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Abstract
As an attempt to uncover the topological nature of composition of
strategies in game semantics, we present a “topological” game for
Multiplicative Additive Linear Logic without propositional vari-
ables, including cut moves. We recast the notion of (winning) strat-
egy and the question of cut elimination in this context, and prove
a cut elimination theorem. Finally, we prove soundness and com-
pleteness. The topology plays a crucial role, in particularthrough
the fact that strategies form a sheaf.

1. Overview
The notion of a game between two players (P and O) has become
fundamental in proof theory and programming language theory.
A natural way to think of such a game is as a directed graph,
whose edges represent moves between positions, together with
some information about who plays the moves.

Game semantics (Abramsky 1997; Hyland 1997) has widened
this notion of game, by providing means to connect two such games
together. In game semantics, each player takes part in two distinct
games, and acts as P in one and as O in the other. Connection, or
interaction, then happens by letting two players respectively play P
and O on a common game.

By making several such connections, one obtains a sequence
of games, subject to topological considerations. For example, one
may see the involved games as edges in a graph with the playersas
vertices, as in

game 0
player 1

game 1
player 2

game 2
etc.,

and decree that an open neighborhood of playeri is the sequence

gamei − 1
playeri

gamei
.

The topology here is simplistic, but arguably, this is only due to the
requirement that game semantics be categorical, i.e., eachplayer
sees only two games. This is most striking in the game semantics
of sequent calculi, where sequentsA1, . . . , An ⊢ B1, . . . , Bm are
interpreted as gamesA1 ∧ · · · ∧ An → B1 ∨ · · · ∨ Bm.

[Copyright notice will appear here once ’preprint’ option is removed.]

Let us instead allow each player to see more than two games,
i.e., lie in an open neighborhood like

(1)

We thus consider positions to be spaces obtained by plugging
such atomic neighborhoods together. A move now leads from a
position to another, where a move – in the old sense – has been
played on one of the connections. We investigate this paradigm
in the context of Multiplicative Additive Linear Logic without
propositional variables (henceforth MALL), where logicalrules,
i.e., moves, are (slightly enriched) continuous functionsbetween
positions. Most emblematic is perhaps ourcut move leading from
position (1) to

(2)

It is formalised from the obvious continuous function from (2)
to (1).

We investigate a few topological constructions and properties in
this setting, among which:

• Strategies, defined in a suitably local way, form a sheaf. Fur-
thermore, winning strategies are a subsheaf of strategies,i.e.,
the amalgamation of winning strategies is winning again.

• There is a notion of cut elimination: building upon a factorisa-
tion system, we define a construction of a cut free strategy from
a strategy with cuts, again preserving the winning character.

These observations lead in the case of our semantics for MALL
to standard logical results like:

CoherenceThere is no winning strategy on the sequent with no
formula.

CorrectnessAny provable MALL sequent admits a winning strat-
egy.

CompletenessAny sequent with a winning strategy is provable in
MALL.

2. A game for MALL
2.1 Hypersequents

As explained above, our positions have a particular structure, which
we now define. First, define MALL formulae by the grammar

A,B, C, . . . ∈ P ::= 0 | 1 | A ⊗ B | A ⊕ B
| ⊤ | ⊥ | A Γ B | A & B,

and decree that formulae on the first line are positive, whilethe
others negative. De Morgan duality is defined as usual (sending a
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connective to that vertically opposed to it). Recall in passing the
corresponding sequent calculus (Girard 1987).

Say that apartial directed graph is a directed graph

E
s

-

t
- V (3)

with source and target mapss and t partial, i.e., edges may be
dangling. We call edges with no sourceinputs, and dually edges
with no targetoutputs.

Definition 1. A hypersequentis a finite, partial directed graph,
which is furthermore topologically acyclic, i.e., which isacyclic as
an undirected partial graph.

Following the intuitions in Section 1, we slightly abusively iden-
tify sequents with connected, one-vertex hypersequents asin (1).

We then endow hypersequents (3) with a topology on the co-
productE + V by decreeing that a set of points is open when for
each vertex, it contains all the adjacent edges. Using this topol-
ogy, we build a category of hypersquents by defining a morphism
U → V to be given by a continuous function fromU to V as topo-
logical spaces, sending vertices to vertices. Such functions com-
pose in the obvious way.

Remark 1 (Topology). Observe that this entails:

• a set of points is closed iff for each edge it contains all the
adjacent vertices,

• each vertex inV is a closed point,
• each edge inE is an open point,
• each edgee ∈ E adjacent to somev ∈ V has thisv in its

adherence.

Remark 2 (Morphisms). Morphisms are a bit like morphisms of
graphs, in the sense that by continuity if an edgee adjacent to some
vertexv is sent to an edgee′, then the image ofv is adjacent toe′.
However, they differ from morphisms of graphs in that:

• they may reverse the direction of edges,
• they may sent edges to sequents, as will for example the cut

move. Such edges arecollapsedby the morphism, while the
other arepersistent.

To build our category of hypersequents, we define the follow-
ing generic way of labeling them. Assume given a categoryC with
a polarity (positive or negative) on morphisms, such that the usual
sign rules are respected by composition, e.g., identities are posi-
tive, composing two negative morphisms yields a positive one, etc.
Define the categoryG(C) of C-hypersequents to have

• objects: hypersequents with edges labeled inOb(C), i.e.,
equipped with a functionℓ : E → Ob(C);

• morphismsU → V : pairs(g, o) of a morphismg : U → V
of unlabeled hypersequents, and for each persistent edgee, a
morphismoe : ℓU (e) → ℓV (g(e)) in C, such that ifoe is
positive then the direction ofe is preserved byg, and otherwise
it is reversed1.

Morphisms compose, and the condition on the direction of edges is
preserved thanks to the sign rules.

We apply this construction to the categoryOcc with objects the
positive formulae and morphismsA → B the occurrences, i.e.,
paths from the root inB reaching a subformula equal toA up to de
Morgan duality. The sign of a morphism is that of the subformula
reached by the path. This gives us the categoryG = G(Occ).

1 Here by direction we mean the pair(se, te), seeings andt as functions
E → (V +1). An edge without source or target may thus have its direction
both preserved and reversed.

Before going on to define the moves of our game, we show a few
example morphisms. From the obvious continuous function from
(the underlying space of)

to

we may define four different morphisms, according to the occur-
rences we assign to the two premises of the tensor. For example, we
may send both edges to the first premise by assigning them boththe
occurrence0. We also may assign the upper edge the occurrence1
and to the lower edge the occurrence0. There are two symmetric
morphisms.

To illustrate the conventions on signs of formulae, consider the
morphism from

to

It assigns occurrence10 to the unique edge of the domain. But
since the corresponding subformula ofA⊗ ((B Γ C) Γ D) is neg-
ative, the edge’s source and target are swapped, and the formula is
dualised. Of course, we immediately introduce the notationconsist-
ing of labeling edges with negative formulae to denote the reversed
edge with the dual formula. In this way, the domain of the above
morphism becomes

(We could also have used an equivalent category where labelsmay
directly be negative.)

2.2 Moves

In the categoryG of hypersequents, we now single out a class of
morphisms as ourproper moves,thus forming a subgraphM of G.
We will first define a set ofbasic movescorresponding to the rules
of MALL, and then extend them by embedding.

Our basic moves are defined in Figure 1. Each line defines a
move, the first being the already mentionedcut move. In each
case, the move is the obvious morphism from left to right, thedots
meaning that the move is a morphism on a larger hypersequent,
which is an isomorphism outside the shown part.

Since we want to get topological, it seems natural to consider
restrictions of basic moves. For example, the restriction of the
tensor move to the left-hand sequent would send

to

To formalise this idea, we consider the identity-on-objects subcat-
egoryH ⊂ - G with the same objects, and morphisms the pairs
(g, o) with g an open embedding ando the function assigning to
each edge labeledA the identity occurrenceidA. In the follow-
ing, we call these morphisms simplyembeddings. Observe thatG
has pullbacks along embeddings, that pullbacks of embeddings are
embeddings again.

We can now extend our basic moves under the following rule: if
a morphismm as above is the restriction of a basic movem′ along
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Figure 1. Basic moves

an embeddingj, in a pullback square

U ⊂
i

- U
′

V

m
?

⊂
j

- V
′

,

m′

?

(4)

and if furtherm is not an isomorphism, thenm is aproper move.
Finally, a vertexv, is activein a proper movem when either

• m is a cut andv is the cut sequent, or

• m is not a cut andv is the source of the broken edge.

There is at most one active vertex in a proper move, and we call
sequents and proper moves active when they contain an active
vertex, andpassiveotherwise.

2.3 Plays and strategies

To sum up, we have a siteG of hypersequents, with

• an identity-on-objects subcategoryH ⊂ - G of embeddings,

• an identity-on-objects subgraphM ⊂ - G of proper moves,
stable under composition with isomorphisms,

such that

• embeddings have pullbacks inG, and these pullbacks are em-
beddings again,

• the pullbacks of proper moves along embeddings thus exist, and
are either proper moves again, or isomorphisms.

We also have a polarity on proper moves, i.e., a partition of proper
moves into passive and active ones.

Let us now define plays in this setting. Traditionally, playsare
defined as sequences of moves. Here, because of the topological
nature of positions, we find it useful to generalise this as follows.
Consider the graphM0 of movesdefined by the following pushout

of graphs

Ob(G) ⊂ - H

M

?

∩

⊂ - M
0
.

?

∩

It has

• vertices the objects ofG, and

• edges the coproduct of proper moves and embeddings.

A play on some objectU is a path toU in M
0; it is properwhen it

has no embeddings. LetP
0 be the free category generated byM

0.
Composition defines a functorG : P

0 → G, which leave implicit
except where necessary.

Let us now turn to strategies. Traditionally, strategies are non-
empty, prefix-closed sets of (proper) plays. Here, we are in atopo-
logical setting, so instead of defining strategies as sets ofplays, we
want to include in them as local an information as possible. What
strategies have to contain is, at each stage in the course of the play,
for each involved edge or sequent, the moves it accepts. We for-
mally define them to contain this information and not more. Still,
(winning) strategies generate meaningful sets of plays, aswe ex-
plain in a bit more detail in Section 4.1.

Call a hypersequentatomicwhen it is either empty, or an edge,
or a sequent. Athreadon a hypersequentU is a playp such that:

(T) For all proper movesm : W → V appearing inp, V is
atomic.

Now, call a moveW
f
- V mandatorywhen either

• f is an embedding, or

• V is atomic andf is a passive proper move.

A strategyonU is then a set of threadsS which is:

S1 prefix-closed, i.e., iftt′ ∈ S, then alsot ∈ S,

S2 stable under extension by mandatory moves, i.e., ifW
f
- V

is mandatory andV
t
- U is in S, then alsotf is in S,

S3 stable under isomorphism, i.e., if for any threads

t′ : U → X and t : Y → V ,

and commuting square

X
j
- X

′

Y

m
?

�
i

Y
′

m′

?

with m andm′ moves andi andj isomorphisms,tmt′ ∈ S iff
tim′jt′ ∈ S;

S4 and stable under composition and decomposition of embed-
dings, i.e., for anyt, t′ as above and any embeddings

X ⊂
h′

- Z ⊂
h

- Y,

t ◦ h ◦ h′ ◦ t′ ∈ S iff t ◦ G(hh′) ◦ t′ ∈ S

Observe that these axioms entail the “one-sided” versions of S3: if,
e.g.,i is the identity, thentmt′ ∈ S iff tm′jt′ ∈ S. Indeed, we
applyS3twice with the squares

X
j
- X

′ ==== X
′

Y

m
?

===== Y

m′

?

===== Y

m′

?
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to deduce thatt ◦ id ◦ id ◦ m′ ◦ id ◦ j ◦ t′ is in S, then applyS4
with id ◦ id , and applyS3again with the right-hand square above,
to obtain thattm′jt′ is in S. The converse implication is similar.

The restriction t∗(S) of a setS of threads onU along some
thread t : V → U is the set of threadst′ on V such that
tt′ ∈ S. The restrictiont∗(S) of a strategy along anyt is obviously
a strategy again, although possibly the empty one. (Observein
passing that a strategy may be empty.) We furthermore have, thanks
to S4, for the obvious Grothendieck topology onH,

Theorem 1. Strategies form a sheafS : H
op → Set.

Proof. A strategyS on U is determined by its set of restrictions
h∗(S) for h : V ⊂ - U and V atomic. But any covering
sieve onU includes thoseh’s and thus entirely determinesS. So
the presheafS is separated (amalgamations, when they exist, are
unique). Now given a sieveS on U with compatible strategiesSi

on the embeddingshi : Ui
⊂ - U of S , define the amalgamation

P as follows. First any sequence of embeddings toU is in P .
Furthermore, for any threadp onU decomposing as

W
q

- V ⊂
r

- U

with r a sequence of embeddings andV atomic, then letUi be one
of the members ofS isomorphic toV , andq′ : W → Ui be the
play corresponding toq there (recall that proper moves are stable
under isomorphism). Then decree thatp ∈ P iff q′ ∈ Si.

3. Cut elimination
In this section, we define our cut elimination (= descent) proce-
dure for strategies. We start by specifying cut eliminationas a
function from strategies to cut free strategies: Consider the sub-
sheafScf

⊂ - S of strategies consisting of cut free strategies, i.e.,
those whose plays are all in the free categoryP

0

cf generated by non
cut moves. Cut elimination should provide a morphism of sheaves
ce : S → Scf , preserving the winning character of strategies. In
this section we stick to defining our morphism of sheaves, andde-
fer to Section 4 the study of winning strategies.

3.1 Overview

Remote view: an easy taskWe will construct our morphism of
sheaves using a more general family of functionsDescc : S(U) →

Scf (V ) indexed by a particular class of morphismsU
c
- V in

G. The subfamily of functionsS(U) → Scf (U) obtained by taking
c = idU will lead to the desired morphism of sheaves.

The involved class of morphismsc is that ofcut only topological
plays, i.e., morphismsc as above admitting a decomposition into
cut moves. For each such morphism, we will define functions
Descc : S(U) → Scf (V ) sending strategies onU to cut free
strategies.

The rough idea for defining these functions is natural: compute
cut elimination for moves and extend it to plays by induction. Cut
elimination for moves arises from a factorisation system: amor-
phism inG may always be decomposed into a “cut-like” morphism,
followed by a “non cut-like” morphism, which yields a factorisa-
tion system(L,R). In particular, cut only topological plays are in
L, butL contains other morphisms, as we shall shortly see.

Given a moveW
m
- U , factorisation yields the dashed

arrows in

W
c′

- X

U

m
? c

- V,

q
?

(5)

with c′ ∈ L cumulating the cuts inc andm, andq ∈ R. We thus
takeDescc(m) = q, and say thatm descendsalongc asq.

It turns out that there are (roughly) two relevant configurations
here:

• q is a move, or

• q is an identity.

We interpret the second case by saying thatDescc should really
send moves toplays. If q is a move, thenDescc(m) is the one-move
playq. Otherwise,Descc(m) is the empty play, and we replace the
above square by a triangle

W

U

m
? c

- V.

c′

-

Cut elimination (= descent) for plays is then obtained by piling
such squares and triangles: given a playW

p
- U , this yields the

dashed arrows in

W
c′

- X

U

p
? c

- V,

q′

?

(6)

whereq′ is the concatenation of the plays obtained as above, for
each move ofp.

Cut elimination is partial This should define descent for plays,
but things turn out to be a little more complicated, because the
functionDescc is actuallypartial. Indeed, some embeddings cause
trouble, as shown by the following example. The following isa
factorisation square:

c′
-

h

?

∩

c
-

h′

?

Indeed, the lower-left composite may be decomposed as

• a collapse of theA-labeled edge,

• an injection of the resulting vertex into the codomain.

We cannot consider this a successful descent, for two reasons:

• c′, although inL, is no cut only topological play – cuts only
collapse two-ended edges, and

• h′, although inR, is not open – since its image is not.

So our function is partial. Worse, it is much likely to be undefined
on threads, which very often behave ash above, i.e., restrict to one
end of an edge collapsed byc. Even worse, threads may restrict to
one end of an edge created by some cut move earlier in the thread.

We thus cannot reasonably define descent for strategies as a
direct extension of descent for plays, i.e., by takingDescc(S) to
be the image ofS underelim (for some strategyS).

But, we may delineate the problem better: in a playp as in (6),
call an edgedoomedwhen it is collapsed by the compositecp (we
indeed want doomed edges to disappear through cut elimination).
At such a stagep, observe that partiality is only caused by embed-
dings cutting off doomed edges. We thus adapt the notion of thread
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Figure 2. New steps

to a context where doomed edges are considered unbreakable.This
leads to the following notion ofc-cable.

Characterising the plays descending to threadsBefore playing,
threads restrict to atomic hypersequents, which we now viewas
connected subspaces with no two-ended edge. If we now consider,
at each stage, doomed edges as unbreakable, the atomic hyperse-
quents should now be the connected hypersequents where

doomed⇔ two-ended,

i.e., a doomed arrow has two ends, and a non-doomed arrow does
not. Ourc-cables are thus the plays which, before playing a proper
move, restrict to such subspaces. In short: before playing,cables
must cut off all the edges that may be cut off. Observe that if there
are no doomed edges, one exactly recovers threads.

We then may define the descentelimc(S) of a strategyS to be
Descc(cablesc(S)), i.e., the image byDescc of its c-cables.

Finalisation Then we are almost done. Beyond being partial, our
functionDescc was actually only defined up to isomorphism, as is
factorisation. We thus define it as a relation, but the construction
remains essentially the same. Finally, the cut eliminationof S is
a set of threads, but need not be a strategy, and we need to close
off by Axiom S4 to obtain one. To explain why this is so, recall
that Axiom S4 requires strategies to contain plays regardless of
composition of embeddings, i.e.,G(h ◦ h′) is not distinguished
from the sequenceh ◦ h′. Now, consider a descent like

U - U
′

V
?

∩

Z

h′

?

∩

-

W

m
?

-

X
?

∩

- X
′

h

?

∩

as above, where some proper movem descends to the identity.
The compositeG(h ◦ h′) need not be the image of any play on
X. The other direction ofS4 is satisfied though, so we need only
close under composition of embeddings, defining the descentof a
strategyS to be the corresponding closurecec(S) = elimc(S).

3.2 Factorisation

Let us start with the announced factorisation system. Givena mor-
phismU

f
- V , we may decompose it as

U
g

- W
h

- V,

where allg does is collapse edges to vertices. Formally,g belongs
to the classL of morphisms which may be decomposed into a se-
quence using only cut moves and the morphisms shown in Figure2,
plus isomorphisms.

Now, what will h look like? Obviously,h will send edges to
edges. And this turns out to be enough: callingR the class of
morphisms sending edges to edges, we have

Lemma 1. The classesL andR form a factorisation system forG.

To prove this, we first observe that morphismsU
c
- V in

L are epi. Indeed, their underlying functions are surjective, and
moreover, for edges ofV , precomposition byc does not change
the occurrences. This leads to

Proof of Lemma 1.Existence of a factorisation is obvious. Now,
consider a commuting square

X
f

- Y

U

c
? g

- V

r
?

(7)

with c ∈ L andr ∈ R. Then choose a factorisation(c′, r′) for f ,
as in

W

X
f

-

c′ -

Y.

r′

-

Now, for any morphismX
f
- Y , let col(f) be the set of

edges inX collapsed byf , i.e., sent to vertices.
We have

col(c) ⊆ col(f) = col(c′).

By collapsing exactly the edges inc(col(c′)), we define a mor-
phismc′′ such that

U

X
c′

-

c -

W.

c′′

-

All in all, we obtain a diagram

X
f

- Y

W

r′
-

c′

-

?

U

c

? g
-

c′′

-

V,

r

?

where the upper triangles and the perimeter are known to commute.
But a simple diagram chase shows thatc equalises the lower trian-
gle, i.e.,gc = rr′c′′c. But c is epi, so the lower triangle commutes.

This yields a diagonal for the original square (7), making both
triangles commute. Its uniqueness is a direct consequence of c
being epi.

3.3 The partial “function”

We then define our relation on plays (which is more like a partial
function up to isomorphism), defined as a bipartite graphDesc:
when is a cut free play the cut elimination of a given play? In order
to define this, we start with the corresponding relation on moves,
not trying for the moment to understand which moves have an
image. Consider the graphC0 with vertices the cut only topological
playsc : U → V , and two kinds of edgesc → c′, based on the
squares
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U
′

c′
- V

′

U

m
? c

- V

m′

?

U
′

c′
- V

′

U

h
?

∩

c
- V

h′

?

∩

U
′

c′
- V

′

U

m
? c

- V,

w

w

w

w

w

w

where

• the right-up sequence is a(L,R)-factorisation of the left-low
composite,

• m andm′ are proper moves, withm′ non cut,

• h andh′ are embeddings,

• c andc′ are cut only topological plays.

We define our graphC0 to have as edgesc → c′ the squares as the
first two above, and the triangle

U
′

U

m
? c

- V

c′

-

for each square as the third one above. This graph freely generates a
categoryC1 whose morphismsc → c′ are piles of such squares and
triangles. Taking the left- and right-hand sides of such piles yields
source and target functors to the categoryP

0 of plays. However,
we make the distinction with the categoryP0

cf of cut free plays,
and denote by

P
0 �

s
C

1 t
- P

0

cf

the corresponding source and target functors. This defines abipar-
tite graphDesc between plays and cut free plays, and we say that
p descendsalongc asq when there is an edgep → q in Desc with
lower borderc.

This notion of descent extends by union to a function on sets
of playsS: DesccS is the set of plays descending from plays inS
alongc.

However, this does not meaningfully send strategies to strate-
gies, because threads do not in general descend along suchc’s. Nor
can we prove for free that it preserves the winning character: the
image of a given strategy coulda priori be empty.

So, in the next section, we start investigating conditions for
moves and plays to descend along a givenc in Section 3.4. This
leads to the notion ofc-compatibility. Using this, we define our
c-cables in Section 3.5, which all descend to threads alongc. We
then turn back to strategies, and after defining (Section 3.6) the
playsŜ generated by a strategyS overV , we define the descent of
S alongc to be the set of threads overV descending from a play
in Ŝ. However, the result of descent need not be a strategy, and
we still must close under (one direction of) axiomS4. We show in
Section 4 that this notion of descent preserves the winning character
(as defined there) of strategies. Cut elimination is recovered as the
special case wherec is the identity.

3.4 When plays descend: compatibility

We now turn to characterising moves that descend along a given
c. We further give a sufficient condition for descending plays: c-
compatibility.

Characterising cut only topological plays Recall that atopolog-
ical play is any map inG which may be decomposed into moves.
Further callcut only any morphism inL. A cut only morphism
does not have to be a topological play, as shown for example bythe
morphisms in Figure 2. Indeed, cut moves only collapse two-ended

edges. However, given any morphismc : U → V , the following
are easily shown equivalent:

(i) c is a topological play and a cut only morphism,

(ii) c is cut only, and it only collapses two-ended edges,

(iii) c admits a decomposition into cut moves.

Hence, it is consistent to take as we didcut only topological playto
mean topological play admitting a decomposition into cut moves.

Proper moves We start by proving that everything goes smoothly
for proper moves.

Lemma 2. If U
m
- V is a proper move ande is a two-ended

edge inV , then the edges inm−1(e) are also two-ended inU .

Proof. By case inspection this holds for basic moves, and it remains
true after any restriction.

Recall thatcol(p) denotes the set of edges inU collapsed byp,

i.e., sent to vertices, for anyU
p
- V .

Lemma 3. Any sequenceW
m
- V

c
- U with m any

proper move andc a cut only topological play may be completed
as a commuting square

W
c′

- W
′

V

m
? c

- U

f
?

(8)

in G, with f an isomorphism or a cut free proper move andc′ a cut
only topological play. Furthermore,col(cm) = col(c′).

Proof. Let Ec
V be the set of edges collapsed byc, andEc

W their
antecedents bym. By Lemma 2, the edges inEc

W are two-ended.
If m is a cut move, then letEm

W be the set of edges collapsed by
m. We have by constructionEc

W andEm
W disjoint. Letc′ : W →

W ′ be the cut only map obtained by collapsing exactly these edges
EW = (Ec

W ⊎ Em
W ) in W . Since the edges inEW have two ends,

c′ is a topological play, and we have an isomorphismf : W ′ ∼= U .
If m is not a cut move, letc′ : W → W ′ be the cut only

topological play collapsing exactlyEc
W . It remains to findf as

in (8). For this, letEm
W be the set of edges inW which are not

assigned the empty occurrence bym, i.e., which are acted upon by
m. All such edges are sent to a unique edgee0 in V , and being in
Ec

W for e ∈ Em
W is the same as being inEc

V for e0. Thus, we have
eitherEm

W ⊆ Ec
W , or Em

W disjoint fromEc
W .

Now, if Em
W ⊆ Ec

W , we again have an isomorphismf : W ′ ∼=
U , and we are done. Otherwise,Em

W is left untouched byc′, and
we may mimic the action ofm on the image ofEm

W by c′, and land
in U , making the square (8) commute inG.

In all cases, clearly,col(cm) = col(c′).

Embeddings We have seen in Section 3.1 that this does not work
for embeddings in general. However, the process works smoothly
when such anh does not cut off any edge collapsed byc. Formally:

Lemma 4. For any square

U
′

c′
- V

′

U

h
?

∩

c
- V

h′

?

(9)

with h an embedding,c a cut only topological play, and(c′, h′) an
(L,R)-factorisation ofch, the following are equivalent
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(i) h′ is an embedding andc′ is a cut only topological play,
(ii) any edgee ∈ col(ch) has two ends inU ′,
(iii) any two-ended edgee ∈ col(c) in the image ofh has a two-

ended antecedent inU ′.

Furthermore, in this casecol(ch) = col(c′) and the square is a
pullback.

We first prove two easy lemmas:

Lemma 5. Consider a diagramU ′
⊂

h
- U

c
- V with h an

embedding,c a cut only topological play, and such that any edge
e ∈ col(ch) has two ends inU ′. For any vertexvU ∈ U in the
image ofh, all of c−1(c(vU )) is in the image ofh too.

Proof. Let vV = c(vU ). Since c is a play, c−1(vV ) is con-
nected and has only two-ended edges, hence is a tree in the graph-
theoretical sense. Buth is open, so any edgee adjacent tovU has
an antecedent byh. But since any edgee ∈ col(ch) has two ends in
U ′, the other endv′ of e also has an antecedent. But similarly any
edge incident tov′ has an antecedent. By induction on the length
of the path fromvU , all of c−1(vV ) is in the image ofh.

Here is the second lemma:

Lemma 6. If in a triangle

V

U ⊂
h

-

h′′
-

W

h′
⊂

-

h andh′ are embeddings, then so ish′′.

Proof. Obviously,h′′ is injective sinceh is. Moreover, sinceh and
h′ have empty occurrences,h′′ has empty occurrences. Finally,h′′

is open: for any openX ⊆ U , h′′(X) is equal toh′−1(h(X)),
which is open sinceh′ is continuous andh is open.

We turn back to the proof of Lemma 4.

of Lemma 4..First of all,col(ch) = col(h′c′) = col(c′).
Then,(ii) implies (iii) , because anye ∈ col(c) in the image of

h is in col(ch).
Conversely,(iii) implies (ii) , because givene ∈ col(ch), h(e)

is in col(c). But c is a play, soh(e) has two ends, and so by(iii) , e
too has two ends.

Furthermore,(i) implies(ii) , sincec′ is a play.
Finally, if any edgee ∈ col(ch) has two ends inU ′, sincec′

collapses exactly the doomed edges inU ′ and these are all two-
ended,c′ is a cut only topological play.

To show thath′ is open, first consider any vertexvV in V , and
any edgeeV incident tovV . There is a unique pair(vU , eU ) with
eU incident tovU in U , sent to(vV , eV ) by c. (Indeed,c leaves
persistent edges untouched and does not augment their adherence.)

Now, if vV is in the image ofh′, then it is in the image ofc′h′,
becausec′ is surjective. Moreover, sincec′ is a play, it has some
antecedent vertexvU′ in U ′. Now, let v′

U = h(vU′). It is sent to
vV by c, so by Lemma 5, all ofc−1(vV ) is in the image ofh. Hence
vU has an antecedentv′

U′ in U ′. But sinceh is open,eU also has
an antecedent, left untouched byc′, and hencee has an antecedent
by h′. So,h′ is open and(ii) implies(i).

Finally, consider the morphismf induced by universal property
of pullback in

U
′

W
c′′

-

f
-

V
′

c′

-

U

h′′

?

∩

c
-

h

-
V.

h′

?

∩

Considering the lower-left triangle, by Lemma 6,f is an em-
bedding. But by Lemma 5, for any vertexvV ∈ h′(V ′), all of
c−1(vV ) is in the image ofh. So, since the pullback is isomorphic
to c−1(h′(V ′)), f is surjective on vertices. Now, sincec′ is surjec-
tive, each edgeeV ∈ h′(V ′) has an antecedenteU′ in U ′, hencef
is surjective, hence is an isomorphism.

In particular, whenh does not cut off any two-ended edge, or
equivalently whenh is just a restriction to some of the connected
components ofV , the process works for anyc. We call suchh’s cut
compatible.

A sufficient condition for descending playsUsing Lemmas 3
and 4, we are now able to derive the following sufficient condition
by induction. Forc : U → V any cut only topological play, and
W

r
- U a play, calldoomedthe edges ofcol(cp). (In the

following, we freely write “doomed inW ” when r is clear from
context.)

Definition 2. A play X
p
- U is c-compatiblewhen for each

decomposition ofp into plays

X
q

- W
r

- U, (10)

any edge doomed inW , i.e., incol(cr), has two ends.

We may characterisec-compatible plays as follows.

Lemma 7. A playp is c-compatible iff for any decomposition

X
q′

- Y ⊂
h

- Z
r′

- U (11)

of p with h an embedding,h does not cut off doomed edges, i.e., if
an edgee ∈ col(cr′h) is such thath(e) has two ends, thene has
two ends inX.

Proof. Assumep has a decomposition (11) as above, but with an
edgee ∈ col(cr′h) lacking at least one end and such thath(e)
has two ends. Then, by takingW = Y , q = q′, andr = r′h, e
contradictsc-compatibility ofp.

Conversely, it is enough to show that for anyX
p
- U

satisfying the condition, any edge incol(cp) has two ends. We
proceed by induction onp, using Lemma 4 for the induction step
(the case of proper moves being easy).

We have:

Lemma 8. Anyc-compatible playp descends to some cut free play
alongc, in a square

X
c′

- Y

U

p
? c

- V

p′

?

(12)

with p′ a cut free play andc′ a cut only topological play. Again,
col(cp) = col(c′).
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Proof. By induction. The induction step uses Lemmas 3, 4, and 7.

We will now define ourc-cables usingc-compatibility.

3.5 Cables

Given a cut only topological playU
c
- V as above, a play

Y
r
- U is c-atomic when Y is connected and its edges are

doomed exactly when they have two ends.

Definition 3. A c-cableis a c-compatible playW
p
- U such

that for any decomposition

W
q

- X
m

- Y
r

- U

of p with m a proper move,r is c-atomic.

But, we have

Lemma 9. Being atomic is equivalent to being connected and
having no two-ended edge.

Proof. Atomic hypersequents satisfy the condition. Conversely,
non atomic, connected hypersequents all have at least one two-
ended edge.

This yields:

Lemma 10. A c-compatible playY
r
- U is c-atomic iff in its

descent square

Y
cY

- Y
′

U

r
? c

- V,

r′

?

Y ′ is atomic.

Proof. Let E be the set of two-ended edges inY , not in col(cY ),
i.e., not incol(cr) = col(cY ). LetE′ be the set of two-ended edges
in Y ′. Since the edges outsidecol(cY ) are left untouched bycY ,
E′ is non-empty iffE is non-empty.

Moreover,cY is a topological play, soY is connected iffY ′ is
connected.

By the previous Lemma, this gives the expected result.

Finally, this entails:

Lemma 11. Anyc-cableU ′
p
- U descends as a thread.

Proof. Cables arec-compatible, so we may consider the descent
square

U
′

c′
- V

′

U

p
? c

- V.

p′

?

Now, for p′ to be a thread, it suffices to consider any of its decom-
positions as

V
′

q′
- X

′
m′

- Y
′

r
- V

and show thatY ′ is atomic. But descent is defined inductively, so
such a decomposition yields a decomposition

U
′

c′
- V

′

X

q
? cX

- X
′

q′

?

Y

m
? cY

- Y
′

m′

?

U

r
? c

- V

r′

?

of the above descent square. Becausep is ac-cable,r is c-atomic,
so by the previous lemma,Y ′ is atomic.

We now turn to exploiting this to descend strategies. To do that,
we need to carefully select thec-cables complying with a given
strategy. We first define in the next section the threadsp̃ underlying
a given playp, and then define thec-cables of a strategyS to be
thosec-cablesp such that̃p ⊆ S.

3.6 The threads of a play

To any playp on U , what its set of threads should be is intuitively
clear, but is a bit tricky to formalise. What we do is define a graph
P(U) of “embeddings” between plays onU . Intuitively, in this
graph, an edgep → p′ indicates how at each stagep sees part
of what happens inp′. The setp̃ of threads ofp will then consist
of all threadst with an edget → p. This extends by union to sets
of plays, so, to any strategyS on U, we may associate the setŜ of
playsp onU whose threads are all inS, i.e., such that̃p ⊆ S.

It remains to define our graphP(U). First, consider the graph
M

1 with vertices the embeddingsi : U ⊂ - V and whose edges
i → j have one of the following forms

U ⊂
i

- V

U
′

m′

?

⊂
j

- V
′

m
?

U ⊂
i

- V

V
′

m
?

j

⊂

-

U ⊂
i

- V

V
′

k
?

∩

j

⊂

-

U ⊂
i

- V

U
′

,

h
?

∩

j

⊂

-

where the first square is a pullback and the second diagram is such
that the induced square

U ⊂
i

- V

U

w

w

w

w

w

w

⊂
j

- V
′

m
?

is a pullback, and wherem andm′ denote proper moves andh and
k denote embeddings, all seen as moves. This graph freely gener-
ates a categoryP1, whose morphisms are piles of such diagrams.
Furthermore, there are morphisms of graphss, t : M

1 → P
0 send-

ing the squares and triangles to their vertical borders. By adjunc-
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tion, they induce functorss, t : P
1 → P

0. This structure now in-
duces a “horizontal” graphP whose vertices are plays, and whose
edgesp → q are morphismsi → j in P

1 with left-hand borderp
and right-hand borderq.

Finally, the graphP(U) evoked above has vertices the plays on
U , and edges the edges inP with lower border the identity. Thus,̃p
is the set of threadst onU such that there exists an edget → p in
P with lower border the identity.

3.7 Cut elimination

For any strategyS on U , we at last define the setcablesc(S) of
c-cablesof S to be the set ofc-cablesp with p̃ ⊆ S.

Recall thatDescc sends sets of playsS to the set of plays
descending from plays inS alongc. We set:

Definition 4. For any strategyS, let

elimc(S) = Descc(cablesc(S)).

We then obtain:

Lemma 12. The set of threadselimc(S) satisfies axiomsS1to S3
for strategies, plus one direction of axiomS4, namely that (in the
same setting) ift ◦ G(hh′) ◦ t′ ∈ S, thent ◦ h ◦ h′ ◦ t′ ∈ S.

We first prove that the corresponding direction ofS4holds for
cables:

Lemma 13. For any strategyS, if t ◦ G(hh′) ◦ t′ ∈ cablesS(),
thent ◦ h ◦ h′ ◦ t′ ∈ cablesS().

Proof. Being a thread of a cable is insensitive to composition or
decomposition of embeddings. Indeed, any edge in the graphP(U)
between sequences of embeddings may be obtained by piling up
triangles as in

U ⊂ - U
′

V
?

∩

V
′

?

∩

⊂

-

...
...

W ⊂ - W
′

,

⊂

-

⊂

-

with no constraint on the numbers of embeddings on each side;only
the commutativity of the outer diagram matters in the end.

Proof of Lemma 12.By Lemma 11,elimc(S) is a (non-empty) set
of threads. Also, sinceS is a strategy,elimc(S) is prefix-closed.
Furthermore, for any mandatory movef extendingp′ ∈ elimc(S),
f easily lifts to a mandatory move in the corresponding cable,
which descends asf , henceelimc(S) is stable under extension
by mandatory moves. Furthermore,elimc(S) is stable under iso-
morphism, by construction ofDesc. Finally, if t ◦G(hh′) ◦ t′ is in
elimc(S), thenG(hh′) comes from an edge inDesc, i.e., a square

X
′

cX
- X

Y
′

h′′

?
cY

- Y

G(hh′)
?

with h′′ an embedding. But by the pullback Lemma and Lemma 4,
we may choose pullbacks as in

X
′

cX
- X

Z
′

h2

?
cZ

- Z

h′

?

Y
′

h1

?
cY

- Y

h
?

such thath1h2 = h′′. But then byS4 for S, we could replaceh′′

by h1h2 in the cable descending tot ◦ G(hh′) ◦ t′, and obtain a
cable descending tothh′t′.

However, as we have seen in Section 3.1, the set of threads
elimc(S) need not be closed under the other direction ofS4.
But we may perfectly close a set of threads under compositionof
embeddings: consider the rewriting relation on plays defined by

thh
′

t
′ → t ◦ G(hh

′) ◦ t,

and given a set of threadsS, letS be the set of plays reachable from
S by this relation. We have

Lemma 14. The set of threadselimc(S) is a strategy.

Proof. Axioms S1-S3are preserved by·, as well as the first direc-
tion of Axiom S4. The second condition is now satisfied, hence
elimc(S) is a strategy.

We may then define our family of functions: for any cut only
topological playU

c
- V and set of threadsS onU , letcec(S) =

elimc(S), andceU (S) = elimidU
(S). We have seen that ifS is a

strategy, then so isceU (S). We further have

Lemma 15. The functionsce : S(U) → Scf (U) define a mor-
phism of sheaves.

Proof. Restriction commutes with cut elimination.

4. Logic
We at last start using our game as a model of MALL. We first
define winning strategies, and we relate them to more standard
notions, and discuss categories of games and strategies. Wethen
show that winning strategies are stable under cut elimination, and
obtain coherence as a corollary. We then show that every MALL
proof generates a winning strategy andvice versa, hence our model
is correct and complete. (This would have entailed coherence in a
less direct way.)

4.1 Winning strategies

When should a strategy be winning? Since at any stage and on any
sequent it has to accept all negative moves, it reaches sequents with
only⊤’s and positive edges. In such a sequent, if there actually are
some⊤ edges, then the play should be considered won, thanks to
the⊤ axiom of MALL. Otherwise, there are only positive edges,
and the strategy should propose a positive proper move. In other
words, when a winning strategy is stuck, it has to be on a position
with a⊤ edge.

More formally:

Definition 5. A sequent ispositivewhen it has no input edge. A
set of threadsS is winning when it is non empty, stable under
extension by mandatory moves, and when every thread inS ending
on a positive sequent has an extension by a proper move inS.
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Equivalently, we may call a playV
p
- U maximalin some

set of threadsS if it is atomic and has no extension by a proper
move in S. If S is a strategy, then for such a maximalp, any
negative edge ofV is labeled⊤, otherwise there is an extension
by a passive proper move. Let now such a maximal play in a set
of threadsS be won when V is either empty, or a (⊤) edge, or
a sequent with a negative edge. Otherwise it islost. A position is
maximal if it is the domain of a maximal thread.

Lemma 16. A strategy iswinning iff it is non-empty and all its
maximal positions are won.

In game theory, and in particular in game semantics, strategies
are usually defined as sets of plays (without embeddings). This
raises the question: in which sense is the notion of a winning
strategyS related to its set of playŝS?

First, observe that the set of playŝS is prefix-closed, andwel-
coming, in the sense that it is stable under extension by a passive
proper move or an embedding. Indeed, the threads of any such ex-
tension of a playp ∈ Ŝ are either already threads ofp, or extensions
of one of them by a passive proper move or an embedding, hence
again inŜ.

Let a playp in a set of playsP be maximalwhen p has no
extension by a proper move inP . Call a maximalp wonwhen all its
sequents have at least one negative edge. Observe that it is different
to be maximal as a thread or as a play: a thread is maximal as a
thread only if its domainV is atomic.

Lemma 17. If S is a winning strategy, then any maximal play inŜ
is won.

Proof. Assume given a playp : V → U in Ŝ with a sequents
without any negative edge, and consider a threadt leading to it in
S. If s has no edge, thent is maximal and lost, contradicting the
winning character ofS. Thus,s has some positive edges. But again,
sinceS is winning,t cannot be maximal, so it has an extension by
a proper move. Other sequents have to accept this move because S
is winning, soV could not be maximal.

All in all, we have

Theorem 2. The set of playŝS of a winning strategy is non-empty,
prefix-closed, and welcoming, and its maximal plays are all won.

However, a set of plays may satisfy the conditions of Theorem2
without being generated by a strategy. The main reason is because
these conditions miss stability under restriction and amalgamation.
For instance, on the hypersequent

consider the winning set of playsP with

• proper plays choosing one repartition of the left-hand1 edges,

• plays after restriction to the left-hand sequent choosing the
other,

which satisfies the conditions, but is not generated by a strategy.
Indeed, any strategy having at least the threads inP̃ would allow
both repartitions of the left-hand1 edges in its global plays.

4.2 Coherence, correctness, and completeness

We now turn to proving the announced logical results: coherence,
correctness, and completeness. We start by proving that winning
strategies are stable under cut elimination.

Theorem 3. If S is winning, then so iscec(S).

Proof. First, if elimc(S) is winning, then so iselimc(S), since no
maximal positions are added. Let us thus show thatelimc(S) is
winning.

Let p′ : V ′′ → V lead to a maximal positionV ′′ in elimc(S),
and choosep : U ′′ → U as in

U
′′

c′′
- V

′′

U

p
? c

- V

p′

?

maximal incablesc(S) descending top′, i.e.,p has no extension in
cablesc(S) also descending top′. By maximality,V ′′ is atomic, so
by Lemma 10,p is c-atomic. So, ifV ′′ is either an edge or empty,
then so isU ′′. Otherwise,V ′′ is a sequent, soU ′′ is a connected
hypersequent with the same one-ended edges. Now, we claim that
every sequent inU ′′ has a negative edge. Indeed, if any sequent
there had

• no edge at all, then a thread inS would lead to it, contradicting
the winning character ofS,

• only positive edges, then becauseS is a winning strategyU ′′

would admit an extension by a proper move incablesc(S),
contradicting its maximality.

So, each sequent inU ′′ has at least one negative edge. But this
easily implies thatU ′′ has at least one input edge, which then has
to be a⊤. Therefore,V ′′ has an input⊤ edge and is thus won.

This directly entails coherence:

Corollary 1. There is no winning strategy on the empty sequent.

Proof. Any winning strategyS would yield a cut free onece(S).
But the latter cannot be winning, as it has no proper move, so the
empty sequent is maximal, but lost.

4.3 Correctness and completeness

We now investigate the correspondence with provability in MALL.
We defer a proof theoretical investigation to further work.

Lemma 18. If a sequentΓ is provable in MALL, then there is a
winning strategy on it.

Proof. By standard proof technology,Γ admits a cut free proofπ
which at any stage starts by completely breaking negative connec-
tives, and with no axiom links (i.e., conclude by1 and⊤ rules).

We proceed by induction on thisπ. Observe that at any stage,
we must accept all embeddings. We do so implicitly, and need only
specify a strategy when such embeddings lead to a sequent (on
edges, a strategy has to accept all moves).

Now, let us review the base cases. Ifπ is a1 rule, then apply the
1 move to reach an empty position, which is hence won. Ifπ is a
⊤ rule, then by hypothesis the only negative formulae ofΓ are⊤’s,
so there are no possible passive proper moves, andΓ is maximal,
hence won.

For the induction step, first, accept all passive proper moves,
which in various paths lead to a sequentΓ′ with only ⊤’s and
positive formulae. The proofπ chooses one such path toΓ′. Now,
if this path is non empty, then the size has decreased, so we may
apply the induction hypothesis. Otherwise,Γ = Γ′, andπ starts
with an active proper movem, reaching premissesπ1, . . . , πn,
with n ∈ {1, 2}, which in turn have to perform negative rules to
reach premissesπ′

1, . . . , π
′

n. We choosem as the next move of our
strategy. Then, accept all passive proper moves and embeddings,
which (among others) lead in various paths to the conclusions of
π′

1, . . . , π
′

n. Finally, conclude by induction hypothesis.
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Lemma 19. If a sequentΓ admits a winning strategy, then it is
provable in MALL.

Proof. Assume given such a winning strategyS, which we may
suppose cut free w.l.o.g. Since in the game, a play has a finite
number of proper moves, we may take this as its size. The size
of a strategy is then the maximum size of its plays.

Proceeding by induction on the size ofS, if S has size0, then
because it is winning onΓ andΓ is atomic,Γ is maximal, so it has
a⊤ edge, hence is an axiom of MALL.

Otherwise, choose a thread inS performing all possible passive
proper moves, and reach a sequentΓ′ with only ⊤’s and positive
edges. If the followed path has at least one proper move, thenthe
size has decreased so by induction hypothesis we get a proof of
Γ′, to which we apply all the corresponding negative rules to get a
proof of Γ. Otherwise the followed path is empty, andΓ = Γ′ has
only ⊤’s and positive edges. If it has a⊤, thenΓ is an axiom of
MALL.

Otherwise, sinceS is winning, there is a (active) proper move
from Γ.

• If it is a 1 move, thenΓ is the sequent with exactly one1
formula, which is an axiom of MALL.

• If it is a ⊕ move, then it leads to some sequentΓ′′. By induction
hypothesis, the sequel ofS being winning, we get a proof ofΓ′′,
to which we apply the corresponding rule to get a proof ofΓ.

• If it is a ⊗ move, then it leads to some hypersequent of the shape

that is, a disjoint union of two sequents. SinceS is a strategy,
we may follow the restrictions to each sequentΓ1 andΓ2, apply
the induction hypothesis there to get proofsπ1 andπ2, to which
we apply the tensor rule to get a proof ofΓ.

We have proved:

Theorem 4. The topological game for MALL is (logically) sound
and complete.

4.4 Towards categories of strategies

Without cut elimination, we may construct a categoryStrat0 of
strategies for our topological game for MALL, which we defineto
be the strictification of the bicategory of cospans, with

• objects the formulae, and

• morphismsA → B consisting of a cospan

A ⊂ - U � ⊃ B

in H, equipped with a strategy onU , with A andB dangling
edges labeled with formulaeA and B, and U a connected
hypersequent with exactly one input edge – the image ofA,
and one output edge, the image ofB.

Gluing two hypersequents along a edge which is input on one side
and output on the other clearly preserves acyclicity, hencewe may
hope to define composition as a strategy on the (chosen) pushout.
Now, observe that the unique strategy on an edge (alone) is the total
one, i.e., the set of all plays. Indeed, all proper moves are passive
and atomic. Thus, any two strategiesp : A → B andq : B → C,
have the same restriction toB, hence have a unique amalgamation,

which we elect to be their compositionq ◦p : A → C. The identity
on A is given by the unique strategy on the edge labeledA. Since
winning strategies are stable under amalgamation, we may form the
subcategoryWStrat0 of winning strategies. We could also do the
same with cut free strategies.

However, these categoriesStrat0 and WStrat0 are not quite
what game semanticists are used to. Indeed, given two strategies
S : A → B andS′ : B → C, i.e., on objects like

and

respectively, a game semanticist expects their composition

A
S

- B
S′

- C (13)

to be a strategy on the hypersequentU :

(14)

not onV :

(15)

as inStrat0.
Now, letΓ = (A1, . . . , An) and∆ = (B1, . . . , Bm) be lists of

formulae. We writeU : (Γ ⊲ ∆) when the connected hypersequent
U has exactlyn input edges labeled with theAi’s andm output
edges labeled with theBj ’s. For any such hypersequentU , there is
a cut only topological play

(U : Γ ⊲ ∆)
cU

- (Γ ⊢ ∆),

Thus, for any (winning) strategyS onU , there is a (winning) strat-
egycecU

(S) on Γ ⊢ ∆. In order to obtain categories of strategies
closer to usual game semantics, we might want to quotient ourcat-
egoriesStrat0 andWStrat0 by decreeing that two strategies(U,S)
and(V, T ) from A to B are equivalent whencecU

(S) = cecV
(T ).

Alternatively, we could take morphismsA → B to be (win-
ning) strategies on the sequentA ⊢ B, and composition to be
defined by amalgamation followed by descent along the cut play,
say, from (15) to (14) above. However, this appears trickierthan
expected, specifically w.r.t. associativity of composition in the ob-
tained candidate categories, and we leave it for further work.

5. Related and further work
The game in this paper is almost the same as in an earlier talk
(Hirschowitz et al. 2007), with a few evolutions. The development
is very different: in Hirschowitz et al. (2007), we were concerned
with making plays a stack, which here is avoided by passing di-
rectly to strategies. The notion of strategy we adopt here isradically
new – Hirschowitz et al. (2007) used sets of proper plays. Finally,
we provide correctness and completeness results which werenot in
Hirschowitz et al. (2007).

Delande and Miller (2008) investigate a closely related game,
with analogous correctness and completeness results. Their ap-
proach first technically differs in the way the game ends, andin
the definition of won positions. More importantly, their game does
not feature any cut move, so they do not deal with cut elimination
in any sense. Finally, they do not use topological methods atall.

Melliès (2004) and subsequent papers propose notions of games
where plays should be considered up to permutation of certain
moves. Our game certainly has an asynchronous flavor in this sense,
where permutations arise directly from the topology. However, a
formal connection remains to be established.

Most striking are probably the similarities with Girard’s (2001)
ludics, from which we gratefully acknowledge inspiration.A first
difference is technical: Girard does not use topological methods at
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all, maybe because ludics are restricted to a very particular form
of graphs. Also, our game is closer to MALL sequent calculus
than ludics, e.g., it does not feature thedaimonmove of ludics.
Furthermore, our edges are labeled with formulae, which fixes their
behavior – there is exactly one strategy per edge. A key ingredient
to Girard’s approach is to avoid labels, and instead say thata
strategy follows a typing (i.e., a labeling of edges with formulae)
when its restriction to each edge behaves accordingly. Adapting
our game to this approach is left for further work. Finally, ludics’
strategies are still defined as sets of plays, i.e., non locally.

More intrinsically to our game, there are a number of possi-
ble directions for improvement. First, as evoked in Section4.4, our
game has to be adapted to fit into a category of strategies. Further-
more, one might want to tighten the connection between strategies
and proofs, e.g., towards a full completeness result. Finally, we will
try to extend our game to exponentials, and (at least first-order)
quantification. This promises to be more difficult, particularly w.r.t.
noetherianness.
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