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COMPUTING VOLUME FUNCTION ON PROJECTIVE

BUNDLE OVER A CURVE

Huayi Chen

Abstract. — We establish an explicit link between the volume function on a projec-

tive variety fibered on a curve and the asymptotic behaviour of the canonical filtration

of direct images. As an application, we calculate explicitly the volume function on

projective bundle over a curve.
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1. Introduction

Let k be a field and X be a projective variety of dimension d over Spec k. For any
line bundle L on X , the volume of L is defined as

(1) vol(L) := lim sup
n→∞

rkk H0(X, L⊗n)

nd/d!
,

where the symbol lim sup can be replaced by lim, thanks to Fujita’s approximation
theorem [9] (see also [15] for positive characteristic case). One says that L is big if
vol(L) > 0. The volume function is invariant under numerical equivalence (see [10]
Proposition 2.2.41), and therefore induces a mapping from the Néron-Severi group
N1(X) to R+ which we shall still note vol.

If L is ample, then it follows from the asymptotic Riemann-Roch formula that
vol(L) = c1(L)d. In particular, the volume function is polynomial on the ample cone.
However, on the larger cone of big divisors, the behaviour of the volume function is
much more complicated, and the the volume function is more difficult to calculate.
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It is know that when X is a surface or a toric variety, then the volume function
is piecewise polynomial on the pesudo-effective cone, and can be computed through
the Zariski decomposition (see [13] and [8]). For general case, some authors have
proposed the positive intersection product for big classes which generalizes the classical
intersection product and identifies vol(L) with the positive self-intersection product
of the class of L (see [1] for complex analytic case and [2] for algebraic case). But the
positive intersection product is only super-additive in each variable, which suggests
that the volume function is much more complicated than a polynomial. Although the
differentiability of the volume function has been proved in [2] (see also the Okounkov
body approach [11] Corollary 4.25, where appears the restricted volume introduced in
[6]), there does exist a counter-example where the volume function is not two-times
differentiable (see [10] Example 2.2.46 with n = 2). Furthermore, the function vol
may take irrational values (see [5]), which is not the case for self-intersection number.

In [4], the author has obtained an explicit link between the arithmetic volume func-
tion in sense of Moriwaki and the maximal value of the limit of Harder-Narasimhan
polygons. This enables us to prove a weak form of a conjecture of Moriwaki ([12]
Remark 5.7) asserting that the arithmetic volume function is actually a limit instead
of a sup limit. Although the article was written in arithmetic framework, the similar
idea can work in function field case. Let C be a smooth projective curve defined over
k. Denote by K := k(C) the field of meromorphic functions on C. If E is a non-zero
vector bundle on C, the Harder-Narasimhan filtration of E is the unique flag

(2) E = E0 ) E1 ) · · · ) Ed = 0

of E such that each sub-quotient Ei/Ei+1 is semistable and that the successive slopes
verify the following inequalities

(3) µ0 < µ1 < · · · < µd−1,

where µi = µ(Ei/Ei+1). For any non-zero vector bundle E on C whose Harder-
Narasimhan filtration is as (2), we define a probability measure νE on R as follows

(4) νE :=

d−1∑

i=0

rk Ei+1 − rkEi

rkE
δµi

,

where δx is the Dirac measure concentrated on {x}. For any real number ε > 0, we
define an operator Tε on the set of all Borel probability measure on R: if ν is such a
measure and if f is a continuous function of compact support on R, then

∫
f(x)Tεν(dx) =

∫
f(εx)ν(dx).

The following is the main theorem of this article:

Theorem 1.1. — Let π : X → C be a projective and flat morphism, and L be an
arbitrary line bundle on X such that LK is big. Then

1) the sequence of Borel probability measures (T 1
n
νπ∗(L⊗n))n≥1 converges vaguely to

a Borel probability measure νπ
L.
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2) the following equality holds

vol(L) = dim(X) vol(LK)

∫
x+νπ

L(dx),

where x+ = max{x, 0}.

Recall that a sequence of Borel probability measure (νn)n≥1 is said to converge
vaguely to a Borel measure ν if, for any continuous function of compact support

f , one has

∫
f(x)ν(dx) = lim

n→∞

∫
f(x)νn(dx). We reminder that ν need not be a

probability measure. However, it is the case when the supports of νn are uniformly
bounded.

One of the ideas is to compare the rank of π∗(L
⊗n) to the maximal value of its

Harder-Narasimhan polygon, which coincides with the integral of x+ with respect to
the corresponding probability measure, multiplied by its rank.

Shortly after the first version of this article had been written, R. Lazarsfeld kindly
communicated to the author Wolfe’s Ph.D thesis. We observe that the idea of
comparison mentioned above is quite similar to a result of Wolfe. In fact, for any
non-zero vector bundle E on C, Wolfe has compared the rank of H0(C, E) to partial
sums of rkH0(C, sqiE), where sqiE is the ith subquotient of the Harder-Narasimhan
filtration of E. In view of some basic facts about vector bundles on C resumed in
Lemma 2.1, Wolfe’s result is more or less equivalent to Proposition 2.2 infra.

The more delicate part of the theorem is the convergence of dilated probability
measures associated to direct images, which follows from a general convergence result
on filtered graded algebra, established in a previous work [4] of the author (see also
[3]).

Wolfe has studied in his thesis [16] (see also [7] page 9), by using his comparison
result, the volume function on projective bundles over a curve. Let E be a non-
zero vector bundle on C. One uses the symbol P(E) to denote the C-scheme which
represents the functor

(5)

Scheme/C −→ Set

(p : X → C) 7−→
{

locally free quotient
of rank 1 of p∗E

}

Let π : P(E) → C be the canonical morphism. Denote by OE(1) the canonical
line bundle on P(E), which is the universal quotient of π∗E corresponding to the
representable functor (5). The Picard group of P(E) is then generated by OE(1) and
π∗ Pic(C). He proved that the Néron-Severi group N1(P(E)) can be separated into
several sectors determined by the Harder-Narasimhan filtration of E such that the
volume function is polynomial on each piece.

In this article, we shall apply Theorem 1.1 to determine the volume function on
P(E). It suffices to compute explicitly the limit measure νOE(1), which relies on the
computation of the Harder-Narasimhan filtration of SnE. Here we calculate firstly
that of E⊗n, which is invariant by the action of the symmetric group Sn, thanks to
the uniqueness of Harder-Narasimhan filtration. We then pass to the quotient by the
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action of Sn to obtain the Harder-Narasimhan filtration of SnE. We shall actually
establish the following result:

Theorem 1.2. — Let r be the rank of E. Assume that the Harder-Narasimhan
filtration of E is as (2) and that the successive slopes of E are as in (3). Let
s = (s1, · · · , sr) be a vector in Rr such that the value µi appears exactly rk(Ei/Ei+1)
times in its coordinates. Let ∆ ⊂ Rr be the simplex defined as

{(x1, · · · , xr) | 0 ≤ xj ≤ 1, x1 + · · · + xr = 1}

and η be the Lebesgue measure on ∆ normalized such that η(∆) = 1. Then one has
νπ
OE(1) = ϕs∗η, where ϕs : ∆ → R sends (x1, · · · , xr) to s1x1 + · · · + srxr.

As a corollary of Theorems 1.1 and 1.2, we compute the volume of an arbitrary big
line bundle on P(E):

Corollary 1.3. — Keep the notation of Theorem 1.2. Let m ≥ 1 be an integer and
M be a line bundle of degree c on C, then

(6) vol(OE(m) ⊗ π∗M) = rmr

∫ (
x + c/m

)
+
ϕs∗η(dx).

where y+ := max{y, 0} for any y ∈ R.

Wolfe computed in his thesis the Harder-Narasimhan filtration of symmetric powers
of E by using a more direct argument. He also expressed the volume vol(OE(m) ⊗
π∗M) as an integral on the simplex ∆. The result of Wolfe is actually equivalent to
the formula (19). This enabled him to prove that the volume function is piecewise
polynomial on N1(P(E)). Here we propose a reformulation (20) of νSnE , which leads
to a simple form of the volume function (6). This permits us to recover Wolfe’s result,
and furthermore, to prove that on each sector, the volume function is a homogeneous
polynomial of total degree rk(E) on m and c, and the degree of c does not exceed 3.

The article is organized as follows: in the second section, we introduce the notion
of positive degree for vector bundles on C, and then prove that the volume function
equals to the limit of normalized positive degree, which permits to establish Theorem
1.1. In the third section, we compute the Harder-Narasimhan filtrations of tensor
powers and symmetric powers of a non-zero vector bundle on C, and then prove
Theorem 1.2 and Corollary 1.3. Finally in the fourth section, we show that Corollary
1.3 permits to recover and slightly refine Wolfe’s result on polynomial representation
of the volume function.

Acknowledgement:— The author is grateful to R. Lazarsfeld for having communi-
cated him Wolfe’s thesis. During the writing of this article, the author has benefited
from discussions with R. Berman and S. Boucksom to whom the author would like
express his gratitude.

2. Volume function as limit of positive degrees

We reminder that all results in this section are valid in any characteristic.
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2.1. Some reminders on vector bundles. — If E is a vector bundle on C, we
denote respectively by h0(E) and h1(E) the rank of H0(C, E) and H1(C, E) over
k. By Serre duality, h1(E) = h0(E∨ ⊗ ωC). Recall that the Riemann-Roch theorem
predicts

(7) h0(E) − h1(E) = deg(E) + rk(E)(1 − g).

This implies in particular that the degree of ωC is 2(g − 1). Suppose that E is non-
zero. The slope of E is defined as the quotient deg(E)/ rk(E), denoted by µ(E),
and the maximal slope µmax(E) is the maximal value of the slopes of all non-zero
subbundles of E. By definition one has the inequality µ(E) ≤ µmax(E). We say
that E is semistable if the equality µ(E) = µmax(E) holds. This condition is also
equivalent to the equality µ(E) = µmin(E), where µmin(E) is the minimal value of
slopes of all non-zero locally free quotient of E, called the minimal slope of E. As
µ(E∨) = −µ(E) and µmax(E

∨) = −µmin(E), we obtain that the semistability of E is
equivalent to that of E∨.

Denote by b(C) the positive integer

(8) {deg(L) | L ∈ Pic(C), L is ample}.

By definition, the degree of a line bundle on C is always a multiple of b(C).
We recall in the following some basic facts about vector bundles on C.

Lemma 2.1. — Let E be a non-zero vector bundle on C.

1) If µmax(E) < 0, then h0(E) = 0.
2) If µmin(E) > 2g − 2, then h0(E) = deg(E) + rk(E)(1 − g).
3) If µmin(E) ≥ 0, then |h0(E) − deg(E)| ≤ rk(E)(g + b(C)).

Proof. — 1) If h0(E) 6= 0, then there is an injective homomorphism from OC to E,
therefore 0 = µ(OC) ≤ µmax(E).

2) Since µmin(E) > 2g − 2, one has µmax(E
∨ ⊗ ωC) = deg(ωC) − µmin(E) < 0.

After 1), h1(E) = h0(E∨ ⊗ ωC) = 0. So the Riemann-Roch formula implies h0(E) =
deg(E) + rk(E)(1 − g).

3) If g = 0, then, by 2), h0(E) = deg(E) + rk(E), so

|h0(E) − deg(E)| = rk(E) ≤ b(C) rkE.

Assume in the following that g ≥ 1. Let L be an ample invertible OC -module of degree
b(C) and let a =

⌊
2g−2
b(C)

⌋
+1. Then the inequalities 2g−2 < deg(L⊗a) ≤ 2g−2+b(C)

hold. As µmin(E ⊗ L⊗a) = µmin(E) + deg(L⊗a) > 2g − 2, we obtain

h0(E) ≤ h0(E⊗L⊗a) = deg(E⊗L⊗a)+rk(E)(1−g) ≤ deg(E)+rk(E)(g−1+b(C)).

On the other hand, h0(E) = h1(E)+deg(E)+ rk(E)(1− g) ≥ deg(E)+ rk(E)(1− g).
Therefore, |h0(E) − deg(E)| ≤ rk(E)(g − 1 + b(C)).
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2.2. Positive degree and rank of global section space. — Let E be a non-zero
vector bundle on C and r be its rank. We introduce the notion of positive degree
of E, which is the maximal value of the Harder-Narasimhan polygon of E. We then
show that this value approximates h0(E).

Recall that the Harder-Narasimhan polygon P̃E is by definition the concave
function defined on [0, r] whose graph is the convex hull of points of the form
(rkF, deg(F )), where F runs over all subbundles of E. Denote by deg+(E) the integer

max
x∈[0,r]

P̃E(x), called the positive degree of E.

The Harder-Narasimhan polygon can be determined from the Harder-Narasimhan
flag of E, which is the only flag

(9) E = E0 ) E1 ) · · · ) Ei ) Ei+1 ) · · · ) Ed = 0

such that the sub-quotients Ei/Ei+1 are semistable and satisfies

µ(E0/E1) < µ(E1/E2) < · · · < µ(Ed−1/Ed).

In fact, the vertices of the polygon P̃E are just (rk(Ei), deg(Ei)).
The proposition below compares h0(E) and deg+(E).

Proposition 2.2. — The following inequality holds:

(10) |h0(E) − deg+(E)| ≤ rk(E)(g + b(C)).

Proof. — Let the Harder-Narasimhan flag of E be as in (9). For any integer i,
0 ≤ i ≤ d − 1, let µi = µ(Ei/Ei+1). Let j be the first index in {0, · · · , d − 1} such
that µj ≥ 0 (if such index does not exist, let j = d). By definition, the positive degree
deg+(E) coincides with deg(Ej).

If j > 0, then µmax(E/Ej) = αj−1 < 0, so Lemma 2.1 1) predicts that h0(E/Ej) =
0; otherwise E = Ej and we still have h0(E/Ej) = 0. Hence h0(E) = h0(Ej). If
j = n, then h0(Ej) = 0 = deg+(E); otherwise µmin(Ej) = αj ≥ 0, and by Lemma 2.1
3),

|h0(E) − deg+(E)| = |h0(Ej) − deg(Ej)| ≤ rk(Ej)(g + b(C)) ≤ rk(E)(g + b(C)).

We define the positive slope of E to be the quotient µ+(E) := deg+(E)/ rk(E). By
definition max(µmax(E), 0) ≥ µ+(E) ≥ 0.

2.3. Volume function and positive degree of direct image. — Let X be an
integral projective scheme of dimension r over Spec k and L is a line bundle on X .
Assume that π : X → C is a flat k-morphism. Denote by K the field of all rational
functions on C. Then XK is an integral projective scheme of dimension r − 1 over
Spec K.

Proposition 2.3. — The equality

(11) vol(L) = lim sup
n→+∞

deg+(π∗(L
⊗n))

nr/r!

holds. Furthermore, if L is big, then also is LK .
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Proof. — After Proposition 2.2,

| deg+(π∗(L
⊗n)) − rkk H0(X, L⊗n)| ≤ rkK H0(XK , L⊗n

K )(4g + 2b(C)).

Since rkK H0(XK , L⊗n
K ) ≪ nr−1, we obtain

(12) lim
n→∞

∣∣∣
deg+(π∗(L

⊗n))

nr/r!
−

rkk H0(X, L⊗n)

nr/r!

∣∣∣ = 0,

which implies (11). If L is big, then lim sup
n→∞

deg+(π∗(L
⊗n))

nr/r!
> 0. On the other hand,

lim sup
n→∞

deg+(π∗(L
⊗n))

n rk(π∗(L⊗n))
≤ lim sup

n→∞

µmax(π∗(L
⊗n))

n
< +∞.

This implies lim sup
n→∞

rk(π∗(L
⊗n))

nr−1/r!
> 0. Therefore LK is big.

The Fujita’s approximation theorem (the Fujita’s approximation theorem in pos-
itive characteristic case has been proved by Takagi [15]) implies that the volume
function is in fact a limit. More precisely, one has

(13) vol(L) = lim
n→∞

rkk H0(X, L⊗n)

nr/r!
.

Furthermore, (13) applied on LK implies

vol(LK) = lim
n→∞

rkK H0(XK , LK)

nr−1/(r − 1)!
= lim

n→∞

rk(π∗(L
⊗n))

nr−1/(r − 1)!
.

Therefore we obtain the following equalities:

Corollary 2.4. — The following equalities hold:

vol(L) = lim
n→∞

rkk H0(X, L⊗n)

nr/r!
= lim

n→∞

deg+(π∗(L
⊗n))

nr/r!
= rvol(LK) lim

n→∞

µ+(π∗(L
⊗n))

n
.

2.4. Proof of Theorem 1.1. — The assertion 1) is a direct consequence of [4]
Theorem 4.2. In the following, we shall prove the second assertion.

From Corollary 2.4, we obtain

vol(L) = dim(X) vol(LK) lim
n→∞

µ+(π∗(L
⊗n))

n
,

where we reminder that µ+(π∗(L
⊗n)) was defined as the maximal value of the (nor-

malized) Harder-Narasimhan polygon of π∗(L
⊗n). The assertion 2) then follows from

the following lemma.

Lemma 2.5. — Let E be a non-zero vector bundle of rank r on C. The following
equality holds:

(14) µ+(E) =

∫
x+νE(dx),

where the probability measure was defined in (4).
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Proof. — Let r be the rank of E,

E = E0 ) E1 ) · · · ) Ed = 0

be the Harder-Narasimhan flag of E and µ0 < · · · < µd−1 be its successive slopes. For
any i ∈ {0, · · · , d− 1}, let ri be the rank of Ei/Ei+1. Assume that j is the first index
in {0, · · · , d − 1} such that µj ≥ 0 (if such index does not exist, let j = d). Then

deg+(E) = deg(Ej) =

j∑

i=0

riµi.

Therefore, µ+(E) =
∑j

i=0
ri

r µi. Since µE =
∑d−1

i=0
ri

r δµi
, the equality (14) holds.

By the above lemma, one has

vol(L) = dim(X) vol(LK) lim
n→∞

1

n

∫
x+νπ∗(L⊗n)(dx)

= dim(X) vol(LK) lim
n→∞

∫
x+T 1

n
νπ∗(L⊗n)(dx).

From the first part of the theorem, the sequence of measures (T 1
n
νπ∗(L⊗n))n≥1 con-

verges vaguely to νπ
L. Furthermore, [4] Proposition 4.1 1) shows that the supports of

measures (T 1
n
νπ∗(L⊗n))n≥1 are uniformly bounded from above. Therefore we obtain

vol(L) = dim(X) vol(LK)

∫
x+νπ

L(dx),

which proves the theorem.

Remark 2.6. — 1) By definition, for any integer n ≥ 1, νπ
L⊗n = Tnνπ

L. Hence we

recover vol(L) = ndim X vol(L).
2) Let M be a line bundle of degree a on C, and E is a non-zero vector bundle on

C whose Harder-Narasimhan filtration is (2) and whose successive slopes are (3).
Assume that M is a line bundle of degree a on E. Then the Harder-Narasimhan
flag of E ⊗ M is just E ⊗ M = E0 ⊗ M ) E1 ⊗ M ) · · · ) Ed ⊗ M = 0, and its
successive slopes are µi + a, i ∈ {0, · · · , d− 1}. Therefore, one has νE⊗M = τaνE ,
where for any Borel probability measure ν on R, τaν is defined as

∫
f(x)τaν(dx) =

∫
f(x + a)ν(dx).

One verifies that Tετaν = τaεTεν. Thus we obtain that, for any integer n ≥ 1,
π∗((L ⊗ π∗M)⊗n) = π∗(L

⊗n) ⊗ M⊗n. Therefore, one has νπ∗((L⊗π∗M)⊗n) =
τnaνπ∗(L⊗n), which implies that νπ

L⊗π∗M = τaνπ
L. In particular,

vol(L ⊗ π∗M) = dim(X) vol(LK)

∫
(x + a)+νπ

L(dx).
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3. Harder-Narasimhan filtrations of tensor powers

Let E be a non-zero vector bundle on C whose Harder-Narasimhan filtration is

(15) E = E0 ) E1 ) · · · ) Ed = 0

and whose successive slopes are µi = µ(Ei/Ei+1). For any i ∈ {0, · · · , d}, let sqi(E)
be the sub-quotient Ei/Ei+1. In this section, we shall determine, for any integer
n ≥ 1, the Harder-Narasimhan filtration of E⊗n and that of SnE. Here we should
suppose that the characteristic of the ground field k is zero, so that the following
results of Ramanan and Ramanathan [14] hold:

1) The tensor product of two semistable vector bundles on C is still semistable.
2) Any symmetric power of a semistable vector bundle E on C is semistable. Fur-

thermore, one has µ(SnE) = nµ(E).
3) If E1 and E2 are two non-zero vector bundles on C, then

µmax(E1 ⊗ E2) = µmax(E1) + µmax(E2), µmin(E1 ⊗ E2) = µmin(E1) + µmin(E2).

3.1. The case of E⊗n. — Denote by Θ the indices set {0, · · · , d−1}n. We introduce
a partial order “≤” on Θ such that

(j1, · · · , jn) ≤ (l1, · · · , ln) if and only if j1 ≤ l1, · · · , jn ≤ ln.

We say that a subset A of Θ is saturated if

α ∈ A, β ∈ Θ and β ≥ α =⇒ β ∈ A.

Assume that A is an arbitrary subset of Θ. Then {β | ∃α ∈ A, β ≥ α} is the smallest
saturated subset of Θ containing A. We denote it by A.

For any α = (a1, · · · , an) ∈ Θ, denote by Eα the tensor product Ea1
⊗ · · · ⊗ Ean

and by sqα(E) the tensor product of sub-quotients sqa1
(E) ⊗ · · · ⊗ sqan

(E). Since
each sub-quotient sqi(E) is semistable, also is the tensor product sqα(E). For any

non-empty subset A of Θ, let EA :=
∑

α∈A

Eα. Write by convention E∅ = 0. In the

following are some basic properties of vector bundles EA:

1) EA = EA.
2) If A1 ⊂ A2 ⊂ Θ, then EA1

⊂ EA2
.

Proposition 3.1. — Assume that A ⊂ Θ is non-empty and saturated, and that A′′

is a subset of A consisting of maximal elements. Then A′ := A \A′′ is also saturated.
Furthermore, one has an isomorphism

(16) EA/EA′
∼=

⊕

α∈A′′

sqα(E).

Proof. — Locally for the Zariski topology, the flag (15) is split. Therefore a classical
argument in linear algebra leads locally to a natural isomorphism of the form (16).
These natural isomorphisms do not depend on the choice of the splitting and therefore
glue together into a global isomorphism.
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For any α = (a1, · · · , an) ∈ Θ, let µα be the sum µa1
+· · ·+µan

. With this notation,
the slope of sqα(E) is just µα. Denote by Σn the set of real numbers of the form µα

where α takes through vectors in Θ. From the inequalities µ0 < µ1 < · · · < µd−1 we
obtain that α ≤ β implies µα ≤ µβ , and α � β implies µα < µβ .

Proposition 3.2. — The set Σn identifies with that of successive slopes of E⊗n.
Furthermore, suppose that the elements in Σn are ordered as

v0 < v1 < · · · < vm−1,

then EA0
) EA1

) · · · ) EAm
= 0 is the Harder-Narasimhan filtration of E⊗n, where

Aj = {α | µα ≥ vj} for j ∈ {0, · · · , m − 1}, and Am = ∅.

Proof. — By definition of Harder-Narasimhan filtration, it suffices to prove that, for
each j ∈ {0, · · · , m − 1}, the sub-quotient EAj

/EAj+1
is semistable of slope vj . We

have Aj \ Aj+1 = {α |µα = vj}. Moreover, if µα = vj , then α is a maximal element
of Aj . Therefore, Proposition 3.1 implies that

EAj
/EAj+1

∼=
⊕

α∈Aj\Aj+1

sqα(E)

is semi-stable of slope vj .

Remark 3.3. — In [3], the author has introduced another interpretation of Harder-
Narasimhan filtration: one defines, for any t ∈ R,

(17) FHN
t :=

∑

06=F⊂E
µmin(F )≥t

F.

This is a decreasing R-filtration of E. The subbundles of E appearing in the R-
filtration (17) are just Ei, i ∈ {0, · · · , d}. Furthermore, the measure νE defined in (4)
coincides with the first order derivative (in the sense of distribution) of the function
t 7→ − rkFHN

t E. Proposition 3.2 shows that the R-filtration of E⊗n is just the nth

tensor power of the R-filtration of E. More precisely, one has

(18) FHN
t E⊗n =

∑

t1+···+tn=t

FHN
t1 E ⊗ · · · ⊗ FHN

tn
E,

and therefore νE⊗n = ν∗n
E , where ∗ denotes the convolution of Borel probability

measures on R.

3.2. The case of SnE. — The symmetric group Sn acts on E⊗n by permuting
factors. The nth symmetric power of E is defined as the quotient of E⊗n by the
action of Sn. Let us keep the notation of § 3.1. The group Sn acts naturally on

Θ = {0, · · · , d − 1}n. Denote by Θ̃ the quotient space Θ/Sn. Each class [α] in

Θ̃ corresponds bijectively to a partition of n into sum of d non-negative integers
(ai)

d−1
i=0 . For such a class [α], we use the symbol s̃q[α](E) to denote the tensor product

⊗d−1
i=0 Sai sqi(E). One observes that the group Sn acts naturally on

⊕
β∈[α] sqβ(E)

and its quotient space by the action of Sn is just s̃q[α](E). Moreover, s̃q[α](E) is also
semi-stable of slope µα.
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For any A ⊂ Θ which is invariant by the action of Sn, denote by SAE the image of
EA in SnE. It is the quotient of EA by the action of Sn. Let Aj ⊂ Θ, j ∈ {0, · · · , m}
be as in Proposition 3.2. By the uniqueness of Harder-Narasimhan filtration, each Aj

is invariant by the action of Sn.

Proposition 3.4. — The set of successive slopes of SnE is also Σn. Furthermore,
SA0

E ) SA1
E ) · · · ) SAm

E = 0 is the Harder-Narasimhan filtration of SnE.

Proof. — As pointed out above, each vector bundle EAj
is invariant by the action of

Sn, and SAj
E is the quotient of EAj

by the action. Therefore, we obtain that

SAj
E

/
SAj+1

E ∼=
⊕

[α]∈(Aj\Aj+1)/Sn

s̃q[α](E).

Since s̃q[α](E) is semi-stable of slope µα, SAj
E/SAj+1

E is semi-stable of slope vj .
The proposition is then proved.

In the following, we compute the measure νSnE . Take an arbitrary class [α] in Θ̃

which corresponds to the partition a = (ai)
d−1
i=0 of n. The value µα (which does not

depend on the representing element α) equals
∑d−1

i=0 aiµi. For each i ∈ {0, · · · , d−1},
let ri be the rank of sqi(E). The rank of s̃q[α](E) is just

ra :=

d−1∏

i=0

(
ai + ri − 1

ri − 1

)
.

We then obtain that

Rj := rk(SAj
E/SAj+1

E) =
∑

a=(ai)
d−1

i=0
∈N

d

a0+···+ad−1=n
a0µ0+···+ad−1µd−1=vj

ra.

By definition, one has

(19) νSnE =
1

rkSnE

m−1∑

j=0

Rjδvj
,

where δvj
is the Dirac measure concentrated at vj .

The formula (19) gives an explicit description of the probability measure νSnE .
However, it seems that in the case where the ri (i ∈ {0, · · · , d− 1}) are different, the
values of Rj , j ∈ {0, · · · , m − 1} are rather tedious to calculate. In the following we
propose another explicit form of νSnE which is adapted to the proof of Theorem 1.2.

Proposition 3.5. — Let r = r0 + · · · + rd−1 and s = (s1, · · · , sr) be a vector in Rn

such that the value µi appears exactly ri times in the coordinates on s. Then

(20) νSnE =
1

rkSnE

∑

b=(bl)
r
l=1∈N

r

b1+···+br=n

δb1s1+···+brsr
.
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Proof. — The only thing to verify is that, for any v ∈ R,
∑

a=(ai)
d−1

i=0
∈N

d

a0+···+ad−1=n
a0µ0+···+ad−1µd−1=v

ra =
∑

b=(bl)
r
l=1∈N

r

b1+···+br=n
b1s1+···+brsr=v

1.

This relies on the fact that
(
ai+ri−1

ri−1

)
equals the number of partitions of ai into sum

of ri positive integers.

3.3. Proofs of Theorem 1.2 and Corollary 1.3. — By definition, νπ
OE(1) co-

incides with the vague limit of measures T 1
n
νSnE when n → ∞. By Proposition

3.5,

T 1
n
νSnE =

1

rkSnE

∑

b=(bl)
r
l=1∈

1
n

N
r

b1+···+br=1

δb1d1+···+brdr

= ϕs∗

[ 1

rkSnE

∑

b∈ 1
n

Nr∩∆

δb

]
,

where in the last bracket is the measure of the nth Riemann sum on ∆. Therefore,
(T 1

n
νSnE)n≥1 converges vaguely to ϕs∗η. Theorem 1.2 is thus proved.

Finally, by remark 2.6, one has

vol(OE(m) ⊗ π∗M) = r vol(OE(m)K)

∫
(x + c)+νOE(m)π (dx)

= rmr−1

∫
(mx + c)+νπ

OE(1)(dx)

= rmr

∫
(x + c/m)+ϕs∗η(dx),

which proves Corollary 1.3.

4. Polynomial representation of the volume function

In this section, we show that Corollary 1.3 permits to get the subdivision of the
Néron-Severi group N1(P(E)) into sectors such that the volume function is polynomial
on each sector. We shall keep the notation introduced in Theorem 1.2 and Corollary
1.3. Note that the value in (6) depends only on m and c, we denote it by Φ(m, c).

Firstly, let us discuss some degenerate cases. Assume that E is semistable, i.e.,
d = 1. Then the limit measure νπ

O(E) is the Dirac measure concentrated at µ(E).

Therefore, Corollary 1.3 implies

Φ(m, c) = rmr(µ(E) + c/m)+ =

{
deg(E)mr + crmr−1, if c ≥ −µ(E)m,

0, else.
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If r = d = 2, then the measure ϕs∗η is the uniform distribution on the interval
[µ0, µ1]. In this case

Φ(m, c) =
2m2

µ1 − µ0

∫ µ1

µ0

(x+c/m)+ dx =





m2(µ1 + µ0) + 2cm, c > −mµ0,

(mµ1 + c)2/(µ1 − µ0), −mµ1 ≤ c ≤ mµ0,

0, c < −mµ1.

.

In the following, we always suppose r ≥ 3 and d ≥ 2. Without loss of generality,
we assume that the coordinates of s are ordered such that s1 ≤ · · · ≤ sr. For any
i ∈ {0, · · · , d − 1}, let ji = rk(E/Ei+1). Let j−1 = 0. Note that sl = µi if and only
if l ∈]ji−1, ji]. For any real number t ∈ [d1, dr], let ∆t be the intersection of ∆ and
the hyperplane {(x1, · · · , xr) | s1x1 + · · · + srxr = t}. Denote by vt the density of
ϕs∗η with respect to the Lebesgue measure. Since for any i ∈ {1, · · · , d − 1}, ∆t

(t ∈ [µi−1, µi]) are similar, the function vt is affine on [µi−1, µi], which means that,
there exists real numbers ai, bi (i ∈ {1, · · · , d−1}), such that vt = ait+bi on [µi−1, µi].
Thus we obtain

Φ(m, c) = rmr
d−1∑

i=1

∫ µi

µi−1

(t + c/m)+(ait + bi) dt.

Therefore, Φ(m, c) = 0 if c ≤ −µd−1m. If c ∈ [−µjm,−µj−1m] (j ∈ {1, · · · , d − 1}),
one has

Φ(m, c) = r

d−1∑

i=j+1

1

3
(µ3

i − µ3
i−1)aim

r +
1

2
(µ2

i − µ2
i−1)(bim

r + aicm
r−1) + bi(µi − µi−1)cm

r−1

+ r
(1

3
aj(µ

3
jm

r − c3mr−3) +
1

2
(bjm + ajc)(µ

2
jm

r−1 − c2mr−3) + cbj(µjm
r−1 − cmr−2)

)
,

which is a polynomial in m and c. Note that the degree of c is at most 3. Finally,
when c > −µ0m, then

Φ(m, c) = r

d−1∑

i=1

1

3
(µ3

i −µ3
i−1)aim

r+
1

2
(µ2

i −µ2
i−1)(bim

r+aicm
r−1)+bi(µi−µi−1)cm

r−1

has degree 1 in c.
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