 cm−3

was awaited before the optical measurements were started.
During the subsequent 2–3 h measurement phase, 4–6 extinc-
tion spectra were recorded simultaneously to measurements
of the number size distribution. Particle number concentra-
tions and the scattering coefficients were measured continu-
ously. For each experiment, quartz fibre filters for thermo-
graphic analysis were prepared simultaneously to the first
and last extinction measurement. Nickel grids for TEM anal-
ysis were prepared after the first extinction measurement.

3.3 Results

Good agreement of the OC/EC composition was found by
comparing filter samples collected directly behind CAST and
from the NAUA chamber (Fig.1). However, in contrast to
the size distributions measured directly at the diluted CAST
output (cf. Fig.2), the chamber aerosol at any C/O ratio ex-
hibited a mono-modal size distribution, which is a result of
the strong coagulation during the aerosol addition and initial
ageing phase (Fig.3).

Results of measured and deduced spectral optical proper-
ties are given in Fig.6 and Table1. Thus, a clear dependence
of the spectral optical properties on the burner gas compo-
sition is observed. With increasing C/O ratio, i.e. with in-
creasing OC content, light scattering by the aerosol becomes
more and more pronounced and eventually dominates the
aerosol optical behaviour for C/O ratios above 0.45. This
is reflected by the strong increase of the single scattering
albedoω0(λ), i.e. the ratio of scattering to extinction, start-
ing at an absorption dominated value ofω0(550 nm)=0.25
for the C/O=0.29 aerosol to a scattering dominated value of
0.96 for the C/O=0.61 aerosol. Note that the gradient of the
spectral dependence ofω0 is turning from negative to posi-
tive with increasing OC. Note also that the unphysical mean

ω0(700 nm) value of 1.06 deduced for the C/O=0.61 experi-
ments is the result of an increasing experimental error of the
DM for slightly absorbing aerosols.

The specific cross sectionsσext(λ) and σabs(λ) both de-
crease with increasing OC content. In particular the ab-
sorption cross sectionσabs(λ) is strongly reduced starting
from a value ofσabs(550)=5.5±0.7 m2 g−1 for C/O=0.29
aerosol to a value ofσabs(550)=0.2±0.6 m2 g−1 in case
of the aerosol emitted from a flame with a C/O ratio of
0.61. The relative strength of this decrease is wavelength-
dependent and is higher for longer wavelengths resulting in a
steeper wavelength-dependence ofσabs(λ)∼λ−αabs and, thus,
a higher absorption̊Angstr̈om exponentαabs for aerosols
with higher OC content. A flatλ−1 dependence was found
for the aerosol samples with OC contents below 20% in
good agreement with what is usually adopted for BC (see
Kirchstetter et al., 2004, and references therein). On the
other hand, strong wavelength-dependencies ofσabs with
αabs exponents between 2.2 and 3.5 were deduced for the
aerosol samples with OC/TC contents around 50%. Compa-
rable strong spectral dependencies have been found byBond
(2001) for some aerosol samples emitted in coal combustion
and byKirchstetter et al.(2004) andSchnaiter et al.(2005)
for biomass burning aerosols. In accordance with the in-
terpretation of the nucleation modes observed in the CAST
aerosol in case of higher C/O ratios (Sect.2) we assign the
observed correlation of the absorptionÅngstr̈om exponent
with the C/O ratio, i.e. the OC content, to the occurrence of
condensed organic species (most likely PAHs) having a steep
absorption edge towards the near-UV (Apicella et al., 2004).
This interpretation was further supported by spectroscopic
investigations of size-segregated impactor samples deposited
on CaF2 substrates. These investigations will be discussed in
the following section.
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4 Measurements on impactor-deposited samples

4.1 Methods

CAST aerosol emitted at C/O ratios of 0.29, 0.40 and
0.50 were deposited on CaF2 substrates, i.e. optical plates
of 25 mm diameter, utilising an impactor with rotating
stages (Hauke, model LPI ROT 25/0.018/2.0). The im-
pactor was operated directly behind the 1:10 diluted out-
put of CAST. Samples were prepared on the first and the
second stage of the impactor with cut-off diameters of
0.018µm and 0.0355µm. The deposited mass was typically
1×10−6 g cm−2 at stage one and 2×10−6 g cm−2 at stage
two.

The extinction, absorption and scattering spectra of the
samples deposited on the CaF2 substrates have been mea-
sured with a double-beam scanning UV-VIS spectrometer
(Perkin Elmer, model Lambda 19) in the wavelength range
from 190 nm to 2000 nm. The spot of the spectrometer beam
is approximately 4×2 mm2 in size and the spectral resolution
was set to 1 nm. Additionally, a VUV spectrometer (spe-
cial design by LZ Hannover) has been used to extend the ex-
tinction measurements to shorter wavelengths (spectral range
115 nm–230 nm) at a similar spectral resolution and similar
beam size. To deduce mass-specific extinction cross sections
σext of the deposited aerosol, a simple transmission measure-
ment at a sample-covered position on the CaF2 substrate was
performed relative to a transmission measurement at a blank
substrate position. The relative transmissionTrel is trans-
formed toσext by

σext = − ln(Trel)/µT C (2)

whereµT C is the deposited sample mass per area. For un-
known reasons, some data have been found to suffer from
insufficient compensation of absorption bands of the CaF2
substrates at wavelengths smaller than about 160 nm. There-
fore, we omitted anyσext values in this shorter wavelength
range. The discussion in the following section is not affected
by this restriction.

For the determination of the absorption and scatter-
ing cross sections, an integrating-sphere accessory for the
Lambda 19 spectrometer, equipped with a photo-multiplier
detector, was utilised. The sample was placed in the center of
the diffusely reflecting integrating sphere of 15 cm diameter.
A tilt of the sample by 15 deg with respect to the beam direc-
tion ensures that light reflected by the CaF2 substrate could
either leave the sphere through a special port or be retained
within the sphere when closing the port. A similar port for
the transmitted light could also be either opened or closed.
In this way the integrating sphere can be operated in two
modes. For scattering measurements, both ports are opened
and the intensity of the scattered radiationIsca collected by
the sphere is measured. For absorption measurements, both
ports are closed and the sum of reflected, scattered, and trans-
mitted intensitiesIrefl+sca+tra is measured. The measure-

Table 2. Overview of the optical properties deduced from the im-
pactor samples.

C/O OC/TC [%] ω450 ω550 ω700 σ550
abs [m2/g] αabs

First stage

0.29 – 0.236 0.233 0.226 6.6 1.05

0.40 63.6 0.405 0.407 0.395 3.5 1.76

0.50 64.1 0.435 0.565 0.782 0.81 6.99

Second stage

0.29 – 0.203 0.207 0.212 6.6 0.84

0.40 52.6 0.421 0.453 0.516 4.7 1.57

0.50 64.9 0.526 0.648 0.778 1.9 3.32

ment of the incident intensityIinc at removed sample and
closed ports completes the measurements with the integrat-
ing sphere. With this set of measurements, the scattered and
absorbed fractions relative to the incident intensity can be
expressed byS=Isca/Iinc and A=1−Irefl+sca+tra/Iinc. The
value 1−A−S should coincide withTrel from the extinction
measurement. This has been checked and is always the case
to within a deviation of(1−A−S)−Trel<0.05, in most cases
much better. Thus, the absorption, scattering, and extinction
cross sections were internally consistent, except for a few
cases in spectral ranges of very low extinction, where the de-
viation became comparable to or even larger than the extinc-
tion value itself. Apart from this internal consistency, how-
ever, there are systematic deviations from the aerosol mea-
surements in extinction and scattering. This is due to the fact
that both the scattering and extinction measurements suffer
from insensitivity to forward scattering because of (1) for-
ward scattered light is not detected in the scattering measure-
ment if the scattering angle is small enough so that it passes
through the transmission port (2 cm in diameter) of the in-
tegrating sphere and (2) forward scattered light reaches the
spectrometer detector in the transmission measurement if the
scattering angle is small enough to match the divergence of
the spectrometer beam geometry, i.e. the acceptance angle
of the spectrometer detector. Fortunately, the angular lim-
its within which this is the case are similar (about±7 deg)
in both measurement modes so that the effects are partially
compensated and the above-mentioned consistency is main-
tained. However, depending on the relative strength of for-
ward scattering, the scattering cross section can be consider-
ably underestimated. This effect should become increasingly
important at shorter wavelengths and is in fact seen as a re-
duction of the albedo, especially for the samples produced at
high C/O (see Table 2). The absorption measurement is not
affected by such systematic errors.

www.atmos-chem-phys.net/6/2981/2006/ Atmos. Chem. Phys., 6, 2981–2990, 2006
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Fig. 7. Specific extinction and absorption cross sections for the deposited samples produced at C/O ratios of 0.29 and 0.50. The absorption
spectra (dotted lines) were measured with the Perkin-Elmer UV-VIS spectrometer in combination with the integrating sphere, as described
in Sect.4.1. The left panels show the data corresponding to the impactor stage 1 and the right panels show the data corresponding to the
impactor stage 2. The absorption values measured in the aerosol are included for comparison.

4.2 Results

The mass-normalized absorption and scattering cross sec-
tions are calculated from the extinction cross section,
weighted withA/(A+S) andS/(A+S), respectively. Unfor-
tunately, it is not possible to deriveσabs from the absorption
measurement alone, since absorption and scattering are com-
peting processes and influence each other. The extinction and
absorption cross sections obtained for samples produced at
two distinct C/O ratios (0.29 and 0.50) are shown in Fig.7,
with the left panels showing the data for impactor stage 1,
the right panels for impactor stage 2. For comparison, the
σabs(λ) values measured for the corresponding aerosols are
also shown. The figure demonstrates that size segregation
has a strong influence on the optical properties in case of the
material produced at high C/O ratio but not for the one pro-
duced at low C/O.

This becomes even more clear by comparing the optical
quantities given in Table 2. The sample produced at C/O=0.5
has a lower absorption cross section and a higher absorp-
tion Ångstr̈om exponentαabs (both by factors of 2) when
deposited at stage 1 compared to stage 2. In comparison to
the chamber measurements for aerosols produced at the same

C/O ratio (compare Tables 1 and 2), the samples deposited at
stage 2 have quite similar properties. In contrast to that, the
sample deposited at stage 1 at C/O=0.5 appears to have again
a lower absorption (by 43%) and a much higherαabs, which
is in fact comparable to the one of the chamber aerosol pro-
duced at C/O=0.61. The single scattering albedoω0 of the
impactor-deposited samples is systematically lower than the
correspondingω0 values of the aerosol measurements, espe-
cially at shorter wavelengths. This may partially be a conse-
quence of the shortcomings of the scattering measurement.

These results indicate that the size-separation by the im-
pactor also leads to a separation according to the absorption
properties. According to Fig.2, the smallest size fraction
(stage 1), should contain all compact particles of the size dis-
tribution up to a diameter of about 35 nm and may contain
a minor fraction of small fractal aggregates up to a mobil-
ity equivalent diameter of 80 nm. For the soot aggregates,
the representation of the aerodynamic diameter ranges for
the two impactor stages in terms of mobility equivalent di-
ameters was performed by the COSIMA fractal formalism
developed byNaumann(2003). Thus, stage 1 definitely con-
tains the major part of the nucleation mode I of the particle
size distribution discussed in Sect.2, a small fraction of the
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Fig. 8. Double logarithmic representation of the absorption be-
haviour in the visible range for samples produced at C/O ratios of
0.29 and 0.50 and deposited on impactor stages 1 and 2. The figure
shows that the power-law behavior is no longer valid at wavenum-
bers larger than 2.5µm−1.

nucleation mode II, and only very few small soot aggregates.
In summary, the aerosol fraction deposited on stage 1 is char-
acterized by a low absorption at visible wavelengths, which
however is steeply rising towards shorter wavelengths fol-
lowing a power law with a high exponent. Figure8 indeed
clearly demonstrates that the spectral dependence of the sam-
ples in the wavenumber range from about 1.3 to 2.5µm−1

can be well described by power laws. However, Fig.8 also
shows that the spectral absorption behaviour flattens consid-
erably at shorter wavelengths (larger wavenumbers). Espe-
cially, for the OC dominated deposit it approaches a similar
slope as that of the soot dominated deposit.

An interpretation of this behaviour can be given based on
Fig. 9, which shows the extinction cross section extending to
wavelengths as short as 167 nm, plotted again on a wavenum-
ber (energy) scale. Thus, the observed spectral dependencies
are believed to represent different sections of similar absorp-
tion bands extending into the far UV spectral range. These
bands are related to the excitation of theπ-electron systems
in aromatic structures (Apicella et al., 2004). The fact that
not only the soot material produced at C/O=0.29 but also the
organic carbon fraction deposited at C/O=0.50 possess this
band, supports our assumption that a significant fraction of
the nucleation modes observed in the CAST aerosol emis-
sions consists mainly of condensed polycyclic aromatic hy-
drocarbons. However, for the C/O=0.5 sample deposited on
stage 1, this band is obviously sharper and peaks at longer
wavenumbers. According toRobertson(2002), the decline of
this band towards lower energies is related to the size of the
aromatic regions within a carbonaceous material, with larger

Fig. 9. Specific extinction cross sections corresponding to the sam-
ples produced with C/O ratios of 0.29 and 0.50 and deposited at the
impactor stages 1 and 2. The smooth (noisy) traces represent mea-
surements with the UV-VIS spectrometer (the VUV spectrometer).
The combined spectra reveal the presence of a prominent band with
a maximum in the 3–5µm−1 range. The visual range where the
Ångstr̈om exponent was determined is shaded.

aromatic regions leading to a decline at smaller wavenum-
bers (longer wavelengths), such as observed in the case of
the CAST material produced at C/O=0.29. Consequently, in
case of the soot material generated at a C/O ratio of 0.29 the
visible spectral range corresponds to a region directly within
the long-wavelength side of the band. This spectral range
with bulk absorption coefficients in excess of 104 cm−1, de-
pending on the mass density (extinction cross section val-
ues larger than about 1 m2 g−1) is usually described by the
Tauc law (Robertson, 2002) giving a roughly linear1 spec-
tral dependence. This is reflected by the measuredÅngstr̈om
exponent of the soot material. For the organic carbon com-
ponent, however, the visible spectral range extends into the
very tail of theπ-electron band (Urbach tail), where local-
ized states contribute to the absorption mechanism. This
transition in the absorption mechanism, together with some

1It is exactly linear for zero gap energy.

www.atmos-chem-phys.net/6/2981/2006/ Atmos. Chem. Phys., 6, 2981–2990, 2006



2990 M. Schnaiter et al.: Spectral absorption of organic carbon

residual contribution from small soot aggregates deposited
on stage 1, could be responsible for the largeÅngstr̈om ex-
ponent measured here.

5 Conclusions

The investigations carried out on airborne and deposited
aerosol samples from a propane diffusion flame show that
their extinction and absorption properties strongly depend on
the C/O ratio in the burner. It was found that at higher C/O
ratios nucleation modes of OC material, presumably of large
PAHs, appear in the size distribution of the aerosol, in addi-
tion to the soot mode dominating at lower C/O ratios. The
appearance of these modes coincides with a strong decrease
of the absorption cross section of the emitted aerosol accom-
panied by a strong increase of the absorptionÅngstr̈om ex-
ponent. Size-selected measurements on deposited samples
also indicate that the nucleation modes are related to the OC
component of the CAST products, i.e. they most likely con-
sist of condensable organic species characterized by low ab-
soption and a high̊Angstr̈om exponent in the visible range.
Extension of the measurements into the VUV spectral range
demonstrates that these optical properties of the OC origi-
nate from aπ-electron absorption band in the UV, which is
narrower and blue-shifted compared to the one of the soot-
dominated material. This indicates that the OC is mainly
aromatic in nature, consisting probably of condensed pol-
yaromatic molecules.
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