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Abstract. Peroxy radical (HO2 +6RO2) measurements, us-
ing the PEroxy Radical Chemical Amplification (PERCA)
technique at the North Atlantic Marine Boundary Layer EX-
periment (NAMBLEX) at Mace Head in summer 2002, are
presented and put into the context of marine, boundary-
layer chemistry. A suite of other chemical parameters (NO,
NO2, NO3, CO, CH4, O3, VOCs, peroxides), photolysis
frequencies and meteorological measurements, are used to
present a detailed analysis of the role of peroxy radicals
in tropospheric oxidation cycles and ozone formation. Un-
der the range of conditions encountered the peroxy radical
daily maxima varied from 10 to 40 pptv. The diurnal cy-
cles showed an asymmetric shape typically shifted to the af-
ternoon. Using a box model based on the master chemical
mechanism the average model measurement agreement was
2.5 across the campaign. The addition of halogen oxides to
the model increases the level of model/measurement agree-
ment, apparently by respeciation of HOx. A good correlation
exists betweenj (HCHO).[HCHO] and the peroxy radicals
indicative of the importance of HCHO in the remote atmo-
sphere as a HOx source, particularly in the afternoon. The
peroxy radicals showed a strong dependence on [NOx] with
a break point at 0.1 ppbv, where the radicals increased con-
comitantly with the reactive VOC loading, this is a lower
value than seen at representative urban campaigns. The
HO2/(HO2 + 6RO2) ratios are dependent on [NOx] ranging
between 0.2 and 0.6, with the ratio increasing linearly with
NOx. Significant night-time levels of peroxy radicals were
measured up to 25 pptv. The contribution of ozone-alkenes
and NO3-alkene chemistry to night-time peroxy radical pro-
duction was shown to be on average 59 and 41%. The cam-
paign mean net ozone production rate was 0.11±0.3 ppbv
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h−1. The ozone production rate was strongly dependent
on [NO] having linear sensitivity (dln(P(O3))/dln(NO)=1.0).
The results imply that the N(O3) (the in-situ net photochem-
ical rate of ozone production/destruction) will be strongly
sensitive in the marine boundary layer to small changes in
[NO] which has ramifications for changing NOx loadings in
the European continental boundary layer.

1 Introduction

Peroxy radicals (HO2 and RO2, predominantly CH3O2 in
semi-polluted atmospheres) can be thought of as the in-
termediates between the hydroxyl (OH) radical and ozone
formation or destruction (Monks, 2005). Peroxy radi-
cals also control the removal of primary pollutants such as
NOx(NO+NO2) and Volatile Organic Compounds (VOCs).
Understanding the radical chemistry that controls ozone for-
mation will improve our basic understanding of tropospheric
photochemistry and the effect of natural and man-made emis-
sions on ozone formation.

The relative contribution of ozone production and loss pro-
cesses in the troposphere is highly sensitive to competition
between the reaction of peroxy radicals with NO and their
self- and cross-reactions to form peroxides. In the presence
of NOx, the reaction of peroxy radicals with NO leads to the
formation of NO2, which, upon photolysis, forms ozone:

HO2+NO→OH+NO2 (R1)

CH3O2+NO→CH3O+NO2 (R2)

CH3O+O2→HO2+HCHO (R3)

NO2+hν(λ<424 nm)→O(3P)+NO (R4)

O(3P)+O2+M→O3+M (R5)
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In conditions of low [NOx], a catalytic cycle leads to net
ozone destruction, shown here for the reaction with CO:

HO2+O3→OH+2O2 (R6)

OH+CO→H+CO2 (R7)

H+O2+M→HO2 + M (R8)

Overall : CO+ O3→CO2+O2 (R9)

OH oxidation and other VOCs forms peroxy radicals:

CH4+OH→CH3+H2O (R10)

CH3+O2+M→CH3O2+M (R11)

Both urban and rural environments are affected by air pol-
lution of photochemical origin, and the modelling of photo-
chemical ozone formation in the British Isles from European
emissions are important for the policy-makers in order to de-
velop emission-reduction targets for ozone precursors (Met-
calfe et al., 2002, and Derwent et al., 2003). Ozone is one
of the major components of photochemical smog, together
with contributions from compounds such as carbonyls, per-
oxy acetyl nitrates (PANs) and various nitrogen oxides. It has
been seen in past studies in the relatively clean rural/marine
conditions of Mace Head (Salisbury et al., 2001, 2002) dur-
ing the EASE 96 and 97 (Eastern Atlantic Summer/Spring
Experiment) and in the very clean air of Cape Grim in Tasma-
nia (Monks et al., 1998, 2005b)1 at the SOAPEX 2 (Southern
Ocean Atmospheric Photochemistry EXperiment) campaign
in 1998 that ozone formation is part of a natural cycle that
can be easily perturbed by pollution events.

Tropical maritime air which is depleted in ozone can be
advected to Mace Head over a distance of several thousand
kilometres without significant net ozone formation occurring
(Derwent et al., 1998). Measurements at Mace Head found
that the site experienced more photochemical ozone produc-
tion than destruction during the EASE 96 and 97 campaigns
(Salisbury et al., 2002) and at ATAPEX-95 (Atlantic Atmo-
spheric Photochemistry Experiment) (Carpenter et al., 1997).
Cape Grim experienced far more days with net ozone de-
struction as in SOAPEX 1 in 1995 (Monks et al., 1998, 2000,
and Carpenter et al., 1997) and in 1998 at SOAPEX 2 (Monks
et al., 2005). Andres-Hernandez et al. (2001) also found
that during the Atlantic and Southern Indian Ocean cruise
of AEROSOL 99 net ozone destruction predominated.

Penkett et al. (1997) showed that the relationship between
the sum of peroxy radicals and the ozone photolysis rate co-
efficient (to the singlet oxygen atom),j (O1D) can serve as a
diagnostic for photochemical ozone production and destruc-
tion. In high NOx conditions HO2 + 6RO2 is generally pro-
portional toj (O1D) and in clean conditions, to

√
j (O1D)

1Monks, P. S., Salisbury, G., and Fleming, Z. L., et al.: The role
of peroxy radicals in photochemical destruction of ozone at mid-
latitudes in the Southern Hemisphere, to be submitted, 2005b.

(Penkett et al., 1997; Monks et al., 1998; Zanis et al., 1999;
Creasey et al., 2003). The shape ofj (O1D) throughout the
day produces a typical summer peroxy radical diurnal cycle
with maximum values towards solar noon, and minimum val-
ues during the night. Photolysis of other photo-labile com-
pounds (e.g. HCHO and HONO) becomes noticeable in the
early morning or evening, when the light is of longer wave-
lengths than those at which ozone photolysis occurs, and can
lead to a broader peroxy radical diurnal cycle than that ex-
pected from ozone photolysis alone.

In the absence of photochemistry, there is a series of night-
time peroxy radical-producing channels. NO3 (nitrate) rad-
ical (Allen et al., 1999; Penkettet al., 1999; Salisbury et al.,
2001; Geyer et al., 2003) and ozone reactions with alkenes
(Hu and Stedman, 1995; Rickard et al., 1999; Salisbury et
al., 2001) were found to be two dominant channels in the
marine influenced atmosphere.

In this paper, by use of peroxy radical measurements cou-
pled to a suite of supporting trace species measurements,
the photochemical environment of Mace Head is explored.
In particular, the shape, concentration and form of the diur-
nal cycle are explored in relation to both primary production
and the potential contribution of the photolysis of secondary
compounds such as carbonyls (e.g. HCHO). The dependence
of peroxy radical concentration with changing NOx and VOC
is described. The role of both NO3 and O3-alkene reactions
as night time source of peroxy radicals is investigated. Fi-
nally, role of the peroxy radicals in the in situ photochemical
formation and destruction of ozone is quantified.

2 Experimental

2.1 Site

NAMBLEX took place from 27 July to 2 September 2002
at the Mace Head Atmospheric Research Station (53◦20′ N,
9◦54′ W). Mace Head is located on the west coast of Ire-
land, 88 km west of Galway city, and is in the path of the
mid-latitude cyclones which frequently traverse the North
Atlantic. Heard et al. (2005) describe the location in more
detail, together with the local meteorology of the site, and
Norton et al. (2005) provide a detailed analysis of the specific
boundary layer conditions encountered during NAMBLEX.
The prevailing wind direction is from a westerly marine sec-
tor but significant pollution events also reach the site from
European continental air-masses, from easterly directions.

2.2 Peroxy radical measurements (PERCA)

Measurements of peroxy radicals (HO2 + 6RO2) were car-
ried out using the jointly operated University of Leicester –
University of East Anglia (UEA) PEroxy Radical Chemical
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Amplifier (PERCA IV) instrument, reported for the first time
in Green et al. (2005) and Fleming et al. (2006).2

The technique was pioneered by Cantrell et al. (1984) and
described by Clemitshaw et al. (1997), Monks et al. (1998)
and Green et al. (2003) and the current apparatus uses a
dual channel inlet and detection system (as in Cantrell et al.,
1996).

Briefly, the method relies upon the HO2 and OH radical-
catalysed conversion of NO and CO into CO2 and NO2 re-
spectively, through addition of NO and CO into the inlet re-
gion viz.,

HO2+NO→OH+NO2

OH+CO→H+CO2

H+O2+M→HO2+M

Overall : NO+CO+O2→CO2+NO2 (R12)

Organic peroxy radicals are readily converted into HO2
in the presence of NO with varying efficiencies (Ashbourn
et al., 1998). The yield of both CO2 and NO2 is equal to
CL*([

∑
RO2]+[HO2]+[OH]), where CL is the chain length,

i.e. the number of HO2/OH inter-conversion cycles that occur
before radical termination. The ratio of [HO2]/[OH] ranges
from∼50–200 in the atmosphere, therefore the PERCA tech-
nique effectively measures the sum of inorganic and organic
peroxy radicals. The yield of NO2 is measured using com-
mercial LMA-3 detectors (calibrated daily using NO2 perme-
ation sources) and this is converted into [HO2+6RO2] using
1[NO2]/CL. The chain length was calculated on a weekly
basis, using a calibration source based upon the photolysis of
CH3I at 253.7 nm to yield CH3O2 at varying concentrations
(Clemitshaw et al., 1997).

Background [NO2] signals (caused by the reaction of am-
bient ozone with NO in the inlet) were measured by changing
the addition points of the reagent gases, so that the amplifi-
cation reactions are not initiated. The overall radical levels
are calculated by subtracting the termination signal from the
amplification signal.

The dual-inlet system comprises two distinct sampling
systems, inlet reaction sites and detectors. The advantage
of this dual-inlet system is that the two systems are run out
of phase in two modes, with one in amplification and the
other in termination mode. Switching the two inlets between
phases on a minute time scale leads to a continuous amplifi-
cation and termination signal.

Mihele et al. (1998, 1999) have shown that the chain length
of a chemical amplifier is reduced in the presence of atmo-

2Fleming, Z. L., Monks, P. S., Rickard, A. R., Bandy, B. J.,
Brough, N., Green, T. J., Reeves, C. E., and Penkett, S. A.: Sea-
sonal dependence of peroxy radical concentrations at a Northern
hemisphere marine boundary layer site during summer and winter:
Evidence for photochemical activity in winter, Atmos. Chem. Phys.
Discuss., submitted, 2006.

spheric water vapour (see also Reichert et al., 2003). Salis-
bury et al. (2002) demonstrated that the chain length of the
Leicester-UEA PERCA instrument falls approximately lin-
early with increasing specific humidity. From a series of lab-
oratory experiments, a humidity correction factor equation
(using ambient humidity and inlet temperatures) was derived
and applied to all PERCA data. In order to minimise the ap-
plied correction factor, the inlet temperature was kept above
ambient temperatures at the constant value of 30◦C. The hu-
midity correction factor varied between 1.5 and 2.5 during
NAMBLEX. (see also Fleming et al., 2006).

The accuracy and precision of the dual-inlet PERCA have
been assessed in detail by Fleming (2006). The overall uncer-
tainty for any given peroxy radical measurement is 38% (at
1σ ) from a combination of uncertainties associated with the
radical calibration, NO2 quantification and humidity correc-
tion. The precision on a 1 pptv measurement averaged over
a minute assessed from the reproducibility of the radical cal-
ibration was 15%. The detection limit of the instrument was
of the order of 0.5 pptv at a S/N of 1 on a 1 min average.

The PERCA instrument inlet box was securely attached
6 m above ground level to a tower on a temporary labora-
tory building (sea container) close to the main shoreline site
and an umbilical line carried the reagent gases and sample
lines down to the main rack in the laboratory (see Heard et
al., 2005, for a site plan). The PERCA instrument took mea-
surements continuously during the campaign in minute aver-
ages and analysis was carried out with ten minute- or hourly-
averaged data.

2.3 Other measurements

Meteorological data were obtained from the site’s fixed me-
teorological station, which recorded ambient air temperature,
relative humidity, wind speed and wind direction. The other
instruments were housed in the permanent cottages of the
site or in similar self-contained temporary buildings (sea-
containers). Details of the instruments, their detection limits
and accuracy are given in Heard et al. (2005).

2.4 Modelling studies

The Master Chemical Mechanism (currently MCMv3.1,
available online athttp://mcm.leeds.ac.uk/MCM/) Devel-
oped by Jenkin et al. (1997) and subsequently refined and
updated by Saunders et al. (2003); Jenkin et al. (2003) and
Bloss et al. (2005a, b) MCMv3.1 contains the oxidation
mechanisms of 135 primary emitted VOCs. This mechanism
was added to a campaign optimised box model used to sim-
ulate HO2, RO2 and OH radical concentrations constrained
with H2, CO, CH4, O3, NO, NO2, HCHO, measured VOCs,
chloroform, temperature and various photolysis rates mea-
surements. In general, the most complete model shown in
this analysis is termed “full-oxy” and is detailed extensively
in Sommariva et al. (2006a). In addition, the model was then

www.atmos-chem-phys.net/6/2193/2006/ Atmos. Chem. Phys., 6, 2193–2214, 2006
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Table 1. Campaign air-mass sector-averaged chemical and physical parameters (1σ standard deviation given in brackets.)

NW N SW W S NE E

HO2+
∑

RO2 /pptv 7.6 (6) 7.9 (4) 7.1 (6) 10.2 (8) 13.7 (10) 13.4 (10) 13.5 (7)

NOx /pptv 151 (39) 73 (68) 111 (136) 63 (33) 230 (418) 275 (212) 352 (72)

NO /pptv 19 (47) 10 (14) 13 (12) 10 (7) 24 (55) 31 (21) 34 (26)

CH4 /ppbv 1813 (20) 1816 (32) 1785 (30) 1800 (13) 1821 (30) 1863 (50) 1925 (29)

CO /ppbv 90 (12) 81 (3) 77 (14) 83 (6) 82 (5) 112 (18) 149 (10)

O3 /ppbv 33 (4) 29 (4) 25 (7) 24 (12) 23 (12) 32 (4) 39 (2)

H2O2 /pptv 0.19 (0.19) 0.21 (0.14) 0.09 (0.07) 0.20 (0.10) 0.14 (0.05) 0.18 (0.11) 0.37 (0.10)

HCHO /ppbv 1.38 (0.18) 1.20 (0.08) 1.22 (0.17) 1.28 (0.26) 1.34 (0.12) 1.62 (0.22) 2.09 (0.17)

DMS /pptv 120 (98) 233 (66) 388 (264) 244 (227) 100 (107) 131 (88) 23 (24)

Isoprene /pptv 13 (24) 4 (1) 2 (1) 5 (6) 30 (61) 72 (119) 15 (26)

Benzene /pptv 29 (14) 24 (17) 20 (4) 27 (17) 18 (7) 62 (22) 114 (11)

Methanol /pptv 1068 (365) 852 (233) 1536 (384) 1086 (370) 1204 (291) 1747 (630) 1559 (596)

0

50

100

150

200

250

NW
(33%)

N (9%) SW
(16%)

W
(23%)

S (8%) NE
(9%)

E (3%)

N
um

be
r o

f h
ou

rs

wind < 3 m s-1
wind > 3 m s-1

Fig. 1. Air-mass sector divisions for winds less than and greater
than 3 m s−1.

also constrained with 23 hydrocarbons, 3 oxygenates and 2
peroxides and to temperature and photolysis measurements.
OH and HO2 model/measurement comparisons are reported
in Smith et al. (2006), Sommariva et al. (2006a) and night-
time HO2 and RO2 in Sommariva et al. (2006b). Model
results at NAMBLEX for HO2 were in much better agree-
ment with the measurements when the model was addition-
ally constrained to measured halogen oxides (Sommariva et
al., 2006a; Bloss et al., 2005c).

3 Results

3.1 Meteorological conditions and chemical climatology

Local wind speed and direction measurements were recorded
on an hourly basis during NAMBLEX. During the EASE
campaigns Salisbury et al. (2002), and Rickard et al. (2002)
divided all the data into five sectors, according to local wind
direction.

More detailed boundary layer structure measurements in
combination with back trajectory analysis during the NAM-
BLEX campaign is described by Norton et al. (2005). How-
ever, caution must be used when assigning air-mass sectors
only according to local in-situ wind direction as measure-
ments during the NAMBLEX data did not necessarily cor-
respond with the origin of the air-mass back-trajectory anal-
ysis. For example, there were a number of land-sea breeze
events (particularly at night). From 1 to 5 August, these
breeze events brought local easterly winds to the site during
westerly trajectories.

The British Atmospheric Data Centre’s (BADC) trajectory
service (http//:www.badc.nerc.ac.uk) was used to plot five-
day air-mass back-trajectories at six-hourly intervals. Ac-
cording to the origin of the air-masses of these trajectories,
a new division into seven areas of origin was developed as
shown in Tables1, 2 and 3. The most common air-mass
sector was the north-westerly (NW), followed by westerly
(W) and then south-westerly (SW) as shown in Fig. 1 (see
also Heard et al., 2005). The effects of local sea and coastal
breezes were removed from the analysis by only selecting
data where the local wind speed was greater than 3 m s−1

(Salisbury et al., 2002).

Table1 shows the average HO2 + 6RO2, NOx, CO, CH4,
O3, CH3OOH, H2O2, HCHO, DMS, isoprene, benzene and
methanol mixing ratios andj (O1D) for the corresponding
air-mass sectors. The data in Table2 corresponds to the day-
light (06:00–19:00) averages. Table3 shows the night-time
concentrations of the same species, as well as [NO3] and to-
tal alkenes.

Heard et al. (2005) provides a comprehensive overview of
all the other species and supporting measurements made dur-
ing NAMBLEX and their respective time series.

Atmos. Chem. Phys., 6, 2193–2214, 2006 www.atmos-chem-phys.net/6/2193/2006/
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Table 2. Daylight-only (06:00 to 19:00 UT) air-mass sector-averaged chemical and physical parameters (1σ standard deviation given in
brackets.)

NW N SW W S NE E

HO2+
∑

RO2 /pptv 10.6 (6) 9.6 (5) 8.5 (7) 15.1 (9) 16.4 (11) 21.0 (9) 17.4 (9)

NOx /pptv 133 (256) 88 (77) 80 (39) 65(30) 190 (497) 216 (112) 342 (93)

NO /pptv 31 (61) 16 (17) 15 (11) 13 (7) 34 (66) 43 (20) 57 (21)

CH4 /ppbv 1814 (22) 1818 (36) 1783 (30) 1799(13) 1817 (29) 1852 (44) 1904 (29)

CO /ppbv 90 (12) 80 (3) 76 (15) 83(5) 82 (5) 111 (18) 143 (8)

O3 /ppbv 33 (4) 28 (4) 25 (7) 26(12) 20 (14) 33 (4) 39 (3)

j (O1D) ×10−6/s−1 7.8 (7) 6.9 (6) 5.9 (6) 7.2 (5) 8.5 (6) 8.1 (6) 7.3 (8)

N(O3) /ppbv h−1 0.023 (0.2) 0.028 (0.1) –0.019 (0.08) 0.025 (0.2) 0.087 (0.3) 0.51 (0.5) 0.47 (0.3)

H2O2 /pptv 0.20 (0.2) 0.17 (0.1) 0.08 (0.1) 0.22 (0.1) 0.14 (0.04) 0.17 (0.1) 0.41 (0.08)

HCHO /ppbv 1.5 (0.2) 1.2 (0.1) 1.2 (0.1) 1.4 (0.3) 1.4 (0.2) 1.7 (0.2) 2.1 (0.2)

Table 3. Night-time-only (19:00–06:00) air-mass sector-averaged chemical and physical parameters (1σ standard deviation given in brack-
ets.)

NW N SW W S NE E

HO2+
∑

RO2 /pptv 4.2 (2) 5.6 (1) 4.4 (3) 4.1 (2) 6.4 (5) 7.7 (2) 10.5 (3)

NOx /pptv 174 (521) 59 (57) 152 (200) 61 (36) 301 (214) 344 (274) 359 (54)

NO /pptv 4.8 (3) 4.7 (4) 9.6 (13) 6.1 (6) 4.9 (3) 17.0 (12) 15.2 (8)

CH4 /ppbv 1813 (17) 1814 (28) 1787 (31) 1802 (14) 1827 (33) 1877 (53) 1941 (16)

CO /ppbv 90 (13) 81 (2) 78 (12) 84 (6) 81 (3) 113 (19) 154 (11)

O3 /ppbv 32 (4) 30 (2) 26 (8) 22 (12) 28 (6) 31 (3) 40 (2)

NO3 /pptv 4.7 (2) 5.9 (3) nd 4.5 (2) 2.7 (1) 5.7 (5) 11.7 (6)

HCHO /ppbv 1.28 (0.16) 1.16 (0.05) 1.25 (0.23) 1.14 (0.17) 1.33 (0.07) 1.54 (0.23) nd

Alkenes /pptv 60 (48) 33 (11) 71 (57) 64 (30) 71 (47) 187 (141) 188 (82)

nd: No Data

3.1.1 Peroxy radical levels and diurnal cycles

The data in Table1 and the peroxy radical time series in
Fig. 2 show that peroxy radical concentrations are high-
est when the air is of continental origin (S, E and NE air-
mass sectors). Also the concentrations of NOx, isoprene and
formaldehyde were significantly higher in these sectors than
in the marine W sector.

The lowest peroxy radical concentrations during the cam-
paign were near the detection limit of the instrument (see ex-
perimental section) at around 1 pptv but were rarely less than
4 pptv, even at night. The maximum peroxy radical concen-
tration reached 60 pptv for the occasional short-lived spike
and 40 pptv for midday maximum values (see Fig. 2). Gener-
ally, the average day-time peroxy radical concentrations were
between two and three times higher than night-time levels.

The campaign average [HO2+6RO2], [NOx] andj (O1D)
diurnal cycles and the W and NE air-mass sector-averaged

diurnal cycles are shown in Fig. 3. Peroxy radicals track
thej (O1D) diurnal cycle fairly closely, with the cycle being
shifted towards the end of the day as high midday concentra-
tions persist well into the afternoon. This form of asymmet-
rical diurnal cycle has been noted before in low-NOx envi-
ronments by Monks et al. (1996) at Cape Grim, Carpenter et
al. (1997) at Mace Head in 1995, and in high NOx environ-
ments by Holland et al. (2003) and Mihelcic et al. (2003)
at the BERLIOZ campaign near Berlin. In each of these
environments there are different mechanisms that drive this
asymmetry. The peroxy radical diurnal cycle for the W air-
mass sector has less relative variability, trackingj (O1D) with
a slight bias in maxima towards the afternoon. The NE sec-
tor peroxy radical diurnal is broader in both the morning and
the evening. The S sector diurnal cycle (not shown) follows
a similar pattern to the NE average in that it has a broader
shape in both the morning and the afternoon.

www.atmos-chem-phys.net/6/2193/2006/ Atmos. Chem. Phys., 6, 2193–2214, 2006
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Fig. 2. [HO2 + 6RO2], j (O1D) and [NO] campaign time series.

Table 4. Sensitivity of the Model/Measurement HO2 + 6RO2 agreement for varying chemical complexity.

Model Runa Model/Measurement

CO + CH4 chemistry (Het with IO chemistry)
– constrained to measurements of CO and CH4

3.3±1.8

Full Chemistry (Het with IO chemistry)
– constrained to measurements of CO, CH4, 23 hydrocarbons and chloroform

2.6±1.3

Full + Oxy
– constrained to measurements of CO, CH4, 23 hydrocarbons, chloroform
and 3 oxygenates

2.5±1.3

Full + Oxy (Het with IO chemistry)
– constrained to measurements of CO, CH4, 23 hydrocarbons, chloroform
and 3 oxygenates

2.341±1.2

Full + Oxy + Per (Het with IO chemistry)
– constrained to measurements of CO, CH4, 23 hydrocarbons, chloroform, 3
oxygenates and 2 peroxides

2.343±1.2

a: Full details of model runs in Sommariva et al. (2006); Het with IO chemistry-model additionally constrained to measured IO andj (HOI)
using a transition regime expression to calculate the heterogeneous uptake of the gas-phase species.

An extensive modelling study by Sommariva et al. (2006a)
has investigated the impact of oxygenate and halogen chem-
istry on the radical chemistry. Table4shows the sensitivity of
the average model/measurement agreement for HO2+6RO2
with varying model assumptions. Figure 4a shows the results
using the full oxygenate chemistry constrained to measured

IO with corrected heterogeneous uptake model and mea-
sured peroxy radical concentrations for 15–22 August, and
the same model run with the measured HO2 from the FAGE
instrument (Smith et al., 2006). For the model run with full
oxygenate chemistry constrained to measured IO with cor-
rected heterogeneous uptake (see Table4), the peroxy radi-
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Fig. 3. Hourly-averaged [HO2+6RO2], [NOx] andj (O1D) diurnal
cycles for all campaign data and W and NE air-mass sector data
subsets.

cal measurement-model agreement is within the uncertainty
of both the model and measurements. In general, the radical
measurements are slightly higher than the model during the
day-time. However, the model HO2 constantly over-predicts
the measured HO2 concentrations, by at least a factor of 2–3
(Sommariva et al., 2006a). Inclusion of the halogen chem-
istry, in terms of measured IO seems to give some small im-
provement in the agreement. It is worth noting that there is
some evidence for spatial in homogeneity in the [IO] and the
“local” [IO] could be a factor or 10 higher than that measured
by long-path DOAS methods (see Sommariva et al., 2006a,
and Smith et al., 2006). The effect of halogens on the parti-
tioning of NO and NO2 and OH and HO2 is dealt with later.
Figure 4b shows a correlation plot of modelled PERCA per-
oxy radical (full + oxy, heterogeneous with IO chemistry, see
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RO2] and
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(15 min data) and hourly-averaged data.

Table4) concentrations against measured values for all fif-
teen minute-averaged data and also the hourly-averages with
their corresponding standard deviation. From Fig. 4b, there
is a good correlation with the slope=1.02(R2=0.73). At low
[HO2+

∑
RO2], the model-measurement comparison lies be-

low the 1:1 line. At higher [HO2+
∑

RO2], there is a wider
spread of data and the model, particularly for the hourly av-
erages around solar noon over-predicts the measured peroxy
radical levels.

Correlations ofj (O1D),
√

j (O1D) vs. [HO2 + 6RO2]and
diurnal cycles for 23 and 24 August are shown in Fig. 5.
The back trajectories shown in Fig. 5 suggest a SW air-mass
origin on 23 August coming off the French coast, bringing
higher concentrations of CO, CH4, acetone, methanol and
NOx. The following day, the air-mass changes to a cleaner
NW origin, where the NO/NOx ratio and [NMHC] are sig-
nificantly lower. The narrower shape of the diurnal cycle on
24 August could be due to a reduction in species that could
be photolysed to form peroxy radicals.

On the NW day (24 August), peroxy radicals track
j (O1D), whereas on the SW day (23 August), the peroxy
radicals have a broader shape thanj (O1D). The correlation
with both j (O1D) and

√
j (O1D) (r2=0.87 and 0.89 respec-

tively) is good on the NW day but poor (r2=0.30 and 0.43)
on the SW day. Since the correlation withj (O1D) on the
SW day is poor, this is suggestive of an increased secondary
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source of HOx from the photolysis of other compounds. This
is particularly apparent in the early morning and the evening.

Photolysis of species other than O3 (e.g. HCHO, HONO,
H2O2, CH3O2H) could lead to a broadening of the per-
oxy radical diurnal cycle noted in the afternoon or early
morning, whenj (O1D) (primary production) is reduced.
[HO2 +

∑
RO2] vs.j (HCHO) correlations are divided into

five different periods of the day in Fig. 5 (23 August, r2 (6–
8) 0.87, (8–10) 0.57, (10–15) 0.03, (15–17) 0.75, (17–19)
0.79; 24th August, r2 (6–8) 0.05, (8–10) 0.18, (10–15) 0.28,
(15–17) 0.70, (17–19) 0.90). On the 23 August, the largest
increase in peroxy radicals asj (HCHO) increases was seen
at 06:00–08:00 and 15:00–17:00 UT. Despite the large in-
crease in peroxy radicals with increasingj (HCHO) between
06:00 and 08:00, thej (HCHO) values were very low and
would not have led to significant peroxy radical formation
from this channel alone. Between 17:00–19:00 UT the prod-
uct (j (HCHO).[HCHO]) was significantly large as to pro-
duce peroxy radicals at this time whenj (O1D) was greatly
reduced. 24 August showed very poor trends. The same
form of analysis withj (HONO) showed no observable trends
(N.B. [HONO] estimated).

Figure 6a shows the campaign averaged [HCHO] and
[HO2+

∑
RO2] diurnal cycles and the amount of HCHO pho-

tolysed each h (j (HCHO).[HCHO]). Formaldehyde has a
shifted diurnal cycle with values persisting into the evening.
Daily maximum [HCHO] were around 1.6 ppbv (Still et al.,
2005), much higher than the 0.2–0.8 ppbv found during a
comparable campaign at Mace Head (Cardenas et al., 2000).
The relative performance of the different HCHO measure-
ment methods are discussed in Still et al. (2005).

Figure 6b shows correlation plots of [HO2+
∑

RO2] and
[HCHO] against the amount of formaldehyde photolysed
per hour (j (HCHO.[HCHO]). Both peroxy radicals and
formaldeyde show a good correlation with formaldehyde
photolysis. Formaldehyde is both a source of peroxy radi-
cals (through photolysis and OH oxidation) and is produced
from the peroxy radical reactions with NO. Figure 6b corre-
lates peroxy radical and formaldehyde concentrations to the
HO2 production rate from formaldehyde photolysis. In the
radical channel (14), one HCHO molecule yields two HO2
molecules upon photolysis

HCHO+hν → H2 + CO (R13)

→ H + HCO (R14)

H + O2 + M → HO2 + M

HCO+ O2 → HO2 + CO (R15)

Overall : HCHO+ 2O2 + hν → 2HO2 + CO (R16)

The good correlation is suggestive of persistent peroxy
radical levels in the late afternoon having a major contribu-
tion from formaldehyde photolysis.

An interesting phenomenon was observed on a number of
days (namely 9, 15, 17 and 21 August and 1 September);
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Fig. 6. (a) Hourly-averaged diurnal cycle of [HCHO],
[HO2+

∑
RO2] and j (HCHO)×[HCHO], (b) Trend of ten minute-

averaged [HO2+
∑

RO2] and [HCHO] vs. j (HCHO)×[HCHO]
(r2

(HCHO)
=0.626, r2 (HO2+

∑
RO2)

=0.834).

when the solar intensity and photolysis rates showed a sud-
den increase in the early evening and a disproportionately
large peroxy radical increase was observed. On 21 August
(see case day 21st August in Fig. 7c) a peak in thej (O1D)
was accompanied by a sudden peroxy radical increase at
around 17:00. The same increase in [OH] was observed by
(Smith et al., 2006) on this day, and was reflected in the
modelled [OH] (Sommariva et al., 2006a). The HO2 mea-
surements did not show a similar increase. One possible ex-
planation for the phenomena is that if there are clouds at a
given height as the sun nears the horizon light passes beneath
the cloud at high zenith angles, rather than been attenuated
by them, giving a short-lived boost to photochemical peroxy
radical production (see for example, Monks et al., 2004).

3.2 Peroxy radicals and NOx

NOx concentrations of greater than 0.5 ppbv and up to as high
as 300 pptv on 8th, 16th and 21st August (see Fig. 2). The
trajectories on the 8, 16 and 21 August were classified as W,
despite some local polluted SE winds. [NOx]/[NOy] were
higher than average on 13, 14 and 16 August (days where
local pollution re-circulated at the site). All the case days
(8 August, 16 August and 21 August) in Fig. 7a, b and c
had very high [NOx] and a peroxy radical diurnal profile
that is shifted towards the evening. This may be due to a
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Fig. 7. Case study days:(a) 8 August,(b) 16 August,(c) 21 August
[HO2 +

∑
RO2],j (O1D) (and [NOx] or j (HONO)) diurnal cycles.

suppression of peroxy radical formation when NOx was high,
and a sudden period of formation later in the day when NOx
levels dropped.

The campaign average [NOx] diurnal cycle is shown in
Fig. 3. The values are highest between 09:00 and 12:00.
High NOx levels in the morning can suppress the radical lev-
els via the repartitioning of HO2 to OH. NOx suppression
may, indeed, contribute to the apparent shift in the maxima
of the peroxy radical diurnal cycle. On 16 August in Fig. 7b
a sudden NOx spike in the morning perturbed the peroxy rad-
ical concentrations, moving the apparent maximum towards
the afternoon.

Mean peroxy radical concentrations vs. binned [NOx] (on
a logarithmic scale) for all 10-min data are shown in Fig. 8a.
The NOx binning was taken at (equal) log normal inter-
vals. The peroxy radical data were divided into two regimes

according toj (O1D) values; j (O1D)>7.5×10−6 s−1 rep-
resents daylight values and<3×10−7 s−1 that represents
night-time conditions, which are discussed later (Fleming et
al., 2006).

The data withj (O1D)>7.5×10−6 s−1 (daylight hours) are
used for investigating the effect of NOx on peroxy radicals
during the day. Peroxy radical concentrations decrease with
increasing [NOx] until values of about 0.1 ppbv [NOx]. This
shift is a result of changes in the HO2:OH ratios towards OH
(reactions of HO2 and RO2 with NO to form NO2). Between
values of 0.1 and 0.2 ppbv [NOx], there is a sudden increase
in [HO2+

∑
RO2], which suggests a switch between NOx

and VOC-limited conditions with respect to ozone produc-
tion. The corresponding increase in VOCs at [NOx] above
0.1 ppbv would lead to a rise in OH oxidation of VOCs, pro-
ducing more peroxy radicals. Above 0.2 ppbv [NOx], in-
creasing [NOx] appears to lower [HO2 +

∑
RO2].

Hourly averaged daylight (06:00–19:00) alkane, isoprene,
HCHO, CO and CH4 concentrations, as well as peroxy rad-
ical levels, are plotted against binned NOx in Fig. 8b. The
right hand axis is scaled for each hydrocarbon. The sharp in-
crease in all VOCs at [NOx]>0.1 ppbv would have a strong
link to the rise in peroxy radicals at this time. These high
VOC levels change the reactive mixture with respect to per-
oxy radical speciation. Sudden NOx increases could reflect
changing air-mass composition. Concentrations of the bio-
genic hydrocarbon, isoprene peak at a lower [NOx] than
the corresponding anthropogenic hydrocarbons. At higher
[NOx], it is not clear which hydrocarbons govern the organic
peroxy radical concentrations. Until 0.1 ppbv [NOx], the per-
oxy radical trend with increasing [NOx] is very similar to the
HCHO trend. At [NOx] between 0.5 and 1 ppbv the depen-
dence of peroxy radicals on VOCs is very clear, as a drop in
all VOCs is reflected in the peroxy radical data.

The rural marine boundary location of Mace Head was
seen to be representative of background chemistry but pol-
luted air masses regularly reach the site, bringing higher NOx
levels than experienced in the marine W air-masses as shown
in Rickard et al. (2002). The switch to a significant VOC
contribution to [HO2+

∑
RO2] occurs at a lower [NOx] level

than at more polluted continental urban locations, such as at
the BERLIOZ campaign where the maximum [HO2] was at
1 ppbv [NOx] (Holland et al., 2003).

3.3 Hydrocarbons and HO2/(HO2 +
∑

RO2) ratios

The highest mixing ratio of anthropogenic source com-
pounds such as ethene, toluene and benzene was observed
between 1 and 5 August. This illustrates the more polluted
VOC-laden air masses, originating from the NE sector, pass-
ing over Scandinavia, northern Britain and Ireland.

High isoprene concentrations between the 2nd and 4th Au-
gust were followed immediately by a sharp increase in DMS
and this was also seen on 17 and 30 August. DMS concentra-
tions varied from concentrations barely above the detection
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∑

RO2) ratios vs. [NOx] for hourly-
averages (Model days: 1, 2, 9, 10, 15–22, 31 August and 1 September – model runs both full-oxy with and without halogens (see Table4));
(e) Hourly-averaged HO2/(HO2+

∑
RO2) andφ(CO+HCHO) vs. [NOx]; (f) Hourly-averaged [peroxide] vs. [NOx]; for details of binning

procedure, see text.

limit to as high as 900 pptv, with a spike of over 1.5 ppbv
on 28 July. DMS levels were highest in the W, N and SW
sectors, as shown in Table1.

OH reacts with hydrocarbons, forming organic radicals,
which rapidly react with O2 to form peroxy radicals (see
Reactions 10 and 11). Lewis et al. (2005) calculated the
percentage contribution to OH removal by VOCs by com-
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bining all the VOC-OH reaction rates,kVOC[VOC][OH].
Acetaldehyde accounted for up to 20%, CH4, and formalde-
hyde both up to 30% and the other measured non-methane
hydrocarbons (NMHCs) between 10 and 15% of OH loss.
HO2 measurements taken by FAGE (Smith et al., 2006)
provide a means of comparing HO2 with HO2 +

∑
RO2.

Figure 9 shows the measured and modelled (full + oxy, het-
erogeneous with IO chemistry, see Table4), hourly-averaged
HO2/HO2 +

∑
RO2 ratios during the period 15–22 August.

The addition of halogens to the system can repartition both
OH and HO2 and NO and NO2 (e.g. Monks, 2005) via

XO+HO2→HOX + O2 (R17)

HOX + hν→X + OH (R18)

and

XO + NO→X + NO2 (R19)

The measured HO2/(HO2 +
∑

RO2) ratios are lower when
[NOx] is low as on 18 and 19 August and can reach val-
ues over 1 when NOx-laden air arrives at the site. The
HO2/(HO2+

∑
RO2) ratio generally decreases from the start

of the day towards sunset. The equivalent model ratio shows
a similar diurnal profile from day to day, with the distinct

diurnal profile displaying the highest HO2/HO2 +
∑

RO2 ra-
tios at midday. Generally, the modelled HO2/HO2+

∑
RO2

ratio is much higher than the measurement equivalent, except
when NOx is high.

The correlation plot of modelled versus measured
HO2/(HO2+

∑
RO2) ratios is shown in Fig. 9b, with the in-

dividual days marked in separate colours. The model gen-
erally over-predicts these ratios on all the days. The mea-
sured HO2/(HO2 +

∑
RO2) ratio on 16 August (when lo-

cal SE winds brought high NOx levels to the site) showed
large variations throughout the day, both for the modelled
and measured ratios as seen in both Figs. 9a and b. However,
Fig. 9a shows that the measurement ratios displayed greater
variability than the modelled ratio during the high NOx pe-
riod on this day. The same is observed during the high NOx
period on 21 August, where the model ratio appears not to be
influenced by NOx variations.

To investigate the effect of varying NOx on the
HO2/(HO2+

∑
RO2) ratio, a plot of HO2/(HO2+

∑
RO2) ra-

tios against binned [NOx] is shown in Fig. 8c. The ratio of
inorganic to organic peroxy radicals increases as [NOx] in-
creases. The highest [NOx] bin at 1 ppbv has been divided
into smaller bins in order to study the structure at high NOx.
At [NOx] >0.8 ppbv, the HO2/(HO2 +

∑
RO2) ratio appears

to decrease with increasing [NOx].
Figure 8d shows the measured and modelled HO2/(HO2 +∑
RO2) ratios plotted against [NOx]. Two model runs (with

and without IO) are plotted to show the effect of halogens.
In general, the HO2/(HO2 +

∑
RO2) ratio is higher in the

model but the model does not show a strong increase with
increasing [NOx]. HO2/(HO2 +

∑
RO2) ratios at high [NOx]

for both model and measured values are very similar, but at
lower [NOx] the model predicts higher HO2/(HO2 +

∑
RO2)

ratios. Interestingly, the addition of halogen chemistry im-
proves the agreement between model and measurement, indi-
cating a role for the IO in repartitioning the OH and HO2 via
Reactions (17) and (18). It is clear that at low [NOx] the halo-
gens seem to be more important. Sommariva et al. (2006)
found that the model mechanism worked better at high NOx,
indicating that peroxy – peroxy reactions at low NOx are
still not fully understood. An earlier Mace Head campaign
tailored box model, without OVOC and halogen chemistry,
used on Mace Head data, over-predicted HO2/(HO2+RO2) at
low NOx and under-predicted at high NOx (Carslaw et al.,
1999, 2002). As previously stated, oxidation of CO, CH4,
HCHO and NMHCs represents a large loss term for OH. The
reaction of OH with CO and HCHO leads to the formation of
HO2. OH reaction with CH4 forms CH3O2 and OH reaction
with VOC forms predominantly RO2. The fraction of OH
removal reactions that form HO2 can be represented as:

φ(CO+ HCHO)=(
kCO[CO] + kHCHO[HCHO]

kCO[CO] + kHCHO[HCHO] + kCH4 + kVOC[VOC]

)
(1)
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wherekCO, kHCHO, kCH4 andkVOC are the rate coefficients
for the reaction of OH with CO, HCHO, CH4 and VOCs
respectively. The rate-coefficients were taken from the Na-
tional Institute of Standards and Technology (NIST) web
site.

The φ(CO+HCHO) fraction was calculated for the days
that had complete CO, CH4 and VOC and HCHO concentra-
tions, as in Lewis et al. (2005). Comparingφ (CO+HCHO)
ratios with HO2/(HO2 +

∑
RO2) ratios should be indicative

of whether HO2/(HO2+
∑

RO2) ratio variations were caused
primarily by varying HCHO, CO, CH4 and VOC concentra-
tions.

Figure 8e shows a plot of hourly HO2/(HO2+
∑

RO2)
and φ(CO+HCHO) ratios against binned [NOx]. The
trend for increasing HO2/(HO2 +

∑
RO2) with increas-

ing [NOx] is not replicated forφ(CO+HCHO), which does
not appear effected by NOx. HO2/(HO2+

∑
RO2) ra-

tios are always lower thanφ(CO+HCHO) ratios (<0.5 for
HO2/(HO2+RO2) and >0.5 for φ(CO+HCHO)). The ra-
tio of k[HCHO]/(k[HCHO]+k[CO]) was found to remain
constant at around 0.5, showing that HCHO and CO con-
tribute equally to HO2 formation. φ(CO+HCHO) ratios
have a range of between 0.3 and 2.5 in NAMBLEX,
much greater than the HO2/(HO2+

∑
RO2) ratio range.

The φ(CO+HCHO) ratios were usually much higher than
HO2/(HO2+

∑
RO2) ratios, which suggests that modelling

the VOC-OH reactivity underestimates the resulting RO2
concentrations with respect to HO2. Also, calculating HO2
to be directly correlated with CO and HCHO reactivity is not
necessarily valid as HCHO is both photolysed and is oxidised
by OH to form HO2. HCHO is also formed from the reaction
of CH3O2 with NO (Reactions 2 and 3).

The HCHO:CO ratio can be used as a tracer to dis-
tinguish different air masses and differing times since the
last major input from pollution. It is of interest because
both tracers are primary pollutants, but formaldehyde is also
produced in the troposphere by oxidation of CH4 in the
presence of NOx. Subsequent photolysis of this formalde-
hyde then produces CO. In polluted high NOx environ-
ments, HCHO production is more important than its pho-
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∑
RO2]
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responding (1σ ) standard deviations;(c) [NO3] and [HO2+

∑
RO2]

at night (19:00 to 06:00) with the (1σ ) standard deviation within
each hour.

tolysis and the HCHO:CO ratio increases. Figure 10 shows
that both [HO2+

∑
RO2] and [O3] increase with increas-

ing HCHO/CO. If higher HCHO:CO ratios are a marker
for polluted conditions, then this would be likely to lead
to higher ozone levels. Higher peroxy radical levels at in-
creased HCHO suggests that HCHO is more effective at
producing peroxy radicals than CO. Theφ(CO+HCHO) ra-
tio presumes that HCHO and CO have equal HO2 pro-
ductivity, so any discrepancy betweenφ(CO+HCHO) and
HO2/HO2+

∑
RO2 may be due to the inaccuracy of predict-

ing HO2 from φ(CO+HCHO).

3.4 Peroxides

The highest H2O2 concentrations of up to 0.5 pptv were be-
tween 1 and 3 August when NOx and hydrocarbon concen-

www.atmos-chem-phys.net/6/2193/2006/ Atmos. Chem. Phys., 6, 2193–2214, 2006



2206 Z. L. Fleming et al.: Peroxy radical chemistry at Mace Head, Ireland

trations were high. Indeed, in Table1, high NOx and high
VOC concentrations in the E sector have lead to the high-
est peroxide concentrations. Morgan (2004) found a maxi-
mum [H2O2] of 1.1 ppbv with an average of 0.19 ppbv dur-
ing NAMBLEX, much lower than the maximum of 7.1 and
mean of 1.58 ppbv at Mace Head in June 1999 (Morgan and
Jackson, 2002). In the clean marine boundary layer, such
as Cape Grim, Tasmania, peroxy radicals are more likely to
self-react to form peroxides than they are to react with NO
and subsequently produce ozone (Ayers et al., 1997). Thus,
high levels of peroxides would signify an ozone-destroying
regime and a lower turnover rate of the various species that
are part of the ozone-forming cycles.

Figure 8f shows [peroxide] versus [NOx] trends that are
very similar in shape to peroxy radical – NOx trends in
Fig. 8a, illustrating the strong link between peroxy radicals
and H2O2 concentrations. H2O2 concentrations are highest
at around 0.1 ppbv NOx and decrease slightly at higher NOx
but do not decrease to the same extent as peroxy radical lev-
els at high NOx as shown in in Fig. 8a. CH3O2H is more
influenced by NOx than H2O2, as it is reduced to nearly zero
values at high NOx.

3.5 Night-time chemistry

Table3 shows night-time averages for the different air mass
sectors and the concomitant NO3 measurements from data on
fifteen nights (Saiz-Lopez et al., 2006; see also Bitter et al.,
2005). The E and NE air-mass sectors have the highest av-
erage O3, NO3 (with the E sector having [NO3] of 11.7 pptv,
compared to less than 6 pptv in all the other sectors) and total
alkene concentrations as seen in Table3. The highest night-
time peroxy radical concentrations are observed in the SE
and E sectors (cf. Allan et al., 2000).

Sommariva et al. (2006b) found that the model had a ten-
dency to underestimate night time peroxy radical levels ex-
cept on 31 August and 1 September. Closer agreement be-
tween the model and measurements was achieved when mov-
ing from a “clean” model with only CO and CH4 to the full
model with more complex hydrocarbons. Short-term NOx
spikes during the night are often matched with elevated per-
oxy radical concentrations as high as 10 pptv, or even 25 pptv
in the polluted E period on 2 and 3 August. On 16 August,
when [NOx] suddenly increased at about 20.00, a significant
rise in [HO2+

∑
RO2] followed closely, as shown in the case

day in Fig. 7b. The same is not observed for the 8th d August
(Fig. 7a). [HO2+

∑
RO2] vs. [NOx] for nights with NO3

data are shown in Fig. 8a. As [NOx] increases, [HO2+RO2]
increases at [NOx]>0.1 ppbv. This peroxy radical increase
with NOx is suggestive of NO3 radicals (formed by NO2+O3)
reacting with hydrocarbons to form peroxy radicals.

Figure 11a shows NO3 and HO2 +
∑

RO2 from a typical
overnight period. Figure 11b is a plot of average [HO2 +∑

RO2] vs. [NO3] (Saiz-Lopez et al., 2006) for all the air-
mass sectors. The [HO2 +

∑
RO2] were separated into six
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Fig. 12. (a) Flux of peroxy radicals formed from alkene-NO3
and alkene-O3 channels: Hourly-averaged night-time (19:00 to
06:00 UT)fluxes. The red-line is the 1:1 ratio;(b) Percentage con-
tribution of O3 and NO3 to peroxy radical formation from alkene
night-time reactions.

[NO3] bins and plotted on the same graph with error bars
showing their standard deviation. The E sector, even though
[NO3] varies widely, always has higher [HO2 +

∑
RO2] than

the other sectors, irrespective of [NO3]. Figure 11c shows
the night-time profiles of [NO3] and [HO2 +

∑
RO2] for the

entire marine (N, NW, SW and W combined) and continental
(NE, E combined) air-mass sectors. The NO3 concentration
was always higher in the continental sector. The peroxy rad-
ical concentration was also always higher in the continental
sector. There does not appear to be a significant peroxy radi-
cal pattern throughout the night.

Rate constants for the reaction of NO3 with the measured
alkenes were used to calculate the rate of the NO3 loss and
the O3 reactions with alkenes (cf. Salisbury et al., 2001).
The flux of peroxy radicals formed from the alkene reactions
from the NO3 and O3 channels were compared by correlating
all night-time hours of the campaign as shown in Fig. 12a.
At low peroxy radical-forming fluxes, the ozone-alkene re-
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actions tended to dominate over the NO3-alkene reactions.
When NO3 levels were high, the fluxes from NO3-alkene
reactions were far higher than the ozone-alkene fluxes. At
NO3-alkene fluxes above 5×104molecules cm−3 s−1, the
ozone-alkene flux was always lower than the NO3-alkene
flux. Figure 12b shows the percentage contribution to per-
oxy radical formation from alkene night-time reactions. This
varies strongly from night to night, with high NO3 contribu-
tions on 18 and 25 August, receiving W and SW air-masses
respectively. For the nights for which full data is available
the overall contribution of ozone-alkene chemistry to per-
oxy radical production was 59% compared to 41% for NO3-
alkene.

Peroxy radical levels were seen to decrease throughout the
night in EASE 97 (Salisbury et al., 2001), with more polluted
conditions experiencing less of a decrease throughout the
night. Analysis to determine the percentage contribution of
the ozone – alkene and NO3 reactions to form peroxy radicals
was carried out for EASE 97 (Salisbury et al., 2001). The
contribution of both was found to vary between 30 and 70%,
for each wind sector, but on the whole as with this study the
ozone-alkene reaction was the dominant production mech-
anism. Carslaw et al. (1997) found a positive correlation
between HO2 +

∑
RO2 and NO3 at the Weybourne Atmo-

spheric Observatory (see also Geyer et al., 2003), while Mi-
helcic et al. (1993) found a negative correlation between per-

oxy radicals and NO3 (presumably owing to highly variable
reactive hydrocarbon fluxes) at Schauinsland. Any lack of
correlation is not surprising, as NO3 is both a source (Wayne
et al., 1991) and a sink (Biggs et al., 1994) of peroxy radicals.

3.6 Photochemical production of ozone

Net photochemical ozone formation, N(O3) (or ozone ten-
dency) was calculated for each hour of the campaign between
06:00 and 19:00, using Eq. (3) (For assumptions inherent in
this form of calculation see Salisbury et al., 2002). The pro-
duction term represents NO2 formation and subsequent pho-
tolysis to form ozone (Reactions 1 to 4).kp is the combined
rate coefficient for the oxidation of NO to NO2 by all per-
oxy radicals (Reactions 1 and 2). The loss term represents
the reaction of ozone with OH and HO2 and ozone photoly-
sis (wheref represents the fraction of O(1D) that reacts with
H2O to form OH).

N(O3)=P(O3)−L(O3) (2)

N(O3)=kp[NO][HO2+6RO2]

−{f.j (O1D)+k21[OH]+k6[HO2]}[O3] (3)

HO2+O3→OH+2O2

OH+O3→HO2+O2 (R20)
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Fig. 14. Hourly-averaged loss, production and net ozone produc-
tion for (a) Clean conditions (full days with SW/W wind direction)
and(b) Polluted conditions (full days with NE/E wind direction).

Figure 13a shows a time series of calculated ozone loss
for all campaign daylight hours. The largest contribution to
the calculated loss is that of ozone photolysis. The average
ozone loss chemistry was calculated to be 64% from ozone
photolysis, 8% from the OH+O3 reaction and 24% from the
HO2+O3 reaction. The contributions from the three loss re-
actions vary from day to day, with total ozone loss varying
between 0.1 and 0.7 ppbv h−1 at the solar maximum.

Figure 13b is a plot of net ozone production, N(O3)

throughout the campaign with [HO2+6RO2] and [NO] plot-
ted on the right-hand axis. The ozone production term, P(O3)

is dependent on [NO] and [HO2 +6RO2], the ratio of which
varies greatly from day to day, showing an inverse relation-
ship during the daylight hours. [NO] was more variable than
[HO2 + 6RO2] during NAMBLEX. Lower [NO] leads to a
smaller P(O3) term, which means that ozone loss becomes
nearly as great as ozone production, leading to a few hours
and days where N(O3) was negative.

Table 2 shows the average mixing ratios for a range of trac-
ers and N(O3) for daylight (06:00–19:00 UT) hours with dif-
fering air mass sectors. Figure 14 shows the hourly-averaged
ozone loss and production rates for NAMBLEX. The loss
term follows j (O1D), peaking at solar noon, and does not
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Fig. 15. Case day 8 August: Ozone production, loss and net pro-
duction.

vary widely from day to day. However, ozone production
values show a high degree of variation between days, with
midday values varying from 0.1 to 2.5 ppbv h−1. The shift of
the maximum ozone loss term towards the afternoon results
in the net ozone production being lower in the afternoon than
the morning. The rise in P(O3) in the late afternoon caused
by high peroxy radical levels leads to an increase in net ozone
production at 16:00. This averaged diurnal cycle appears to
show overall ozone production but the high P(O3) during the
polluted E air-mass sector period of 1–5 August shifts the
balance to positive N(O3), despite the many periods of net
ozone destruction.

Figure 15 shows N(O3) for 8 August. This was a day
where high [NOx] reduced peroxy radical levels and the ele-
vated [NO] led to higher net ozone production than on the
days preceding and following it. A high NOx episode in
the morning delayed peroxy radical production until around
14:00 (Fig. 7a) and produced high P(O3). At 13:00 P(O3)

was low because [NOx] dropped away, and the peroxy rad-
ical levels had not yet recovered. The build-up of peroxy
radical levels in the afternoon led to a boost in P(O3) and
another boost between 17:00 and 18:00 when night-time per-
oxy radical- forming reactions become important.

Figure 16 shows N(O3) plotted against [NOx]. N(O3) rises
sharply with increasing [NOx] until around 1 ppbv [NOx],
when the increase in N(O3) levels off. The increase in N(O3),
with increasing NOx, during the SOAPEX 2 campaign at
Cape Grim, Tasmania showed very similar characteristics
until [NOx] of 0.5 ppbv. Investigations of the effect of NOx
on N(O3) at Mace Head during the spring campaign of EASE
97 showed a much steeper increase in N(O3) at similar NOx
levels to those seen during NAMBLEX. Table6 shows the
ozone production values for Mace Head – EASE 97 (Sal-
isbury et al., 2002), Cape Grim – SOAPEX 2 (Monks et
al., 2005) and NAMBLEX, demonstrating the much higher
range during the spring EASE 97 campaign.

Mace Head has experienced a positive trend in background
ozone of 0.49±0.19 ppb year−1 since 1987 (Simmonds et al.,
2004), the largest trend being during the winter season. The
behaviour of this trend may be attributed to the sensitivity of
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Table 5. Sensitivity of derived P(O3) and L(O3) to NO from a series of marine boundary layer campaigns.

dln(P(O3))/dln(NO) dln(L(O3))/dln(NO)

Cape Grim(SOAPEX 2a) 0.90± 0.03 0.06± 0.05
Mace Head (EASE 97b) 1.10± 0.05 0.27± 0.05
Weybourne (winterc) 0.92± 0.12 –0.02± 0.14
Weybourne (summerc) 0.95± 0.02 0.28± 0.05
Mace Head (NAMBLEXd) 1.0± 0.04 0.32± 0.07

The uncertainties are given as 1σ standard deviations;a) data from Monks et al. (2006);b) data from Salisbury et al. (2002);c) data from
Fleming et al. (2006);d) this work.

Table 6. Daily N(O3) campaign average in EASE 97, SOAPEX 2
and NAMBLEX (all in ppbv h−1).

Campaign and Season Season Mean

Mace Head (EASE 96a) Summer 0.3
Mace Head (EASE 97a) Spring 1.0
Cape Grim (SOAPEX 2b) Summer –0.01
N. Pacific (PHOBEAc) Spring –0.1
E. Pacific (ORION99d) Summer 0.2–3.4
Mace Head (NAMBLEXe) Summer 0.11

a) see Salisbury et al. (2002),b) see Monks et al. (2006),c) Kotchen-
ruther et al. (2001),d) Kanaya et al. (2002),e) this work.
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Fig. 16. Net ozone production for daylight hours binned according
to [NOx].

the background ozone level to changing European emissions
of NOx and VOC (Derwent et al., 2003; Monks, 2003). Fol-
lowing the methodology of Stroud et al. (2004) the sensitiv-
ity of P(O3) to NO was calculated as dlnP(O3)/dln(NO), as
shown in Fig. 17, for a series of marine boundary layer cam-
paigns with differing continental influences. Table5 sum-
marises the derived sensitivity values of the ozone produc-
tion term to NO. Both the Mace Head data sets have ozone
production with linear sensitivity (i.e. dlnP(O3)/dln(NO)=1)
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Fig. 17. ln(P(O3)) vs. ln(NO) for Weybourne summer (red) and
winter (blue), Mace Head; NAMBLEX (yellow), EASE 97 (green)
and Cape Grim; SOAPEX 2 (purple). See Table5 for campaign
details.

to NO as compared to Cape Grim and Weybourne, that have
values of around 0.9. The Mace Head values imply that the
ozone production rate is strongly dependent on the [NO].
The equivalent derived values of dlnL(O3)/dln(NO) are also
given in Table5 the bulk of these values range from ca. 0 to
0.3, unsurprisingly this suggests that L(O3) is generally in-
dependent of small changes in [NO]. In tandem, these results
imply that the N(O3) will be strongly sensitive in the marine
boundary layer to small changes in [NO].

4 Conclusions

During NAMBLEX, the Mace Head Atmospheric Research
Station received a substantial mix of air-masses from both
the Atlantic and from Britain and Ireland. 80% of the air-
masses were from the clean N, NW, W and SW sectors.
The marine air-mass sectors had peroxy radical levels be-
low 10 pptv, whereas the other sectors experienced levels
above 13 pptv. The higher peroxy radical concentrations in
the air-mass sectors with a continental influence were accom-
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panied by over twice as high NOx levels and much higher
anthropogenic hydrocarbon mixing ratios.

Peroxy radical diurnal cycle maxima were typically
shifted towards the afternoon, with daily maximum levels
between 10 and 40 pptv. MCM modelling of peroxy radi-
cal levels provided a good model-measurement comparison,
with occasional slight over-estimations by the box model.

Correlations of peroxy radicals withj (O1D) were often
disturbed by NOx episodes that temporarily lowered peroxy
radical levels. No significant reliable linear or square root
dependence withj (O1D) was observed to make a clear sep-
aration between clean and polluted conditions. Photolysis of
compounds other than ozone led to a broader peroxy radical
diurnal cycle than would be seen from production via ozone
photolysis alone, especially in continentally-influenced air-
masses. Correlations withj (HCHO) in the afternoon and
a definite shift in the HCHO diurnal cycle towards the af-
ternoon suggests the high potential for HCHO photolysis at
this time. A sudden increase in photolysis rates (i.e. a rise in
j (O1D)) in the early evening was seen to cause a large pulse
in peroxy radicals.

Short-term large NOx mixing ratios, termed “NOx spikes”,
reaching the site caused a marked drop in peroxy radical lev-
els. Plotting the overall effect of NOx on peroxy radical lev-
els during the whole campaign demonstrated a decrease in
peroxy radicals with increasing NOx. A break in the lin-
ear decrease around 0.1 and 0.2 ppbv NOx was accompanied
by an increase in VOCs which led to a short period where
peroxy radicals actually increased with NOx. This VOC in-
fluence on peroxy radicals could be thought of as the break
between NOx- and VOC-limited ozone producing regimes.

Comparisons with FAGE HO2 measurements have shown
that HO2/(HO2+

∑
RO2) ratios are dependent on [NOx] and

ranged between 0.2 and 0.6. HO2/(HO2+
∑

RO2) ratios in-
crease remarkably linearly with increasing NOx. The MCM
model did not replicate this NOx-dependence with the model
in general over-estimating HO2/(HO2+

∑
RO2) ratios. The

addition of halogen oxide chemistry improved the level of
agreement. Calculating the expected HO2/(HO2+

∑
RO2) ra-

tios from OH oxidation reactions of VOC, HCHO and CO
did not show any significant NOx-dependence.

Night-time peroxy radical concentrations rose to as high
as 25 pptv in continental air-masses with high NOx. Sud-
den NO3 spikes definitely caused an increase in peroxy rad-
icals, but constant higher NO3 levels did not necessarily
lead to higher peroxy radical concentrations. Peroxy radi-
cal and NO3 mixing ratios were higher in continental com-
pared to marine air-masses. The contribution of ozone-
alkene and NO3-alkene reactions to peroxy radical formation
varies from night to night and there are variations as to which
one predominates. At low NO3, ozone-alkene reactions are
always predominant

Net photochemical ozone production reached as high
as 1.5 ppbv h−1 with the lowest values being negative at
−0.5 ppbv h−1. Highest net ozone production was observed

during high NOx periods, demonstrating a clear increase in
ozone production at higher NOx. The ozone production rate
is strongly dependent on [NO] having a linear sensitivity
(dln(P(O3))/dln(NO)=1.0). The results imply that the N(O3)

will be strongly sensitive in the marine boundary layer to
small changes in [NO] which has ramifications for changing
NOx loadings in the European continental boundary layer.
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