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Introduction

Let k be a field and X be a projective variety of dimension d over Spec k. For any line bundle L on X, the volume of L is defined as [START_REF] Boucksom | The pseudo-effective cone of a compact Käler manifold and varieties of negative Kodaira dimension[END_REF] vol(L) := lim sup

n→∞ rk k H 0 (X, L ⊗n ) n d /d! ,
where the symbol lim sup can be replaced by lim, thanks to Fujita's approximation theorem [START_REF] Fujita | Approximating Zariski decomposition of big line bundles[END_REF] (see also [START_REF] Takagi | Fujita's approximation theorem in positive characteristics[END_REF] for positive characteristic case). One says that L is big if vol(L) > 0. The volume function is invariant under numerical equivalence (see [START_REF] Lazarsfeld | Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF] Proposition 2.2.41), and therefore induces a mapping from the Néron-Severi group N 1 (X) to R + which we shall still note vol. If L is ample, then it follows from the asymptotic Riemann-Roch formula that vol(L) = c 1 (L) d . In particular, the volume function is polynomial on the ample cone. However, on the larger cone of big divisors, the behaviour of the volume function is much more complicated, and the the volume function is more difficult to calculate.

It is know that when X is a surface or a toric variety, then the volume function is piecewise polynomial on the pesudo-effective cone, and can be computed through the Zariski decomposition (see [START_REF] Nakayama | Zariski-decomposition and abundance[END_REF] and [START_REF]Asymptotic invariants of base loci[END_REF]). For general case, some authors have proposed the positive intersection product for big classes which generalizes the classical intersection product and identifies vol(L) with the positive self-intersection product of the class of L (see [START_REF] Boucksom | The pseudo-effective cone of a compact Käler manifold and varieties of negative Kodaira dimension[END_REF] for complex analytic case and [START_REF] Boucksom | Differentiability of volumes of divisors and a problem of Teissier[END_REF] for algebraic case). But the positive intersection product is only super-additive in each variable, which suggests that the volume function is much more complicated than a polynomial. Although the differentiability of the volume function has been proved in [START_REF] Boucksom | Differentiability of volumes of divisors and a problem of Teissier[END_REF] (see also the Okounkov body approach [START_REF] Lazarsfeld | Mustat ¸ǎ -Convex bodies associated to linear series[END_REF] Corollary 4.25, where appears the restricted volume introduced in [START_REF] Ein | Popa -Restricted volumes and base loci of linear series[END_REF]), there does exist a counter-example where the volume function is not two-times differentiable (see [START_REF] Lazarsfeld | Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF] Example 2.2.46 with n = 2). Furthermore, the function vol may take irrational values (see [START_REF] Cutkosky | On a problem of Zariski on dimensions of linear systems[END_REF]), which is not the case for self-intersection number.

In [START_REF]Positive degree and arithmetic bigness[END_REF], the author has obtained an explicit link between the arithmetic volume function in sense of Moriwaki and the maximal value of the limit of Harder-Narasimhan polygons. This enables us to prove a weak form of a conjecture of Moriwaki ([12] Remark 5.7) asserting that the arithmetic volume function is actually a limit instead of a sup limit. Although the article was written in arithmetic framework, the similar idea can work in function field case. Let C be a smooth projective curve defined over k. Denote by K := k(C) the field of meromorphic functions on C. If E is a non-zero vector bundle on C, the Harder-Narasimhan filtration of E is the unique flag

(2) E = E 0 E 1 • • • E d = 0
of E such that each sub-quotient E i /E i+1 is semistable and that the successive slopes verify the following inequalities

(3) µ 0 < µ 1 < • • • < µ d-1 ,
where µ i = µ(E i /E i+1 ). For any non-zero vector bundle E on C whose Harder-Narasimhan filtration is as (2), we define a probability measure ν E on R as follows ( 4)

ν E := d-1 i=0 rk E i+1 -rk E i rk E δ µi ,
where δ x is the Dirac measure concentrated on {x}. For any real number ε > 0, we define an operator T ε on the set of all Borel probability measure on R: if ν is such a measure and if f is a continuous function of compact support on R, then

f (x)T ε ν(dx) = f (εx)ν(dx).
The following is the main theorem of this article:

Theorem 1.1. -Let π : X → C be a projective and flat morphism, and L be an arbitrary line bundle on X such that L K is big. Then 1) the sequence of Borel probability measures (T 1 n ν π * (L ⊗n ) ) n≥1 converges vaguely to a Borel probability measure ν π L .

2) the following equality holds

vol(L) = dim(X) vol(L K ) x + ν π L (dx),
where x + = max{x, 0}.

Recall that a sequence of Borel probability measure (ν n ) n≥1 is said to converge vaguely to a Borel measure ν if, for any continuous function of compact support

f , one has f (x)ν(dx) = lim n→∞ f (x)ν n (dx).
We reminder that ν need not be a probability measure. However, it is the case when the supports of ν n are uniformly bounded.

One of the ideas is to compare the rank of π * (L ⊗n ) to the maximal value of its Harder-Narasimhan polygon, which coincides with the integral of x + with respect to the corresponding probability measure, multiplied by its rank.

Shortly after the first version of this article had been written, R. Lazarsfeld kindly communicated to the author Wolfe's Ph.D thesis. We observe that the idea of comparison mentioned above is quite similar to a result of Wolfe. In fact, for any non-zero vector bundle E on C, Wolfe has compared the rank of H 0 (C, E) to partial sums of rk H 0 (C, sq i E), where sq i E is the i th subquotient of the Harder-Narasimhan filtration of E. In view of some basic facts about vector bundles on C resumed in Lemma 2.1, Wolfe's result is more or less equivalent to Proposition 2.2 infra.

The more delicate part of the theorem is the convergence of dilated probability measures associated to direct images, which follows from a general convergence result on filtered graded algebra, established in a previous work [START_REF]Positive degree and arithmetic bigness[END_REF] of the author (see also [START_REF] Chen | Convergence des polygones de Harder-Narasimhan[END_REF]).

Wolfe has studied in his thesis [START_REF] Wolfe | Asymptotic invariants of graded systems of ideals and linear systems on projective bundles[END_REF] (see also [START_REF]Asymptotic invariants of line bundles[END_REF] page 9), by using his comparison result, the volume function on projective bundles over a curve. Let E be a nonzero vector bundle on C. One uses the symbol P(E) to denote the C-scheme which represents the functor (5) In this article, we shall apply Theorem 1.1 to determine the volume function on P(E). It suffices to compute explicitly the limit measure ν OE (1) , which relies on the computation of the Harder-Narasimhan filtration of S n E. Here we calculate firstly that of E ⊗n , which is invariant by the action of the symmetric group S n , thanks to the uniqueness of Harder-Narasimhan filtration. We then pass to the quotient by the action of S n to obtain the Harder-Narasimhan filtration of S n E. We shall actually establish the following result: Theorem 1.2. -Let r be the rank of E. Assume that the Harder-Narasimhan filtration of E is as [START_REF] Boucksom | Differentiability of volumes of divisors and a problem of Teissier[END_REF] and that the successive slopes of E are as in [START_REF] Chen | Convergence des polygones de Harder-Narasimhan[END_REF]. Let s = (s 1 , • • • , s r ) be a vector in R r such that the value µ i appears exactly rk(E i /E i+1 ) times in its coordinates. Let ∆ ⊂ R r be the simplex defined as

Scheme/C -→ Set (p : X → C) -→
{(x 1 , • • • , x r ) | 0 ≤ x j ≤ 1, x 1 + • • • + x r = 1}
and η be the Lebesgue measure on ∆ normalized such that η(∆) = 1. Then one has

ν π OE (1) = ϕ s * η, where ϕ s : ∆ → R sends (x 1 , • • • , x r ) to s 1 x 1 + • • • + s r x r .
As a corollary of Theorems 1.1 and 1.2, we compute the volume of an arbitrary big line bundle on P(E):

Corollary 1.3.
-Keep the notation of Theorem 1.2. Let m ≥ 1 be an integer and M be a line bundle of degree c on C, then

(6) vol(O E (m) ⊗ π * M ) = rm r x + c/m + ϕ s * η(dx).
where y + := max{y, 0} for any y ∈ R.

Wolfe computed in his thesis the Harder-Narasimhan filtration of symmetric powers of E by using a more direct argument. He also expressed the volume vol(O E (m) ⊗ π * M ) as an integral on the simplex ∆. The result of Wolfe is actually equivalent to the formula (19). This enabled him to prove that the volume function is piecewise polynomial on N 1 (P(E)). Here we propose a reformulation (20) of ν S n E , which leads to a simple form of the volume function [START_REF] Ein | Popa -Restricted volumes and base loci of linear series[END_REF]. This permits us to recover Wolfe's result, and furthermore, to prove that on each sector, the volume function is a homogeneous polynomial of total degree rk(E) on m and c, and the degree of c does not exceed 3.

The article is organized as follows: in the second section, we introduce the notion of positive degree for vector bundles on C, and then prove that the volume function equals to the limit of normalized positive degree, which permits to establish Theorem 1.1. In the third section, we compute the Harder-Narasimhan filtrations of tensor powers and symmetric powers of a non-zero vector bundle on C, and then prove Theorem 1.2 and Corollary 1.3. Finally in the fourth section, we show that Corollary 1.3 permits to recover and slightly refine Wolfe's result on polynomial representation of the volume function.

Acknowledgement:-The author is grateful to R. Lazarsfeld for having communicated him Wolfe's thesis. During the writing of this article, the author has benefited from discussions with R. Berman and S. Boucksom to whom the author would like express his gratitude.

Volume function as limit of positive degrees

We reminder that all results in this section are valid in any characteristic.

2.1. Some reminders on vector bundles. -If E is a vector bundle on C, we denote respectively by h 0 (E) and h 1 (E) the rank of H 0 (C, E) and

H 1 (C, E) over k. By Serre duality, h 1 (E) = h 0 (E ∨ ⊗ ω C ). Recall that the Riemann-Roch theorem predicts (7) h 0 (E) -h 1 (E) = deg(E) + rk(E)(1 -g).
This implies in particular that the degree of ω C is 2(g -1). Suppose that E is nonzero. The slope of E is defined as the quotient deg(E)/ rk(E), denoted by µ(E), and the maximal slope µ max (E) is the maximal value of the slopes of all non-zero subbundles of E. By definition one has the inequality µ(E) ≤ µ max (E). We say that E is semistable if the equality µ(E) = µ max (E) holds. This condition is also equivalent to the equality µ(E) = µ min (E), where µ min (E) is the minimal value of slopes of all non-zero locally free quotient of E, called the minimal slope of E. As µ(E ∨ ) = -µ(E) and µ max (E ∨ ) = -µ min (E), we obtain that the semistability of E is equivalent to that of E ∨ . Denote by b(C) the positive integer

(8) {deg(L) | L ∈ Pic(C), L is ample}.
By definition, the degree of a line bundle on C is always a multiple of b(C).

We recall in the following some basic facts about vector bundles on C.

Lemma 2.1.

-Let E be a non-zero vector bundle on C.

1) If µ max (E) < 0, then h 0 (E) = 0. 2) If µ min (E) > 2g -2, then h 0 (E) = deg(E) + rk(E)(1 -g). 3) If µ min (E) ≥ 0, then |h 0 (E) -deg(E)| ≤ rk(E)(g + b(C)).
Proof. -1) If h 0 (E) = 0, then there is an injective homomorphism from

O C to E, therefore 0 = µ(O C ) ≤ µ max (E). 2) Since µ min (E) > 2g -2, one has µ max (E ∨ ⊗ ω C ) = deg(ω C ) -µ min (E) < 0. After 1), h 1 (E) = h 0 (E ∨ ⊗ ω C ) = 0. So the Riemann-Roch formula implies h 0 (E) = deg(E) + rk(E)(1 -g).
3) If g = 0, then, by 2), h 0 (E) = deg(E) + rk(E), so

|h 0 (E) -deg(E)| = rk(E) ≤ b(C) rk E.
Assume in the following that g ≥ 1. Let L be an ample invertible

O C -module of degree b(C) and let a = 2g-2 b(C) + 1. Then the inequalities 2g -2 < deg(L ⊗a ) ≤ 2g -2 + b(C) hold. As µ min (E ⊗ L ⊗a ) = µ min (E) + deg(L ⊗a ) > 2g -2, we obtain h 0 (E) ≤ h 0 (E ⊗ L ⊗a ) = deg(E ⊗ L ⊗a ) + rk(E)(1 -g) ≤ deg(E) + rk(E)(g -1 + b(C)).
On the other hand,

h 0 (E) = h 1 (E) + deg(E) + rk(E)(1 -g) ≥ deg(E) + rk(E)(1 -g). Therefore, |h 0 (E) -deg(E)| ≤ rk(E)(g -1 + b(C)).
2.2. Positive degree and rank of global section space. -Let E be a non-zero vector bundle on C and r be its rank. We introduce the notion of positive degree of E, which is the maximal value of the Harder-Narasimhan polygon of E. We then show that this value approximates h 0 (E).

Recall that the Harder-Narasimhan polygon P E is by definition the concave function defined on [0, r] whose graph is the convex hull of points of the form (rk F, deg(F )), where F runs over all subbundles of E. Denote by deg + (E) the integer max x∈[0,r] P E (x), called the positive degree of E.

The Harder-Narasimhan polygon can be determined from the Harder-Narasimhan flag of E, which is the only flag ( 9)

E = E 0 E 1 • • • E i E i+1 • • • E d = 0
such that the sub-quotients E i /E i+1 are semistable and satisfies

µ(E 0 /E 1 ) < µ(E 1 /E 2 ) < • • • < µ(E d-1 /E d ).
In fact, the vertices of the polygon P E are just (rk

(E i ), deg(E i )).
The proposition below compares h 0 (E) and deg + (E).

Proposition 2.2. -The following inequality holds:

(10) |h 0 (E) -deg + (E)| ≤ rk(E)(g + b(C)).
Proof. -Let the Harder-Narasimhan flag of E be as in [START_REF] Fujita | Approximating Zariski decomposition of big line bundles[END_REF]. For any integer i,

0 ≤ i ≤ d -1, let µ i = µ(E i /E i+1 ). Let j be the first index in {0, • • • , d -1} such that µ j ≥ 0 (if such index does not exist, let j = d).
By definition, the positive degree deg + (E) coincides with deg(E j ). If j > 0, then µ max (E/E j ) = α j-1 < 0, so Lemma 2.1 1) predicts that h 0 (E/E j ) = 0; otherwise E = E j and we still have h 0 (E/E j ) = 0. Hence h 0 (E) = h 0 (E j ). If j = n, then h 0 (E j ) = 0 = deg + (E); otherwise µ min (E j ) = α j ≥ 0, and by Lemma 2.1 3),

|h 0 (E) -deg + (E)| = |h 0 (E j ) -deg(E j )| ≤ rk(E j )(g + b(C)) ≤ rk(E)(g + b(C)).
We define the positive slope of E to be the quotient µ + (E) := deg + (E)/ rk(E). By definition max(µ max (E), 0) ≥ µ + (E) ≥ 0.

2.3. Volume function and positive degree of direct image. -Let X be an integral projective scheme of dimension r over Spec k and L is a line bundle on X. Assume that π : X → C is a flat k-morphism. Denote by K the field of all rational functions on C. Then X K is an integral projective scheme of dimension r -1 over Spec K.

Proposition 2.3. -The equality [START_REF] Lazarsfeld | Mustat ¸ǎ -Convex bodies associated to linear series[END_REF] vol(L) = lim sup

n→+∞ deg + (π * (L ⊗n )) n r /r! holds. Furthermore, if L is big, then also is L K .
Proof.

-After Proposition 2.2, 

| deg + (π * (L ⊗n )) -rk k H 0 (X, L ⊗n )| ≤ rk K H 0 (X K , L ⊗n K )(4g + 2b(C)). Since rk K H 0 (X K , L ⊗n K ) ≪ n r-1 ,
rk(π * (L ⊗n )) n r-1 /r! > 0. Therefore L K is big.
The Fujita's approximation theorem (the Fujita's approximation theorem in positive characteristic case has been proved by Takagi [START_REF] Takagi | Fujita's approximation theorem in positive characteristics[END_REF]) implies that the volume function is in fact a limit. More precisely, one has [START_REF] Nakayama | Zariski-decomposition and abundance[END_REF] vol(L) = lim

n→∞ rk k H 0 (X, L ⊗n ) n r /r! .
Furthermore, (13) applied on

L K implies vol(L K ) = lim n→∞ rk K H 0 (X K , L K ) n r-1 /(r -1)! = lim n→∞ rk(π * (L ⊗n )) n r-1 /(r -1)! .
Therefore we obtain the following equalities:

Corollary 2.4. -The following equalities hold:

vol(L) = lim n→∞ rk k H 0 (X, L ⊗n ) n r /r! = lim n→∞ deg + (π * (L ⊗n )) n r /r! = rvol(L K ) lim n→∞ µ + (π * (L ⊗n )) n .
2.4. Proof of Theorem 1.1. -The assertion 1) is a direct consequence of [START_REF]Positive degree and arithmetic bigness[END_REF] Theorem 4.2. In the following, we shall prove the second assertion. From Corollary 2.4, we obtain

vol(L) = dim(X) vol(L K ) lim n→∞ µ + (π * (L ⊗n )) n ,
where we reminder that µ + (π * (L ⊗n )) was defined as the maximal value of the (normalized) Harder-Narasimhan polygon of π * (L ⊗n ). The assertion 2) then follows from the following lemma.

Lemma 2.5.

-Let E be a non-zero vector bundle of rank r on C. The following equality holds:

(14) µ + (E) = x + ν E (dx),
where the probability measure was defined in (4).

Proof. -Let r be the rank of E,

E = E 0 E 1 • • • E d = 0
be the Harder-Narasimhan flag of E and µ 0 < • • • < µ d-1 be its successive slopes. For any i ∈ {0, • • • , d -1}, let r i be the rank of

E i /E i+1 . Assume that j is the first index in {0, • • • , d -1} such that µ j ≥ 0 (if such index does not exist, let j = d). Then deg + (E) = deg(E j ) = j i=0 r i µ i . Therefore, µ + (E) = j i=0 ri r µ i . Since µ E = d-1 i=0
ri r δ µi , the equality ( 14) holds.

By the above lemma, one has

vol(L) = dim(X) vol(L K ) lim n→∞ 1 n x + ν π * (L ⊗n ) (dx) = dim(X) vol(L K ) lim n→∞ x + T 1 n ν π * (L ⊗n ) (dx).
From the first part of the theorem, the sequence of measures (T 1 n ν π * (L ⊗n ) ) n≥1 converges vaguely to ν π L . Furthermore, [START_REF]Positive degree and arithmetic bigness[END_REF] Proposition 4.1 1) shows that the supports of measures (T 1 n ν π * (L ⊗n ) ) n≥1 are uniformly bounded from above. Therefore we obtain vol(L) = dim(X) vol(L K ) x + ν π L (dx), which proves the theorem.

Remark 2.6. -1) By definition, for any integer n ≥ 1, ν π L ⊗n = T n ν π L . Hence we recover vol(L) = n dim X vol(L).

2) Let M be a line bundle of degree a on C, and E is a non-zero vector bundle on C whose Harder-Narasimhan filtration is (2) and whose successive slopes are [START_REF] Chen | Convergence des polygones de Harder-Narasimhan[END_REF]. Assume that M is a line bundle of degree a on E. Then the Harder-Narasimhan flag of

E ⊗ M is just E ⊗ M = E 0 ⊗ M E 1 ⊗ M • • • E d ⊗ M = 0,
and its successive slopes are µ i + a, i ∈ {0, • • • , d -1}. Therefore, one has ν E⊗M = τ a ν E , where for any Borel probability measure ν on R, τ a ν is defined as

f (x)τ a ν(dx) = f (x + a)ν(dx).
One verifies that T ε τ a ν = τ aε T ε ν. Thus we obtain that, for any integer n ≥ 1,

π * ((L ⊗ π * M ) ⊗n ) = π * (L ⊗n ) ⊗ M ⊗n . Therefore, one has ν π * ((L⊗π * M) ⊗n ) = τ na ν π * (L ⊗n ) , which implies that ν π L⊗π * M = τ a ν π L . In particular, vol(L ⊗ π * M ) = dim(X) vol(L K ) (x + a) + ν π L (dx).

Harder-Narasimhan filtrations of tensor powers

Let E be a non-zero vector bundle on C whose Harder-Narasimhan filtration is

(15) E = E 0 E 1 • • • E d = 0
and whose successive slopes are µ i = µ(E i /E i+1 ). For any i ∈ {0, • • • , d}, let sq i (E) be the sub-quotient E i /E i+1 . In this section, we shall determine, for any integer n ≥ 1, the Harder-Narasimhan filtration of E ⊗n and that of S n E. Here we should suppose that the characteristic of the ground field k is zero, so that the following results of Ramanan and Ramanathan [START_REF] Ramanan | Ramanathan -Some remarks on the instability flag[END_REF] hold:

1) The tensor product of two semistable vector bundles on C is still semistable.

2) Any symmetric power of a semistable vector bundle E on C is semistable. Furthermore, one has µ(S n E) = nµ(E). 3) If E 1 and E 2 are two non-zero vector bundles on C, then

µ max (E 1 ⊗ E 2 ) = µ max (E 1 ) + µ max (E 2 ), µ min (E 1 ⊗ E 2 ) = µ min (E 1 ) + µ min (E 2 ). 3.1. The case of E ⊗n . -Denote by Θ the indices set {0, • • • , d-1} n . We introduce a partial order "≤" on Θ such that (j 1 , • • • , j n ) ≤ (l 1 , • • • , l n ) if and only if j 1 ≤ l 1 , • • • , j n ≤ l n .
We say that a subset

A of Θ is saturated if α ∈ A, β ∈ Θ and β ≥ α =⇒ β ∈ A.
Assume that A is an arbitrary subset of Θ. Then {β | ∃α ∈ A, β ≥ α} is the smallest saturated subset of Θ containing A. We denote it by A.

For any α = (a 1 , • • • , a n ) ∈ Θ, denote by E α the tensor product E a1 ⊗ • • • ⊗ E an and by sq α (E) the tensor product of sub-quotients sq a1 (E) ⊗ • • • ⊗ sq an (E). Since each sub-quotient sq i (E) is semistable, also is the tensor product sq α (E). For any non-empty subset A of Θ, let E A := α∈A E α . Write by convention E ∅ = 0. In the following are some basic properties of vector bundles E A :

1) E A = E A . 2) If A 1 ⊂ A 2 ⊂ Θ, then E A1 ⊂ E A2 . Proposition 3.1.
-Assume that A ⊂ Θ is non-empty and saturated, and that A ′′ is a subset of A consisting of maximal elements. Then A ′ := A \ A ′′ is also saturated. Furthermore, one has an isomorphism

(16) E A /E A ′ ∼ = α∈A ′′ sq α (E).
Proof. -Locally for the Zariski topology, the flag (15) is split. Therefore a classical argument in linear algebra leads locally to a natural isomorphism of the form [START_REF] Wolfe | Asymptotic invariants of graded systems of ideals and linear systems on projective bundles[END_REF]. These natural isomorphisms do not depend on the choice of the splitting and therefore glue together into a global isomorphism.

For any α = (a 1 , • • • , a n ) ∈ Θ, let µ α be the sum µ a1 +• • •+µ an . With this notation, the slope of sq α (E) is just µ α . Denote by Σ n the set of real numbers of the form µ α where α takes through vectors in Θ. From the inequalities µ 0 < µ 1 < • • • < µ d-1 we obtain that α ≤ β implies µ α ≤ µ β , and α β implies µ α < µ β . Proposition 3.2. -The set Σ n identifies with that of successive slopes of E ⊗n . Furthermore, suppose that the elements in Σ n are ordered as

v 0 < v 1 < • • • < v m-1 , then E A0 E A1 • • • E Am = 0 is the Harder-Narasimhan filtration of E ⊗n , where A j = {α | µ α ≥ v j } for j ∈ {0, • • • , m -1}, and A m = ∅.
Proof. -By definition of Harder-Narasimhan filtration, it suffices to prove that, for

each j ∈ {0, • • • , m -1}, the sub-quotient E Aj /E Aj+1 is semistable of slope v j . We have A j \ A j+1 = {α | µ α = v j }. Moreover, if µ α = v j , then α is a maximal element of A j . Therefore, Proposition 3.1 implies that E Aj /E Aj+1 ∼ = α∈Aj \Aj+1 sq α (E)
is semi-stable of slope v j .

Remark 3.3. -In [START_REF] Chen | Convergence des polygones de Harder-Narasimhan[END_REF], the author has introduced another interpretation of Harder-Narasimhan filtration: one defines, for any t ∈ R, (17)

F HN t := 0 =F ⊂E µmin(F )≥t F.
This is a decreasing R-filtration of E. The subbundles of E appearing in the Rfiltration (17) are just E i , i ∈ {0, • • • , d}. Furthermore, the measure ν E defined in (4) coincides with the first order derivative (in the sense of distribution) of the function t →rk F HN t E. Proposition 3.2 shows that the R-filtration of E ⊗n is just the n th tensor power of the R-filtration of E. More precisely, one has (18)

F HN t E ⊗n = t1+•••+tn=t F HN t1 E ⊗ • • • ⊗ F HN tn E,
and therefore ν E ⊗n = ν * n E , where * denotes the convolution of Borel probability measures on R. Proof. -As pointed out above, each vector bundle E Aj is invariant by the action of S n , and S Aj E is the quotient of E Aj by the action. Therefore, we obtain that

S Aj E S Aj+1 E ∼ = [α]∈(Aj \Aj+1)/Sn sq [α] (E). Since sq [α] (E) is semi-stable of slope µ α , S Aj E/S Aj+1 E is semi-stable of slope v j .
The proposition is then proved.

In the following, we compute the measure ν S n E . Take an arbitrary class [α] in Θ which corresponds to the partition a = (a i ) d-1 i=0 of n. The value µ α (which does not depend on the representing element α) equals

d-1 i=0 a i µ i . For each i ∈ {0, • • • , d -1}, let r i be the rank of sq i (E). The rank of sq [α] (E) is just r a := d-1 i=0 a i + r i -1 r i -1 .
We then obtain that

R j := rk(S Aj E/S Aj+1 E) = a=(ai) d-1 i=0 ∈N d a0+•••+a d-1 =n a0µ0+•••+a d-1 µ d-1 =vj r a .
By definition, one has

(19) ν S n E = 1 rk S n E m-1 j=0 R j δ vj ,
where δ vj is the Dirac measure concentrated at v j .

The formula (19) gives an explicit description of the probability measure ν S n E . However, it seems that in the case where the r i

(i ∈ {0, • • • , d -1}) are different, the values of R j , j ∈ {0, • • • , m -1}
are rather tedious to calculate. In the following we propose another explicit form of ν S n E which is adapted to the proof of Theorem 1.2.

Proposition 3.5. -Let r = r 0 + • • • + r d-1 and s = (s 1 , • • • , s r )
be a vector in R n such that the value µ i appears exactly r i times in the coordinates on s. Then

(20) ν S n E = 1 rk S n E b=(b l ) r l=1 ∈N r b1+•••+br =n δ b1s1+•••+brsr .
Proof. -The only thing to verify is that, for any v ∈ R,

a=(ai) d-1 i=0 ∈N d a0+•••+a d-1 =n a0µ0+•••+a d-1 µ d-1 =v r a = b=(b l ) r l=1 ∈N r b1+•••+br=n b1s1+•••+br sr =v 1.
This relies on the fact that ai+ri-1 ri-1 equals the number of partitions of a i into sum of r i positive integers. OE (1) coincides with the vague limit of measures T 1 n ν S n E when n → ∞. By Proposition 3.5,

T 1 n ν S n E = 1 rk S n E b=(b l ) r l=1 ∈ 1 n N r b1+•••+br =1 δ b1d1+•••+brdr = ϕ s * 1 rk S n E b∈ 1 n N r ∩∆ δ b ,
where in the last bracket is the measure of the n th Riemann sum on ∆. Therefore, (T 

(m) ⊗ π * M ) = r vol(O E (m) K ) (x + c) + ν OE(m) π (dx) = rm r-1 (mx + c) + ν π OE (1) (dx) = rm r (x + c/m) + ϕ s * η(dx),
which proves Corollary 1.3.

Polynomial representation of the volume function

In this section, we show that Corollary 1.3 permits to get the subdivision of the Néron-Severi group N 1 (P(E)) into sectors such that the volume function is polynomial on each sector. We shall keep the notation introduced in Theorem 1.2 and Corollary 1.3. Note that the value in (6) depends only on m and c, we denote it by Φ(m, c).

Firstly, let us discuss some degenerate cases. Assume that E is semistable, i.e., d = 1. Then the limit measure ν π O(E) is the Dirac measure concentrated at µ(E). (µ 3 iµ 3 i-1 )a i m r + 1 2 (µ 2 iµ 2 i-1 )(b i m r + a i cm r-1 ) + b i (µ iµ i-1 )cm r-1

+ r 1 3 a j (µ 3 j m rc 3 m r-3 ) + 1 2 (b j m + a j c)(µ 2 j m r-1c 2 m r-3 ) + cb j (µ j m r-1cm r-2 ) , which is a polynomial in m and c. Note that the degree of c is at most 3. (µ 3 i -µ 3 i-1 )a i m r + 1 2 (µ 2 i -µ 2 i-1 )(b i m r +a i cm r-1 )+b i (µ i -µ i-1 )cm r-1 has degree 1 in c.

3. 2 .

 2 The case of S n E. -The symmetric group S n acts on E ⊗n by permuting factors. The n th symmetric power of E is defined as the quotient of E ⊗n by the action of S n . Let us keep the notation of § 3.1. The group S n acts naturally on Θ = {0, • • • , d -1} n . Denote by Θ the quotient space Θ/S n . Each class [α] in Θ corresponds bijectively to a partition of n into sum of d non-negative integers (a i ) d-1 i=0 . For such a class [α], we use the symbol sq [α] (E) to denote the tensor product d-1 i=0 S ai sq i (E). One observes that the group S n acts naturally on β∈[α] sq β (E) and its quotient space by the action of S n is just sq [α] (E). Moreover, sq [α] (E) is also semi-stable of slope µ α . For any A ⊂ Θ which is invariant by the action of S n , denote by S A E the image of E A in S n E. It is the quotient of E A by the action of S n . Let A j ⊂ Θ, j ∈ {0, • • • , m} be as in Proposition 3.2. By the uniqueness of Harder-Narasimhan filtration, each A j is invariant by the action of S n . Proposition 3.4. -The set of successive slopes of S n E is also Σ n . Furthermore, S A0 E S A1 E • • • S Am E = 0 is the Harder-Narasimhan filtration of S n E.

3. 3 .

 3 Proofs of Theorem 1.2 and Corollary 1.3. -By definition, ν π

2

 2 Therefore, Corollary 1.3 implies Φ(m, c) = rm r (µ(E) + c/m) + = deg(E)m r + crm r-1 , if c ≥ -µ(E)m, 0, else. If r = d = 2, then the measure ϕ s * η is the uniform distribution on the interval [µ 0 , µ 1 ]. In this caseΦ(m, c) (µ 1 + µ 0 ) + 2cm, c > -mµ 0 , (mµ 1 + c) 2 /(µ 1µ 0 ), -mµ 1 ≤ c ≤ mµ 0 , 0, c < -mµ 1 ..In the following, we always suppose r ≥ 3 and d ≥ 2. Without loss of generality, we assume that the coordinates of s are ordered such thats 1 ≤ • • • ≤ s r . For any i ∈ {0, • • • , d -1}, let j i = rk(E/E i+1 ). Let j -1 = 0. Note that s l = µ i if and only if l ∈]j i-1 , j i ]. For any real number t ∈ [d 1 , d r ], let ∆ t be the intersection of ∆ and the hyperplane {(x 1 , • • • , x r ) | s 1 x 1 + • • • + s r x r = t}.Denote by v t the density of ϕ s * η with respect to the Lebesgue measure. Since for anyi ∈ {1, • • • , d -1}, ∆ t (t ∈ [µ i-1 , µ i ]) are similar, the function v t is affine on [µ i-1 , µ i ], which means that, there exists real numbers a i , b i (i ∈ {1, • • • , d-1}), such that v t = a i t+b i on [µ i-1 , µ i ]. Thus we obtain Φ(m, c) = rm r c/m) + (a i t + b i ) dt. Therefore, Φ(m, c) = 0 if c ≤ -µ d-1 m. If c ∈ [-µ j m, -µ j-1 m] (j ∈ {1, • • • , d -1}), one has Φ(m, c) = r

  Finally, when c > -µ 0 m, then Φ(m, c) = r