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Abstract. We present a method for estimating monthly annual burned area for the years 2001-2004 to vary between
burned area globally at°lspatial resolution using Terra 2.97 million and 3.74 million krf, with the maximum occur-
MODIS data and ancillary vegetation cover information. Us- ring in 2001. These coarse-resolution burned area estimates
ing regression trees constructed for 14 different global re-may serve as a useful interim product until long-term burned
gions, MODIS active fire observations were calibrated toarea data sets from multiple sensors and retrieval approaches
burned area estimates derived from 500-m MODIS imagerybecome available.

based on the assumption that burned area is proportional
to counts of fire pixels. Unlike earlier methods, we al-
low the constant of proportionality to vary as a function of 1
tree and herbaceous vegetation cover, and the mean size of

mo_nthly cumulati_ve fire-p_ixel clusters. In areas undergoingresearch over the past 25 years has led to increased recog-
active deforestation, we implemented a subsequent COreGsition of the important role biomass burning plays in the
t|onl based on tree cover_lnformauo_n and a simple measurg|ohal carbon cycle and the production of trace gas and
of fire persistence. Regions showing good agreement beé;qroso| emissions. Consequently, Earth-system modeling ef-
tween predicted and observed burned area included Boreghs now often include fire-related information. In particu-
Asia, Central Asia, Europe, and Temperate North Amer-|5. there is a strong need for spatially and temporally explicit
ica, where the estimates produced by the regression tre€sstimates of the quantity of biomass consumed through com-
were relatively accurate _and precise. Poores_t agreement Was,stion Gcholes et a).1996. Typically such estimates are
fqund for southern-hemisphere South Amerlca, where P'®hased on a simple relationship of the form (eQgiler and
dlcte_d vaIu_es_ of burn_ed area are both maccurate_ and IMCrutzen 198Q Hao et al, 199Q Pereira et al.1999

precise; this is most likely a consequence of multiple fac-

tors that include extremely persistent cloud cover, and loweryf = ABc, (1)
quality of the 500-m burned area maps used for calibration.

Application of our approach to the nine remaining regionsWhereM is the mass of vegetation combusted within a given
yielded comparatively accurate, but less precise, estimateime interval,A is the area burned during the same time in-
of monthly burned area. We applied the regional regresierval, B is the biomass density, andis a factor describ-
sion trees to the entire archive of Terra MODIS fire dataing the completeness of combustion. Although all of the
to produce a monthly global burned area data set spannintgrms appearing on the right hand side of Elg.gre highly

late 2000 through mid-2005. Annual totals derived from this variable, burned area is particularly difficult to estimate be-
approach showed good agreement with independent annugpuse of the potentially high spatial and interannual vari-
estimates available for nine Canadian provinces, the Unitedbility in this quantity at continental to global scales. It
States, and Russia. With our data set we estimate the globé therefore especially important that accurate, spatially ex-
plicit, multi-year estimates of burned area are available when
Correspondence td:. Giglio relying on a relationship having the form of Edl)( At
(giglio@hades.gsfc.nasa.gov) present, however, there is a dearth of such data. While a
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958 L. Giglio et al.: Global estimation of burned area

number of satellite-based global burned area products arbased monthly burned area estimates for a study region in
currently under development, specifically GLOBSCAR-( Madagascar.Pereira et al(1999 report a poor linear cor-
mon et al, 2004, GBA2000 {Tansey et a).2004, and the  relation ¢=0.44) between daytime AVHRR fire counts and
MODIS burned area produciistice et aJ.2002 Roy et al, burned area estimates in a°2By 10° region encompass-
2002, none are yet available on a multi-year basis. ing the Central African Republic over a 25-day time period.

Unlike burned area data, long-term observations of ac-Kasischke et al(2003 examined the relationship between
tive fires made with spaceborne sensors are readily availabl&ATSR fire counts and area burned in Alaska and Canada from
Representative multi-year examples include the Along-Track1l997 to 2002, and in Russia during 1998. They reported sig-
Scanning Radiometer (ATSR) nighttime fire produtifio nificant linear correlations between fire counts and burned
and Rosaz1999, the Visible and Infrared Scanner (VIRS) area for Canada and Russia, but in the former region found
monthly fire product Giglio et al, 20033, the Moderate that the slope (i.e., the effective area burned per fire pixel) for
Resolution Imaging Spectroradiometer (MODIS) global fire different years varied by up to a factor of about two. The au-
product (ustice et aJ.2002, and the Geostationary Oper- thors caution against scaling fire counts to area burned since
ational Environmental Satellite (GOES) Wildfire Automated rates of fire detection, cloud obscuration, and fire spread are
Biomass Burning Algorithm (WFABBA) fire product Prins ~ not constant across years.
et al, 1998. At their most basic level, active fire products  Variations of Eq. 2) in which « assumes some spatial de-
contain information about the location and timing of fires that pendence have also been explor@dholes et a1996 were
are burning at the time of the satellite overpass, usually in theable to relate the area burned in southern Africa to monthly
form of swath-based fire masks or as lists of fire pixel loca-0.5° gridded AVHRR fire counts using ancillary Normal-
tions and dates. These observations are in turn often sunized Difference Vegetation Index (NDVI) data such that
marized at coarse spatial resolutions (e.g.; 35°) over  «(i)=f[NDVI(i)], wheref is a linearly decreasing function
daily or monthly time periods, yielding data products con- of the mean annual NDVI in grid cell In other words, in-
taining gridded counts of active fire pixels. Although these creasing greenness reduces the effective burned area per fire
“fire count” products capture many aspects of the spatial dispixel. Van der Werf et al(2003 related burned area to VIRS
tribution and seasonality of burning, it is difficult to relate active fire counts using fractional tree cover at a spatial res-
them to actual area burned due to inadequate temporal sanelution of 1° such thai (i)=f[T (i)], wheref is a linearly
pling, variability in fuel conditions and cloud cover, differ- decreasing function of the mean fractional tree cdven
ences in fire behavior, and issues related to spatial resolutiogrid cell i. Here, increasing tree cover slows the fire spread
(Scholes et al.1996 Eva and Lambin1998 Kasischke et rate and reduces the effective burned area per fire pixel. The
al., 2003. two approaches are closely related since NDVI and tree cover

Despite these difficulties, the lack of long-term, spatially- are positively correlated.
explicit global burned area data has meant that active fire ob- Active fire observations have also been used to spatially
servations must often be used as a proxy for area burned (e.cand temporally allocate climatological inventories of com-
Setzer and Pereird991 Scholes et al.1996 Stroppiana et  busted biomass and pyrogenic trace gas emissiBeisultz
al., 200Q Potter et al.2001; van der Werf et a).2003 2004 2002 Duncan et al.2003 Generoso et 312003 Heald et al,
Langmann and Hei2004. Perhaps the most common ap- 2003 Streets et al2003. These methods are fundamentally
proach has been to assume that the area burned is propaelated to Eq. %) in that they assume the quantity of inter-
tional to simple counts of fire pixels, i.e. est is proportional to counts of fire pixels. While our interest

. . here is confined to burned area, much of the subsequent dis-
A(i,t) = aNi(i, 1), (2) T . ;

cussion is applicable to allocation-based approaches as well.
whereA is the area burned within a particular spatial region In this paper, we present a method for calibrating active
labeled by the index — typically a grid cell — during a fixed fire observations made with the Terra MODIS sensor to pro-
time period labeled by the index N; is the number of fire  duce global, coarse resolution estimates of burned area on a
pixels observed within the same region during the same timemonthly basis. Our approach draws upon two types of infor-
period, andx is a constant representing the effective burnedmation: the sensitivity o& to fractional tree and herbaceous
area per fire pixel. cover (extending the approach usedvan der Werf et aJ.

The reported accuracies of the burned area estimates ol2003, and the sensitivity of to fire-pixel cluster size. These
tained with Eq. 2) vary greatly and are dependent upon, components were combined using regression trees that were
among other things, the spatial scale at which the relationapplied to large geographic regions. In recognizing that pro-
ship is applied. Eva and Lambin(1998 found almost no  duction of accurate burned area maps suitable for calibration
correlation between AVHRR fire counts and burned area inis problematic in closed canopy tropical forest, particularly
the Central African Republic at a spatial resolution of 15 km in areas of active deforestation, we implement a subsequent
over a time interval of about one montiiRandriambelo et refinement in which a correction is applied to the burned area
al. (1998, however, report a good qualitative agreement be-predicted with the regression trees using tree cover data and
tween one year of monthly AVHRR fire counts and ground- a simple measure of fire persistence.
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Fig. 1. Aqua MODIS 500-m false color imagery of northern India (left) on 23 October 2004 (08:20 UTC) and Yakutsk, Russia (right) on

19 August 2002 (03:00 UTC). Outlines of 1-km active fire pixels are shown in red. With this band combinatipm(2ngar-infrared, red)

dense vegetation appears green, heavy smoke appears light blue, burn scars appear dark brown, water appears black, and non-cirrus clou
appear white. The scale (approximately 3820 km) is identical in both images. Note how larger Yakutsk burn scars are accompanied by
large clusters of adjacent fire pixels, while the small (but numerous) agricultural burns in India are characterized by much smaller clusters
of fire pixels and no visible burn scars. Images were produced within the MODIS Rapid Response System and appear courtesy of Jacque:
Descloitres.

The uncertainties associated with any calibration approactvegetation Continuous Fields (VCF) produdtafisen et aJ.
are likely to be comparatively large given the sampling issues2003 for all fire pixels within each grid cell; we averaged
mentioned above, but for some applications may still be tol-these to 1 spatial resolution as well. (We use the subscript
erable. Global models of the terrestrial carbon cycle, for ex-“f” as a reminder thaf;, H;, andB; are averages for fire pix-
ample, have only recently begun to include explicit treatmentels only, as opposed to averages over the entire land surface
of fire as a disturbance factor (e.gan der Werf et a].2003. encompassed by the grid cell.)
We expressly do not claim that an active-fire based method Using the locations of individual Collection 4 MODIS
can provide a universal substitute for burned area maps gerfire pixels at the nominal 1-km MODIS resolution (avail-
erated via direct observation of burn scars. Rather, in agreeable separately), we linked adjacent fire pixels within each
ment withSchultz(2002, we suggest that statistical coarse- 1° grid cell into clusters on a monthly basis. For each grid
resolution burned area estimates derived from MODIS activecell we then computed the monthly mean fire-pixel cluster
fire observations can serve as a useful interim product unsize, which we denote a5. We hypothesized that cluster-
til long-term burned area data sets become available. Morerelated information might improve the estimation of burned
over, it may be possible to use an active-fire calibration ap-area based on the empirical observation that larger clusters
proach with functional sensors pre-dating MODIS, offering of MODIS fire pixels tend to be associated with larger burn
the possibility of generating even longer-term global burnedscars (Fig1).
area data sets.

2.2 Burned area data

2 Data Burned area maps were produced using a prototype algo-
rithm that uses the 500-m MODIS atmospherically-corrected
2.1 Active fire data Level 2G surface reflectance produeefmote et al.2002),

the MODIS Level 3 daily active fire productdi(stice et aJ.
We used the Collection 4, version 4 Terra MODIS monthly 2002, and the MODIS Level 3 96-day Land Cover Prod-
Climate Modeling Grid (CMG) fire products at 0.Spa-  uct (Friedl et al, 2002. The algorithm, which is described
tial resolution (“MOD14CMH?"), from January 2001 through in the Appendix, identifies the date of burn, to the nearest
December 2004. The gridded monthly overpass-correctedlay, for pixels within individual MODIS Level 3 tilea/folfe
fire pixel counts were summed to &dorking spatial resolu- et al, 1998 at 500-m spatial resolution. Since these burn
tion for this study. The CMG product also contains the meanscar masks were to serve as truth for calibration of active fire
percent tree coverTf), percent herbaceous vegetation cover observations, we visually inspected each to ensure that no
(Hs), and percent bare ground;) from the global MODIS  obvious omission or commission errors were present. Often

www.atmos-chem-phys.net/6/957/2006/ Atmos. Chem. Phys., 699872006
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Fig. 2. Locations of MODIS calibration tiles used in this study. Numbers in eaChx10° tile indicate the number of months for which
500-m burned area masks were produced for that tile.

this required appealing to higher resolution 250-m MODIS and subsequently burned. Finally, persistent cloud covér (
imagery to verify the existence of smoke plumes and help remonth and longer) is common in rainforest, and this can lead
solve the boundaries of ambiguous burn scars. Manual corto significant errors of omission, particularly following veg-
rections were required in approximately five tiles, usually to etation regrowth. This issue will be addressed further in
add a burn scar that was undetected due to persistent clouslect.3.3.
cover. At present, validation of our 500-m burned area maps
has been limited to Russia through comparison with maps
generated manually from high resolution Landsat imagery3 Method
(Loboda and Csisza2004). Proper global validation would
require that a similar procedure be applied to representativ
sites over the entire globe. This is a very substantial under- - . : :
. As part of a preliminary analysis we examined the relation-
taking that has not yet been completed for any burned area, . . .
product. Ship between n_10_nth|y cqrrected Ter_ra fire |_0|er (_:ounts and
area burned within 14 different regions (Fig). using the
Selected calendar months were processed for selecteghodel in Eq. ). Results obtained from least squares fits to
MODIS tiles, yielding a total of 446 “tile-months” of burned  this model are summarized in Tal#leThere is clearly strong
area estimates between January 2001 and December 20Q4qgional variation in the effective area per fire pixe),(from
(Fig. 2). Tile locations were selected to provide a good sam-3 minimum of 0.29 krf/pixel in southern-hemisphere (SH)
pling of worldwide fire activity over multiple fire seasons, gguth America to a maximum of 6.6 Kipixel in Central
although erratic data availability ultimately produced an un- Asia, which is a factor of more than 20. We note that, with
even temporal sampling of the different tiles. The resulting e exception of the SH South America region, the corre-
burned area maps were aggregated tcsiatial resolution  |ation coefficients we obtained are substantially higher than
and monthly temporal resolution. those reported boschetti et al(2004 between ATSR fire
While we believe that commission and omission errors incounts and the GBA2000 and GLOBSCAR burned area data
our 500-m burned area maps are generally negligible comsets for the year 2000. There are at least five possible rea-
pared to the statistical variability inherent in modeling the sons for our higher correlation. First, out grid cells are
relationship between burned area and active fire pixels witHarger than the hexagonal grid cells usedBonschetti et al.
Eqg. @), we recognize that the quality of these maps is sub-(2004 by about a factor of four at the Equator, and by a
stantially lower in the closed canopy forests of South Amer-factor of two at boreal latitudes. The correlation between
ica and Equatorial Asia. A combination of three factors makemany spatial quantities tends to improve over larger areas
mapping of burned area problematic in this biome. First, sur{Eva and Lambin1998. Second, with the exception of Eu-
face burns are at least partially obscured by the tree canopyppe, the six geographic regions definedByschetti et al.
which can leave an insufficient post-burn, top-of-atmospherg2004 were much larger than the 14 geographic regions used
radiometric signal with which to detect the burn. Second,in our study. Our results show thatcan vary by as much as
substantial spectral overlap can occur between cleared (bwt factor of nearly seven within these larger regions. Third,
unburned) forest patches, and patches that have been cleartte larger MODIS swath yields a higher temporal sampling

&8-1 Preliminary analysis

Atmos. Chem. Phys., 6, 95944, 2006 www.atmos-chem-phys.net/6/957/2006/
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Table 1. Regions used within this study. Abbreviations refer to those used ir8Fig.

Abbrev. Short Name Comments

BONA Boreal North America Alaska and Canada.

TENA  Temperate North America Conterminous United States.
CEAM  Central America Mexico and Central America.

NHSA  Northern Hemisphere South America  Division with SHSA is at the Equator.
SHSA Southern Hemisphere South America  Division with NHSA is at the Equator.

EURO Europe Includes the Baltic States but excluding White Russia and the Ukraine.
MIDE Middle East Africa north of the Tropic of Cancer, and the Middle East plus Afghanistan.
NHAF  Northern Hemisphere Africa Africa between the Tropic of Cancer and the Equator.

SHAF Southern Hemisphere Africa

BOAS Boreal Asia Russia, excluding area south ¢f B%etween the Ukraine and Kazakhstan.
CEAS Central Asia Mongolia, China, Japan, and former USSR except Russia.

SEAS Southeast Asia Asia east of Afghanistan and south of China.

EQAS Equatorial Asia Malaysia, Indonesia, and Papua New Guinea.

AUST Australia Includes New Zealand.

Fig. 3. Map of the 14 regions used in this study. Abbreviations are explained in Table

rate, making it more likely that MODIS will “fill in” large We repeated the above analysis with fire pixel counts hav-
burned areas with active fire pixels, and leading to fewering an additional correction for cloud cover (data layers with
small burned areas for which no active fire pixels were de-and without this correction are present in the MODIS CMG
tected. (We will return to the issue of temporal sampling in fire products). The resulting correlation coefficients were al-
Sect.7.) Fourth, the “fill-in” effect might become more pro- most uniformly lower, most likely because the cloud correc-
nounced in those regions having a strong diurnal fire cycletion relies on assumptions that are frequently not met and
since fewer fires are likely to be burning at the time of the consequently has a tendency to overcorrect. We performed
nighttime ATSR overpass. Finally, smaller burns present inthe remainder of our investigation, therefore, with overpass-
the 500-m MODIS burned area maps might not be identi-corrected fire pixel counts lacking the additional cloud cor-
fied in the 1-km GBA2000 and GLOBSCAR data sets. Thisrection.

last factor contributes because, for pixels of a given size, the
minimum detectable size of an actively burning fire is much
smaller than the minimum detectable size of a burn scar (b
a factor of~1000). Mapping burn scars with larger pixels

will therefore yield more cases in which small clusters of found that in savanna regions decreased with increasing

active-fire pi_xels are not accompanied by an_observab le bur@ree cover, although the slope of the relationship varied sub-
scar, and will therefore reduce the correlation between thestantially between different savanna regions. A similar anal-

two variables (cf. Figl, left panel). ysis revealed a comparable link betweemnd herbaceous
cover, but withx increasing with increased herbaceous cover.

We next examined the effect of tree cover@nWe par-
titioned the observations for each region into 20% tree-cover
¥ntervals and fitted Eq.2) separately to each of the result-
ing subsets. Results for five regions are shown in &ig\Ve

www.atmos-chem-phys.net/6/957/2006/ Atmos. Chem. Phys., 699472006



962 L. Giglio et al.: Global estimation of burned area

Table 2. Correlation f) between predicted and observed burned
area within each region for linear regression (B &nd regression
tree approaches. The slope of the linear regressipar(d the total
number of non-zero observation§) are also shown. An observa-
tion consists of the corrected fire pixel counts, 500-m burned area,
mean VCF fraction for all fire pixels, and mean fire-pixel cluster
size within a single 1 grid cell for a specific month. Observations
having zero burned area and zero fire pixels (“zero-zero” observa-
tions) were not included in the analysis and are not reflected in the
tabulated values a¥. All correlations are highly significant with a
probability p<0.001.

VABREE —— — T T T
NH Africa — — —
SH Africa - - - -

6F SH South America —---—--- B
~ Boreal North America ------------
~ Southeast Asia —-—-—-—

< ~ Australia

Linear (Eq. @) Tree
Region o (kmZipixel)  r N r

Boreal North America 14 0.69 1018 0.85
Temperate North America 0.84 094 982 0.98
Central America 0.43 0.73 301 0.85
NH South America 1.0 0.78 352 0.85
SH South America 0.29 0.35 4034 0.56 0

Europe 31 091 225 0.95 0 20 40 60 80 100

Middle East 0.40 034 215 0.78 ; 0
NH Africa £y 086 910 080 Fractional Tree Cover (%)

SH Africa 2.9 0.60 1670 0.73 _ _ o
Boreal Asia 1.3 090 2104 0.94 Fig. 4. Effective burned area per Terra MODIS fire pixe) @s a

Central Asia 6.6 085 282 092 function of mean percent tree cover for six of the 14 regions con-
South Asia 2.9 075 531 0.83 sidered in this study.

Equatorial Asia 0.49 071 192 0.78
Australia 34 0.82 5563 0.89

Area Burned Per Fire Pixel (km?/pixel)

L L B A L A e e 4

(o¢]

m?/pixel)
\

This is not surprising given that, in most fire susceptible ar-
eas, woody-herbaceous gradients (rather than, say, woody- X 6
bare gradients) are more often the norm. The variatian in
with respect to bare cover was generally much weaker except
in Australia, where fires are common along gradients of bare
and herbaceous cover. In tropical forests (e.g., South Amer-
ica), there was no significant relationship betweeand tree
cover, and in boreal forestsslightly increased with increas-
ing tree cover.

We also examined how varied with respect to mean fire-
pixel cluster size. We partitioned the observations for each
region into different ranges of mean cluster size and fitted
Eqg. (2) to each of the resulting subsets. We found that, in
general, the effective burned area per fire pixel increased very
rapidly as cluster size increased (F&.

IS
T

N
\

- ,-/ Central Asia —---—---

NH Africa — — —

4 [ ~ Australia
-7 SH Africa - - - -
NH South America —-----—

07\\\\\\\\\\\\\\\\\\\\\\\\\\\\\7

10 15 20 25 30 35 40
Mean Cluster Size

Area Burned Per Fire Pixel

3.2 Regression tree approach

The analysis in the previous section shows that vegetation

fraction (tree [t], herbaceousH;], bare [Bf]) and fire clus- Fig. 5 Effective bqrneq area per Terra MOI?IS fire pixel) @s a
ter size(Cy) are important predictive variables that should funct_lon of mean fire-pixel cluster size for five of the 14 regions
potentially appear in an empirical relationship linking active considered in this study.

fire counts to area burned. We may write such a relationship

very generally as . . . .
Y9 y whereg is an unknown function. It is not obvious, how-

A(i,t) = g[Ti(i, 1), Hi(i, 1), Bs (i, 1), Cs(i, 1), Ni(i,t)] (3) ever, what particular functional form one should assume for

Atmos. Chem. Phys., 6, 95944, 2006 www.atmos-chem-phys.net/6/957/2006/
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I
0 10 11 12 13 14 15

Fig. 6. 2001-2004 mean monthly fire persistence computed from Terra MODIS active fire observations.

g that will be optimal in every region. Based on a separatemean fire-pixel VCF fractions (tree, herbaceous, bare), and
exploratory analysis, we believe that a globally optimal func- mean fire-pixel cluster size within a singlé grid cell for a
tion is likely to require an unreasonably large number of freesingle month.)
parameters. We therefore pursued the conceptually simpler During tree construction, we permitted splitting on all
approach of expressing the relationship in B} as aregres-  five predictive variables appearing in EQ).( These vari-
sion treefor each region. ables are clearly not independent given their constraints
A regression tree is an alternative model for expressing(7;+ Hs+ B;=100%, C;<Ns), and that, within the tropics,
a relationship between a continuous dependent varigble larger fire clusters tend to occur in regions having higher
and one or more predictive (or explanatory) variahles herbaceous cover. This multi-collinearity will have no im-
(Breiman et al. 1984. The tree per se consists of a set pact on the predictive ability of the regression trees that we
of rules of the form “ifx;<1 andx2<2 theny=3" which derive, but it does mean that the final choice of splitting vari-
supply an appropriate value forover the range of the;. able will be more or less arbitrary in the event two such vari-
These rules are constructed by partitioning (or splitting) ob-ables yield comparable reductions in deviance following a
servations along the; into two subsets in such a way as to trial split. When interpreting the final trees, therefore, one
maximize the reduction in an error metric (or “deviance”). should not attach too much significance to the fact that, say,
Following the split, the homogeneity of the resulting pair of tree cover was selected as the splitting variable rather than
subsets is increased. This procedure is applied recursively tberbaceous cover.
each subset until certain stopping criteria are met (typically
the number of remaining observations becomes too small3.3 Tropical closed-canopy forest correction
or the reduction in deviance becomes insignificant). The re-
sulting binary tree consists of splits (e.g., %if<1”), and  As mentioned in SecR.2, accurate mapping of burned areas
leaves (or terminal nodes) in which the dependent variableyithin tropical closed-canopy forest is extremely challeng-
is assigned a value. Following tree construction, pruning ising. In brief, obscuration of the surface by persistent cloud
usually applied to eliminate overfitting that would otherwise cover and the tree canopy can lead to significant errors of
degrade the predictive ability of the tree. During this process omission. This problem is not unique to the MODIS instru-
terminal nodes having little predictive robustness are elimi-ment. A further complication occurs in tropical areas under-
nated through the use of a cost-complexity functidrefman  going deforestation: where fire is used in the deforestation
etal, 1989. process (e.g., South America and Equatorial Asia), burning
For this study we used a more flexible form of regres-is usually preceded by mechanical clearing and aggregation
sion tree which models the dependent variable using a lin-of the resulting slash. Consequently, despite the fact that a
ear regression in each terminal nod¥diman and Meisel relatively large area of forest has been cleared and burned,
1976. Trees built in this manner are usually smaller and arethe spatial extent of the burn scar per se is much smaller than
also often easier to interpret. The particular linear model wethe area cleared. Satellite-based maps of burn scars under
used was simply that in Eq2). To help ensure the resulting these conditions are therefore likely to systematically under-
fit was robust, we required a minimum of 30 observationsestimate the effective area burned and fuel consumed. To
within each terminal node. (By “observation” we are refer- help rectify this in our burned area product, we attempt to use
ring to the corrected fire pixel counts, 500-m burned areajnformation about fire persistence and tree cover to specify

www.atmos-chem-phys.net/6/957/2006/ Atmos. Chem. Phys., 699472006
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/X /T< 185\
/ \ c<62 C<59
C<19 H<735 / \ / >
N < 4380 C<114 H<705 159N
156 75 110 / \ / \ / \
32 269 60 383

C<16 38N 5.07 N 6.70 N B<15 545N 368N 240N H<635 308N

205/ \3886 382/ \249
368 201
173N 40LN LI5N 228N
116N 2.62N Fig. 9. Same as in Fig7 but for Australia.

Fig. 7. Regression tree constructed for Northern Hemisphere Africa

with Terra MODIS active fire data. Terminal nodes (leaves) are ngnth being processed. By averaging the number of days

shown 'in boldface. The left for'k is taken when the condit'ion at tor all 1-km cells affected by fire, we computed the mean fire
a split is met. The numbers adjacent to each branch leading to a

terminal node indicate the total number of observations assigneé)erslitlen;e '(ml dz'i:)_/sé, denohtﬂ:l. Iﬁr e?Ch f Ig”q C?” ona
to the node during construction. To reduce clutter in the figure,mon y basis In Figb we show the climatological average

subscripts have been dropped from the variatilegpercent tree  ©f the monthly means (weighted by the number of fire pix-
cover), Hs (percent herbaceous coveB}, (percent bare groundy els each month) from January 2001 through December 2004.
(mean fire-pixel cluster size), and (corrected fire pixel counts). Perhaps most obvious is the high persistence in Boreal North
Coefficients ofNf in terminal nodes have units of ipixel. America, Boreal Asia, and the American Pacific Northwest,
a consequence of the higher fuel loads and lower fire spread
rates in the forested areas of these regions. Smaller patches

<66 of higher persistence are present in the Middle East region as
well, where some residual gas-flare contamination remains
in our MODIS fire data. Of most interest here, however, is
B W< 705 the high persistence evident in areas of SH South America

. ’ and Equatorial Asia in which deforestation is actively occur-
47 ring. In these regions of slash-and-burn conversion, fire is a
critical element of the deforestation process. It is also evi-

B<05 280N dent that high fire persistence does not occur in deforestation

T<435 B<35 ]
hot spots, such as Central Africa, where “slash-and-rot” con-
99 196 108 298 84 186 version is commonplacé¢hard et al. 1998.
Based on the previous discussion, it is relatively straight-

561N 245N 210N 039N 197N 098N forward to identify grid cells within tropical rainforest for
. o . which application of the correction factor is appropriate; sim-
Fig. 8. Same as in Fig but for Boreal North America. ple thresholds applied to tree cover and fire persistence, and

restricted to the appropriate tropical regions, will suffice. Se-

lection of an explicit value fow, however, is more diffi-
locations and time periods within the tropics for which a cult. Although we lack the necessary data to adjust for cloud
fixed correction factory, will be applied to the burned area and canopy obscuration, we can at least use rough estimates
predicted via the regression trees. It may prove beneficialto help correct for deforestation bias. Field observations
in the future, to varyc as a function of fire persistence in suggest that forest clearings are typically one to ten times
these areas, but we lack sufficient data to resolve this issue #irger than the slash piles destined for burning, depending on
present. whether the slashing was performed manually or mechani-

Our method of calculating fire persistence relied on thecally (Douglas Morton and Wilfrid Schroeder, personal com-

same subdivision of individual°lgrid cells into a fine grid  munication). We chose the geometric mean of these limits,
of ~1-km cells with which we identified fire-pixel clusters yielding x~3.2. This is probably a more reasonable choice
(Sect.2.1). For each 1-km cell, we counted the number than the larger arithmetic mean as manual clearing is more
of days on which fires were detected during the particularprevalent in the tropics as a whole. In implementing the
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correction, we identified those monthly grid cells within the 4.2 Uncertainties

tropics for whichT; (i, 1)>50% andPs(i, r)>1.2 days. For

tropical grid cells satisfying these conditions, we multiplied Since we ultimately intend to use the regression trees to pro-

the burned area predicted with the appropriate regression treduce global monthly burned area estimates for input into

by «. coarse resolution models, it is important that uncertainty esti-
mates be provided. A natural approach for quantifying these
uncertainties would be through prediction confidence inter-

4 Results vals computed for the fit of Eq2) within each terminal node

of the regression tree. However, this approach is problematic

in practice since the variance in burned area is not constant

Regression trees were grown and pruned for each region; re;fl_’-lét '?)Stﬁad_ m_creﬁses as one (;on5|derr51 Ia_rgelr bu_rrl;elzd aregs.
resentative examples of the final result obtained for three of Is behavioris characteristic of many physical variables an

the fourteen regions are shown in Figsthrough9. The Is referred to abeteroskedasticitin the statistical literature.
number of terminal nodes in the final trees raﬁged fromHeteroskedasticityviolates the constant-variance assumption

two (Europe and Equatorial Asia) to nine (Australia and SH©f ordinary least squares fitting and, if ignored, may lead to
South America). This wide range in size primarily reflects inaccurate statistical error estimates for the fit.

differences in the quantity of calibration data available for Methods for dealing with heteroskedastic variables
each region, and secondarily as an indication of the regionafeighted least squares, nonlinear data transformation) in-
complexity in the burned-area/fire-count relationship. crease the influence of low-variance observations on the

Taking into consideration our previous discussion of thefit. While simultaneously decreasing the influence of high-

interpretation of regression trees grown from correlated vari-ariance observations. For our purposes this is undesirable.

ables (Sec3.2), we note that, in agreement with our prelim- While it is true that the observations of very small burned ar-
inary analysis, both vegetation cover and fire-pixel cluster®@S have very low variability in an absolute sense (but very

information play an important predictive role in the estima- high variability in a relative .sense), it is also true that the;e
tion of burned area. Considering the splits in all 14 regres-POINts are usually of less interest to most users. (An im-
sion trees together, 41 (68%) involved one of the three VCFPOrtant exception is the burning of aggregated forest slash.
variables, while 17 (28%) occurred on the mean fire-pixelAS discussed in Sec8.3, such fires can consume prodigious

cluster size. A detailed analysis of the final trees revealedluantities of biomass yet leave a very small burn scar.) In
that the reduction in deviance achieved by splitting@n terms of emissions and land cover conversion, it is the obser-

was often much larger than that achieved by splitting on tree/ations of larger burns (which have high absolute variability

and herbaceous cover, indicating that the predictive utility ofPUt 10w relative variability) that are generally mostimportant.

mean cluster size is not simply an artifact of its correlation COMPensating for heteroskedasticity will therefore have the

with the VCF variables in the tropics. Only two splits (3%) Undesirable effect of assigning the greatest importance to the

occurred onNy, primarily to deal with mild nonlinearities opservatlons of least mteregt to us; th|§ WI|| in turn introduce

in the burned-area/fire-count relationship for SH Africa and Pi@ses (usually downward) in the predictions of large burned
ar

Australia. eas. . _

Figure10shows plots of predicted versus observed burned Given the above issues, we did not correct for het-
area for each region; the corresponding correlation coeffi-eroskedasticity when fitting Ecgfbut adopted an alternative
cients are listed in Tabl@. Regions showing the great- approach for estimating the uncertainties in our_burned area
est agreement between predicted and observed burned arégtimates. For the fit of Eq2) within each terminal node
were Boreal Asiar(=0.94 with N=2104 observations), Cen- ©f the regression tree, we regressed the square of the resid-
tral Asia (=0.92, N=282), Europe 1=0.95, N=225), and uals (i.e. the \{arlance) agalnst fire plxel counts. The square
Temperate North America£0.98, N=982); for these cases 00t _of the variance predlctec_i b_y this supplementary fit then
the predictions of area burned are comparatively accurat@'ovided aone-standard-deviation (“one-sigma”) uncertainty
and precise. The region having poorest agreement was S@stimate for all future predictions emanating from the termi-
South America £=0.56, N=4034), where predicted values Nal node.
of burned area suffer from large random and systematic er-
rors. This is, at least in part, probably a consequence of the ) )
lower quality in 500-m burned area maps available for thisS Multi-Year burned area estimates

region (Sect2.2). The remaining nine regions lie between . ) ) ) .
these two extremes, yielding comparatively accurate, but imWe applied the regional regression trees to the entire archive

precise, estimates of monthly burned area. of high-quality Terra MODIS data to produce a monthly
global burned area data set spanning November 2000 through

mid-2005. Using these data, we calculated the 2001-2004
mean monthly area burned and the associated uncertainties

4.1 Regional regression trees
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Fig. 10. Scatter plots of burned area predicted by regional regression trees vs. “true” burned area derived from 500-m burned area maps.
Axes show area in kf

(Fig. 11). In propagating the monthly uncertainties we as- varying by more than 50% of the four-year mean — occurred
sumed they were random and independent, and hence add@dBoreal North America, Boreal Asia, Equatorial Asia, and
these in quadrature. (Given the large systematic errors notedustralia. The interannual variability of burned area in NH
earlier for SH South America, these estimates should beAfrica exceeded the annual area burned in all other regions,
considered lower bounds in this region. The uncertaintiesexcept SH Africa and Australia, over all four years. Taken
in mean annual burned area suggested by Figherefore  together, the total area burned in northern- and southern-
probably underestimate the true error.) In general, the absdaemisphere Africa and Australia from 2001-2004 comprised
lute uncertainties for regions characterized by large burned0% of the total area burned globally.

areas £~1000 knf/year) correspond to relative errors of

10% to 40%. In regions characterized by relatively small

burned areas<{100 knt/year), the absolute uncertainties 6 Evaluation

typically correspond to much higher relative errors of 50%

to 100%. Rigorous validation of our global burned area data set re-
In Table3 we show the annual area burned within each re-quires independent, ground-truth quality maps of burn scars
gion for the years 2001-2004. The most extensive burningrom representative locations over the entire globe. At
consistently occurred in northern hemisphere (NH) Africa, present there is a paucity of such data, especially data that
with well over 1 km? burned in this region each year. Over encompasses the monthly, dcale of our estimates. For ex-
this four-year period substantial interannual variability — hereample, global validation using direct estimates of burned area
arbitrarily defined as having at least one year of burned aredrom Landsat imagery is limited by high data volumes and

Atmos. Chem. Phys., 6, 959744, 2006 www.atmos-chem-phys.net/6/957/2006/



L. Giglio et al.: Global estimation of burned area 967

f "'l-"\-'.'-lb-»-"-‘w.-
- iy

s

percent/year

10 100

Fig. 11. 2001-2004 mean annual burned area derived from Terra MODIS active fire observations (top), and accompanying one-sigma
uncertainties (bottom), expressed as the fraction of each grid cell that burns each year. One-sigma uncertainties were obtained by adding ou
spatially-explicit, monthly uncertainty estimates (assumed to be independent and random) in quadratie T®eatstimation of monthly
uncertainties is described in Se4t2.

Table 3. 2001-2004 estimated annual area burned for the regions used in the study, with the mean of the relative errors (MRE) for the
individual years shown in the rightmost column.

Area Burned & 10% km?=Mha)

Region 2001 2002 2003 2004 MRE (%)
Boreal North America 0.4 2.6 2.3 4.0 8
Temperate North America 1.4 1.7 15 1.2 4
Central America 1.8 2.2 2.9 1.8 8
NH South America 4.4 3.6 4.8 3.8 6
SH South America 12.4 12.7 10.8 13.4 5
Europe 29 1.6 2.6 1.9 4
Middle East 0.6 0.5 0.4 0.4 8
NH Africa 153.2 135.2 1255 129.8 2
SH Africa 84.0 82.4 79.6 75.3 3
Boreal Asia 6.3 9.3 14.5 4.9 3
Central Asia 16.5 26.7 17.1 18.9 4
Southeast Asia 10.8 10.2 8.4 16.1 7
Equatorial Asia 0.8 3.4 1.4 29 9
Australia 78.7 58.9 24.8 44.9 2
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Fig. 12. Burned area predicted by regression tree each year fofFig. 13. Total predicted burned area within the United States for the
individual Canadian provinces during 2001-2004, versus annualears 2001-2004 versus annual totals compiled by the National In-
provincial totals compiled by the Canadian Interagency Forest Fireteragency Fire Centehttp://www.nifc.gov/stats/index.htmlError
Centre bttp://www.ciffc.caj. Error bars represent one-sigma un- bars represent one-sigma uncertainties in predicted values.
certainties in predicted values.

6.2 United States
temporal discontinuities. A single Landsat scene provides
coverage over an area approximately 180 km by 180 km inwe compared annual nationwide burned area statistics (in-
size, spanning in entirety at most a singfegtid cell. When  cluding Alaska) compiled by the National Interagency Fire
combined with the 16-day Landsat repeat cycle, it is difficult Center (NIFC) for the years 2001-2004 (Fi®). The two
to unambiguously assign burned area to a specific calendafata sets are strongly linearly related (slope=0:8%).91,
month. A practical (but more limited) alternative, which we ;=0.093), although there is again a modest bias towards un-
describe here, is to compare our estimates of burned area igerestimation in large fire years. As with Canada, this bias
existing independent inventories. Results are summarized byhight be partly explained by the manner in which large burns
region. are surveyed. Considering the NIFC statistics as truth, the
mean absolute percent error (MAPE) of our estimates is 13%.
6.1 Canada

. . 6.3 Russia
We compared our burned area estimates to independent es-

timates compiled by the Canadian Interagency Forest Firgye compared the total area burned in Russia for 2001 and
Centre (CIFFC). These data are provided on a yearly basngs tg estimates produced Bykhinin et al.(2004 from

sis from 20012004 for nine Canadian provinces (British gatajite data (Tabld). For 2001, a year of somewhat lower
Columbia, Alberta, Manitoba, Newfoundland and Labrador, fire activity, our estimates were about 26% larger. For 2002

Northwest Territories, Ontario, Quebec, Saskatchewan, angl i totals agree to within a few tenths of a percent.
the Yukon Territories). A plot of predicted versus CIFFC

burned area (Figl2) shows a very strong linear relationship g 4 \world

(slope=0.707=0.89, p«0.001), with some degree of under-

estimation for very large burned areas. This bias might inoyr estimates of the total global annual area burned calcu-
part be explained by the fact that ground-based and aerighted for the years 2001-2004 range from a low of 2.97 mil-
surveys often record only the outermost perimeter of burnjjon km2 in 2003 to a high of 3.74 million kéin 2001. Al-
scars. though this does not qualify as an evaluation, we compared
these results to the GBA2000 and GLOBSCAR products
available for the year 2000 (Tab®. Despite the fact that
we are comparing different years, our annual totals are only
0.3% to 27% higher than the total obtained with GBA2000.
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Table 4. Comparison of predicted annual area burned in RussiaTable 6. Swath width {v), orbit inclination angley), and temporal
with estimates oBukhinin et al(2004). sampling frequency (relative to that of the MODIS instruments) at
the Equator for three sensors on-board operational satellites.

Area Burned & 10* km?=Mha)

Year This study Sukhinin et al(2004 Sensor w (km) vy (°) Relative Sampling Frequency
2001 9.6 7.56 mMopIsl 2330 98 1

2002 12.1 12.1 VIRS? 830 35 0.66

2003 16.0 - ATSR3 512 99  0.22 (day)

2004 6.9 - 0.11 (night)

1 values applicable to Terra and Aqua MODIS instruments.

) ) 2 post August 2001 orbit boost.
Table 5. Comparison of global annual area burned obtained from3 gpiies are also applicable to the Advanced ATSR (AATSR).
the GBA2000 Tansey et a).2004 and GLOBSCAR $imon et al.

2004 data sets, and estimated using the calibration approach de-

scribed in this paper. of the burn scar. It is instructive, therefore, to consider the

effective temporal sampling rate of a particular instrument in
gauging its suitability for providing burned area estimates via

Area Burned

Source Year  %10° km?) active-fire calibration. For a sensor on board a satellite hav-
GBA2000 2000 2.93 ing a polar or precessing orbit, a convenient measure of this
GLOBSCAR 2000 1.94 sampling frequency is the daily equatorial coverage, denoted
This study 2001 3.74 ceq, Which is simply the fraction of the Equator imaged by
2002 3.1 the sensor each day, irrespective of exactly where along the
2003 2.97 Equator the imaging occurs. For a swath widthugfthis
2004 3.19 quantity is given by
2001-2004 mean 3.35
w 24 h
GBA2000 Nov-Dec 2000 0.69 Cea= T Rpsiny (T) ; (4)
GLOBSCAR Nov-Dec 2000 0.37
This study Nov—Dec 2000 0.91 where R is the radius of the Earthy is the orbit inclina-

tion, andT is the orbital period (in hours). Values of the
daily equatorial coverage for the MODIS, VIRS, and ATSR
instruments (normalized to that of MODIS) are listed in Ta-
They are, however, substantially above the annual total obble 6. For the ATSR we explicitly considered the effect of re-
tained from GLOBSCAR, by a minimum of 51% and as stricting observations to nighttime overpasses, which halves
much as 92%. Confining the comparison to November andhe coverage predicted by Ed){(since the ATSR nighttime
December 2000, the only time period during which all three fire product is restricted in this manner.
data sets overlap, our total burned area (0.91 millioR)kim Comparing the VIRS and MODIS instruments, the former
about 32% higher than that of GBA2000, and 144% higherprovides about 34% less equatorial coverage; although the
than that of GLOBSCAR. Thus, even if the 2002—2003 pe-orbit inclination of the TRMM satellite on which VIRS re-
riod corresponding to the weak El{fi\d Southern Oscillation  sides increases the coverage by a factor of about two, the
is not considered, the global burnt area estimate derived her€IRS swath is narrower by a factor of about three. This
is significantly higher than the GLOBSCAR estimate. suggests that a calibration-based technique based on VIRS
active fire data is likely to yield lower quality estimates of
burned area than for MODIS. More robust estimates are ex-
7 Application to other sensors pected at higher subtropical latitudes where the VIRS sam-
pling frequency increases by about a factor of thi®@agljo
Clearly any active-fire calibration technique must be tunedet al, 2003h. However, the coarser VIRS spatial resolution
to a specific sensor to compensate for differences in the chaf2.5 km) will probably degrade the quality of any calibra-
acteristics of the sensor (e.g., spatial resolution), as well asion relationship involving cluster size, regardless of latitude,
the temporal sampling afforded by the platform on which since VIRS fire-pixel clusters, being composed of larger
the sensor resides. The latter issue is especially relevant bereal units, provide a narrower range of unique values over
cause an increase in the rate at which “snapshots” of an activerhich to discriminate different burned areas.
fire are made will generally increase the correspondence be- A comparison between MODIS and ATSR is more
tween a map of cumulative fire pixels and the spatial extentstraightforward since these instruments have virtually
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identical spatial resolution. Given the narrower swath, com-produced by the regression trees were relatively accurate and
bined with the need to restrict fire observations to nighttimeprecise. Poorest agreement was found for SH South Amer-
overpasses, the ATSR provides nearly an order of magniica, where predicted values of burned area are both inaccu-
tude fewer opportunities to record active fire activity at the rate and imprecise. The poor result obtained in this region is
Equator. In the context of our calibration approach, this ismost likely a consequence of multiple factors that include
equivalent to discarding nearly 90% of the MODIS active extremely persistent cloud cover and a degradation in the
fire pixels recorded in each grid cell each month and repeatquality of the 500-m burned area maps used for calibration.
ing the calibration procedure. In addition, clusters of cumu-Agreement in the nine remaining regions fall between these
lative ATSR fire pixels are also likely to be smaller and more two extremes, yielding comparatively accurate, but less pre-
fragmented since the time interval between successive satetise, estimates of monthly burned area.
lite overpasses is about ten times longer, thus reducing the We used the regional regression trees to produce multi-
utility of cluster-related information as a splitting variable. year, global burned area estimates on a monthly basis from
The combination of these factors is likely to yield larger un- the current archive of Terra MODIS active fire data. An-
certainties in estimates of burned area produced by calibrataual totals derived from these data showed good agreement
ing ATSR active fire observations. Nevertheless, the ATSRwith independent annual estimates available for nine Cana-
has been shown to provide very useful estimates of the seadian provinces, the continental United States, and Russia.
sonal and interannual variability in burned area (&ghultz Using these data, we estimated the global annual burned
2002. area for the years 2001-2004 to vary between 29 and
3.74x10f km?, with the maximum occurring in 2001. The
most extensive burning consistently occurred in NH Africa,
8 Conclusions with well over 1¢ km? burned in this region each year.
Over this four-year period significant interannual variability
We have presented a method for estimating monthly burnegccured in Boreal North America, Boreal Asia, Equatorial
area globally at 1spatial resolution using Terra MODIS ac- Asia, and Australia. Taken together, the total area burned
tive fire observations and ancillary vegetation cover informa-in northern- and southern-hemisphere Africa and Australia
tion. Using regional regression trees, these data were califrom 2001-2004 comprised 80% of the total area burned
brated to burned area estimates derived from 500-m MODISglobally.
imagery based on the conventional assumption that burned We reiterate that we are not promoting our regression-tree
area is proportional to counts of fire pixels under specificapproach (or, indeed, any active-fire calibration approach) as
conditions. Traditionally, the constant of proportionaliy) (  a substitute for burned area maps generated from direct ob-
has either been held fixed, or adjusted based on a singlgervations of burn scars. Rather, for some applications, sta-
vegetation-related parameter. Neither practice is satisfactoryistical coarse-resolution burned area estimates derived from
at a global scale. We propose a more flexible approach irMODIS active fire observations can serve as a useful interim
which « is permitted to vary as a function of both tree and product until long-term burned area data sets become avail-
herbaceous vegetation cover (or alternatively bare groundple.
fraction), and the mean size of monthly cumulative fire-pixel
clusters within each®lgrid cell. Though we found this to be
usually unnecessary, we also allowetb vary with fire pixel
counts to accommodate slight deviations from the assump-

. . : . Burned area maps were produced using a prototype algo-
tion of linearity. The exact form of the functional dependencg rithm (Giglio et al., 2008) that uses the 500-m MODIS at-

of @ on these predictive variables was not specified a priori, .

but was constructed through recursive partitioning and ex_mosphencalIy—corrected Level 2G surface reflec_tance. prod-

pressed in terms of the splits and leaves of a regression tre .Ct (Ver(;note et a!. 2002, tggoMODlg Iaevi/ll g[()jl&;l{ act||v§

In addition to their considerable flexibility, regression trees |redpro UCIZ Justice et 31 aalan tI ; h e\I/e

offer the advantage of readily accommodating additional ex-26-day Land Cover Produck(ed| et al, 2009. The algo-

planatory variables on a trial basis. rithm, which is a major extension of an_earller method pro-
posed byRoy et al.(1999, detects persistent changes in a

Recognizing limits in our ability to measure burned areadain vegetation-index (V1) time series derived from MODIS

in closed canopy tropical forests, we used information aboutoand 5 (1.2um) and band 7 (2..m) surface reflectances
monthly fire persistence and tree cover to identify Iocationsrespectivély denotegs and p7 w.here ’

and time periods within the tropics requiring the application
of a fixed correction factor to the burned area predictions ob+y/| — M, (A1)
tained from the regression trees. p5 + p7

Regions showing good agreement between predicted and 1gijglio, L., Descloitres, J., Loboda, T., Csiszar, I., and Kendall,
observed burned area included Boreal Asia, Central Asiaj.: An Active-Fire Based Burned Area Mapping Algorithm for the
Europe, and Temperate North America, where the estimatesIODIS Sensor, in preparation, 2006.

Appendix A Burned area detection algorithm
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This index shows a significant decrease following a burn,This eliminates the smallest fire-pixel clusters, which are
and provides somewhat better discrimination of burned ardess likely to be accompanied by a detectable burn scar
eas than the more commonly used Normalized Burn Ratig(cf. Fig. 1). Burned training samples oAVI(kmax) and
(NBR), anindex defined similarly but with Landsat Thematic Vlpost(kmax) are drawn from those pixels remaining in the
Mapper (TM) bands 4 (0.88m) and 7 (2.2um) (Miller and eroded fire mask, and are partitioned by land cover class.
Yool, 2002. In a complementary manner, dilating the composite active
The general detection approach is to first derive a sumfire map provides a mask of pixels that are unlikely to have
mary map of persistent change from the VI time series, ancourned during the time period being processed, and training
then use spatial and temporal active fire information to guidesamples of unburned pixels for each land cover class are thus
the statistical characterization of burn-related and non burnidentified. Here more care is required since the active fire
related change within the scene. This information is used tanap will often greatly under-represent the spatial extent of
estimate probabilistic thresholds suitable for classifying thelarge burns, so the radius of the dilation kernel is increased
scene into burned and unburned pixels. The approach ulin proportion to the size of individual fire-pixel clusters. This
timately identifies the date of burn, to the nearest day, foris again consistent with the empirical observation that large

pixels within individual MODIS Level 3 tiles\/olfe et al, burns tend to be accompanied by large clusters of active fire

1998 at 500-m spatial resolution. pixels, and vice versa.

Al. Composite change summary A3. Classification of unambiguous burned and unburned pix-
els

The algorithm first examines the daily VI time series by con-

sidering observations within two adjacent sliding temporal The training samples extracted in the previous step are now
windows of durationW=10 days; these windows are re- used to derive conservative dynamic thresholds to classify
ferred to as theandidate pre-burmndcandidate post-burn  unambiguous burned and unburned pixels. Pixels with land
windows, respectively. Within th&'th candidate pre-burn  cover clas$ for which AVI (kmax) is less than the upper quar-
window, the trimmed mean [\je(k)] and trimmed standard tile of AVI(kmayx) for all unburned training pixels in land
deviation ppre(k)] of all observations are computed. Statis- cover clasd are immediately labeled amburned Pixels

tics for thek’th candidate post-burn window are similarly with land cover class for which AVI (kmay) iS greater than
computed and denoted pk(k) andopesik). The indexk the upper quartile ofAVI (kmax), and Vhostkmax) is less
references the position within the daily time series on whichthan the lower quartile of \pbsf(kmax) for all burned train-

the sliding windows are aligned (incrementibignoves both  ing pixels in land cover clagsare immediately classified as
windows forward in time by one day). The time series of ac- burned Prior to performing this step an initial separability
tive fire observations for the pixel under consideration is alsotest is performed for each land cover class: if the distributions
examined, and the occurrence of any such pixels in the timef AVI (kmax) for the burned and unburned training samples

series is flagged. show excessive overlap, all pixels within land cover class
A measure of temporal separabilifyk), defined as are immediately classified amburnedand the quartile tests
AVI (k) are not performed.
S(k) = (A2) This step typically provides a final classification for 60%

B k k)’
Tprelk) + Oposi(k) to 80% of all image pixels, resulting in a large reduction in

where  AVI(k)=Vlpre(k)=Vlposik), is evaluated for ihe computational effort needed to process pixels in the re-
all k. For each pixel the maximum separability mainder of the scene.

max(S(k))=S(kmax) is identified. The date associated

with the maximum change is the midpoint of the interval A4, Classification of remaining pixels

between the last observation in the pre-burn window and the

first observation in the post-burn window. The time seriesFollowing the inital labeling of obvious burned and unburned
for each pixel of the MODIS tile is processed, yielding pixels, one of two different approaches are then used to la-
composite images oAVl (kmax) and Vhos(kmax), and a  bel the remaining unclassified pixels depending on the geo-
composite map of active fire pixels detected during the timegraphic region and time period being processed.

period being processed.
A4.1. Region growing

A2. Identification of training samples

In high-latitude regions having shorter MODIS revisit peri-
Having generated the composite imagery just described, ads, and at lower latitudes where the majority of the area
simple procedure is used to extract representative burnetiurned is dominated by large burn scars~100 knr?),
and unburned samples within each land cover dl@sesent  region-growing is used to identify the remaining burned pix-
within the MODIS tile. To identify probable burned pix- els within the MODIS tile being processed. Clusters of ac-
els, the composite active fire map is morphologically erodedtive fire pixels derived from the composite active-fire mask
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2000 T T T T by AVI (kmax) and Vlyosi(kmax), and each pixel not classified

i 1 during step A.3 is assigned the classifhedor unburned
| having the maximum a posteriori (MAP) probability. Es-
- R timation of these probabilities is performed using the iter-
1500 - 7 ated conditional modes (ICM) method describedBasag

I ] (1986. ICM requires a rough preliminary classification to
initiate the iterative process, and for this a naive Bayes clas-
sifier is used. The preliminary class assigned to each pixel
within land cover classis that which has the highest a pos-
teriori probability estimated using Bayes’ rule:

1000 _.*' 1

MODIS Burned Area (km?)

F : pi(burnedAVI, Vlpos) =
SOOf P } pi(AVI|burned p; (V1 postburned p; (burned

A3
pi(VI, AVI post) ( )

0¥ . . . pr(unburnegdiAVI, Vi posp =

L L L L L | L L L L | L L L L
0 Lgagsat Bu%r?gg Area %Er?]% 2000 pi(AVI{unburnedp; (VI posiunburnedip; (unburned
pi(VI, AVlpos)

Fig. Al. Areas of 39 individual burn scars in Russia during 2001 (Note that the indexmax has been dropped in the above
and 2002 as mapped by 500-m burned area detection algorithrequations to reduce clutter.) Again making use of infor-
versus ground truth derived manually from Landsat imagery. Themation provided by active fire observations, the a priori
slope and intercept of the solid black regression line are 0.925 angyrgpability of a burned pixep; (burned in land cover class
5.5 kn?, respectively, with a correlation of 0.996. [ is estimated as the fraction of all pixels of land cover
class! within the scene in which an active fire was de-
tected during the time period being processed. From this
pi(unburnegi=1— p; (burned.

(A4)

are used as seeds to iteratively “fill in” the surrounding burn
scar. The values ahVI (kmax) and Viyost(kmax) for unclassi-
fied candidate pixels adjacent to a seed pixel are compared tRc \/qjigation

the statistical distributions derived from the burned and un-

burned training samples. Bayes’ rule is applied to estimateat present, validation of the 500-m burned area maps has
a pOSteI’iori prObabilities for the candidate pixel and Selectbeen limited to Russia through Comparison with maps gen-
the ClaSS to Wh|Ch it will be aSSigned. Add|t|0nal temporal erated manua”y from h|gh resolution satellite |magd_[y_(
constraints are applied based on the burn dates of the paregbda and Csisza2004. Using 20 Landsat scenes ac-
seeds. Pixels classified dsrnedduring the current itera-  quired between 17 August 2001 and 19 August 2002, Lo-
tion become seeds in the Subsequent iteration. The proce$spda and Csiszar found good agreement between the burn

continues until no new seeds are found. scars mapped by the algorithm with those traced manually
o (Fig. A1). Validation efforts are currently being extended to
A4.2. Contextual classification Australia and South America.

In regions where the temporal sampling of active fires is lessycknowledgementsie thank D. Morton and W. Schroeder for
frequent, or relatively small burns<¢-10 kn?) are abun- helpful technical discussions, and two anonymous reviewers for
dant, an alternate classification approach is required. Regiotheir helpful comments. This work was supported by NASA
growing under these conditions will usually result in large grants NNG04GD89G and NNGO04GK49G, and NASA contract
omission errors since many smaller burns will lack active-NNH04CC22C. The MODIS burned area mapping algorithm
fire seed pixels, and a contextual classifier is employed insummarized in the Appendix was developed by L. Giglio, J. De-
stead. In addition to using the spectral information avail- Scloitres, and J. Kendall (SSAI). The resulting burned area maps
able for the training pixels and the entire scene, the contex&re being validated by T. Loboda, I. Csiszar, D. Morton, S. Trigg
tual classifier exploits the fact that both burned and unburnedUMD). and K. Murphy (SSAV).

pixels tend to occur near pixels having the same burned o .. )

unburned status. Here, a Markov Random Field (MRF), a[Edned by: F. J. Dentener

standard approach for modeling such spatial behavior, is em-

ployed. The MRF is defined by a probability density func-

tion that encodes the likelihood that a pixel is burned based

on the state of its eight immediate neighbors. This informa-

tion is incorporated with the spectral information provided

Atmos. Chem. Phys., 6, 95944, 2006 www.atmos-chem-phys.net/6/957/2006/



L. Giglio et al.: Global estimation of burned area 973

References Heald, C. L., Jacob, D. J., Palmer, P. |., Evans, M. J., Sachse,
G. W, Singh, H. B., and Blake, D. R.: Biomass burning emis-
Achard, F., Eva, H. D., Glinni, A., Mayaux, P., Stibig, H.-J., and  sjon inventory with daily resolution: Application to aircraft ob-
Richards, T.: Identification of Deforestation Hot Spot Areas in  servations of Asian outflow, J. Geophys. Res.-Atmos., 108(D21),
the Humid Tropics, TREES Publications Series B, Research Re- 8811, doi:10.1029/2002JD003082, 2003.
port No. 4, EUR 18079 EN, European Commission, Luxem- Justice, C. O., Giglio, L., Korontzi, S., Owens, J., Morisette, J., Roy,
bourg, 1998. D., Descloitres, J., Alleaume, S., Petitcolin, F., and Kaufman, VY.:
Arino, O. and Rosaz, J.: 1997 and 1998 world ATSR fire atlas us- The MODIS fire products, Rem. Sens. Environ., 83, 244-262,
ing ERS-2 ATSR-2 data, Proceedings of the Joint Fire Science 2002.
Conference, Boise, Idaho, 15-17 June 1999, edited by: NeuenKasischke, E. S., Hewson, J. H., Stocks, B., van der Werf, G.,
schwander, L. F., Ryan, K. C., and Golberg, G. E., Boise: Uni- and Randerson, J.: The use of ATSR active fire counts for es-
versity of Idaho and the International Association of Wildland  timating relative patterns of biomass burning — a study from

Fire, 177-182, 1999. the boreal forest region, Geophys. Res. Lett., 30(18), 1969,
Besag, J. E.: On the statistical analysis of dirty pictures, J. Royal doi:10.1029/2003GL017859, 2003.

Stat. Soc., Ser. B, 48, 259-302, 1986. Langmann, B. and Heil, A.: Release and dispersion of vegeta-
Boschetti, L., Eva, H. D., Brivio, P. A., and &goire, J.-M.: tion and peat fire emissions in the atmosphere over Indonesia

Lessons to be learned from the comparison of three satellite- 1997/1998, Atmos. Chem. Phys., 4, 2145-2160, 2004.
derived biomass burning products, Geophys. Res. Lett., 31] oboda, T. and Csiszar, |.: Estimating burned area from AVHRR
L21501, doi:10.1029/2004GL021229, 2004. and MODIS: validation results and sources of error. Proceed-

Breiman, L., Friedman, J. A, Olshen, R. A., and Stone, C. J.! ings of the Current Aspects of Rem. Sens. Earth Space Conf.,
Classification and Regression Trees, Boca Raton, Chapman & Moscow, Russia, 16—18 November, 2004.

Hall/CRC, 1984. Miller, J. D. and Yool, S. R.: Mapping forest post-fire canopy con-

Breiman, L. and Meisel, W. S.: General estimates of the intrinsic  sumption in several overstory types using multi-temporal Land-
variability of data in nonlinear regression models, J. Amer. Stat. sat TM and ETM data, Rem. Sens. Environ., 82, 481-496, 2002.
Assoc., 71, 301-307, 1976. Pereira, J. M., Pereira, B. S., Barbosa, P., Stroppiana, D., Vascon-

Duncan, B. N., Martin, R. V., Staudt, A. C., Yevich, R., and Lo-  celos, M. J. P., and @goire, J.-M.: Satellite monitoring of fire
gan, J. A.: Interannual and seasonal variability of biomass burn- in the EXPRESSO study area during the 1996 dry season ex-
ing emissions constrained by satellite observations, J. Geophys. periment: Active fires, burnt area, and atmospheric emissions, J.
Res.-Atmos., 108(D2), 4100, doi:10.1029/2002JD002378, 2003. Geophys. Res.-Atmos., 104(D23), 30 701-30712, 1999.

Eva, H. and Lambin, E. F.: Remote sensing of biomass burningPotter, C., Genovese, V. B., Klooster, S., Bobo, M., and Torregrosa,
in tropical regions: sampling issues and multisensor approach, A.: Biomass burning losses of carbon estimated from ecosystem
Rem. Sens. Environ., 64, 292-315, 1998. modeling and satellite data analysis for the Brazilian Amazon

Friedl, M. A., Mclver, D. K., Hodges, J. C. F,, Zhang, X. Y., Mu- region, Atmos. Environ., 35, 1773-1781, 2001.
choney, D., Strahler, A. H., Woodcock, C. E., Gopal, S., Schnei-Prins, E. M., Feltz, J. M., Menzel, W. P., and Ward, D. E.: An
der, A., Cooper, A., Baccini, A., Gao, F., and Schaaf, C.: Global overview of GOES-8 diurnal fire and smoke results for SCAR-B
land cover mapping from MODIS: algorithms and early results, and the 1995 fire season in South America, J. Geophys. Res.-
Rem. Sens. Environ., 83, 287-302, 2002. Atmos., 103(D24), 31821-31 836, 1998.

Generoso, S., Bon, F.-M., Balkanski, Y., Boucher, O., and Schulz, Randriambelo, T., Baldy, S., Bessafi, M., Petit, M., and Despinoy,
M.: Improving the seasonal cycle and interannual variations of M.: An improved detection and characterization of active fires
biomass burning aerosol sources, Atmos. Chem. Phys., 3, 1211- and smoke plumes in south-eastern Africa and Madagascar, Int.
1222, 2003. J. Rem. Sens., 19(14), 2623-2638, 1998.

Giglio, L., Kendall, J. D., and Mack, R.: A multi-year active fire Roy, D. P., Giglio, L., Kendall, J. D., and Justice, C. O.: A multi-
data set for the tropics derived from the TRMM VIRS, Int. J.  temporal active-fire based burn scar detection algorithm, Int. J.
Rem. Sens., 24, 4505-4525, 2003a. Rem. Sens., 20, 1031-1038, 1999.

Giglio, L., Pinzon, J., and Kasibhatla, P.. Comment on “Sea-Roy, D. P., Lewis, P. E., and Justice, C. O.: Burned area map-
sonal, intraseasonal, and interannual variability of global land  ping using multi-temporal moderate spatial resolution data — a bi-
fires and their effects on atmospheric aerosol distribution” by  directional reflectance model-based expectation approach, Rem.
Y. Ji and E. Stocker, J. Geophys. Res.-Atmos., 108(D24), 4754, Sens. Environ., 83, 263—286, 2002.
doi:10.1029/2003JD003548, 2003b. Scholes, R. J., Kendall, J. D., and Justice, C. O.: The quantity of

Hansen, M. C., DeFries, R. S., Townshend, J. R. G., Carroll, M., biomass burned in southern Africa, J. Geophys. Res.-Atmos.,
Dimiceli, C., and Sohlberg, R. A.: Global percent tree cover at 101, 23667-23 676, 1996.

a spatial resolution of 500 meters: First results of the MODIS Schultz, M.: On the use of ATSR fire count data to estimate the
vegetation continuous fields algorithm, Earth Interactions, 7(10), seasonal and interannual variability of vegetation fire emissions,
doi:10.1175/1087-3562, 2003. Atmos. Chem. Phys., 2, 387-395, 2002.

Hao, W.-M., Liu, M.-H., and Crutzen, P. J.: Estimates of annual andSeiler, W. and Crutzen, P. J.: Estimates of gross and net fluxes
regional releases of C£and other trace gases to the atmosphere  of carbon between the biosphere and atmosphere from biomass
from fires in the tropics, based on the FAQ statistics for the period  burning, Climate Change, 2, 207-247, 1980.

1975-1980, in: Fire in the Tropical Biota: Ecosystem ProcessesSetzer, A. W. and Pereira, M. C.: Amazonia biomass burnings in
and Global Challenges, edited by: Goldammer, J. G., pp. 400— 1987 and an estimate of their tropospheric emissions, Ambio,
462, Springer-Verlag, New York, 1990.

www.atmos-chem-phys.net/6/957/2006/ Atmos. Chem. Phys., 699472006



974 L. Giglio et al.: Global estimation of burned area

20, 19-22, 1991. Tansey, K., Gegoire, J.-M., Stroppiana, D., Sousa, A., Silva, J.,

Simon, M., Plummer, S., Fierens, F., Hoelzemann, J. J., and Arino, Pereira, J. M. C., Boschetti, L., Maggi, M., Brivio, P. A., Fraser,
O.: Burnt area detection at global scale using ATSR-2: The R., Flasse, S., Ershov, D., Binaghi, E., Graetz, D., and Peduzzi,
GLOBSCAR products and their qualification, J. Geophys. Res.- P.: Vegetation burning in the year 2000: Global burned area
Atmos., 109, D14S02, do0i:10.1029/2003JD003622, 2004. estimates from SPOT VEGETATION data, J. Geophys. Res.-

Streets, D. G., Yarber, K. F., Woo, J.-H., and Carmichael, G. R.: Atmos., 109, D14S03, do0i:10.1029/2003JD003598, 2004.
Biomass burning in Asia: Annual and seasonal estimates and atvan der Werf, G. R., Randerson, J. T., Collatz, G. J., and Giglio, L.:
mospheric emissions, Global Biogeochem. Cycles, 17(4), 1099, Carbon emissions from fires in tropical and subtropical ecosys-
doi:10.1029/2003GB002040, 2003. tems, Global Change Biology, 9, 547-562, 2003.

Stroppiana, D., Brivio, P. A., and @goire, J.-M.: Modelling the  van der Werf, G. R., Randerson, J. T., Collatz, G. J., Giglio, L.,
impact of vegetation fires, detected from NOAA-AVHRR data, Kasibhatla, P. S., Arellano Jr., A. F., Olsen, S. C., and Kasis-
on tropospheric chemistry in tropical Africa, in: Biomass Burn-  chke, E. S.: Continental-scale partitioning of fire emissions dur-
ing and its Inter-Relationships with the Climate System, edited ing the 1997 to 2001 EIl Nio/La Nifia period, Science, 303, 73—
by: Innes, J. L., Beniston, M., and Verstraete, M. M., Dordrecht: 76, 2004.

Kluwer Academic Publishers, pp. 193-213, 2000. Vermote, E. F., El Saleous, N. Z., and Justice, C. O.: Operational at-

Sukhinin, A. 1., French, N. H. F,, Kasischke, E. S., Hewson, J. H., mospheric correction of the MODIS data in the visible to middle
Soja, A. J., Csiszar, I. A., Hyer, E. J., Loboda, T., Conard, S. G., infrared: First results, Rem. Sens. Environ., 83, 97-111, 2002.
Romasko, V. 1., Pavlichenko, E. A., Miskiv, S. ., and Slinkina, Wolfe, R. E., Roy, D. P., and Vermote, E.: MODIS land data stor-
O. A.: Satellite-based mapping of fires in Russia: New products age, gridding, and compositing methodology: Level 2 grid, IEEE
for fire management and carbon cycle studies, Rem. Sens. Envi- Trans. Geosci. Rem. Sens., 36, 1324-1338, 1998.
ron., 93, 546-564, 2004.

Atmos. Chem. Phys., 6, 95944, 2006 www.atmos-chem-phys.net/6/957/2006/



