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Abstract

As an attempt to uncover the topological nature of compwsitif
strategies in game semantics, we present a “topologicatiegar
Multiplicative Additive Linear Logic without propositial vari-
ables, including cut moves. We recast the notion of (winhgtat-
egy and the question of cut elimination in this context, ara/@
a cut elimination theorem. Finally, we prove soundness amd-c
pleteness. The topology plays a crucial role, in particthaough
the fact that strategies form a sheaf.

Let us instead allow each player to see more than two games,
i.e., lie in an open neighborhood like

LN,
N

We thus consider positions to be spaces obtained by plugging
such atomic neighborhoods together. A move now leads from a
position to another, where a move — in the old sense — has been
played on one of the connections. We investigate this pgmadi
in the context of Multiplicative Additive Linear Logic withut
1. Overview propositional variables (henceforth MALL), where logicales,

. i.e., moves, are (slightly enriched) continuous functibesveen
The notion of a game between two players (P and O) has becomey,sitions. Most emblematic is perhaps out move leading from
fundamental in proof theory and programming language theor P

. - : position [1) to

A natural way to think of such a game is as a directed graph,
whose edges represent moves between positions, togettter wi \ /

A 1)

some information about who plays the moves. r e— A—>e
Game semantics_(Abramsky 1997; Hylend 1997) has widened

this notion of game, by providing means to connect two suchega

together. In game semantics, each player takes part in stoch

games, and acts as P in one and as O in the other. Connection, o

interaction, then happens by letting two players respelstiplay P
and O on a common game.

It is formalised from the obvious continuous function frof) (
fo @).

We investigate a few topological constructions and progeit
this setting, among which:

By making several such connections, one obtains a sequence o Strategies, defined in a suitably local way, form a sheaf- Fur

of games, subject to topological considerations. For exangme

may see the involved games as edges in a graph with the players

vertices, as in

game gam

1 2
78 p|aye|' 2 %

0
player 1 etc.,
and decree that an open neighborhood of playgthe sequence

gamei — gamei

1 .
players

The topology here is simplistic, but arguably, this is onledo the
requirement that game semantics be categorical, i.e., glaglr
sees only two games. This is most striking in the game seosanti
of sequent calculi, where sequents, ..., A, - B1,..., B, are
interpreted as game$; A--- A A, — B1V---V Bp,.

[Copyright notice will appear here once 'preprint’ optiGrémoved.]

thermore, winning strategies are a subsheaf of strateigges,
the amalgamation of winning strategies is winning again.

e There is a notion of cut elimination: building upon a factari
tion system, we define a construction of a cut free strategm fr
a strategy with cuts, again preserving the winning characte

These observations lead in the case of our semantics for MALL
to standard logical results like:

CoherenceThere is no winning strategy on the sequent with no
formula.

Correctness Any provable MALL sequent admits a winning strat-
egy.

CompletenessAny sequent with a winning strategy is provable in
MALL.

2. Agame for MALL
2.1 Hypersequents

As explained above, our positions have a particular stracthich
we now define. First, define MALL formulae by the grammar

A,B,C,...eP == 0|1|A®RB|A®B
| T|L|ATB|A&B,

and decree that formulae on the first line are positive, wihite
others negative. De Morgan duality is defined as usual (agrali

2008/7/11



connective to that vertically opposed to it). Recall in ragthe
corresponding sequent calculus (Girard 1987).
Say that gartial directed graph is a directed graph

S

E |4

@)

t

with source and target mapsand¢ partial, i.e., edges may be
dangling. We call edges with no souroguts and dually edges
with no targeboutputs

Definition 1. A hypersequenis a finite, partial directed graph,
which is furthermore topologically acyclic, i.e., whichasyclic as
an undirected partial graph.

Following the intuitions in Sectidd 1, we slightly abusiyéen-
tify sequents with connected, one-vertex hypersequerits @.

We then endow hypersequeni$ (3) with a topology on the co-
productE + V' by decreeing that a set of points is open when for
each vertex, it contains all the adjacent edges. Using tuelt
ogy, we build a category of hypersquents by defining a momphis
U — V to be given by a continuous function frabthto V' as topo-
logical spaces, sending vertices to vertices. Such funstamm-
pose in the obvious way.

Remark 1 (Topology). Observe that this entails:

e a set of points is closed iff for each edge it contains all the
adjacent vertices,

e each vertex iri/ is a closed point,

e each edge irF is an open point,

e each edgee € F adjacent to some € V has thisv in its
adherence.

Remark 2 (Morphisms). Morphisms are a bit like morphisms of
graphs, in the sense that by continuity if an edgaljacent to some
vertexv is sent to an edge’, then the image of is adjacent te’.
However, they differ from morphisms of graphs in that:

¢ they may reverse the direction of edges,

Before going on to define the moves of our game, we show a few
example morphisms. From the obvious continuous functiomfr
(the underlying space of)

—A—»o\A\
P

~
~a
b

A
s

[ ] to ._A®A_>.

—A—>e”

we may define four different morphisms, according to the pccu
rences we assign to the two premises of the tensor. For eramel
may send both edges to the first premise by assigning thenttiomth
occurrencd). We also may assign the upper edge the occurrénce
and to the lower edge the occurrericeThere are two symmetric
morphisms.

To illustrate the conventions on signs of formulae, conside
morphism from

ee—plogoct—a
to

o — AR ((BBC)B D) —»e .

It assigns occurrencg0 to the unique edge of the domain. But
since the corresponding subformula4fz ((BT' C) T D) is neg-
ative, the edge’s source and target are swapped, and thaléoisn
dualised. Of course, we immediately introduce the notatmrsist-
ing of labeling edges with negative formulae to denote thensed
edge with the dual formula. In this way, the domain of the a&ov
morphism becomes

.—B?S)C—V. .

(We could also have used an equivalent category where laimgls
directly be negative.)

2.2 Moves

* they may sent edges to sequents, as will for example the cut|, yhe categonyG of hypersequents, we now single out a class of

move. Such edges amollapsedby the morphism, while the
other arepersistent

To build our category of hypersequents, we define the follow-
ing generic way of labeling them. Assume given a categbwith
a polarity (positive or negative) on morphisms, such thatusual
sign rules are respected by composition, e.g., identitiespasi-
tive, composing two negative morphisms yields a positive, @tc.
Define the categorg(C) of C-hypersequents to have

¢ objects: hypersequents with edges labeledOb(C), i.e.,
equipped with a functiod : E — Ob(C);

e morphismsU — V: pairs(g,0) of a morphismg : U — V
of unlabeled hypersequents, and for each persistent edge
morphismo. : fu(e) — £v(g(e)) in C, such that ifo. is
positive then the direction efis preserved by, and otherwise
itis reversed.

Morphisms compose, and the condition on the direction oéedg
preserved thanks to the sign rules.

We apply this construction to the categaby.c with objects the
positive formulae and morphismé — B the occurrencesi.e.,
paths from the root irB reaching a subformula equal tbup to de
Morgan duality. The sign of a morphism is that of the subfdanu
reached by the path. This gives us the category G(Occ).

1Here by direction we mean the pdise, te), seeings andt as functions
E — (V +1). An edge without source or target may thus have its direction
both preserved and reversed.

morphisms as oyproper movesthus forming a subgrapi of G.
We will first define a set obasic movesorresponding to the rules
of MALL, and then extend them by embedding.

Our basic moves are defined in Figlile 1. Each line defines a
move, the first being the already mentioneat move. In each
case, the move is the obvious morphism from left to right,dbis
meaning that the move is a morphism on a larger hypersequent,
which is an isomorphism outside the shown part.

Since we want to get topological, it seems natural to comside
restrictions of basic moves. For example, the restrictibrihe
tensor move to the left-hand sequent would send

™~
/. - A o .
to ——e— AR B—-
E\. —B—" :

/
To formalise this idea, we consider the identity-on-olgestibcat-
egoryH —— G with the same objects, and morphisms the pairs
(g,0) with g an open embedding andthe function assigning to
each edge labeled the identity occurrenceéd 4. In the follow-
ing, we call these morphisms simpéynbeddingsObserve thaG
has pullbacks along embeddings, that pullbacks of embgddire
embeddings again.

We can now extend our basic moves under the following rule: if
a morphismm as above is the restriction of a basic mexéalong
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From To

\Q—A—>o/ \./

b NN

~. .

- \A>o/: ;0 A®B—>°/

~ B AN : AN

> /

™~ S e e el

/Q—A—>o\ /o A® B \

\o— —>o/ \o— —»o/

L B & L A®B N
0/: ° 1—»0/3
AN AN

Figure 1. Basic moves

an embedding, in a pullback square

Uc—" .y

S

Voe—sV,

(4)

m

and if furtherm is not an isomorphism, themn is aproper move.
Finally, a vertexv, is activein a proper moven when either

e m is acut and is the cut sequent, or
e m is not a cut and is the source of the broken edge.

There is at most one active vertex in a proper move, and we call

of graphs
Ob(G) &——

3

* vertices the objects d§, and

y

— M".

(=)

It has

e edges the coproduct of proper moves and embeddings.

A play on some objedt/ is a path tdJ in M?; it is properwhen it
has no embeddings. L& be the free category generated My
Composition defines a functa® : P° — G, which leave implicit
except where necessary.

Let us now turn to strategies. Traditionally, strategies reon-
empty, prefix-closed sets of (proper) plays. Here, we aretape-
logical setting, so instead of defining strategies as sqitagt, we
want to include in them as local an information as possiblaatVv
strategies have to contain is, at each stage in the courke pfay,
for each involved edge or sequent, the moves it accepts. We fo
mally define them to contain this information and not mordl,St
(winning) strategies generate meaningful sets of playsyeagx-
plain in a bit more detail in Sectidn3.1.

Call a hypersequergtomicwhen it is either empty, or an edge,
or a sequent. Ahreadon a hypersequeitf is a playp such that:

(T) For all proper moves: : W — V appearing imp, V' is
atomic.

Now, call a moveV/ N /o mandatorywhen either

e {is an embedding, or
e VV is atomic andf is a passive proper move.

A strategyon U is then a set of thread$ which is:
S1 prefix-closed, i.e., ift’ € S, then alsa € S,

S2 stable under extension by mandatory moves, i.éVif—f> \%4
is mandatory and” s Uisin S,thenalsafisin S,
S3 stable under isomorphism, i.e., if for any threads

sequents and proper moves active when they contain an active

vertex, andhassiveotherwise.

2.3 Plays and strategies
To sum up, we have a site of hypersequents, with

¢ an identity-on-objects subcategdly— G of embeddings,

¢ an identity-on-objects subgrapy —— G of proper moves,
stable under composition with isomorphisms,

such that

e embeddings have pullbacks @ and these pullbacks are em-
beddings again,

o the pullbacks of proper moves along embeddings thus exidt, a
are either proper moves again, or isomorphisms.

We also have a polarity on proper moves, i.e., a partitiorroper
moves into passive and active ones.

Let us now define plays in this setting. Traditionally, plays
defined as sequences of moves. Here, because of the tomblogic
nature of positions, we find it useful to generalise this digvics.
Consider the grapM° of movesdefined by the following pushout

t:U—X and t:Y -V,
and commuting square
X L. x
mi lm’
Y Y

with m andm’ moves and andj isomorphismstmt’ € S iff
tim/jt’ € S,
S4 and stable under composition and decomposition of embed-
dings, i.e., for any, ¢’ as above and any embeddings
X < h 7 < h
tohoh'ot' € Siff to G(hh')ot' € S
Observe that these axioms entail the “one-sided” versib&3adf,

e.g.,i is the identity, thentmt’ ¢ S iff tm’jt’ € S. Indeed, we
apply S3twice with the squares

Y,

X—»X—

m) }l/m'

D¢
m
Y Y
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to deduce that o id o id o m’ o id o j o t’ isin S, then applyS4

with id o id, and applyS3again with the right-hand square above,

to obtain thatm’jt’ is in S. The converse implication is similar.
The restriction t*(S) of a setS of threads onU along some

threadt : V. — U is the set of thread$¢’ on V such that

tt' € S. The restrictiort*(.9) of a strategy along anyis obviously

a strategy again, although possibly the empty one. (Observe

passing that a strategy may be empty.) We furthermore hzeveks

to S4, for the obvious Grothendieck topology éh

Theorem 1. Strategies form a she&f: HP — Set.
Proof. A strategyS on U is determined by its set of restrictions

h*(S) for h : V —— U and V atomic. But any covering
sieve onU includes thosé:i’s and thus entirely determines So

the preshea$ is separated (amalgamations, when they exist, are

unique). Now given a siev8 on U with compatible strategieS;
on the embeddingk; : U; — U of S, define the amalgamation
P as follows. First any sequence of embeddingdtas in P.
Furthermore, for any thregdon U decomposing as

w—1 sv—"' .,y
with r a sequence of embeddings didaitomic, then leU; be one

of the members of isomorphic toV/, andq’ : W — U, be the
play corresponding tq there (recall that proper moves are stable
under isomorphism). Then decree that P iff ¢’ € S;. |

3. Cutelimination

In this section, we define our cut elimination (= descent)cpro
dure for strategies. We start by specifying cut eliminatama
function from strategies to cut free strategies: Consitler sub-
sheafS.; — S of strategies consisting of cut free strategies, i.e.,
those whose plays are all in the free categb@}ygenerated by non
cut moves. Cut elimination should provide a morphism of gshea
ce : S — S¢, preserving the winning character of strategies. In
this section we stick to defining our morphism of sheaves,dmd
fer to Sectiorf¥ the study of winning strategies.

3.1 Overview

Remote view: an easy taskWe will construct our morphism of
sheaves using a more general family of functibesc. : S(U) —

S.;(V) indexed by a particular class of morphisfiis—— V in
G. The subfamily of function§ (U) — S.;(U) obtained by taking
¢ = idy will lead to the desired morphism of sheaves.

The involved class of morphisnags that ofcut only topological
plays i.e., morphisms: as above admitting a decomposition into
cut moves. For each such morphism, we will define functions
Desc. : S(U) — S (V) sending strategies ofi to cut free
strategies.

The rough idea for defining these functions is natural: campu
cut elimination for moves and extend it to plays by inductiGut
elimination for moves arises from a factorisation systerma-
phism inG may always be decomposed into a “cut-like” morphism,
followed by a “non cut-like” morphism, which yields a facisa-
tion system(£, R). In particular, cut only topological plays are in
L, but £ contains other morphisms, as we shall shortly see.

Given a moveWW —=+ U, factorisation yields the dashed
arrows in

q %)

with ¢/ € £ cumulating the cuts ie andm, andg € R. We thus
takeDesc.(m) = ¢, and say thatn descendslongc asq.

It turns out that there are (roughly) two relevant configiorst
here:

e gis amove, or
e ¢ is an identity.

We interpret the second case by saying thasc. should really
send moves tplays If ¢ is a move, theDesc.(m) is the one-move
play ¢q. OtherwiseDesc.(m) is the empty play, and we replace the
above square by a triangle

w
\\\\ C/
m S
N
C A
U V.

Cut elimination (= descent) for plays is then obtained bingil

such squares and triangles: given a giely—» U, this yields the
dashed arrows in

W ------ - X
pl g’ (6)

. v

U V.

whereq’ is the concatenation of the plays obtained as above, for
each move op.

Cut elimination is partial This should define descent for plays,
but things turn out to be a little more complicated, becailmse t
function Desc,. is actuallypartial. Indeed, some embeddings cause
trouble, as shown by the following example. The followingais
factorisation square:

!

C

— A—>e - .

~
-

Indeed, the lower-left composite may be decomposed as

o— A—> o

[}
\h,
e \0 .
-
¢ a collapse of thed-labeled edge,
e an injection of the resulting vertex into the codomain.

We cannot consider this a successful descent, for two reason

e ¢/, although inZ, is no cut only topological play — cuts only
collapse two-ended edges, and

e 4/, although inR, is not open — since its image is not.

So our function is partial. Worse, it is much likely to be ufided

on threads, which very often behaveraabove, i.e., restrict to one
end of an edge collapsed byEven worse, threads may restrict to
one end of an edge created by some cut move earlier in thedthrea

We thus cannot reasonably define descent for strategies as a

direct extension of descent for plays, i.e., by takDesc.(S) to
be the image of underelim (for some strategy).

But, we may delineate the problem better: in a phegs in [®),
call an edgadloomedwhen it is collapsed by the composite (we
indeed want doomed edges to disappear through cut elimimati
At such a stage, observe that partiality is only caused by embed-
dings cutting off doomed edges. We thus adapt the notionreath
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From | To

0/: o

AN

Figure 2. New steps

e
AN

to a context where doomed edges are considered unbreakaide.
leads to the following notion of-cable

Characterising the plays descending to thread8efore playing,
threads restrict to atomic hypersequents, which we now dsw
connected subspaces with no two-ended edge. If we now @nsid
at each stage, doomed edges as unbreakable, the atomicéyyper
quents should now be the connected hypersequents where

doomeds two-ended,

Now, what will » look like? Obviously,h will send edges to
edges. And this turns out to be enough: calliRgthe class of
morphisms sending edges to edges, we have

Lemma 1. The classeg andR form a factorisation system f@.

To prove this, we first observe that morphisfiis—— V in
L are epi. Indeed, their underlying functions are surjectased
moreover, for edges df, precomposition by: does not change
the occurrences. This leads to

Proof of Lemmé&l1Existence of a factorisation is obvious. Now,
consider a commuting square

X J Y
cl {r @)
v—9 vy

with ¢ € £ andr € R. Then choose a factorisatign’, r’) for f,

i.e., a doomed arrow has two ends, and a non-doomed arrow doesas in

not. Ourc-cables are thus the plays which, before playing a proper

move, restrict to such subspaces. In short: before playalles
must cut off all the edges that may be cut off. Observe thdueife
are no doomed edges, one exactly recovers threads.

We then may define the desceititm.(S) of a strategyS to be
Desc.(cables.(S)), i.e., the image byesc. of its c-cables.

Finalisation Then we are almost done. Beyond being partial, our
function Desc. was actually only defined up to isomorphism, as is
factorisation. We thus define it as a relation, but the cocstin
remains essentially the same. Finally, the cut eliminatbi$' is

a set of threads, but need not be a strategy, and we need & clos

off by Axiom S4to obtain one. To explain why this is so, recall

that Axiom S4 requires strategies to contain plays regardless of

composition of embeddings, i.eG(h o k') is not distinguished
from the sequenck o h’. Now, consider a descent like

Ul

v n

1l
ml\Z

W/F

1 h
X X'

as above, where some proper mowedescends to the identity.
The compositeGG(h o k') need not be the image of any play on
X. The other direction 084 s satisfied though, so we need only
close under composition of embeddings, defining the desafemt
strategysS to be the corresponding closute. (S) = elim.(.S).

3.2 Factorisation
Let us start with the announced factorisation system. Giveror-
phismU N V', we may decompose it as

h
v—9 . w

where allg does is collapse edges to vertices. Formallpelongs
to the classC of morphisms which may be decomposed into a se-

guence using only cut moves and the morphisms shown in Ajure
plus isomorphisms.

-V,

c w r’
7 .

Now, for any morphismX 1, Y, let col(f) be the set of
edges inX collapsed byf, i.e., sent to vertices.
We have

col(c) C col(f) = col(c).

By collapsing exactly the edges it{col(c')), we define a mor-
phism¢” such that

U 72
C C
C
All'in all, we obtain a diagram
X ! Y
X /
c w r

?

U g v,

where the upper triangles and the perimeter are known to ecgenm

But a simple diagram chase shows thagualises the lower trian-

gle,i.e.,gc = rr'c’c. Butcis epi, so the lower triangle commutes.
This yields a diagonal for the original squak (7), makinghbo

triangles commute. Its uniqueness is a direct consequehee o

being epi. |

3.3 The partial “function”

We then define our relation on plays (which is more like a parti
function up to isomorphism), defined as a bipartite gréjsc:
when is a cut free play the cut elimination of a given play?rieo

to define this, we start with the corresponding relation ovesp
not trying for the moment to understand which moves have an
image. Consider the grag? with vertices the cut only topological
playsc : U — V, and two kinds of edges — ¢, based on the
squares
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/ / / edges. However, given any morphism U — V/, the following

U’ vl U v U v’ are easily shown equivalent:
lm m, { 1h h,l m H (i) cis atopological play and a cut only morphism,
. B c (ii) cis cutonly, and it only collapses two-ended edges,
U v U v v v, (iii) ¢ admits a decomposition into cut moves.
where

Hence, it is consistent to take as we did only topological playo
e the right-up sequence is(&, R)-factorisation of the left-low mean topological play admitting a decomposition into cuvezo

composite, . .
P , L, Proper moves We start by proving that everything goes smoothly
e m andm’ are proper moves, witln' non cut, for proper moves.

h andh’ beddi m . .
*han , are embeddings, ] Lemma 2. If U —— V is a proper move and is a two-ended
* candc’ are cut only topological plays. edge inV, then the edges im ' (¢) are also two-ended ify.

We define our grapk® to have as edges— ¢’ the squares as the

first two above, and the triangle Proof. By case inspection this holds for basic moves, and it remains

true after any restriction. |
Ul
, Recall thatcol(p) denotes the set of edgeslhcollapsed by,
m{ \ i.e., sent to vertices, for ariy —2» V.
C m & .
U %4 Lemma 3. Any sequencdV —— V —— U with m any

for each square as the third one above. This graph freelygesa proper move and: a cut only topological play may be completed
categoryC' whose morphisme — ¢’ are piles of such squares and @S & commuting square

triangles. Taking the left- and right-hand sides of suckgifields J ,
source and target functors to the categBfyof plays. However, W——Ww
we make the distinction with the categoﬂzf of cut free plays, ®)
and denote by m . !

s t 14 U

PO < c' - PY - - - -
cf in G, with f an isomorphism or a cut free proper move and cut

the corresponding source and target functors. This defihésaa only topological play. Furthermore;ol(cm) = col(c).

tite graphDesc between plays and cut free plays, and we say that . . .

p descendslongc asq when there is an edge— ¢ in Desc with Proof. Let £y, be the set of edges collapsed &yand Ey, their

lower bordere. antecedents by:. By Lemmd2, the edges ify; are two-ended.
This notion of descent extends by union to a function on sets | 7 is @ cutmove, then leky; be the set of edges collapsed by

f ol * Desc..S is th t of ol d ding f | m. We have by constructioEf/V and Eyy disjpint. Lete : W —
glo%gfs esc.5 is the set of plays descending from playssin W' be the cut only map obtained by collapsing exactly thesesdge

However, this does not meaningfully send strategies taestra W = (Eiv ¥ Eiy) in W. Since the edges ifiw have two ends,

gies, because threads do not in general descend along'suisior ¢ is a topological play, and we have an isomorphigmi" = U.

H /o !
can we prove for free that it preserves the winning charatter lfl m |s|no|t a cultl move, let .I VY - W l.)e thef.cudt only
image of a given strategy coultpriori be empty. topological play collapsing exactlgy, . It remains to findf as

So, in the next section, we start investigating conditioms f in @ For this, letZyy be the set (.)f edge§ I” which are not
moves and plays to descend along a given Section 3K This assigned the empty occurrencerby!.e., whlch are acted upon by
leads to the notion of-compatibility. Using this, we define our " A}" such e(7:Ing(.es ﬁre sentto abunquece?en V'ﬁnd belnhg n
c-cables in SectioiZ35, which all descend to threads atoe EWh or EfCEWC Is the iar(?e_a_s ;amg Iy, for eo. Thus, we have
then turn back to strategies, and after defining (Sedfidl theé el ’\?rEWf Ef‘% ZLEW Isjoint k:omEW; hisfin: 177 &
playsS generated by a strategyoverV, we define the descent of U arcl)(\;v'v:/e avrl'/e Eongg\;ﬁeﬁv&ius%ma\ils Iae?t 'Sﬁgﬂ;ﬂeﬁfg‘ f an_d
S alongc to be the set of threads ovér descending from a play ' - ” W o ) ¥
oA we may mimic the action af on the image oF7}; by ¢/, and land
in S. However, the result of descent need not be a strategy, andin U, making the squar€8) commute@
we still must close under (one direction of) axi@4 We show in Iﬁ all cases, clearly;ol (cim) = Col(cl)' 0O
Sectior3 that this notion of descent preserves the winriagacter ' '

(as defined there) of strategies. Cut elimination is reaes the  Embeddings We have seen in SectiffiB.1 that this does not work
special case whereis the identity. for embeddings in general. However, the process works dryoot

o when such ar does not cut off any edge collapseddyormally:
3.4 When plays descend: compatibility
- . Lemma 4. For any square
We now turn to characterising moves that descend along a give

c. We further give a sufficient condition for descending plays

compatibility. v v

Characterising cut only topological plays Recall that opolog- hPl {h' )
ical play is any map inG which may be decomposed into moves. c

Further callcut only any morphism in. A cut only morphism U 4

does not have to be a topological play, as shown for examplleeby ~ with h an embedding; a cut only topological play, andc’, h’) an
morphisms in FigurEl2. Indeed, cut moves only collapse taged (L, R)-factorisation ofch, the following are equivalent
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(i) »"is an embedding and is a cut only topological play,

(i) any edgee € col(ch) has two ends i/,

(iii) any two-ended edge € col(c) in the image of: has a two-
ended antecedent iii’.

Furthermore, in this caseol(ch) =
pullback.

col(c") and the square is a

We first prove two easy lemmas:

Lemma 5. Consider a diagrani/’ ;h> U LN V with h an
embedding¢ a cut only topological play, and such that any edge
e € col(ch) has two ends ifU’. For any vertexvy € U in the
image ofh, all of ¢~ (c(vrr)) is in the image of too.

Proof. Let vy = c(vy). Sincec is a play, ¢! (vy) is con-
nected and has only two-ended edges, hence is a tree in {hle gra
theoretical sense. Bt is open, so any edgeadjacent tay has

an antecedent by. But since any edge € col(ch) has two ends in
U’, the other end’ of e also has an antecedent. But similarly any
edge incident ta/’ has an antecedent. By induction on the length
of the path fromuy, all of ¢~ * (vyv) is in the image of. O

Here is the second lemma:

Lemma 6. Ifin a triangle
U< h
h andh’ are embeddings, then so/i{.

w

Proof. Obviously,h” is injective sinceh is. Moreover, sincé and
h' have empty occurrences; has empty occurrences. Finalhy,
is open: for any opeX C U, h”(X) is equal toh’~! (h(X)),
which is open sincé’ is continuous and is open. |

We turn back to the proof of Lemnia 4.

of Lemmd}. First of all, col(ch) = col(h'c") = col(c).

Then,(ii) implies (iii), because any € col(c) in the image of
hisin col(ch).

Conversely(iii) implies (ii), because given € col(ch), h(e)
isin col(c). Butcis a play, sd(e) has two ends, and so Ifyi) , e
too has two ends.

Furthermore(i) implies(ii), sincec’ is a play.

Finally, if any edgee € col(ch) has two ends i/’, sincec’
collapses exactly the doomed edgedinand these are all two-
ended¢’ is a cut only topological play.

To show thath' is open, first consider any vertex in V, and
any edgeey incident tovy . There is a unique paitvy, e) with
ey incident tovy in U, sent to(vy, ev) by c. (Indeed,c leaves
persistent edges untouched and does not augment theieadker

Now, if vy is in the image of/, then it is in the image of h/,
because”’ is surjective. Moreover, sincé€ is a play, it has some
antecedent vertex; in U’. Now, letvy;, = h(vy/). Itis sent to
vy by ¢, so by Lemma&l, all of ~* (vv/) is in the image of.. Hence
vy has an antecedenf;, in U’. But sinceh is open,ey also has
an antecedent, left untouched 8y and hence: has an antecedent
by h’. So,h’ is open andii) implies(i).

Finally, consider the morphisrfiinduced by universal property
of pullback in

Considering the lower-left triangle, by Lemnih §,is an em-
bedding. But by LemmAl5, for any vertex, € h'(V’), all of

¢ !(vv) is in the image oh. So, since the pullback is isomorphic
toc ' (h'(V')), f is surjective on vertices. Now, sinegis surjec-
tive, each edgey € h'(V') has an antecedeay in U’, hencef

is surjective, hence is an isomorphism. a

In particular, wherh does not cut off any two-ended edge, or
equivalently wherh is just a restriction to some of the connected
components of/, the process works for ary We call such’s cut
compatible

A sufficient condition for descending playsUsing Lemmadl3
and[3, we are now able to derive the following sufficient ctindi
by induction. Forc : U — V any cut only topological play, and

W —_+ U a play, calldoomedthe edges ofcol(cp). (In the
following, we freely write “doomed /" when r is clear from
context.)

Definition 2. A play X —2+ U is c-compatiblewhen for each
decomposition gb into plays

x—4 .w_" .y

any edge doomed i, i.e., incol(cr), has two ends.

(10

We may characterisecompatible plays as follows.
Lemma 7. A playp is c-compatible iff for any decomposition
/ h !

x—4 Ly« vz—" LU @y
of p with h an embeddingh does not cut off doomed edges, i.e., if
an edgee € col(cr’h) is such thath(e) has two ends, thea has
two ends inX.

Proof. Assumep has a decompositiofiflL1) as above, but with an
edgee € col(cr’h) lacking at least one end and such thét)
has two ends. Then, by takid§y = Y, ¢ = ¢/, andr = r'h, e
contradictsc-compatibility ofp.

Conversely, it is enough to show that for afy —>— U
satisfying the condition, any edge iwl(cp) has two ends. We
proceed by induction op, using Lemmd} for the induction step
(the case of proper moves being easy). a

We have:

Lemma 8. Anyc-compatible play descends to some cut free play
alongc, in a square

X Y
p{ {p’ (12)
C
U 1%

with p” a cut free play and’ a cut only topological play. Again,
col(ep) = col(c).
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Proof. By induction. The induction step uses LemrihEI3, 4,[dnd 7. and show thal’’ is atomic. But descent is defined inductively, so

|

We will now define oure-cables using-compatibility.

3.5 Cables

Given a cut only topological plafy —— V as above, a play

Y — » U is c-atomicwhen Y is connected and its edges are
doomed exactly when they have two ends.

Definition 3. A c-cableis a c-compatible playi¥ —— U such
that for any decomposition

¢ . x__ " ,y_ " |y

w
of p with m a proper mover is c-atomic.

But, we have

Lemma 9. Being atomic is equivalent to being connected and

having no two-ended edge.

Proof. Atomic hypersequents satisfy the condition. Conversely,
non atomic, connected hypersequents all have at least ame tw

ended edge. |

This yields:

Lemma 10. A c-compatible playy —— U is c-atomic iff in its
descent square

Y Y’
T { l/r,
c
U V,

Y’ is atomic.

Proof. Let E be the set of two-ended edges¥n not in col(cy),
i.e., notincol(cr) = col(cy). Let E’ be the set of two-ended edges
in Y’. Since the edges outsidel(cy) are left untouched by,
E' is non-empty iffE is non-empty.

Moreover,cy is a topological play, sd is connected iffy” is
connected.

By the previous Lemma, this gives the expected result. O

Finally, this entails:

Lemma 11. Anyc-cableU’ —» U descends as a thread.

Proof. Cables are:-compatible, so we may consider the descent

such a decomposition yields a decomposition

C/

U/ V/
q q
x & . x
m m’
y —& .y
r r
C
U 1%
of the above descent square. Becgug®a c-cable,r is c-atomic,
so by the previous lemma;’ is atomic. a

We now turn to exploiting this to descend strategies. To dt th
we need to carefully select thecables complying with a given
strategy. We first define in the next section the thrgaalsderlying
a given playp, and then define the-cables of a strateg§ to be
thosec-cablesp such thap C S.

3.6 The threads of a play

To any playp on U, what its set of threads should be is intuitively
clear, but is a bit tricky to formalise. What we do is define apr
P(U) of “embeddings” between plays dfi. Intuitively, in this
graph, an edge — p’ indicates how at each stagesees part
of what happens ip’. The setp of threads ofp will then consist
of all threadst with an edget — p. This extends by union to sets
of plays, so, to any strategy on U, we may associate the sgtof
playsp on U whose threads are all i}, i.e., such thap C S.

It remains to define our graph(U). First, consider the graph
M with vertices the embeddings: U —— V and whose edges
i — j have one of the following forms

ve—' v v .y
/lJ \{
m m N m
. J
/C J ! V/

1

Ue—' vy

S

v’ U,
where the first square is a pullback and the second diagranclis s
that the induced square

ve—"' vy
_
m
UeJ .y
is a pullback, and where: andm’ denote proper moves anhdand

Now, for p’ to be a thread, it suffices to consider any of its decom-  k denote embeddings, all seen as moves. This graph freely-gene

square
vy
p{ lp’
C
U V.
positions as
L N R S R

ates a categor', whose morphisms are piles of such diagrams.
Furthermore, there are morphisms of graphs: M' — P° send-
ing the squares and triangles to their vertical borders. @yrec-
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tion, they induce functors, ¢ : P! — P°. This structure now in-
duces a “horizontal” grapR whose vertices are plays, and whose
edgesp — ¢ are morphisms — j in P* with left-hand bordep
and right-hand bordey.

Finally, the graptP(U) evoked above has vertices the plays on
U, and edges the edgesknwith lower border the identity. Thug,
is the set of threadson U such that there exists an edge- pin
P with lower border the identity.

3.7 Cutelimination

For any strategys on U, we at last define the setibles.(S) of
c-cablesof S to be the set of-cablesp with p C S.

Recall thatDesc. sends sets of play$§ to the set of plays
descending from plays ifi alongc. We set:

Definition 4. For any strategys, let
elim.(S) = Desc.(cablesc(S)).
We then obtain:

Lemma 12. The set of threadslim.(.S) satisfies axiomS1to S3
for strategies, plus one direction of axio®4, namely that (in the
same setting) if o G(hh') ot’ € S,thentohoh'ot’ € S.

We first prove that the corresponding directionS#fholds for
cables:

Lemma 13. For any strategys, if t o G(hh') o t’ € cabless(),
thentohoh' ot’ € cabless().

Proof. Being a thread of a cable is insensitive to composition or
decomposition of embeddings. Indeed, any edge in the gréph

with A" an embedding. But by the pullback Lemma and Lerfiina 4,
we may choose pullbacks as in

x < . x
NEIP

7 % Ly
ha l - {h

y 2 .y

such thath1 ho = h”. But then byS4for .S, we could replacé”
by h1ho in the cable descending too G(hh') o t’, and obtain a
cable descending tthh't’.

O

However, as we have seen in Sectlonl 3.1, the set of threads
elim.(S) need not be closed under the other directionSdf
But we may perfectly close a set of threads under composition
embeddings: consider the rewriting relation on plays dédflme
thh't' — to G(hh') ot,

and given a set of threads let S be the set of plays reachable from
S by this relation. We have

Lemma 14. The set of threadslim.(S) is a strategy.

Proof. Axioms S1-S3are preserved by as well as the first direc-
tion of Axiom S4 The second condition is now satisfied, hence
elim.(S) is a strategy. |

We may then define our family of functions: for any cut only
topological playy — V and set of threadS onU, let cec(S)
elim(S), andcey (S) = elimia, (S). We have seen that§ is a

between sequences of embeddings may be obtained by piling upstrategy, then so iser (.S). We further have

triangles as in

!

U———>U

|4 \ v’
Woe———W

with no constraint on the numbers of embeddings on eachaidle;

the commutativity of the outer diagram matters in the end. O

!
)

Proof of Lemm&12By Lemme[Tl elim.(S) is a (non-empty) set

of threads. Also, sincé is a strategyelim.(S) is prefix-closed.
Furthermore, for any mandatory moyeextendingp’ € elim.(S),

f easily lifts to a mandatory move in the corresponding cable,
which descends ag, henceelim.(S) is stable under extension
by mandatory moves. Furthermordim.(S) is stable under iso-
morphism, by construction ddesc. Finally, if t o G(hh') ot isin
elim.(S), thenG(hh') comes from an edge iDesc, i.e., a square

x
h//{
Y

X
{G(hh’)
Y

’ Cy

Lemma 15. The functionsce
phism of sheaves.

: S(U) — S¢(U) define a mor-

Proof. Restriction commutes with cut elimination. O

4. Logic

We at last start using our game as a model of MALL. We first
define winning strategies, and we relate them to more stdndar
notions, and discuss categories of games and strategiethaffe
show that winning strategies are stable under cut elinonatnd
obtain coherence as a corollary. We then show that every MALL
proof generates a winning strategy anck versahence our model

is correct and complete. (This would have entailed coheréma
less direct way.)

4.1 Winning strategies

When should a strategy be winning? Since at any stage andyon an
sequent it has to accept all negative moves, it reaches ssquith
only T's and positive edges. In such a sequent, if there actualy ar
someT edges, then the play should be considered won, thanks to
the T axiom of MALL. Otherwise, there are only positive edges,
and the strategy should propose a positive proper move.hier ot
words, when a winning strategy is stuck, it has to be on aiposit
with a T edge.

More formally:

Definition 5. A sequent igositive when it has no input edge. A
set of threadsS is winning when it is non empty, stable under
extension by mandatory moves, and when every thre&ceimding
on a positive sequent has an extension by a proper moge in
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Equivalently, we may call a play —~ U maximalin some
set of threadsS if it is atomic and has no extension by a proper
move in S. If S is a strategy, then for such a maximal any
negative edge o/ is labeledT, otherwise there is an extension

Proof. First, if elim.(S) is winning, then so iglim.(.S), since no
maximal positions are added. Let us thus show #iat.(S) is
winning.

Letp’ : V" — V lead to a maximal positiol” in elim.(S),

by a passive proper move. Let now such a maximal play in a set and choose : U” — Uasin

of threadsS be wonwhenV is either empty, or a™{) edge, or
a sequent with a negative edge. Otherwise lIb& A position is
maximal if it is the domain of a maximal thread.

Lemma 16. A strategy iswinning iff it is non-empty and all its
maximal positions are won.

In game theory, and in particular in game semantics, stegeg
are usually defined as sets of plays (without embeddingss Th

"
c

U// V//
p{ {p’
C
U 1%

maximal incables.(S) descending t@’, i.e.,p has no extension in
cables.(S) also descending t@. By maximality,V"’ is atomic, so

raises the question: in which sense is the notion of a winning by LemmdIDp is c-atomic. So, if’” is either an edge or empty,

strategys related to its set of playS? A
First, observe that the set of plagsis prefix-closed, andvel-

then so isU”. Otherwise,VV” is a sequent, s&/” is a connected
hypersequent with the same one-ended edges. Now, we clatm th

coming in the sense that it is stable under extension by a passive every sequent i/’ has a negative edge. Indeed, if any sequent
proper move or an embedding. Indeed, the threads of any such e there had

tension of a play € S are either already threadspfor extensions

of one of them by a passive proper move or an embedding, hence

againinS.

Let a playp in a set of playsP be maximalwhenp has no
extension by a proper move ip. Call a maximap wonwhen all its
sequents have at least one negative edge. Observe thaffiient

* no edge at all, then a thread$hwould lead to it, contradicting
the winning character of,

¢ only positive edges, then becauSds a winning strategy/”’
would admit an extension by a proper move dmles.(S),
contradicting its maximality.

to be maximal as a thread or as a play: a thread is maximal as aSo, each sequent i&i” has at least one negative edge. But this

thread only if its domairV is atomic.

Lemma 17. If S is a winning strategy, then any maximal playdn
is won.

Proof. Assume given a play : V — U in S with a sequent
without any negative edge, and consider a threlading to it in

S. If s has no edge, thehis maximal and lost, contradicting the
winning character of. Thus,s has some positive edges. But again,
sincesS is winning, ¢t cannot be maximal, so it has an extension by
a proper move. Other sequents have to accept this move lee€aus
is winning, soV’ could not be maximal. O

Allin all, we have

Theorem 2. The set of play$' of a winning strategy is non-empty,
prefix-closed, and welcoming, and its maximal plays are athw

However, a set of plays may satisfy the conditions of Thed@em
without being generated by a strategy. The main reason ausec
these conditions miss stability under restriction and garalation.
For instance, on the hypersequent

-~

1
1

11 —>e—1 —»

consider the winning set of play? with
¢ proper plays choosing one repartition of the left-hanetiges,

e plays after restriction to the left-hand sequent chooshmgy t
other,

which satisfies the conditions, but is not generated by aeglya
Indeed, any strategy having at least the threadB imould allow
both repartitions of the left-hantledges in its global plays.

4.2 Coherence, correctness, and completeness

We now turn to proving the announced logical results: catnsze
correctness, and completeness. We start by proving thatingn
strategies are stable under cut elimination.

Theorem 3. If S is winning, then so ige.(S).

10

easily implies tha”’ has at least one input edge, which then has
to be aT. Therefore}/” has an inpufl edge and is thus won.[]

This directly entails coherence:

Corollary 1. There is no winning strategy on the empty sequent.

Proof. Any winning strategyS would yield a cut free onee(S).
But the latter cannot be winning, as it has no proper movehso t
empty sequent is maximal, but lost. |

4.3 Correctness and completeness

We now investigate the correspondence with provability ikLM.
We defer a proof theoretical investigation to further work.

Lemma 18. If a sequentl” is provable in MALL, then there is a
winning strategy on it.

Proof. By standard proof technology, admits a cut free proot
which at any stage starts by completely breaking negatineec
tives, and with no axiom links (i.e., conclude Ibyand T rules).

We proceed by induction on this. Observe that at any stage,
we must accept all embeddings. We do so implicitly, and nexdyl o
specify a strategy when such embeddings lead to a sequent (on
edges, a strategy has to accept all moves).

Now, let us review the base casesrlis a1l rule, then apply the
1 move to reach an empty position, which is hence worm: i§ a
T rule, then by hypothesis the only negative formula& efeT’s,
so there are no possible passive proper movesaisdnaximal,
hence won.

For the induction step, first, accept all passive proper sove
which in various paths lead to a sequdttwith only T's and
positive formulae. The proaf chooses one such pathIt6. Now,
if this path is non empty, then the size has decreased, so we ma
apply the induction hypothesis. Otherwide,= I, and~ starts
with an active proper moven, reaching premisses, ..., m,
with n € {1, 2}, which in turn have to perform negative rules to
reach premisses;, . . ., m,. We choosen as the next move of our
strategy. Then, accept all passive proper moves and enmggdi
which (among others) lead in various paths to the conclgsain
1, ..., . Finally, conclude by induction hypothesis. O
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Lemma 19. If a sequentT” admits a winning strategy, then it is  which we elect to be their compositigrop : A — C. The identity
provable in MALL. on A is given by the unique strategy on the edge labele&ince
winning strategies are stable under amalgamation, we nmaytfee

Proof. Assume given such a winning strategy which we may subcategoryWStrato of winning strategies. We could also do the

suppose cut free w.l.o.g. Since in the game, a play has a finite same with cut free strategies.

number of proper moves, we may take this as its size. The size  However, these categoriégrat, and WStrat, are not quite

of a strategy is then the maximum size of its plays. what game semanticists are used to. Indeed, given two giate
Proceeding by induction on the size $f if S has sized, then S:A— BandS' : B— C,i.e., on objects like

because it is winning oft andT" is atomic,I" is maximal, so it has

aT edge, hence is an axiom of MALL. — A—>e—B—>» and — B —e— ( —»
Otherwise, choose a thread$tperforming all possible passive ) L ) .

proper moves, and reach a sequBhtwith only T’s and positive respectively, a game semanticist expects their compositio

edges. If the followed path has at least one proper move,ttreen S s’

size has decreased so by induction hypothesis we get a pfoof o A - B - C (13)

I/, to which we apply all the corresponding negative rules toage

proof of I". Otherwise the followed path is empty, aid= I has

to be a strategy on the hypersequént

only T’s and positive edges. If it has &, thenT" is an axiom of — A—>e—( —, (14)
MALL.

Otherwise, since is winning, there is a (active) proper move notonV:
fromT. — A—re—B—re—( — (15)

e If it is a 1 move, thenI is the sequent with exactly onk .
formula, which is an axiom of MALL. as Il:l]StraItOt-F 4 A.) andA = (B B..) belists of

e Ifitis a @ move, then it leads to some sequEfit By induction ow, letl = (A1,.. ., An) ANAA = (51, ..., D) DEIISIS 0
hypothesis, the sequel Sfbeing winning, 3\/6 get ayproof af", formulae. We writelJ : (I' > A) when the conne’cted hypersequent
to which we apply the corresponding rule to get a proofof U has exactlyn input edges labeled with thd;’s andm output

« Ifitis a ® move, then it leads to some hypersequent of the shape 496S 1abeled with thB,'s. For any such hypersequefit there is
a cut only topological play

Cu

o —A— U:TbA) T+ A),

Thus, for any (winning) strateg§ on U, there is a (winning) strat-
™~ B —» egy cec,; (S) onT' = A. In order to obtain categories of strategies
1/° - closer to usual game semantics, we might want to quotientatur

egoriesStrato andWStrato by decreeing that two strategis, .S)
that is, a disjoint union of two sequents. Singés a strategy,  and(V,T’) from Ato B are equivalent whebe.,, (S) = cecy, (T).

we may follow the restrictions to each sequEntandIs, apply Alternatively, we could take morphismd — B to be (win-
the induction hypothesis there to get prosfsandr, to which ning) strategies on the sequeAt - B, and composition to be
we apply the tensor rule to get a prooflof defined by amalgamation followed by descent along the cu pla
say, from [Ib) to[[I4) above. However, this appears trickian
| expected, specifically w.r.t. associativity of compositia the ob-

tained candidate categories, and we leave it for furthekwor
We have proved:

Theorem 4. The topological game for MALL is (logically) sound 5. Related and further work

and complete. S . . .
P The game in this paper is almost the same as in an earlier talk

4.4 Towards Categories of Strategies (HirSChOWitZ et al 2007), with a few evolutions. The de‘{Hf[Bnt
is very different: in_Hirschowitz et &ll (2007), we were cemeed
. . X with making plays a stack, which here is avoided by passing di
strategies fqr. our topologlcgl game for MALL, Wh'ch we deftoe rectly to strategies. The notion of strategy we adopt henadigally
be the strictification of the bicategory of cospans, with new —[Hirschowitz ef al[(2007) used sets of proper playsalfin

e objects the formulae, and we provide correctness and completeness results whichneéie
Hirschowitz et al.l(2007).

Delande and Milleri(2008) investigate a closely related gam
A< > U < > B with analogous correctness and completeness resultsr @pei
proach first technically differs in the way the game ends, iand
the definition of won positions. More importantly, their gamhoes
not feature any cut move, so they do not deal with cut elinmmat
in any sense. Finally, they do not use topological methoddl.at

Mellies (2004) and subsequent papers propose notionsdga
Gluing two hypersequents along a edge which is input on afee si  where plays should be considered up to permutation of certai

Without cut elimination, we may construct a categ&tyat, of

e morphismsA — B consisting of a cospan

in H, equipped with a strategy o, with A and B dangling

edges labeled with formulagl and B, and U a connected
hypersequent with exactly one input edge — the imagel of
and one output edge, the image®f

and output on the other clearly preserves acyclicity, heveenay moves. Our game certainly has an asynchronous flavor inghges
hope to define composition as a strategy on the (chosen) pusho where permutations arise directly from the topology. Hosvea
Now, observe that the unique strategy on an edge (alone) tetal formal connection remains to be established.

one, i.e., the set of all plays. Indeed, all proper moves assige Most striking are probably the similarities with Giraro2001)
and atomic. Thus, any two strategjes A — B andq : B — C, ludics, from which we gratefully acknowledge inspiratiénfirst

have the same restriction 18, hence have a unique amalgamation, difference is technical: Girard does not use topologicahoes at
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all, maybe because ludics are restricted to a very partidaten

of graphs. Also, our game is closer to MALL sequent calculus

than ludics, e.g., it does not feature tl@imonmove of ludics.
Furthermore, our edges are labeled with formulae, whicls filxeir
behavior — there is exactly one strategy per edge. A key digne
to Girard’'s approach is to avoid labels, and instead say dhat
strategy follows a typing (i.e., a labeling of edges withnfioitae)
when its restriction to each edge behaves accordingly. #atap
our game to this approach is left for further work. Finallydics’
strategies are still defined as sets of plays, i.e., nonljocal

More intrinsically to our game, there are a number of possi-

ble directions for improvement. First, as evoked in Sedigh our
game has to be adapted to fit into a category of strategiethdfur
more, one might want to tighten the connection betweenegfies
and proofs, e.g., towards a full completeness result. Finaé will
try to extend our game to exponentials, and (at least fickQr
quantification. This promises to be more difficult, partasty w.r.t.
noetherianness.
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