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Abstract. Understanding sources, concentrations, and trans-
formations of polycyclic aromatic hydrocarbons (PAHs) in
the atmosphere is important because of their potent muta-
genicity and carcinogenicity. The measurement of particle-
bound PAHs by three different methods during the Mex-
ico City Metropolitan Area field campaign in April 2003
presents a unique opportunity for characterization of these
compounds and intercomparison of the methods. The three
methods are (1) collection and analysis of bulk samples for
time-integrated gas- and particle-phase speciation by gas
chromatography/mass spectrometry; (2) aerosol photoion-
ization for fast detection of PAHs on particles’ surfaces; and
(3) aerosol mass spectrometry for fast analysis of size and
chemical composition. This research represents the first time
aerosol mass spectrometry has been used to measure ambi-
ent PAH concentrations and the first time that fast, real-time
methods have been used to quantify PAHs alongside tradi-
tional filter-based measurements in an extended field cam-
paign. Speciated PAH measurements suggest that motor ve-
hicles and garbage and wood burning are important sources
in Mexico City. The diurnal concentration patterns captured
by aerosol photoionization and aerosol mass spectrometry
are generally consistent. Ambient concentrations of particle-
phase PAHs typically peak at∼110 ng m−3 during the morn-
ing rush hour and rapidly decay due to changes in source
activity patterns and dilution as the boundary layer rises, al-
though surface-bound PAH concentrations decay faster. The
more rapid decrease in surface versus bulk PAH concentra-
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tions during the late morning suggests that freshly emitted
combustion-related particles are quickly coated by secondary
aerosol material in Mexico City’s atmosphere and may also
be transformed by heterogeneous reactions.

1 Introduction

Polycyclic aromatic hydrocarbons (PAHs) are a class of
semi-volatile compounds formed as a byproduct of incom-
plete combustion and emitted by sources such as motor ve-
hicles, coal-fired power plants, wood fires, and cigarettes.
Many PAHs are potent mutagens and carcinogens, and they
account for the majority of mutagenic potency attributable
to specific compounds in ambient particulate matter (Han-
nigan et al., 1998). The PAH benzo[a]pyrene has been di-
rectly linked to lung cancer through its selective formation
of adducts along a tumor suppressor gene (Denissenko et al.,
1996).

Transformations of PAHs on particles have the potential to
affect the particles’ toxicity through the formation of species
that are more toxic, e.g. nitro-PAH (Sasaki et al., 1997),
or less toxic. Heterogeneous reactions of particulate PAHs
(Bertram et al., 2001; Esteve et al., 2003, 2004, 2006) may
serve as surrogates for heterogeneous chemistry of many
types of organics; such reactions could change the particles’
hydrophilicity and thus their potential to act as cloud con-
densation nuclei (Jones et al., 2004). A second mechanism
of transformation is coating of freshly emitted particles by
condensation of secondary aerosol components formed by
gas-phase reactions. Through this type of transformation,
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PAHs that are initially present on the surface of particles may
become less accessible for heterogeneous reactions and less
bioavailable. PAHs are associated with black carbon, and
coating of such particles has significant implications for ra-
diative forcing and climate change (Chandra et al., 2004; Co-
nant et al., 2003; Jacobson, 2001).

In the spring of 2003, a multinational team of over 100
atmospheric scientists from 30 Mexican, US, and European
institutions conducted an intensive five-week field campaign
in the Mexico City Metropolitan Area (MCMA) (de Foy et
al., 2005). The overall goals of the effort were to contribute
to the understanding of the air quality problem in Mexico
City and to serve as a model for the study of other megac-
ities in the developing world. Recent studies of PAHs in
Mexico City have reported concentrations there to be among
the highest measured anywhere in the world. Median to-
tal particle-bound PAH concentrations along Mexico City’s
roadways range from 50 to 910 ng m−3, equivalent to smok-
ing 0.4 cigarettes per hour or a lung cancer risk level of
2×10−5 for 10 h per week of exposure over 40 years (Marr et
al., 2004; Velasco et al., 2004). The extremely high ambient
concentrations in Mexico City provide a stronger signal for
the analysis of diurnal patterns and comparison against con-
centrations of related pollutants. Comparison of PAH versus
elemental carbon and active surface area concentrations in
Mexico City suggests that surface PAH concentrations may
diminish rapidly with particle aging (Marr et al., 2004). Be-
cause of the serious health effects of PAHs, it is important
to understand their sources and losses under ambient condi-
tions.

The measurement of particle-bound PAHs by three differ-
ent methods – filters, aerosol photoionization, and aerosol
mass spectrometry – during the five-week MCMA field cam-
paign allows a more comprehensive characterization of these
compounds in ambient air than has been possible in the past.
Combined with measurements of numerous other species,
including gas-phase PAHs, the data present a unique op-
portunity to characterize ambient concentrations, sources,
and atmospheric processing of PAHs. This research repre-
sents the first time aerosol mass spectrometry has been used
to measure ambient PAH concentrations and the first time
that two fast, real-time methods have been used to quantify
PAHs alongside traditional filter-based measurements in an
extended field campaign. The objectives of this research are
to (1) compare and contrast the three measurement methods,
(2) describe the ambient concentrations and sources of PAHs
in Mexico City, and (3) explain the differences in diurnal pat-
terns observed in PAH versus other species concentrations.

2 Experimental

The measurements took place on the rooftop (12 m above
ground level) of a three-story building at the Universidad
Autónoma Metropolitana in Iztapalapa (UAM-I), approxi-

mately 10 km southeast of downtown Mexico City, whose
elevation is 2240 m. The building houses the National Cen-
ter for Environmental Research and Education, and the site
is known by its Spanish acronym, CENICA. The site is lo-
cated in a mixed-used medium-income neighborhood with
light traffic. The nearest major roads are at least 1 km away.

The five-week field campaign took place toward the end
of the dry season during April 2003. It included Holy Week,
which ended with Easter Sunday on 20 April. During the
holiday week, many businesses closed and residents left on
vacation. The average temperature during the field cam-
paign was 21◦C, with an average daily low of 15◦C and
high of 29◦C. Winds were often northerly in the morning and
southerly in the evening, with an average speed of 2 m s−1.
Rain occurred, usually briefly and in the afternoon and early
evening, on 7, 8, 10, 12, 20, 22, 25, and 28 April.

Particle-bound PAHs were measured by three methods:
(1) filter collection and analysis by gas chromatography/mass
spectrometry (GC/MS), (2) aerosol photoionization, and (3)
aerosol mass spectrometry. The “total” particulate PAH con-
centrations, defined in Table 1, measured by each method are
referred to as FPAH, SPAH, and APAH, respectively. The
method intercomparison focuses on a three-day period, 27–
30 April. The filter sampler and photoionization aerosol sen-
sor were located on opposite sides of an experimental plat-
form, approximately 3 m apart and 4 m above the rooftop.
The aerosol mass spectrometer was housed in a temperature-
controlled storage building at the opposite end of the rooftop,
approximately 50 m from the experimental platform. Due to
physical limitations of the site, a shared sampling line was
not feasible, so long tubing with its potential for diffusional
losses of particles was not a factor in this intercomparison.
Although the three methods were located at different points
on the rooftop, they were believed to be sampling from the
same air mass, as verified by the simultaneous detection of
short-term spikes in ambient concentrations by the two real-
time instruments located at opposite ends of the building.

2.1 Time-integrated sampling and speciated analysis

For the speciation of PAHs by GC/MS, time-averaged bulk
samples were collected on 27–30 April. A high-volume (Hi-
vol) air sampler equipped with a Teflon-impregnated glass
fiber filter (20 cm×25 cm) and two polyurethane foam plugs
(PUFs) in series beneath the filter and without a size-selective
inlet was used to collect semi-volatile and particle-associated
PAHs at a flow rate of∼0.6 m3 min−1. Gas-phase naphtha-
lene and alkyl-naphthalenes were simultaneously collected
on replicate Tenax-TA solid adsorbent cartridges at a flow
rate of 200 cm3 min−1. Samples were collected over four
sampling intervals per 24-h period: 07:00–11:00, 11:00–
16:00, 16:00–21:00, and an overnight sample from 21:00–
07:00.

The filter and PUF samples were spiked with deuter-
ated internal standards, Soxhlet extracted overnight in
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Table 1. Particulate PAHs quantified by each method.

Species M GC/MS PASa AMSb

Acephenanthrylene 202 FPAH∗c SPAH APAH∗

Fluoranthene 202 FPAH∗ SPAH APAH∗

Pyrene 202 FPAH∗ SPAH APAH∗

1,2-Benzofluorene 216 FPAH APAH
2,3-Benzofluorene 216 FPAH APAH
1-Methylpyrene 216 FPAH APAH
Methylated MW 216 species (4 isomers in FPAH) 216 FPAHc APAH
Benzo[ghi]fluoranthene 226 FPAH∗ SPAH APAH∗

Cyclopenta[cd]pyrene 226 FPAH∗ SPAH APAH∗

Benz[a]anthracene 228 FPAH∗ SPAH APAH∗

Benzo[c]phenanthrene 228 SPAH APAH∗

Chrysene/triphenylene 228 FPAH∗ SPAH APAH∗

Retene (1-methyl-7-isopropyl-phenanthrene) 234 FPAH
Methylated MW 226 species (3 isomers in FPAH) 240 FPAHc APAH
Methylated MW 228 species (10 isomers in FPAH) 242 FPAHc APAH
Benzo[b+j+k]fluoranthenes 252 FPAH∗ SPAH APAH∗

Benzo[a]pyrene 252 FPAH∗ SPAH APAH∗

Benzo[e]pyrene 252 FPAH∗ SPAH APAH∗

Perylene 252 FPAH∗c SPAH APAH∗

11H-Cyclopenta[ghi]perylene 264 APAH
4H-Benzo[hi]chrysene 266 APAH
Benzo[ghi]perylene 276 FPAH∗ SPAH APAH∗

Indeno[1,2,3-cd]pyrene 276 FPAH∗ SPAH APAH∗

1H-Benzo[ghi]yclopenta[pqr]perylene 288 APAH
9H-Indeno[1,2-e]pyrene 290 APAH
Coronene 300 FPAH∗ SPAH APAH∗

1,3,5-Triphenylbenzene 306 FPAH

∗ These species are included in the modified FPAH∗ and APAH∗ totals which are intended for comparison to SPAH.
a The PAS response, denoted SPAH here, has been calibrated against the sum of these PAHs. The signal is influenced by ionization potential
and molecular size (Niessner, 1986).
b The AMS response includes [M], [M-Hn] (where n=1-4), and [M+1] ions but does not differentiate between isomers. Thus, the PAHs
shown as contributing to APAH are only examples of those at a certain M that should be detectable by this method.
c Identifications are based upon retention indices for these species. In all other cases, individual standards were available to determine
retention times and mass spectra.

dichloromethane, fractionated by high performance liquid
chromatography (HPLC) on a semipreparative Silica col-
umn, and the PAH-containing fractions were analyzed by
GC/MS. The PUFs were spiked with phenanthrene-d10,
fluoranthene-d10 and pyrene-d10 prior to extraction and were
analyzed by positive ion/chemical ionization GC/MS with
selected ion monitoring (SIM) using a DB-17 column in
an Agilent 5973 mass selective detector (MSD). Filters
were spiked with pyrene-d10, benzo[b]fluoranthene-d12 and
benzo[a]pyrene-d12 prior to extraction and were analyzed
by electron impact (EI) GC/MS-SIM using a DB-5MS col-
umn in a Hewlett Packard 5971A MSD. The Tenax samples
were spiked with naphthalene-d8 and 1-methylnaphthalene-
d10 prior to thermal desorption and EI GC/MS-SIM analysis
as described previously (Reisen and Arey, 2005). Table 1
lists the particle-phase species identified on filters (FPAH).

2.2 Aerosol photoionization

The main advantages of aerosol photoionization are its sen-
sitivity and ability to perform continuous, real-time measure-
ments with a response time of less than 10 s. In this method,
the aerosol sample is exposed to ultraviolet light from an ex-
cimer lamp at 207 nm, which causes PAHs on the surface of
particles to photoemit electrons. An electric field removes
the ejected electrons, and the positively charged particles are
trapped on a filter, generating a current that is measured by
an electrometer.

The photoelectric aerosol sensor (PAS 2000 CE, EcoChem
Analytics, Texas, and Matter Engineering AG, Switzerland)
reports results as total particle-bound PAHs. Because our
experience suggests that the instrument is most sensitive to
PAHs on the surfaces of particles and less sensitive to those
buried under other aerosol compounds, we henceforth use
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Fig. 1. Concentrations (gas + particle phases) of
benzo[ghi]perylene (BghiP), indeno[1,2,3-cd]pyrene (IndPy),
coronene (Cor), pyrene (Py), methylphenanthrenes (Mphen), retene
(1-methyl-7-isopropylphenanthrene), and 1,3,5-triphenylbenzene
(TPBz) on 29 April 2003. Also shown is the ratio of methylphenan-
threnes to phenanthrene (Mphen/Phen), an indicator of the relative
contribution of diesel versus gasoline vehicle exhaust. BghiP,
IndPy and Cor are markers of gasoline vehicle exhaust, retene of
soft wood combustion and TPBz of garbage burning.

“SPAH” to refer to particle-bound surface PAHs detected
by the photoionization sensor. “PAH” will continue to re-
fer to the class of compounds more generally. The instru-
ment is factory-calibrated for SPAH concentrations up to
1000 ng m−3, and it is expected to give a linear response up
to 5000 ng m−3. The response is calibrated against filter-
based analyses of PAHs, including species with molecular
masses 202, 226, 228, 252, 276, and 300 (Hart et al., 1993;
McDow et al., 1990). Because the energy associated with
the PAS lamp (6.0 eV) is less than the ionization energy of
solid-phase naphthalene (6.4 eV) (Seki, 1989), the instru-
ment does not detect naphthalene. Previous studies have
shown a strong correlation between photoelectric charging
and independently measured PAH concentrations for a vari-
ety of aerosols: oil burner exhaust, cigarette smoke, parking
garage air, and ambient urban air in different cities (Sieg-
mann and Siegmann, 2000). The sensor’s response has also
been reported to be linearly correlated (r2=0.82) with bacte-
rial genotoxicity (Wasserkort et al., 1996).

During this study, we cross-calibrated four photoioniza-
tion sensors against the ensemble mean while sampling can-
dle soot and ambient air at concentrations of 20–3000 ng m−3

for 5–30 min on four separate occasions. All instruments re-
ported a concentration of zero with a zero-air filter applied.
Correction factors for the individual instruments ranged from
0.82 to 1.34. From our experience with the PAS in this and
a previous field campaign (Marr et al., 2004), we estimate its
uncertainty to be 20%. The manufacturer reports a limit of
detection of 10 ng m−3 for the analyzer.

2.3 Aerosol mass spectrometer

The Aerodyne Aerosol Mass Spectrometer (AMS) allows
real-time, size and composition analysis of non-refractory
submicron particles (Jayne et al., 2000; Jimenez et al., 2003).
A summary of the main results from the AMS measurements

during this field campaign is given by Salcedo et al. (2006).
A separate paper (Dzepina et al., 20061) describes in detail
the algorithm for extracting particle-phase PAH concentra-
tions from AMS spectra and its validation. Here, we report
the total AMS PAH concentration (APAH), which represents
the sum of the concentrations of PAHs between molecular
weights of 202 and 300. While the AMS can identify PAHs
by their molecular masses, it does not differentiate between
isomers.

We also report a modified total APAH (APAH*) to facil-
itate comparison against SPAH. The modified total includes
only PAHs with molecular masses of 202, 226, 228, 252,
276, and 300, as shown in Table 1. It excludes signals at
molecular masses of 216, 240, 242, 264, 266, 288, and 290
that correspond to alky-PAHs and/or PAHs with partially
saturated rings (such as, 11H–cyclopenta[ghi]perylene), be-
cause the photoionization instrument’s calibration does not
account for such species. This modification also excludes
benzofluorenes, but their contribution is at most 3% of the
FPAH total.

The limit of detection, estimated as three times the stan-
dard deviation of the reported concentrations when the AMS
was sampling ambient air through a filter, is 36 ng m−3 for to-
tal APAH and 24 ng m−3 for the modified total APAH* over
a 4-min measurement period. Detection limits scale with the
inverse of the square root of the averaging time, so over 15-
min periods, these limits will be 19 and 12 ng m−3 for APAH
and APAH*, respectively. Uncertainties in the method due to
systematic and random errors, described in greater detail in
Dzepina et al. (2006), are +45% and−35% of the reported
concentration.

2.4 Additional measurements

Black carbon and PAHs form during the same combustion
processes. Their concentrations are correlated in ambient
air, and are impacted by a variety of combustion sources, in-
cluding traffic, cooking, and wood smoke (Marr et al., 2004;
Schauer et al., 2003; Wallace, 2000; Watson and Chow,
2002; Zielinska et al., 2004a). A meteorological station lo-
cated on the experimental platform recorded temperature, hu-
midity, pressure, and wind velocity every minute. The site
was part of a routine air quality monitoring network that
measured concentrations of criteria pollutants, including sul-
fur dioxide, carbon monoxide, ozone, nitrogen dioxide, and
particulate matter. Black carbon was measured at 4-min fre-
quency by optical attenuation using an aethalometer (Magee
Scientific AE-31, Berkeley, California).

1Dzepina, K., Salcedo, D., Marr, L. C., Arey, J., Worsnop, D.
R., and Jimenez, J. L.: Detection of particle-phase polycyclic aro-
matic hydrocarbons (PAHs) in Mexico City using an Aerosol Mass
Spectrometer, Int. J. Mass Spectrometry, submitted, 2006.
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Fig. 2. Particulate PAH concentrations measured using filters
(FPAH), photoionization (SPAH), and the AMS (APAH). The back-
ground time series shows 1-min SPAH.

3 Results

Figure 1 shows concentrations of selected PAHs (gas + par-
ticle phases) determined by GC/MS on Tuesday 29 April.
These PAHs are shown because of their association with
specific sources. As PAHs are semi-volatile, some of the
particle-phase compounds may have been emitted origi-
nally as gases in hot exhaust and then may have con-
densed onto existing particles as the mixture cooled. Stud-
ies of vehicle emissions have shown that larger PAHs, in
particular benzo[ghi]perylene, indeno[1,2,3-cd]pyrene, and
coronene, are emitted in gasoline-fueled vehicle exhaust
(Marr et al., 1999; Miguel et al., 1998; Zielinska et al.,
2004b), while alkylated phenanthrenes are associated with
diesel vehicles (Benner et al., 1989). Concentrations of
benzo[ghi]perylene and methylphenanthrenes are highest in
the morning, although the diurnal patterns of these two
PAHs differ. Benzo[ghi]perylene concentrations are 36
times higher in the morning compared to the afternoon and
evening, while methylphenanthrene concentrations are only
1–2 times higher in the morning. As seen in Fig. 1, the diur-
nal patterns of indeno[1,2,3-cd]pyrene and coronene are sim-
ilar to that of benzo[ghi]perylene.

A GC/MS total ion chromatogram of the PAH-containing
HPLC fraction from a filter sample revealed a retene peak
and also a large peak from a MW 306 species. Retene has
been suggested as a marker for soft wood combustion (Ram-
dahl, 1983). The MW 306 species was subsequently identi-
fied to be 1,3,5-triphenylbenzene by matching its mass spec-
tra and retention time on two different GC columns with
those of an authentic standard. This compound has recently
been suggested to be a potential marker for the burning of
refuse, including plastics (Simoneit et al., 2005). In contrast
to the other PAHs, which are all considered markers of ve-
hicle exhaust, the 1,3,5-triphenylbenzene and retene concen-
trations are highest in the nighttime rather than morning or
daytime samples.
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Fig. 3. Non-holiday weekday and weekend diurnal cycles of SPAH
and APAH* at 15-min resolution. The shaded area highlights the
peak rush hour period between 06:30–08:30. Error bars of one stan-
dard deviation are shown at 1-h intervals for the weekday time se-
ries.

Figure 2 shows total particulate PAH concentrations mea-
sured by all three methods during the three days when they
were operating simultaneously, 27–30 April. Not all meth-
ods were operating during the entire interval. Filter measure-
ments are not available for 28 April, and the AMS was not
sampling continuously during this period. All PAHs identi-
fied as part of the FPAH total were also seen by the AMS,
except for retene and 1,3,5-triphenylbenzene.

In the figure, heavy solid and dotted lines show time-
integrated averages corresponding to the filter sampling pe-
riods. To illustrate the fine temporal structure of PAH con-
centrations, the figure also shows 1-min SPAH in the back-
ground. Total (FPAH, SPAH, APAH) and modified (FPAH*
and APAH*) results represent, respectively, all PAHs de-
tected by each method and a modified total, delineated in
Table 1 and intended to facilitate comparison against SPAH.

The 1-min SPAH time series shows a strong diurnal pat-
tern in ambient PAH concentrations, with concentrations
generally starting to rise at∼05:00, peaking at∼08:00, and
then dropping throughout the late morning. Peak concentra-
tions often exceed 100 ng m−3, and concentrations usually
remain below 50 ng m−3 throughout the remainder of the
day. However, on the first day shown in the figure, a Sun-
day, peak concentrations are about 50% lower compared to
the other days.

To facilitate interpretation of future studies using the PAS
or AMS for measurement of PAHs, we compare total PAH
concentrations determined by all three methods in Table 2.
The totals shown for FPAH and APAH include all particle-
phase PAHs detected by the filter and AMS methods, respec-
tively. The table also shows ratios of SPAH and APAH to the
more traditional FPAH. The ratio SPAH/FPAH falls in the
range 0.5–1.0, except for one period on a weekday morning
when the ratio is 1.7. The ratio APAH/FPAH ranges between
2.1–10, with the poorest agreement when PAH concentra-
tions are low.
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Table 2. Total particle-phase PAH concentrations (ng m−3) measured by filters (FPAH), aerosol photoionization (SPAH), and aerosol mass
spectrometry (APAH).

Time FPAHa SPAHa APAHb SPAH/FPAH APAH/FPAH

27 April (Sun)
07:00-11:00 32±6 22±4 N/A 0.69±0.20 N/A
11:00-16:00 3±1 2±0c 34±14 0.6±0.2 10±5
16:00-21:00 6±1 5±1c 42±17 0.9±0.2 7±3
21:00-7:00 35±7 19±4 121±48 0.55±0.15 3.5±1.6
29 April (Tue)
07:00-11:00 55±11 95±19 118±47 1.7±0.5 2.1±1.0
11:00-16:00 6±1 3±1c 33±13 0.5±0.2 6±3
16:00-21:00 8±2 6±1c N/A 0.8±0.2 N/A
21:00-7:00 27±5 26±5 N/A 1.0±0.3 N/A

a Overall uncertainty is estimated to be 20%.
b Overall uncertainty is estimated to be 40%.
c Below detection limit.
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Figure 3 shows the diurnal profiles (15-min averages) of
SPAH and APAH* averaged over weekdays (20 days) and
weekends (8 days) separately, excluding Thursday 17 April
through Easter Sunday 20 April, when traffic and ambient
pollutant concentrations were significantly lower than usual.
Error bars in the figure show one standard deviation at 1-
h intervals for the weekday time series. We have isolated
weekdays because motor vehicle activity, thought to be a
major source of PAHs, is expected to differ significantly be-
tween weekdays and weekends (Marr et al., 2002). The tem-

poral patterns of SPAH and APAH* are similar, with con-
centrations beginning to increase at 05:00, peaking at 08:00,
and then falling off; but their absolute values differ dur-
ing most hours of the day. On weekdays, SPAH is usu-
ally lower than APAH* by∼20 ng m−3, except during the
peak period (06:30–08:30), when the two signals are com-
parable in magnitude. Linear, least-squares regression of the
weekday diurnal profiles of APAH* against SPAH produces
a slope of 0.86±0.03 (standard deviation) and intercept of
21±1 ng m−3 with r2=0.87. An additional difference be-
tween the two is that APAH* does not seem to decay as fast
as SPAH in the late morning.

The differences in weekday versus weekend concentra-
tions are opposite for the two measurements of PAH con-
centration. Weekend SPAH concentrations are∼30% lower
compared to weekday SPAH during the peak morning rush
hour period, but weekend APAH* concentrations are up to
two times higher compared to weekday APAH* between
midnight and 11:00. Weekend APAH* is approximately
twice as high as weekend SPAH, with a regression slope of
1.85±0.09, intercept of 21±3 ng m−3, andr2=0.81. Because
weekend days are fewer, the standard deviations of the week-
end time series, not shown for reasons of legibility, overlap
between SPAH and APAH*.

SPAH is strongly correlated with both CO and gas-
phase naphthalene. Figure 4 shows 15-min averages
of SPAH versus CO during the entire field campaign.
The slope of the regression line, forced through zero,
is 18.7±0.2 ng m−3 ppm−1, with r2=0.70. Figure 5
shows SPAH versus all available naphthalene measurements
(n=24), which are time-integrated over 4- to 10-h periods.
For the relationship between SPAH and naphthalene, the
slope is 0.034±0.001 withr2=0.92.
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4 Discussion

4.1 Method intercomparison

The three PAH measurement techniques have complemen-
tary strengths. Collection of time-integrated samples with
GC/MS analysis allows detailed, isomer-specific speciation
and the ability to quantify both gas- and particle-phase
concentrations. Aerosol photoionization is a sensitive and
fast technique that detects total surface PAH concentra-
tions. Aerosol mass spectrometry provides speciation by
MW, estimated size distributions, and measures of other non-
refractory submicron aerosol components at 4-min resolu-
tion.

While the three methods generally report similar trends
and the same order of magnitude for the concentrations, cer-
tain disparities may emphasize methodological limitations,
transformation of PAHs, and/or uncertainties in calibration.
Figures 2 and 3 show that APAH* is generally higher than
SPAH, except during the morning rush hour between 06:30–
08:30 when they are similar. The differences exceed the
methodological uncertainty bounds during 7 of the 11 over-
lapping periods in Fig. 2 and exceed one standard deviation
in the diurnal averages between 03:00–05:00 and between
09:00–23:00 in Fig. 3. The likely cause of lower SPAH val-
ues is the fact that the PAS responds only to surface-bound
PAHs. The difference in mass loadings is also captured in
the large intercept (∼21 ng m−3) of the correlation between
APAH* and SPAH. As the particles are coated by condensa-
tion of the products of the active photochemistry in Mex-
ico City (Shirley et al., 2005; Volkamer et al., 2005), the
photoionization sensor becomes blind to the “buried” PAHs
while the AMS, which fully vaporizes the non-refractory por-
tion of the particles (Slowik et al., 2004), continues to detect
them. This leads to higher PAH measurements with the AMS
when aged particles dominate, i.e. during most of the day ex-
cept the morning rush hour.

An intriguing observation is that while SPAH concentra-
tions are higher on weekdays than on weekends, APAH*
concentrations are actually higher on weekends, particularly
between midnight and 11:00. The difference may not be sig-
nificant, as the standard deviations of these averages are large
and do in fact overlap. Concentrations of carbon monox-
ide (CO) and black carbon (BC), indicators of gasoline and
diesel engine activity, respectively, are not higher on Friday
and Saturday nights and are not significantly different on
weekends versus weekdays; so vehicle traffic does not ap-
pear to be the cause of higher APAH* on weekends. Instead,
sources of emissions that produce particles containing coated
PAHs may be important on Friday and Saturday nights (Sat-
urday and Sunday early mornings).

During periods with PAH loadings below 30 ng m−3,
FPAH* and SPAH agree well, as shown in Fig. 1. During
periods of elevated PAH loadings (07:00–11:00 on Sunday
27 April and 21:00–07:00 on 27–28 April), FPAH* is higher
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Fig. 5. SPAH versus naphthalene (gas-phase) concentrations. The
uncertainty in SPAH is estimated to be 20%. Naphthalene was col-
lected on Tenax in replicate with an average relative standard devi-
ation of 8%.

than SPAH, except during one period dominated by fresh
emissions (07:00–11:00 Tuesday 29 April). Again, SPAH
may be lower because it does not include PAHs on aged par-
ticles that have been coated by secondary aerosol. During the
period of fresh emissions when SPAH is higher, the PAHs
captured on the filters are exposed to several hours of am-
bient air during the MCMA’s most photochemically active
period, i.e. weekday mornings; and the PAHs may be sub-
ject to reaction artifacts in the sampler. This type of degra-
dation can reduce PAH concentrations by 50% for 1–2 day
sampling periods with 70–80 ppb ozone levels (Schauer et
al., 2003). The susceptibility to artifactual degradation dur-
ing FPAH sampling varies among individual PAH species
(Arey, 1998; Sanderson and Farant, 2005), and lower FPAH
v. APAH values for certain PAHs have been found (Dzepina
et al., 20061). The real-time SPAH and APAH measurements
are much less susceptible to such artifacts. A second source
of uncertainty in the FPAH measurements is volatilization of
PAHs from particles captured on the filters. The amount of
PAHs captured on PUFs varies between 15–70% of the total
FPAH concentration.

In spite of considerable uncertainties, the three meth-
ods often report similar PAH concentrations, and dispari-
ties likely reflect methodological differences. While SPAH
and APAH* agree at higher concentrations, SPAH is con-
sistently lower than APAH* at lower loadings. In contrast,
SPAH and FPAH* agree better at lower concentrations. Due
to sampling uncertainties, FPAH should be considered as a
lower limit due to the potential for PAH degradation and
volatilization during sampling. Likewise, SPAH represents a
lower limit of total particle-phase concentrations; the method
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appears to be sensitive only to those PAHs that are present
on particles’ surfaces. Finally, uncertainty remains in APAH
quantification due to the need to subtract the non-PAH or-
ganic background from the AMS signal. The reasons for the
disparities are not fully known, and laboratory calibration ex-
periments are needed to explore the differences further.

4.2 PAH sources

The limited number of samples and lack of precise informa-
tion about Mexican source profiles in this study preclude a
quantitative source apportionment. However, evidence sug-
gests that motor vehicles are the major source of PAH emis-
sions in Mexico City. Motor vehicles are responsible for 99%
of CO emissions in the area (Secretarı́a del Medio Ambiente,
2003), and PAH and CO concentrations are correlated, as
shown in Fig. 4. The strong correlation between SPAH and
gas-phase naphthalene, shown in Fig. 5, may also indicate
that vehicles are a key source of particulate PAHs, if Mexico
City follows the pattern of Southern California, where vehi-
cles are responsible for 53% of naphthalene emissions (Lu et
al., 2004).

These results provide insight into the diurnal patterns
of gasoline- versus diesel-powered vehicles in the MCMA.
Benzo[ghi]perylene can be used as a marker of gasoline-
powered vehicle activity, as it has the highest particle-phase
emission factor of the 16 priority PAHs in light-duty ve-
hicle exhaust but is not detected in heavy-duty diesel ex-
haust (Marr et al., 1999). During the 07:00–11:00 period,
benzo[ghi]perylene accounts for 25% of the total particle-
phase PAHs; and during the three remaining periods, it ac-
counts for only 7–8% of the total. This result suggests
that gasoline-powered vehicles are an especially significant
source of PAHs during the morning rush hour.

On the other hand, methylphenanthrene can be used as an
indicator of diesel exhaust (Westerholm et al., 1991). The
relative contribution from diesel exhaust appears to increase
during 11:00–16:00 relative to the earlier period, as reflected
in methylphenanthrene levels that are of similar magnitude
(Fig. 1) or increasing (27 April, data not shown), while con-
centrations of other PAHs except retene decrease signifi-
cantly, presumably in response to a rising mixing height and
reduced source activity.

The ratio of methylphenanthrenes to phenanthrene
(Mphen/Phen) has been utilized in source apportionment
studies to estimate the relative contributions of gasoline ver-
sus diesel emissions (Lim et al., 1999; Nielsen, 1996). For
diesel vehicles, Mphen/Phen ratios of 1.5 for gas-phase emis-
sions (Westerholm et al., 1991) and 1.4–8 for particle-phase
emissions (Lim et al., 1999; Takada et al., 1990; Wester-
holm et al., 1991; Zielinska et al., 2004b) have been reported,
while for gasoline vehicles, ratios of 0.2–0.7 (Takada et al.,
1990; Westerholm et al., 1988) and most recently a ratio of
approximately 1.0 for five in-use “normal particulate matter
emitters” (Zielinska et al., 2004b), have been reported. While

there are significant variations in reported ratios, and operat-
ing parameters such as the engine load are known to affect
the ratio (Jensen and Hites, 1983), in general ratios>1 have
been reported from diesel emission sources.

The major source of methyl-PAHs in emissions is likely to
be unburned fuel (Tancell et al., 1995; Williams et al., 1986),
and methylphenanthrene and dimethylnaphthalene concen-
trations (µg g−1) in diesel fuel are at least an order of mag-
nitude higher than in gasoline (Zielinska et al., 2004b).
While naphthalene is the most abundant PAH in gasoline
(Marr et al., 1999; Zielinska et al., 2004b), dimethylnaph-
thalene concentrations are greater than naphthalene in diesel
fuels. So an increase in the diesel contribution is likely
to result in increased emissions of methylphenanthrenes
and dimethylnaphthalenes and an increase in the ratio of
Mphen/Phen and dimethylnaphthalenes/naphthalene. Fig-
ure 1 shows that Mphen/Phen is<1 during the morning rush
hour period and>1 during the rest of the day. In addition
the dimethylnaphthalenes/naphthalene ratio shows a corre-
sponding increase after the morning rush hour (dimethyl-
naphthalenes/naphthalene=0.09, 0.29, 0.09 and 0.15 corre-
sponding to the morning, day, evening and night time periods
in Fig. 1). These observations are consistent with the dom-
inant contribution of gasoline emissions to particle-phase
PAH concentrations during the morning rush hour and with
the increased importance of diesel emissions during the rest
of the day.

Different diurnal traffic patterns of gasoline- and diesel-
powered vehicles can explain these observations. In Cali-
fornia, gasoline vehicle traffic peaks during the morning and
evening rush hours (Marr et al., 2002). However, diesel ve-
hicle traffic starts out slowly during the traditional morn-
ing rush hour and then peaks during the late morning and
early afternoon. If this pattern were also true in the MCMA,
then we would expect emissions from gasoline vehicles to
be higher during the 07:00–11:00 period compared to the
11:00–16:00 period and the opposite effect for diesel vehi-
cles. The observed PAH concentrations support this hypoth-
esis. Additionally Fig. 6 shows that BC, which is associated
with diesel exhaust, peaks 1–2 h later in the morning com-
pared to CO, which is associated with gasoline exhaust.

The diurnal patterns of individual PAH masses, shown by
Dzepina et al. (2006)1, also suggest that activity patterns for
gasoline versus diesel vehicles differ, with diesel vehicle traf-
fic lagging the traditional early morning rush hour. The con-
centrations of lighter MW PAHs (m/z=202 and 216) peak one
hour later and do not decrease as rapidly compared to con-
centrations of the heavier MW PAHs. Filter-based measure-
ments of PAHs in a roadway tunnel have shown that gaso-
line vehicles have higher emission factors of the larger PAHs
and that diesel vehicles have higher emission factors of the
smaller PAHs (Marr et al., 1999). This fact, combined with
diesel vehicle traffic that peaks after the morning rush hour,
would produce the observed pattern.
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Fig. 6. Non-holiday weekday and weekend diurnal cycles of SPAH, APAH*, CO, BC, HOA, and OOA, each on its own scale.

The presence of triphenylbenzene and retene suggest that
other sources also contribute to ambient PAHs in the MCMA.
The high concentrations of triphenylbenzene at night are an
indicator of garbage burning (Simoneit et al., 2005; Tong
et al., 1984), a common nighttime activity in the MCMA.
Concentrations of retene, a wood smoke marker (Ramdahl,
1983), are especially high on 27 April (not shown), when
a forest fire burned for one hour on a nearby hill, Cerro de
Estrella, starting at∼18:00.

4.3 PAH transformations

Figure 6 shows diurnal cycles of SPAH, APAH∗, CO, BC,
hydrocarbon-like organic aerosol (HOA), and oxidized or-
ganic aerosol (OOA) averaged over 20 non-holiday week-
days. HOA is an indicator of freshly emitted particles, which
are likely to be primary combustion aerosols in Mexico City,
while OOA is a highly oxygenated aerosol, which is likely
to be secondary organic aerosols from the photooxidation
of aromatics and other precursors (Zhang et al., 2005a, c).
OOA may also be associated with biomass burning emissions
during the latter part of the campaign. Note that the y-axes
start at the background concentration of each pollutant, not
at zero. While APAH∗, SPAH, CO, BC, and HOA concen-
trations rise in concert starting at 06:00 each morning, SPAH
falls off much more quickly and diverges from APAH∗, CO,
and BC at 09:00.

There are two hypotheses that could most likely explain
the faster decay of SPAH relative to other indicators of ve-
hicle emissions. The timing of the decay in SPAH concen-
trations, i.e. during the hours of the most active photochem-
istry in Mexico City, suggests that a photochemical mecha-
nism may be responsible. First, coating of PAH-containing
particles by condensation of secondary inorganic or organic
aerosol or of semi-volatile compounds that were emitted at
high temperature, such as cooking oil, could shield the PAHs
from detection by photoionization. Electron microscopy of
individual particles collected during the field campaign in-

dicates that extensive processing of soot particles, including
condensation of sulfate, can occur within 30 min to several
hours (Johnson et al., 2005). For PAHs to be detected by pho-
toionization, electrons must be ejected from the molecules
and must be able to escape from the surface of the particle.
Coating of PAH-containing particles could reduce the SPAH
signal by making it less likely for PAHs to be photoionized
or for ejected electrons to escape the particle.

Previous experiments have shown that paraffin coatings
of 30–60 nm completely inhibit the photoionization signal
(Niessner et al., 1990). Sufficient ammonium nitrate and
secondary organic aerosol (SOA) may be produced in Mex-
ico City’s atmosphere to coat primary particles and at least
partially inhibit the detection of surface-bound PAHs by
photoionization. The following analysis assumes that in-
organic aerosol and SOA condense on preexisting parti-
cles, rather than homogeneously nucleate, which is con-
sistent with observations (Dunn et al., 2004). During the
late morning, OOA reaches 6µg m−3 above its background
value (Fig. 6). If we assume that OOA represents SOA and
has a density of 1.1 g cm−3 (Bahreini et al., 2005), then
the excess OOA is equivalent to a volume concentration of
6×10−12 m3 m−3. Divided over a maximum aerosol sur-
face area of 1×10−5 cm2 cm−3 estimated from the AMS
measurements, this amount of SOA can coat the particles
to a thickness of 6 nm. Ammonium nitrate concentrations,
which share a similar diurnal pattern to that of OOA, reach
12µg m−3 above background in the late morning (Salcedo
et al., 2006) and can contribute an additional 7 nm of thick-
ness to the coating. The density of inorganic aerosol is as-
sumed to be 1.7 g cm−3 (Bahreini et al., 2005). The fractal
nature of primary particles (DeCarlo et al., 2004; Slowik et
al., 2004; Zhang et al., 2005b) and unknown division of sur-
face area between primary and secondary aerosol contribute
uncertainty to this estimate. Although the total calculated
coating thickness of 13 nm is only an approximation, it is of
the order of magnitude needed to suppress, at least partially,
the photoionization signal.
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Additionally, we have performed an exploratory labora-
tory experiment with the photoionization aerosol sensor and
found that its response dropped by a factor of ten when soot
particles were coated with oleic acid, while the AMS re-
sponse did not change. The magnitude of surface coating and
its relevance to ambient conditions were not characterized in
this exploratory experiment.

The estimated size distributions of individual PAH masses,
presented by Dzepina et al. (2006)1 also support the idea that
particles containing PAHs are coated, or at least grow in size,
throughout the day. In the morning between 05:00 and 09:00,
the modes of the size distributions of the PAHs atm/z’s 202
and 226 occur at 350 and 200 nm, respectively. In the after-
noon between 14:00 and 18:00, the size distributions of these
PAHs grow to larger diameters, 500–800 nm. The shift to
larger diameters, which is observed for all species in the city,
is likely due to coagulation and condensation of secondary
aerosol on preexisting particles (Dzepina et al., 20061).

The second hypothesis is that heterogeneous reactions of
PAHs on the surfaces of particles may be responsible for the
faster decay of SPAH versus other related pollutants. In the
gas phase, the dominant loss process of PAHs during the day-
time is reaction with the OH radical (Arey, 1998; Atkinson
and Arey, 1994). In the particle phase, PAHs may undergo
photolysis or reaction with oxidants such as OH, ozone, ni-
trogen oxides, and nitric acid; and the rate of reaction de-
pends on the nature of the underlying particles and meteo-
rological factors (Behymer and Hites, 1988; Calvert et al.,
2002; Finlayson-Pitts and Pitts, 2000; Kamens et al., 1986,
1988, 1985). Recent laboratory experiments suggest that
OH addition to pyrene and subsequent reactions can lead to
its removal from particles, in the form of volatile products
(Molina et al., 2004). The OH reactivities of 11 PAHs ad-
sorbed on graphite particles have been found to be similar
across the different species (Esteve et al., 2004), and hetero-
geneous reaction with OH rather than NO2 dominates losses
of particle-phase PAHs (Esteve et al., 2006). As reaction with
OH is the dominant loss process of gas-phase PAHs (Atkin-
son and Arey, 1994), we therefore investigate the heteroge-
neous reaction rate of OH with particle-phase PAHs to deter-
mine its role in the loss of PAHs in Mexico City. Heteroge-
neous oxidation by ozone may also be an important sink for
PAHs (Donaldson et al., 2005), so the results presented here
represent a lower limit of their reactive decay.

The analysis focuses on the period 09:00–10:00, when
SPAH concentrations diverge from the others (Fig. 6). The
predicted heterogeneous reaction rateRhet is

Rhet =
ωγ

4
A[OH] (1)

whereω is the mean thermal velocity of OH (cm s−1), γ

is the heterogeneous reaction probability,A is the surface
area concentration of PAHs (cm2 cm−3), and [OH] is the
OH concentration (molec cm−3) (Bertram et al., 2001; Rav-
ishankara, 1997). At 298 K, the mean thermal velocity of

OH is 66 100 cm s−1. We assume a reaction probability of
0.5, which is consistent with experimental data for PAHs
(Bertram et al., 2001).

At 09:00, the typical weekday SPAH concentration is
50 ng m−3. Based on PAH speciation profiles during the
morning hours, the average molecular mass of the mix-
ture is 258 g mol−1, so the corresponding surface PAH den-
sity is 1.2×1014 molec m−3. Assuming a molecular cross
section of 1 nm2 corresponding to benzo[a]pyrene (Karcher
and Fordham, 1987), whose molecular mass is close to
the average, we obtain a surface area PAH concentration
of 1.2×10−6 cm2 cm−3. For comparison, this value is
∼10% of the total surface area estimated from the AMS
of ∼10−5 cm2 cm−3 during 09:00–10:00. Given a typical
OH concentration in Mexico City at 09:00 of 1.4×106 molec
cm−3 (Shirley et al., 2005; Volkamer et al., 2005), the result-
ing Rhet predicted by Eq. (1) is 14 000 molec cm3 s−1.

The ratio of the typical PAH concentration at 09:00 toRhet
gives a characteristic lifetime of 2.3 h for heterogeneous re-
action of OH with particulate PAHs. Given the uncertainty
in reaction probability and other inputs to Eq. (1), we cannot
rule out heterogeneous reactions as a mechanism for PAH
loss. PAH reaction products, such as quinones, hydroxyl-
PAHs, and nitro-PAHs were not found in the AMS signal
(Dzepina et al., 20061), but at this point in its development,
the AMS is not specific or sensitive enough to detect them
at the very low expected concentrations. However, because
APAH* does not also fall off at the same rate as SPAH at this
time of day, coating of the particles is a more likely explana-
tion for the rapid decay of SPAH.

Another factor to be considered in these analyses is the
semi-volatile nature of PAHs and their ability to repartition
between gaseous and particulate forms (Allen et al., 1996).
Some PAHs present on the surfaces of freshly emitted com-
bustion particles may slowly desorb from the particles as am-
bient temperatures increase in the late morning. This phe-
nomenon may contribute to the faster decay of the SPAH
versus APAH* signal, if it involves PAHs that are detected by
the PAS but not by the AMS, i.e. three-ring PAHs. Improved
measurement techniques, especially at high time resolution
for the smaller particle-phase PAHs, are needed to explore
this hypothesis further.

5 Conclusions

Particulate PAH concentrations were measured by three dif-
ferent methods in Mexico City in April 2003: analysis of
time-integrated filters, aerosol photoionization, and aerosol
mass spectrometry. Speciated measurements suggest that
motor vehicles are the predominant daytime source of PAHs
and that wood and garbage burning are important night-
time sources. Particulate PAH concentrations are correlated
with both CO and naphthalene. During the morning rush
hour, total particulate PAH concentrations rise to a maximum
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of ∼110 ng m−3 between 07:30–08:00 and then decrease
throughout the remainder of the morning to∼20 ng m−3

in the afternoon. Overnight concentrations rise as high as
50 ng m−3. The more rapid decrease in surface versus
bulk PAH concentrations during the late morning suggests
that freshly emitted combustion-related particles are quickly
coated by secondary aerosol material in Mexico City’s at-
mosphere, and may also be transformed by heterogeneous
reactions.

These results have important implications for public health
and for climate. The diurnal pattern of ambient concentra-
tions implies that exposure to PAHs will be much higher dur-
ing the morning rush hour compared to the rest of the day.
The rapid transformation of particle-phase PAHs during the
morning suggests that the toxicity of fresh versus aged par-
ticles may differ. If PAHs are coated by other compounds,
their bioavailability may decrease. Likewise, rapid coating
of primary soot particles suggests that internally mixed par-
ticles containing black carbon cores will be prevalent in the
outflow of Mexico City, which will lead to enhanced absorp-
tion of radiation and thus a larger perturbation of the regional
radiation balance by these particles.
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