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Abstract. A recently developed cloud retrieval algorithm for
the SCanning Imaging Absorption spectroMeter for Atmo-
spheric CHartographY (SCIAMACHY) is briefly presented
and validated using independent and well tested cloud re-
trieval techniques based on the look-up-table approach for
MODeration resolutIon Spectrometer (MODIS) data. The
results of the cloud top height retrievals using measurements
in the oxygen A-band by an airborne crossed Czerny-Turner
spectrograph and the Global Ozone Monitoring Experiment
(GOME) instrument are compared with those obtained from
airborne dual photography and retrievals using data from
Along Track Scanning Radiometer (ATSR-2), respectively.

1 Introduction

The primary scientific objective of SCanning Imaging
Absorption spectroMeter for Atmospheric CHartographY
(SCIAMACHY) is to acquire data that can be used to make
estimates of trace gases in the troposphere and stratosphere
(Bovensmann et al., 1999). Retrievals of atmospheric trace
gas amounts are performed from SCIAMACHY observations
of spectral signatures in transmitted (e.g., occultation mea-
surements) and backscattered (e.g., limb or nadir measure-
ment modes) light. The wavelength range is from 240 till
2380 nm. This wide spectral coverage coupled with high
spectral resolution (0.22–1.6 nm depending on the channel)
allows for measurements of tropospheric and stratospheric
abundances of a number of atmospheric constituents, with
particular emphasis on the troposphere. High spatial resolu-
tion is not of primary importance for trace gas measurements,
so the size of SCIAMACHY pixels is quite large (typically,
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30×60 km2). This makes the instrument not particularly
suitable for the retrievals of aerosol and cloud parameters.
In contrast, the Medium Resolution Imaging Spectrometer
(MERIS) placed on the same space platform has a spatial res-
olution 0.3×0.3 km2 or 1.1×1.1 km2 depending on the oper-
ation mode. Thus, the top-of-atmosphere (TOA) reflectance
at a single wavelength measured by SCIAMACHY corre-
sponds roughly speaking to 20 000 reflectances as obtained
by MERIS. Thus, MERIS allows one to obtain highly spa-
tially resolved maps of cloud and aerosol fields. It does not
mean, however, that possibilities offered by SCIAMACHY
for aerosol and cloud studies should not be explored. The su-
periority of SCIAMACHY is in the possibility of acquiring
information over a larger spectral range and also with much
higher spectral resolution as compared to MERIS. This al-
lows for the derivation of some important characteristics of
clouds (e.g., the determination of liquid water path and cloud
thermodynamic state), which is hardly possible with MERIS.
Also in some applications (e.g., for climate modeling) highly
spatially resolved data are not required. Furthermore, clouds
cover more than half of the sky at any instant globally, bias-
ing many SCIAMACHY trace gas retrievals if cloud effects
are not properly incorporated in the retrieval procedures.
Therefore, we suggest that MERIS/SCIAMACHY measure-
ments should be combined in one processing scheme to cre-
ate more advanced atmospheric products (e.g., the aerosol
and cloud optical thickness, trace gases vertical columns and
their vertical distributions). The Advanced Along Scanning
Radiometer(AATSR) on board of the ENVironmental SATel-
lite (ENVISAT) should provide additional information (e.g.,
independent measurements of cloud top temperature). Un-
fortunately, the processing schemes for all instruments on-
board ENVISAT are currently decoupled, which is mostly
due to the complexity of integration of the cloud retrieval
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Fig. 1. The reflection function of water and ice clouds calculated as
specified in the text.

algorithms for each instrument, large volumes of satellite
data involved and calibration problems. We believe that the
problem of integration will be solved in future missions.

All these considerations prompted us to develop the
comprehensive SemiAnalytical CloUd Retrieval Algorithm
(SACURA) for SCIAMACHY. The algorithm is fully de-
scribed in separate publications(Kokhanovsky et al., 2003;
Rozanov and Kokhanovsky, 2004). Therefore, only the out-
line of the technique will be presented here. The central idea
of this paper is the validation of the algorithm using airborne
and satellite measurements.

2 The physical basis of SACURA

The spectral top-of-atmosphere (TOA) reflectanceR in the
range 240–2380 nm as measured by SCIAMACHY is highly
dependent on the cloud optical thickness (COT), cloud
droplet radius (CDR) (in near-infrared), cloud top height
(CTH)(in the oxygen A-band), and cloud thermodynamic
state.

We show results of a calculation of the TOA reflection
function for water and ice clouds in Fig. 1.

Calculations have been performed using the modified
asymptotic equations as described by Kokhanovsky and
Rozanov (2003) at the solar angle equal to 60 degrees and

the nadir observation. To emphasize differences due the dif-
ferent complex refractive indices of liquid and solid water,
the shape and size of water droplets and ice crystals have
been assumed to be the same in calculations. In particular,
calculations have been performed for spherical polydisper-
sions with the effective radius of 6 microns and the gamma
size distribution of particles having the coefficient of vari-
ance equal to 38 percent, which is typical for water clouds.
The change of the scattering optical thickness with the wave-
length was neglected, and we assumed that it is equal to 10
for all wavelengths.

The size and shape of crystals can differ significantly from
those assumed in the calculations shown in Fig. 1. This can
enhance differences shown in Fig. 1 even further. In par-
ticular, for the case considered, we see that the minima of
reflection function for ice clouds are moved to larger wave-
lengths as compared to the case of water clouds. There-
fore, there are regions, where the spectral dependence of
reflectance is not highly correlated between ice and liquid
clouds(e.g., close to 1500 nm and 2000 nm, see Fig. 1). How-
ever, this may be difficult to detect due to the influence of
water vapor absorption bands, which are located roughly at
the same spectral regions (see Figs. 1 and 2). Therefore,
one can use different slopes of spectral reflectance for ice
clouds as compared to water clouds (see, e.g., the range
1550–1670 nm in Fig. 1). SACURA uses the cloud phase
indexα=R(1550 nm)/R(1670 nm) to differentiate water/ice
clouds. We found using radiative transfer calculations that
this index is in the range 0.7–1.0 for water clouds as com-
pared to 0.5–0.7 for ice clouds.

The cloud liquid water pathw and the effective radius of
dropletsaef are retrieved from reflectances at wavelengths
412 nm and 1550 nm, using a numerical technique as de-
scribed by Kokhanovsky et al. (2003). Then the cloud op-
tical thickness and the column concentration of droplets can
be easily found. Note that the contribution of the gaseous ab-
sorption is negligible at these wavelengths (see Fig. 2). Due
to low surface reflectance at the wavelength 412 nm, the in-
formation on the underlying surface reflectance is not crucial
for the algorithm. Also we are mostly concentrated on the
case of extended optically thick clouds in which the surface
contribution is further reduced. For snow-covered areas, the
reflectance at 1240 nm is used. The snow reflectance is con-
siderably lower at 1240 nm as compared to the reflectance
at 412 nm. The gaseous absorption is weak at 1240 nm (see
Fig. 2).

The cloud top height is obtained using the fact that clouds
screen oxygen in the lower atmosphere, thereby reducing the
strength of the reflection function minimum close to 760 nm
(see Fig. 2). There are about 50 measurement points in-
side the oxygen A-band by SCIAMACHY (Rozanov and
Kokhanovsky, 2004). This allows us to estimate not only
the cloud top height but also estimate the cloud geometrical
thickness, the cloud base altitude, and, as a by-product, the
cloud extinction coefficient.
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Fig. 2. The reflection function of a water cloud with and without
account for the gaseous absorption calculated at the same conditions
as in Fig. 1 but using the exact radiative transfer equation solution
atτ=20. The cloud geometrical thickness was assumed to be equal
to 1km and cloud top height was equal to 6 km.

3 Retrieval results

3.1 MODIS measurements

To validate the algorithm we have applied SACURA to the
MODerate resolutIon Spectrometer (MODIS) (Platnick et
al., 2003) data over the North sea (Terra-MODIS granule
from 11 August 2002, 10:28 UTC) and compared the re-
sults with those obtained from the well-proved and validated
look-up-table (LUT) approach as described by Nakajima et
al. (1995). The results of comparisons are given in Figs. 3–
5 for the cloud optical thicknessτ , cloud droplet radiusaef

and cloud liquid water pathw. Unlike the LUT approach
we are able to obtain results as quickly as the data are ac-
quired because of computational simplicity of our technique.
In particular, we used the following analytical expression for
the TOA reflection function for cloudy scenes (Kokhanovsky
et al., 2003).

R = R∞ − t exp(−x − y)K(µ)K(µ0). (1)

HereR∞ is the reflection function of a semi-infinite cloud
having the same local optical characteristics (e.g., cloud
phase function and asymmetry parameterg, cloud single
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Fig. 3. The correlation between the cloud optical thicknesses re-
trieved using SACURA and LUT.

scattering albedoω0) as the cloud under study,t is the cloud
global transmittance given as (Kokhanovsky et al., 2003)

t =
sinh(y)

sinh(x + 1.07y)
, (2)

wherex=kτ , y=
4k

3(1−g)
andk=

√
3(1−ω0)(1−g) is the dif-

fusion exponent of the transport theory.
Values ofaef and w do not depend on the wavelength

and determine all parameters in Eq. (1) as described by
Kokhanovsky et al. (2003). Therefore, taking measurements
at two wavelengths, we can retrieve the pair (aef , w). Then
one finds the optical thickness as 3w/2aef ρ, whereρ is the
density of water.

It follows from Fig. 3 that the retrieved cloud optical thick-
ness using SACURA corresponds well to the more accurate
LUT approach. The wavelength used in the LUT retrieval
differs from ours. In particular, we used the combination
858/1640 nm and the LUT retrievals are based on the mea-
surements at 645/3700 nm. Retrieved values of the cloud
droplet radius are also in good agreement. However, re-
trievals of aef are more biased (see Fig. 4). This may be
related to the fact that different wavelengths sense differ-
ent volumes of clouds. Remote sensing of clouds using the
wavelength 3700 nm is mostly sensitive to droplets in upper
parts of the cloud while the radiation with the wavelength
1600 nm can penetrate to deeper layers and provide informa-
tion on droplets in more remote cloud areas. Note that the
radius retrieved using SACURA at 1640 nm is slightly larger
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Fig. 4. The correlation between the effective radii retrieved using
SACURA and LUT.
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Fig. 5. The correlation between the liquid water paths retrieved
using SACURA and LUT.
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Fig. 6. The differences between cloud microphysical characteris-
tics retrieved using different techniques.

than that which follows from the LUT approach at 3700 nm
(see Fig. 4).

It follows from Fig. 5 that there is generally good agree-
ment in the retrieved value of the liquid water path (espe-
cially at valuesw=50–200 gm−2, which are most typical for
water clouds). The biases in retrievals are summarized in
Fig. 6.

We see that the differences do not exceed 20 percent for
most of retrievals with largest differences in the retrieved val-
ues ofaef andw as compared toτ . This may be explained
by the differences in the wavelengths used as outlined above.
Therefore, we conclude that SACURA gives results compa-
rable to the LUT approach and thereby can be safely used
in retrievals of cloud properties from SCIAMACHY. Rel-
atively small differences found (see Fig. 6) should not be
considered as limitations of the theory as applied to SCIA-
MACHY because poor spatial resolution of SCIAMACHY
creates more significant biases such as those discussed above.
Also the retrieval by the LUT cannot be considered as the
absolute truth because of inherent problems with the ade-
quate forward modeling of light propagation in inhomoge-
neous clouds. Note that we have developed a version of
SACURA to be capable of dealing with partly cloudy scenes,
which is essential for SCIAMACHY measurements interpre-
tation. However, in this paper we limit ourselves to the case
of completely cloudy pixels.

Atmos. Chem. Phys., 6, 1905–1911, 2006 www.atmos-chem-phys.net/6/1905/2006/
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Fig. 7. The measured spectrum.

3.2 Airborne and GOME measurements

The MODIS does not measure TOA reflectance in the oxy-
gen absorption bands, so our technique as applied the cloud
top height determination cannot be proved using MODIS
measurements in the visible or near infra-red. To validate
the technique we used airborne measurements of the spectral
reflectance described by Daniel et al. (2003), over the cloud
system associated with Hurricane Michelle over the Gulf of
Mexico on 3 November 2001. The experimental spectrum
analyzed was obtained by a crossed Czerny-Turner spectro-
graph at 19:44 UTC and is shown in Fig. 7. The full-width-
half-maximum wavelength resolution of this instrument is
approximately 1.1 nm. The solar zenith angle was approx-
imately equal to 55 degrees and the observation was per-
formed in the nadir direction from an altitude 13.7 km.

In analyzing the raw data given in Fig. 7, we accounted
for the spectral shift and smooth variations in shape (largely
slope) of the measured spectrum, in a way similar to that
given by Daniel et al. (2003). This is why the measured spec-
trum given in Fig. 8 differs from that in Fig. 7.

To compare highly resolved model calculations with spec-
tral measurements properly, one must convolve the calcu-
lations with the numerical approximation of the instrument
function, which will change the relative breadth and depth of
the spectral features.

We have used the measurement of a single neon transition
line as registered by the spectrometer to estimate the instru-
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Fig. 8. The measured (circles) and fitted ( a solid line) spectra.
Other parameters are specified in the text.

ment function. The high resolution model output was then
convolved with this instrument function to obtain a spectrum
that can be be appropriately compared with the measurement.

Because the optical thickness of the studied cloud is not
known, we made a retrieval assuming a semi-infinite cloud.
Crystals are often observed in clouds associated with the
presence of a hurricane. Although we found that the choice
of the phase function does not influence results significantly,
we assumed that the phase function of the cloud could be rep-
resented by the hexagonal ice scattering model as described
by Mishchenko et al. (1999). A fitted theoretical spectrum
(normalized to the observed value at 756 nm) is shown by a
solid line in Fig. 8.

The calculation given by a solid line corresponds to a
cloud top height 8.8 km. The retrieval of Daniel at al. (2003)
using their LUT approach estimate the CTH equal to 8.0 km
within 1 km of our estimate. Note that the estimate of the
cloud top position derived from photographs was in the range
6.2–8.0 km.

The SACURA is extremely flexible algorithm allowing for
rapid estimations of the influence of the cloud characteristics
on the retrieval results. In particular, we found that the as-
sumption of the homogeneous cloud leads to higher CTHs
(by approximately 0.5 km) than those retrieved for the cloud
with monotonically increasing with height ice water content
used in the fitting procedure (see Fig. 8).

The assumption of the ice water content profile having two
maxima in the cloud reduces the estimate of the cloud top

www.atmos-chem-phys.net/6/1905/2006/ Atmos. Chem. Phys., 6, 1905–1911, 2006
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Fig. 9. The accuracy of the SACURA.

height (by approximately 0.2km), thereby moving it in the
direction close to the photographic estimate and also to re-
sults of Daniel et al. (2003) although Daniel et al. (2003) did
not account for ice in their retrieval.

We conclude that SACURA gives results close to the LUT
approach described by Daniel et al. (2003). Its high accu-
racy is evident in Fig. 9, in which we compared a spectrum
obtained from our approximation for the reflection function
in the oxygen absorption band (Kokhanovsky and Rozanov,
2004) with exact spectrum calculated by the numerical so-
lution of the radiative transfer equation in the oxygen ab-
sorption band. We see that differences are below 3 percent.
They rarely exceed 5 percent as shown by Kokhanovsky and
Rozanov (2004). Note that spectra in Fig. 9 were calculated
for the same conditions as in Fig. 8.

The case considered above was aimed to the considera-
tion of just one spectrum. The accuracy of our technique for
the cloud top pressure determination using satellite measure-
ments can be be further probed using Fig. 10, where we show
the comparison of SACURA cloud top pressurep retrievals
using Global Ozone Monitoring Experiment (GOME) mea-
surements in the oxygen A-band with retrievals ofp from
ATSR-2 infrared data(Watts et al., 1998). Note that both
GOME and ATSR-2 are on the same space platform. The re-
trieval shown in Fig. 10 is based on GOME measurements for
orbit 80324174 of the Earth Remote Sensing Satellite (ERS-
2) over Pacific ocean on 28 March 1998. Joiner et al. (2003)
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Fig. 10. The comparison with retrievals using infrared measure-
ments performed by ATSR-2 data.

have retrieved the Lambertian – equivalent pressurepl for the
same orbit. We also show this result in Fig. 10 as a reference.
However, note thatpl differs from the cloud top pressure re-
trieved in our paper by definition.

The spatial resolution of ATSR-2 is 1 km2 while for
GOME it is 40×320 km2 or 40×80 km2, depending on the
measurement mode. The problem with the different spatial
resolution of these instruments was addressed by averaging
ATSR-2 data onto the 40×80 km2 GOME pixel size. Only
40×80 km2 pixels of GOME have been considered. In par-
ticular, we see that the application of SACURA to GOME
data gives results close to the ATSR-2 retrievals.

4 Conclusions

Our comparisons show that SACURA is an accurate and flex-
ible tool to study cloud properties. The SACURA – derived
values of the cloud optical thickness, the effective radius
of droplets, and the liquid water path are in a good agree-
ment with correspondent results obtained using Look-Up-
Table approach (see Figs. 3–5). More details on applications
of SACURA to MODIS data and comparisons with the LUT
approach for clouds over both land and ocean are given by
Nauss et al. (2005).

In addition, we have checked the accuracy of the cloud
top height as derived using SACURAO2 spectrometry with

Atmos. Chem. Phys., 6, 1905–1911, 2006 www.atmos-chem-phys.net/6/1905/2006/
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LUT approach of Daniel et al. (2003). It was found that dif-
ferences in the derived CTHs depend on assumed cloud prop-
erties (e.g., the vertical structure of clouds, the presence of
the ice phase, etc.). However, they do not exceed 1km. Also
SACURA as applied to GOME data gives cloud top heights
close to those obtained from infrared ATSR-2 measurements
over ocean, where the uncertainties related to generally un-
known contribution from the surface can be neglected.

Acknowledgements.MODIS data have been provided by NASA
via Marburg Satellite Station. This work has been funded by the
BMBF via GSF/PT–UKF and by the DFG BU 688/8-1 and BMBF
07 GWK 04 Projects. We are grateful to J. Joiner (NASA) for
providing data for Fig. 10 (ATSR-2 and GOME/LER) in a tabular
form. European Space Agency, the UK Natural Environment
Research Council and the Rutherford Appleton Laboratory are
acknowledged for their support in supplying ATSR-2 and GOME
data.

Edited by: U. Platt

References

Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noël,
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