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Abstract. In this study, we theoretically investigate the re-
construction of 2-D cross sections through Gaussian concen-
tration distributions, e.g. emission plumes, from long path
DOAS measurements along a limited number of light paths.
This is done systematically with respect to the extension of
the up to four peaks and for six different measurement setups
with 2–4 telescopes and 36 light paths each. We distinguish
between cases with and without additional background con-
centrations. Our approach parametrises the unknown distri-
bution by local piecewise constant or linear functions on a
regular grid and solves the resulting discrete, linear system
by a least squares minimum norm principle. We show that
the linear parametrisation not only allows better representa-
tion of the distributions in terms of discretisation errors, but
also better inversion of the system. We calculate area inte-
grals of the concentration field (i.e. total emissions rates for
non-vanishing perpendicular wind speed components) and
show that reconstruction errors and reconstructed area inte-
grals within the peaks for narrow distributions crucially de-
pend on the resolution of the reconstruction grid. A recently
suggested grid translation method for the piecewise con-
stant basis functions, combining reconstructions from sev-
eral shifted grids, is modified for the linear basis functions
and proven to reduce overall reconstruction errors, but not
the uncertainty of concentration integrals. We suggest a pro-
cedure to subtract additional background concentration fields
before inversion. We find large differences in reconstruction
quality between the geometries and conclude that, in general,
for a constant number of light paths increasing the number
of telescopes leads to better reconstruction results. It ap-
pears that geometries that give better results for negligible
measurement errors and parts of the geometry that are better
resolved are also less sensitive to increasing measurement er-
rors.

Correspondence to:A. Hartl
(andreas.hartl@iup.uni-heidelberg.de)

1 Introduction

The importance of knowing exact amount and distribution
of trace gases in the atmosphere on a global scale has be-
come more and more evident over the past decades. But
knowledge of regional or local concentration distributions
is indispensable when it comes to assessing the quality of
chemical transport models on microscales or quantifying to-
tal emissions of sources and distinguishing between them.
Measurements of trace gases are either point measurements
providing concentration values on site, and thus being sen-
sitive to local and temporal fluctuations, or remote sensing,
yielding path integrated mean values. Combining path inte-
grating measurements along several paths and tomographic
retrieval methods, 2- or 3-dimensional concentration fields
can be obtained.

So far, a variety of studies was dedicated to the remote
sensing of indoor gas concentrations and their dispersion by
different experimental techniques, improving the time reso-
lution of the measurement procedure and quality of the re-
constructed 2-D concentration maps (e.g. Yost et al., 1994;
Drescher et al., 1997; Fischer et al., 2001). A remote sensing
technique especially suited for trace gases in the atmosphere
is the Differential Optical Absorption Spectroscopy (DOAS)
(e.g. Platt, 1994), which allows retrieval of light path in-
tegrated concentrations of a large number of species such
as NO2, O3, SO2, HCHO, HONO, BrO and aromatic com-
pounds (e.g. benzene and toluene). Active DOAS measure-
ments use telescopes with artificial light sources and retro-
reflectors to redirect the light beams back to the telescope (so
called Long Path (LP)-DOAS), where path lengths vary be-
tween several hundred meters up to 20 km. First tomographic
measurements employing the LP-DOAS technique were car-
ried out to investigate the emissions of a motorway (Pundt
et al., 2005). Using two telescopes and 16 light paths, the
NO2 concentration field perpendicular to the motorway was
retrieved and within all errors results are in good agreement
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with model expectations (Laepple et al., 2004). This study
used a discrete approach by approximating the NO2 concen-
tration field by a finite sum over local piecewise constant (so
called box) and piecewise linear basis functions, respectively.
The state vector of discrete concentration values was fitted to
the measurement data by a least squares minimum norm prin-
ciple, comparing three iterative projection algorithms origi-
nally developed to solve large systems of equations in im-
age reconstruction: The Algebraic Reconstruction Technique
(ART), the Simultaneous ART (SART) and the Simultane-
ous Iterative Reconstruction Technique (SIRT), which were
already studied in Todd and Ramachandran (1994a) for 2-
D reconstruction of Gaussian shaped indoor gas concentra-
tions. Both studies find that ART performs best, if mea-
surement errors are negligible, whereas SIRT is preferred
for noisy data. Instead of choosing the least squares solu-
tion minimising the quadratic constraint of the state vector
norm, the Twomey-Tikhonov approach (e.g. Twomey, 1996),
introduced by Twomey for retrieval of atmospheric profiles,
controls the weight of some quadratic constraint by a pa-
rameter that has to be chosen. Often not the norm of the
state vector itself, but its gradient is chosen to influence the
smoothness of the solution. Price et al. (2001) use the norm
of the third derivative to make the reconstructed distributions
of indoor gas concentrations locally quadratic (Low Third
Derivative (LTD)-method) and point out that in their case
the positivity constraint on the reconstructed concentration
values can be almost neglected so that the method becomes
linear and, by one matrix multiplication, very fast. Other
discrete algorithms from image reconstruction seek for the
most probable reconstruction by maximising some measure
of likelihood or expectation that involves logarithmic func-
tionals instead of quadratic constraints. Samanta and Todd
(2000) find the methods Maximum Likelihood with Expec-
tation Maximisation (MLEM) and the Multiplicative Alge-
braic Reconstruction Technique (MART) to give less noisy
results than ART but stress the fact that performance may de-
pend significantly on the individual distributions considered
and that it is very sensitive to measurement errors. In a fur-
ther study (Verkruysse and Todd, 2004) MLEM is combined
with a new grid translation method (for box discretisation)
that takes into account several reconstruction grids shifted
against each other in the plane to improve the reconstruc-
tion of concentration peaks. In principle, global basis func-
tions extending over the whole area or functions depending
on further parameters to be fitted are possible. In fact, Price
et al. (2001) claim to get better results for the reconstruction
of indoor gas concentrations, compared to ART, by using a
method proposed by Drescher (1996) where a certain num-
ber of Gaussians with variable variances, peak locations and
heights and orientations are fitted to the data using a least
squares criterion. But as this method is highly nonlinear, un-
clear in its convergence and needs considerable calculation
time, it does not seem very favourable to be used for exten-
sive simulations, e.g. studying sensitivity to measurement

errors or investigating different geometries. Furthermore, it
contains unavoidable strong functional a priori and was re-
ported to fail for the reconstruction of the motorway emis-
sion plume with steep concentration gradients in Laepple et
al. (2004).

For atmospheric measurements in particular, the resolution
of the reconstructed distribution is limited by the number of
light paths of the measurement configuration, while the du-
ration of the measurement cycle for time dependent distri-
butions has large influence on the reconstruction error and
is due mainly to successive scanning of the individual paths
by the emitting system. Conventional LP-DOAS instruments
emit one light beam only and are not very easily pointed
at different targets. Here we refer to an indoor experiment
(Mettendorf et al., 2006) designed to evaluate the properties
of a novel instrument which emits up to six beams at once
(Pundt and Mettendorf, 2005). Three telescopes emitting
four beams were used to cover a horizontal area of 15×10 m2

regularly by three 90◦-beam fans sitting in the corners of the
area with 39 light paths in total (3×12 light paths plus one
additional per telescope for instrumental reasons that are ir-
relevant for atmospheric measurements. Effectively, this ge-
ometry corresponds to the one of Fig. 1c with 36 light paths).
One or two cylinders (radius=1 m), filled with NO2, were
placed into this area to simulate locally confined concentra-
tion fields, e.g. plumes emitted by a point source.

In this work, we systematically investigate the 2-D recon-
struction of atmospheric trace gas distributions on the back-
ground of this experiment for future atmospheric measure-
ments. That is, we consider geometries with a relatively
small total number of light paths (36), peripherically posi-
tioned retro-reflectors and locally confined distributions. We
think of horizontal monitoring of the atmosphere, but all re-
sults apply to vertical sections as well. Following the semi-
empirical approach that describes turbulent transport and ad-
vection of gas in the atmosphere by a Gaussian diffusion
model, we assume Gaussian exponentials as test distribu-
tions. We prefer to use a physically intuitive (if possible
linear) reconstruction scheme that allows controlled imple-
mentation of a priori information or constraints for atmo-
spheric measurements, for example, if path integrating mea-
surements are supported by in situ measurements. In the
case of peaks located arbitrarily in the measurement area,
the least squares approach minimising the norm of the state
vector rather than its derivatives seems plausible, but for ex-
tended, smooth concentration fields this could be different,
especially if information on atmospheric concentration gra-
dients is available. We use ART and SIRT to obtain the least
squares minimum norm solutions. It is known that for iso-
lated concentration peaks reconstruction grids can be cho-
sen that lead to highly under-determined systems. This is
investigated in detail by calculating discretisation, inversion
and total reconstruction errors separately for varying peak
extensions, comparing piecewise constant and piecewise lin-
ear basis functions (Sect. 4.1). Additionally to commonly
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used quality criteria of the reconstruction, we estimate re-
constructed area integrals of the concentration field, again
depending on the peak extensions (Sect. 4.2). On the basis of
our results we suggest a reconstruction procedure if a smooth
background concentration is present (Sect. 4.3). The above
mentioned grid translation scheme is adopted for linear ba-
sis functions in two different ways and discussed for vary-
ing extensions. Finally, different geometries are compared
(Sect. 4.4). They differ from the ones studied in Todd and Ra-
machandran (1994b) and Todd and Bhattacharyya (1997) in
that we consider a number of light paths many times smaller
and which is the same for all geometries. Furthermore, our
geometries do not include mirrors to generate parallel pro-
jections. Additional to simulations, we use arguments from
linear inversion theory to evaluate measurement setups for an
expected trace gas distribution and different levels of noise.

2 Reconstruction method

2.1 Discretisation

Results of an LP-DOAS analysis are direct integrals of atmo-
spheric concentrationsc(r )

di =

∫
i

ds c(r) i = 1, . . . , m, (1)

wherei numbers the light paths anddi are the so called col-
umn densities. Direct analytic inference ofc(r ) common in
medical applications and used by Wolfe and Byer (1982) in
a first proposal for tomographic measurements in air is not
applicable in our case of low and irregular spatial coverage,
so strategies usually amount to some kind of fit procedures.
One approach, also very common in computerised tomogra-
phy, is to representc(r ) by a sum overn “basis functions”bj

with local support

c(r) ≈

n∑
j=1

xjbj (r), (2)

thus leading to the linear system of equations

Ax = d, (3)

x andd being the state and data vector with componentsxi

anddi , respectively.
Parametrisation by piecewise constant basis functions

(box functions or box basis) – being nonzero only in one
pixel and vanishing anywhere else – is used when resolu-
tion is high and calculation time plays a major role.Aij

then stores the lengths of pathi in pixel j . With large pixels
and small systems of equations, piecewise linear basis func-
tions interpolating linearly between nodes of the discretisa-
tion grid, as discussed in Ingesson et al. (1998) and used in
Laepple et al. (2004) reduce discretisation errors.xj now is
the concentration value of the reconstructed distribution on
grid nodej .

2.2 Least squares minimum norm solution, weighting and
Bayesian a priori

In practice, Eq. (3) cannot be solved at all, not uniquely or the
unique solution might be unstable. It is straightforward to use
a constrained least squares principle for the data residuum(
(d−Ax)T (d−Ax)

)1/2
instead:

(d − Ax)T W(d − Ax) = min ! x > 0, (4)

where weighting is included by the matrixW. In the under-
determined case, usually additional constraints will be nec-
essary to pick a unique solution. As mentioned, for peak dis-
tributions we choose the solution with smallest norm (as no
other information about the concentration field is available),
i.e. we demand

xT x = min !, (5)

which just produces least squares minimal norm solutions.
With an a priori guessxa different from zero Eq. (5) is re-
placed by

(x − xa)
T (x − xa) = min ! (6)

Iterative projection algorithms converging to least squares
solutions of the above kind have been studied extensively in
image reconstruction. ART applies corrections of the data
residuum sequentially corresponding to the rows in Eq. (3),
starting with a givenx(0), and is reported to work best when
no noise is present. SART and SIRT, applying corrections
simultaneously for all rows, are better when noise is present
but converge slower than sequential methods. The a priorixa

is provided by the iteration startx(0). The order of the algo-
rithms according to (Todd and Ramachandran, 1994a) and
(Laepple et al., 2004) is ART>SART>SIRT, reversing to
SIRT>SART>ART with noise in both studies. Here, we do
not go into the details of the iteration procedures themselves
but refer the reader to the two studies mentioned and refer-
ences therein and in the following will only consider ART
and SIRT. We just would like to mention that stopping the
iteration process prematurely can be used to regularise the
solution, especially in the presence of measurement noise.

We would like to emphasise that these algorithms do
not actually solve Eqs. (4) and (5) or (6) but rescaled
versions, something not always made clear in the litera-
ture. In Trampert and Leveque (1990) it is pointed out
that SIRT and SART without positivity constraint minimise
(d−Ax)T A2

−1(d−Ax) where for the under-determined
case the solution closest tox(0) with respect to the norm
xT A1x is generated. Here

A1 = diag
(∑m

i=1
Aα

ij

)
A2 = diag

(∑n

j=1
A2−α

ij

)
0 ≤ α ≤ 2 (7)

represent a one parameter family of algorithms withα=0 for
SIRT,α=1 for SART. Referring to the box basis, this means
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that SART weights light paths with the inverse of their length
and pixels with the partial light path lengths added up in the
pixel. SIRT does not weight pixels whereas light paths get
weights inverse to the square of the partial path lengths. The
convergence of ART is more involved (e.g. Natterer, 1986)
but corresponds to SIRT in the consistent case. Favouring
better sampled pixels makes sense, but weighting paths with
the inverse of their lengths is somehow contradictive to the
fact that, in general, relative DOAS measurement errors de-
crease with increasing path length. Whether weighting does
play a role, though, depends on the problem being consistent
and/or over- or under-determined. In the under-determined
case one gets

x = x(0)
+ A1

−1AT
(
AA1

−1AT
)−1 (

d − Ax(0)
)

(8)

(provided the inverse exists) without any weighting of the
light paths. In the generalised least squares formalism, again
x(0) represents the a priorixa , A1 its covariance and the error
covariance is zero. In the pure least squares solution no a
priori in the above sense enters.

2.3 Grid translation

The key idea of this method suggested in Verkruysse and
Todd (2004) is that for irregular light path geometries the
choice of the discretisation grid is to some extent arbitrary
and (especially for narrow peaks) in general not optimal.
Therefore, the authors suggest using several reconstruction
grids that are generated by shifting the initial grid in both
directions and combine the results on a grid of higher spa-
tial resolution. Here, this scheme is adopted for linear ba-
sis functions and regular grids in the following way: If
there aremx (my) shifts in x (y) direction, the first grid
is generated by shifting the original nodes bylx /(mx+1)
in x direction (lx : pixel width in x). This is performed
mx times, then the initial grid is shifted byly /(my+1) in
y direction and the procedure is repeated, and so forth.
This results inM=(mxmy+mx+my+1) reconstructions and
N=[(mx−1)(nx+1)+1]×[(my−1)(ny+1)+1] nodes of a high
resolution grid, wherenx (ny) is the number of nodes of
the initial grid in x (y) direction. Two different schemes
to get the state vectorX of the high resolution grid from
the individual reconstructions are considered: In a composite
scheme, the componentXj for grid noder j is taken from the
shifted gridi that has a coinciding node there

Xj = xi
j . (9)

As the boundary grid lines do not change, here the average
of coinciding nodes is taken. In the averaging schemeXj is
taken as the average of all individual reconstructions on its
grid nodesr j :

Xj =
1

M

N∑
i=1

ci
rec(r j ). (10)

2.4 Reconstruction errors

For atmospheric tomography, the concentration field
cε

rec(r)=
∑

j xε
j bj (r), reconstructed from error (ε) afflicted

data, will always differ from the real, unknown concentra-
tion c(r). The reconstruction error field can be written as

1cε(r) = c(r) − cε
rec(r)

= c(r) −

∑
j

xid
j bj (r)︸ ︷︷ ︸

1disc(r)

+

∑
j

xid
j bj (r) −

∑
j

xjbj (r)︸ ︷︷ ︸
1inv(r )

+

∑
j

xjbj (r) −

∑
j

xε
j bj (r)︸ ︷︷ ︸

1ε(r)

. (11)

Here, the discretisation error1disc(r) arises because, in gen-
eral,c(r) cannot be perfectly represented by the basis func-
tions. xid is the best possible representation, e.g. in a least
square sense, for a given grid. Even if the discretisation er-
ror happens to be very small, the reconstruction result will
differ from the real field. We call this difference1inv(r) the
inversion error. Finally, the measurement error will change
the result of an ideal measurement, which leads to the term
1ε(r). If the reconstruction is linear and given by the matrix
A inv, then propagation of the measurement error with covari-
anceSε can be expressed analytically:

varε
{
cε

rec

}
(r) = varε

{
1cε

rec

}
(r)

=

∑
i,j

(
A invSε

(
A inv

)T
)

ij

bi(r)bj (r). (12)

This means additional contributions for correlated measure-
ment errors and overlapping basis functions, like the linear
basis functions.

A straightforward calculation shows that, if

xid minimises
∥∥∥c(r) −

∑
j
xjbj (r)

∥∥∥
:=

√∫
dA

(
c(r) −

∑
j
xjbj (r)

)2
, (13)

then for the expectation valuesE the following relation holds

Eε

{∥∥1cε(r)
∥∥2

}
= ‖1disc(r)‖2

+ ‖1inv(r)‖2
+ Eε

{
‖1ε(r)‖2

}
,

(14)

which means that the integrated contributions add up
quadratically.

2.5 Reconstruction quality

To find the best parameters for the reconstruction and com-
pare different algorithms, usually an ensemble (e) {ce (r )}
of realistic test distributions is considered and some quality
criterion is optimised for the ensemble mean. Working with
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continuous fields, we use the integral of the squared recon-
struction error, normalised to give 1 if the reconstructed field
is just the constant average of the test distribution. This num-
ber, representing the overall reconstruction error, is known as
nearness in image reconstruction:

nearness=
‖1ce‖

‖ce − c̄e‖
. (15)

Also the Pearsonr2-correlation factor between a suitable
number of image pixels of the test and reconstructed distri-
bution can be used. We found that, in general, both lead to
the same results. To get more descriptive measures for the re-
construction quality, we furthermore introduce the following
relative numbers:

RT I = ratio of the total area integrated concentration

=

∫
AreadA ce

rec∫
AreadAce

, (16)

RPI = ratio of the concentration integrals

within the peak (plume)

=

∫
O

dA ce
rec∫

O
dAce

. (17)

In the case of Gaussians, we take 3×max(σx , σy) as the ra-
dius of the test distribution (at 3σ the peak value has fallen
to 1%). For the reconstructed distribution, we add one pixel
length of the reconstruction grid to this radius to take account
of the spreading within the pixels for the box basis and the
interpolation between neighbouring grid points for the linear
basis functions, respectively. This, especially in the case of
several large distributions with overlap and for larger pixel
sizes, will only be a rough estimate. If the wind speed has
a component perpendicular to the reconstruction area,RPI
provides a measure for the precision of emission rates or to-
tal emissions. For horizontal cuts through the atmosphere
this is the case, e.g., if the area contains a source with advec-
tive vertical transport. For horizontal transport of a plume
this number can be related to total emissions only with fur-
ther assumptions on the vertical dispersion since its release.

In the context of air quality regulation one might be in-
terested in maximum values of the concentration, so we also
use the

relative peak difference= relative difference of maximum

peak values between original and reconstructed distribution

= (maxce
rec − maxce)/ maxce. (18)

3 Evaluation of the measurement geometry

In a discrete approach, geometry and discretisation grid are
linked in the matrixA. While the discretisation error is given
by the resolution of the discretisation, the inversion error

strongly depends on the geometry. Even ifA can be inverted,
the result still depends on its conditioning and choice of the
inversion algorithm. In the under-determined case compo-
nents ofx in the null space ofA are fixed by a priori in-
formation or constraints. Evaluation of the geometry is now
inherently linked to the reconstruction method and, if non-
linear, not even independent of the concentration distribution.
Then criteria like Eq. (15) have to be evaluated for a suitable
ensemble.

The singular value decomposition is helpful to in-
vestigate the null space ofA. Writing A=U3VT

with orthonormal matricesU(m×m) and V(n×n) and
3=diag(λ1, . . . , λrank(A), 0, . . .), x can be uniquely repre-
sented by the column vectors ofV: x=

∑n
j=1 x̃jvj , where

vj with j>rank(A) span the null space. For a component
j>rank(A) of x the nullspace does not contribute, ifx̃j=0.
On the other hand, if

∑
j>rank(A) Vij

2
=0, values forxi can

be (and for the least squares solution are) completely fixed
by the data. In fact, the latter sum is just(1−R)ii , R be-
ing the resolution matrix (averaging kernel) that relates the
true and reconstructed state viax=Rxtrue=A invAxtrue, here
for the generalised inverseA inv of A which is equivalent to
the unweighted least squares minimum norm solution with
uniform a priori covarianceSa.

The probabilistic interpretation of the generalised least
squares formalism at least allows to get an idea of how dif-
ferent geometries perform on fairly general assumptions by
choosing the a priori model correspondingly and for different
levels of noise. In Rodgers (2000) the quantity

ds = trace(R) (19)

with R the resolution matrix of the generalised least squares
solution, is interpreted as the number of degrees of freedom
of the signal against the noise, i.e. the number of independent
quantities that can be measured. For the unweighted least
squares minimum norm solution with uniformSa one just
has trace(R)=rank(A). Alternatively

H = −1/2 log2 det(1 − R) (20)

is given as a measure of the number of distinct states distin-
guishable by the measurement.

4 Results and discussion

In the following, we consider a square area of 100×100 ar-
bitrary units (a.u.) that is crossed by 36 light beams. This
could be realised, for example, by three telescopes emitting
six rays each and scanning two different geometries. Six ge-
ometries (Fig. 1) are investigated. They consist of two, three
or four telescopes generating either 90◦- or 180◦-beam fans.
The light paths were chosen to cover the area more or less
regularly without claiming to present the ideal solution, for
example with respect to the number of retro-reflectors, which
varies between 25 and 36 for the geometries shown.

www.atmos-chem-phys.net/6/847/2006/ Atmos. Chem. Phys., 6, 847–861, 2006
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°b)a) 2T90 2T180

d)

e) f)

c) 3T90° 3T180°

4T180°4T90°

°

Fig. 1. Geometries with two(a, b), three(c, d) and four(e, f) tele-
scopes with light paths emitted in 90◦ (left column)- or 180◦ (right
column)-fans. The square area is 100×100 a.u. All geometries con-
sist of 36 light paths. Geometry (c) corresponds to the one used for
the indoor experiment reported in Mettendorf et al. (2006).

Table 1. Variances and extensions of the Gaussian test distributions.
The radius of the extension is defined by 3σ , where the exponential
has fallen to 1% of its peak value.

ensemble σ [a.u.]

1 3 ... 5
2 5 ... 10
3 10 ... 20
4 20 ... 30

For the test distributions, we take up to four Gaussians of
variable variances and maximum values, located randomly in
the area. The Gaussians are divided into four ensembles (Ta-
ble 1). Ensemble 1 represents the lower limit of narrow peaks

Fig. 2. Ensemble mean nearness for geometry 3T90◦ versus grid
dimension, using linear basis functions.n×n refers to the number
of pixels. Variances shown for illustration are for one peak, recon-
structed by SIRT. For four distributions peak maxima vary between
0.1 and 1 a.u.

that are still detectable for our coverage with light paths.
Here the aim is rather to locate the peaks and to reconstruct
total amounts of concentration, whereas for extended peaks
of ensemble 3 and 4 reconstruction of the actual distribution
is feasible. Reconstructing more than four peaks is not re-
liable with our number of light paths, especially if artefacts
are similar in size to the original peaks.

In the following, we do not make use of any explicit
weighting, as, except for a short discussion in Sect. 4.4, mea-
surement errors are not taken into account. First, basic ob-
servations will be presented for the specific geometry labeled
3T90◦ that was realised in the indoor experiment. The last
section contains a comparison with other geometries.

4.1 Overall reconstruction errors – choice of the recon-
struction grid

How reconstruction results depend on the grid dimension is
studied by varying peak extensions in each ensemble individ-
ually, for 300 random samples in each ensemble. Figure 2
shows ensemble mean values of the nearness for geometry
3T90◦ of Fig. 1c and a regular grid of linear basis functions
(note that fornx×ny pixels the dimension of the state vector
is (nx+1)×(ny+1) for bilinear discretisation). For one peak
results for both SIRT and ART are shown, wherex(0)=0.
SIRT produces smaller overall reconstruction errors, espe-
cially for narrow peaks. For all peaks except the large ones
from ensemble 4 the nearness can be considerably reduced
by choosing grids that lead to highly under-determined sys-
tems. This remains true even for four peaks (maxima here
and in the following vary between 0.1 and 1 a.u.). For peaks
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Fig. 3. Integrated reconstruction (nearness), inversion and discreti-
sation error as defined in Eqs. (11) and (13) (without measurement
noise) and normalised as in Eq. (15) for four peaks from ensembles
1 and 2. Peak heights vary between 0.1 and 1 a.u. (againn×n means
dim(x)=(n+1)×(n+1) in the bilinear case).(a) ART and SIRT.(b)
Pixel and linear discretisation for the same dimension of the state
vector.

from ensemble 3 and 4 the averaged mean concentration of
all light paths is taken as a priori. Approaching the over-
determined region, differences between SIRT and ART grow,
especially for the more narrow peaks. Indeed, in these cases
the optimal iteration number lies before convergence and re-
construction errors increase with iteration number, which ei-
ther means that the least squares minimum norm solution has
to be regularised or that it is not a good solution.

A grid of 10×10 pixels means three times more unknowns
than knowns in the Eq. (3). Three reasons make the highly
under-determined case still better for narrow peaks. First,
most of the grid nodes carry the concentration zero and this
is just provided by the a priori. Second, the positivity con-
straint becomes active for solutions around zero. Finally, the
discretisation error decreases with increasing grid dimension.
This is illustrated by Fig. 3, where total reconstruction, inver-
sion and discretisation errors according to Eqs. (11) and (13)
and normalised as in Eq. (15) are shown for four peaks from
ensembles 1 and 2, comparing ART and SIRT (a) and box
and linear basis functions (b). As can be seen from the in-

Fig. 4. Mean nearness for reconstruction of four peaks from en-
sembles 1 to 4, respectively, for the averaging and composite grid
translation scheme. In both cases the original grid was shifted four
times in each direction. The bilinear grids used for reconstruction
with SIRT are given in brackets.

version error, the decreasing nearness for higher dimensional
grids is finally solely due to decreasing discretisation errors.
Taking the inversion error as a measure for the quality of the
solution of Eqs. (4), (5), and (6) this suggests that minimis-
ing nearness is not sufficient to find the optimal grid. This
agrees with the fact that artefacts in the reconstruction in-
crease for grids too fine, even if the nearness still decreases.
Figure 3b compares pixel and linear discretisation for recon-
struction by SIRT. Not only is the discretisation error larger
than in the linear case but also the inversion error. This is not
at all evident and cannot just be explained by different con-
ditioning of the corresponding matrices, at least not in terms
of mere condition numbers. We conclude that the linear dis-
cretisation is not just smoothing the picture but actually more
accurate, at least for the case shown here.

For the sake of completeness, we remark that data resid-
uals show a different behaviour in that they always decrease
with increasing grid dimension, irrespective of the extension
of the peak. This is just underlining the well known fact that
the data residual is only of very limited use for evaluating a
reconstruction result. Here, relative residuals for one peak
from ensemble 1 are below 10%, below 5% for ensemble 2
and far below 1% for ensembles 2 and 3.

Figure 4 shows how mean nearness is changed by ap-
plying the two schemes of shifted grids to four peaks from
ensembles 1 to 4, respectively. In both cases the origi-
nal grid is shifted four times in each direction. Further
shifts do not improve nearness. The averaging scheme im-
proves the nearness for all peak extensions between 15% and
25%, whereas the composite scheme improves it only for
the very narrow peaks (ensemble 1) and deteriorates it for
larger. In Verkruysse and Todd (2004) a scheme similar to
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the composite scheme used here was found to improve near-
ness for the box basis functions.

Figure 5 shows reconstruction examples for peaks from
each ensemble and illustrates how results for narrow peaks
depend on the grid chosen. Larger pixels lead to smaller
peak concentrations; the averaging grid translation scheme
does not in general seem to diminish artefacts and can in-
deed lead to worse reconstruction results in terms of near-
ness if the original grid happens to be above the average of
the shifted grids. In Fig. 5a grids of higher dimension give
higher peak values and somewhat smaller peak diameters,
but without increasing artefacts. This could be seen as an in-
dication for a very narrow original peak and thus justify the
choice of a very high dimensional grid. Figure 5b, on the
other hand, shows how artefacts appear in the reconstruction
if the grid is too fine. Finally, Fig. 6 presents reconstruc-
tions of two and four peaks. Reconstruction by the single,
unfavourable 8×8 grid in Fig. 6a gives a misleading picture
that can be corrected by comparison with other grids or by
using the averaging grid translation scheme. Figure 6b, too,
illustrates how accidental features are corrected by averaging
over grids.

4.2 Reconstructed area integrals

The same trend with grid dimension found for the integrated
reconstruction error exists for area integrals of the recon-
structed concentration and the differences of the maxima.
Figure 7 shows the results for the geometry and test distri-
butions of the previous section. Ensemble mean absolute
deviations of the reconstructed concentration integrals over
the whole areaRTI, c.f. Eq. (16), (Fig. 7b) and within the
plumesRPI, Eq. (17), (Fig. 7a) crucially depend on peak ex-
tensions. For optimal grids the concentration integrals over
the whole area deviate between 10 and 35% for one narrow
peak from the original test field, between 5 and 20% if four
narrow peaks are reconstructed and less than 5 and 10%, re-
spectively, for extended distributions. For the concentration
integrated over the area within the plume, one gets mean de-
viations up to 20% for one narrow peak, up to 30% for four
peaks and less than 5 and 10% for larger plumes. The steep
decrease with increasing grid dimension for narrow peaks is
not simply due to the smaller pixel size, as this is taken into
account in the plume extension as described in Sect. 2.5. In
general, both integrals can be over- or underestimated, de-
pending on the location and relative values of the peak max-
ima. While ART and SIRT yield the same plume integrals for
one peak, ART shows larger deviations for the area integrals,
agreeing with the visual impression that it produces more
artefacts in the reconstruction. In this context, we would like
to point out that the total area integral increases if a concen-
tration peak is spread over the area and the column densities
are kept constant.

The averaging grid translation scheme does not signifi-
cantly change integrated concentrations, whereas the com-

posite scheme yields much larger deviations of the full area
integrated concentration, especially for narrow peaks (figures
not shown). Plume integrals of concentration remain largely
unaltered (also not shown). The maximum peak difference
(Fig. 7c) is strongly reduced for narrow peaks by choosing a
finer discretisation as the concentration is spread over smaller
pixels and the peak values increase. Applying the averag-
ing grid translation scheme leads to an increased deviation
by 30, 30 and 20% for ensembles 1, 2 and 3 and practically
no change for ensemble 4. In contrast to the case of box
basis functions (Verkruysse and Todd, 2004), the composite
scheme reduces the peak difference only for ensemble 1 (by
50%). So by the grid translation schemes one can obtain bet-
ter results for narrow peaks in terms of nearness as overall
deviation of the shape, but not in terms of peak concentra-
tions and concentration integrals (c.f. Fig. 5). As reconstruc-
tion of the precise shape of the distribution is hardly possible
for very narrow peaks and the geometry considered here, the
question, whether grid translation should be used depends on
the features most important to be reconstructed correctly.

4.3 Additional background concentration

As pointed out above, one reason that makes a fine discreti-
sation and thus a highly under-determined system feasible is
that the a priorix(0)=0, supported by the positivity constraint,
is a good choice for narrow peaks. In the presence of back-
ground concentrations this no longer holds and the a priori
has to be modified. If the background distribution is more or
less smooth and not of particular interest or even known, we
suggest subtracting a contribution given by the background
concentrationdBG

i =
∫
i
ds cBG(r) and solving the resulting

systemd−dBG
=Ay again with a priori as in Sect. 4.1. Here,

we substract a constant backgroundcBG given by the small-
est column densitydmin=:cBGlmin (lmin being the length of
this light path). This is not equivalent to takingcBG as a pri-
ori – not even in the linear case – and yields better results
in terms of nearness than using the original system with a
non-zero a priori, like e.g. averaged mean concentration of all
light paths, as shown in Fig. 8. In this figure both methods are
compared for a randomly created background added to four
peaks from ensembles 1, 2, 3 and 4, respectively. Concen-
trations of the background vary between 0.05 and 0.25 a.u.,
peak maxima between 0.1 and 1 a.u. so that the contributions
from the background to the total column densities are simi-
lar in size to those from the peaks. The reconstruction error
decreases mainly for ensembles 2 and 3, only slightly for en-
semble 1 and increases slightly for large distributions from
ensemble 4.

4.4 Different geometries

The mathematically ideal measurement would be represented
by a diagonal matrixA with entries of similar size. For a
regular box discretisation this would mean one light path
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a) Test distribution Single grid: 9x9 10x10 12x12
(Nearn=0.6, RPI =1.1, RTI =1.3) (0.5, 1.1, 1.3) (0.29, 1.0, 1.1)
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Grid translation: 9x9 10x10 12x12
(0.5, 1.1, 1.3) (0.42, 1.1, 1.3) (0.39, 1.0, 1.2)
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b) Test distribution Single grid: 8x8 10x10 12x12
(Nearn=0.31, RPI=1.0, RTI=1.1) (0.16, 1.0, 1.0) (0.17, 1.0, 1.0)
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Grid translation: 8x8 10x10 12x12
(0.16, 1.0, 1.1) (0.06, 1.0, 1.0) (0.13, 1.0, 1.0)
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c) Test distribution Single grid: 5x5 d) Test distribution Single grid: 4x4
(Nearn=0.18, RPI=0.95, RTI=0.95) (0.14, 1.0, 1.0)
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Fig. 5. Reconstruction of one peak by SIRT using a single, regular, bilinear grid and the averaging grid translation scheme, where the original
grid is shifted four times in each direction. Peak from(a) ensemble 1 (σ=4 a.u.),(b) ensemble 2 (σ=7 a.u.),(c) ensemble 3 (σ=15 a.u.),(d)
ensemble 4 (σ=25 a.u.).
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a) Test distribution Single grid: 8x8 Grid translation: 8x8 Single grid: 10x10
Nearn=0.47 Nearn=0.23 Nearn=0.26
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Grid translation: 10x10 b) Test distribution Single grid: 8x8 Grid translation: 8x8
Nearn=0.23 Nearn=0.28 Nearn=0.31
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Fig. 6. Same as Fig. 5.(a) Two peaks withσ1,2=13, 6 a.u. andcmax 1,2=0.7, 1 a.u. (b) Four peaks withσ1,2,3,4=13, 6, 8, 20 a.u. and
cmax 1,2,3,4=0.7, 1, 0.5, 0.2 a.u.

in each pixel, i.e. as many telescopes as pixels, resulting
in maximum independency of the light paths. Light paths
get more independent if emitted by more telescopes or in
wider angles. The expectation that increasing the number
of telescopes and using e.g. 180◦-fans instead of 90◦-fans
improves reconstruction results was confirmed in Todd and
Bhattacharyya (1997) for a far larger number of light paths
and slightly different geometries including projections. For
the geometries in Fig. 1, one expects improving reconstruc-
tions going from two to four telescopes, but worse results for
the 180◦-geometries compared to those with 90◦-fans due to
their coarser and less regular coverage with light paths. This
is shown in Fig. 9a, where mean nearness is calculated for
four peaks from ensembles 1 to 3 for the different geome-
tries using SIRT on an 8×8 grid and bilinear basis functions
without grid translation scheme. Also shown is the Pear-
sonr2-correlation between original and reconstructed picture
for 50×50 sample points with mean values between 0.7 and
0.88. The 90◦-geometry with two telescopes gives by far the
largest reconstruction errors. Though it does get better for
narrow distributions, the overall order of the geometries does
not depend very much on the ensembles chosen. Reconstruc-
tion quality varies strongly with the measurement geometries
and number of peaks as indicated for the 90◦-geometry with
three telescopes. Reconstructed area integrals of the concen-
tration field within the peaks (RPI) (Fig. 9b) deviate around
5% in the ensemble mean from real ones for the geometries
with more than two telescopes and around 10% for two tele-
scopes with distinctly larger ensemble variances. The same
trend with geometry as for nearness and RPI holds for the
complete area integrated concentrationsRTI (Fig. 9c) and for
the relative peak difference of the maximum peaks (Fig. 9d).

To get an idea of how the reconstruction quality varies
within the test area, quality criteria are evaluated for one peak
on a fine grid of peak positions and mapped to the area by

displaying the value of the criterion at the position of the
peak in the reconstruction area (Fig. 10). In the first, sec-
ond and third column nearness,RPI andRTI are given for
one peak from ensemble 2 (σ=7 a.u.), reconstructed on an
8×8 linear grid for 30×30 peak positions without using any
grid shifting scheme. Apart from the pattern of smaller near-
ness values if peak positions coincide with grid nodes, there
are spots of larger reconstruction errors where coverage with
light paths is coarse. The maps of the concentration inte-
grals within the whole area and within the peak, respectively,
show this pattern, too. Both get underestimated in gaps be-
tween light paths and overestimated around the telescopes
where only similar light paths from the same fan contribute.
Taking the plots forRPI andRTI together gives information
about where the reconstructed trace gas is located: if the de-
viation for the concentration integrated over the whole area
is distinctly larger than within the peak, then the distribution
is spread over a larger region (as is the case near the tele-
scopes) or artefacts appear somewhere else (which here, for
one peak, is rarely the case).

Finally, the fourth column of Fig. 10 illustrates how well
concentration values are fixed by the data according to
Sect. 3, again for an 8×8 grid. The interpolating represen-
tation is slightly misleading in that values of

∑
j>rank(A) Vij

2

exist only on the nodesi. How much the null space ac-
tually contributes depends on the singular vector represen-
tation of the state vector given. Even for high values of∑

j>rank(A) Vij
2, the null space does not contribute if corre-

sponding components̃xi vanish, but for a statistical average
of arbitrary concentration distributions, these maps should
point out weak points of an irregular geometry and indeed
do so, as can be seen from comparison with the first three
columns, especially for geometries 2T90◦ and 2T180◦.

The evaluation in Fig. 10 was made for the special shape
of Gaussian distributions and without taking measurement
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Fig. 7. Ensemble mean deviations of(a) the concentration inte-
grated within the peak (RPI), (b) the concentration integrated over
the whole area (RTI) and(c) the relative peak difference of the max-
imum peaks between the reconstructed and original distribution.
Settings are as in Fig. 2, variances shown where nearness has its
minimum and for SIRT only.

errors into account. To see how the geometries perform for
different levels of noise, Figs. 11 and 12 show the number of
degrees of freedom of the signal and information content, re-
spectively, for different a priori assumptions on the trace gas
distribution to be measured. In Fig. 11a and 12a uniform
a priori covarianceSa=diag(σa, . . . , σa) and uncorrelated
measurement errors of the same sizeσε were assumed. For
the distributions and areas considered here, ratiosσa/σε≈1
correspond to measurements with relative errors of a few
percent. For negligible measurement errors, all geometries
use their maximum degree of freedom of all 36 light paths

Fig. 8. Ensemble mean nearness for four peaks with background
reconstructed after subtracting the background and by assuming the
averaged mean concentration of all light paths as a priori. Peak
maxima vary between 0.1 and 1 a.u. and the randomly created back-
ground between 0.05 and 0.25 a.u. No grid shift scheme is applied.

(σε/σa→0 corresponds to reconstruction by the generalised
inverse). The geometries with only two telescopes are very
sensitive to noise, whereas realistic measurements with three
and four telescopes still almost reach their maximum degree
of freedom. The information content shows a behaviour very
similar to the nearness in Fig. 9a except for the high ranking
of the 180◦-geometry with four telescopes relative to those
with two telescopes. This changes if the a priori covariance
is restricted within the area. For the information content of
the measurement in Fig. 12bSa has nonzero elementsσa on
a square area of nine grid nodes only, located in the cen-
tre, the upper left and lower right corner, respectively. The
geometries with two telescopes now win relatively. The cen-
tre is better resolved for all geometries except for geometry
2T180◦. Here the full degrees of freedoms are not reached,
as shown in Fig. 11b. For all other geometries measurements
in the centre are less sensitive to noise.

5 Conclusions

In this study, a discrete approach to retrieve trace gas dis-
tributions from Long path DOAS-measurements was inves-
tigated in detail with respect to the parametrisation of the
solution and the extension of the concentration distribution.
We found that, at least for the reconstruction of concentra-
tion peaks by the least squares minimum norm solution with
additional positivity constraint, parametrisation by piecewise
linear basis functions instead of piecewise basis functions not
only reduces the discretisation error but also improves the in-
version itself. Reconstruction errors and the inaccuracy of
reconstructed total amounts of trace gas concentrations can
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Fig. 9. Ensemble mean values for four peaks from ensembles 1 to 3 for the geometries of Fig. 1.(a) Nearness and Pearsonr2-correlation
between original and reconstructed picture for 50×50 sample points.(b) Deviation of the concentration integrated within the plume (RPI).
(c) Deviation of the concentration integrated over the whole area (RTI). (d) Relative peak difference of the maximum peaks. For geometry
3T90◦ values for one and two peaks are also shown. Reconstruction used SIRT on an 8×8 grid without grid shifting scheme.

be significantly reduced by choosing an optimal dimension
of the discretisation grid. A grid translation scheme adopted
from Verkruysse and Todd (2004) that averages reconstruc-
tion results of several discretisation grids shifted against each
other reduces total reconstruction errors and accidental fea-
tures of a single reconstruction grid and can therefore help
with the a posteriori choice of the discretisation grid. It does
not in general lead to better estimation of total amounts of
concentration and underestimates peak maxima. The results
hold for a limited number of isolated peaks but can be ex-
tended to the case of additional smooth background if sub-
tracted before reconstruction.

Reconstruction quality for a given number of light paths
strongly depends on the beam configuration. Increasing the
number of telescopes for the same number of light paths
leads to better reconstruction results, provided that the cov-
erage with light paths can be kept regular and does not de-
crease. Measurement errors have less impact on better ge-
ometries but the sensitivity varies within the area and seems
to be weaker for better resolved regions.

The minimum norm solution combined with appropriate
a priori seems to be suitable for the test distributions con-
sidered here but has the major drawback of being nonlin-
ear due to the additional positivity constraint. Linear recon-
struction methods like the LTD method suggested in Price et
al. (2001) not only are much faster, but allow analytic prop-
agation of measurement errors and using tools from linear
inversion theory like the resolution matrix, independently of

specific distributions. In the over- or well-determined case,
the least square minimum norm solution is completely fixed
by the data and if regularisation is not necessary, introduction
of any a priori should be well justified, especially if unphys-
ical.

Furthermore, we would like to point out that all variances
shown always contain the full variability within the test area
and should not be taken as reconstruction errors of a partic-
ular distribution. To estimate the actual reconstruction er-
ror field from a specific set of measurement data as done
by Laepple et al. (2004), only realistic distributions compati-
ble with the uncertainty of the reconstruction should be con-
tained in the ensemble for the error estimation. On the other
hand, these test distributions should reproduce the temporal
and spatial variability of the atmosphere – something not true
for models, like simple Gaussian dispersion models, that do
not treat turbulent processes adequately. A complete error
analysis should also include effects due to non-static condi-
tions during a measurement cycle.

Finally, we stress the fact that we did not directly com-
pare the minimum norm solution to solutions from other re-
construction principles, e.g. which use a weighted quadratic
constraint on the state vector norm or its derivatives. But on
the basis of our findings, we think that such a comparison
should be made with special respect to extension and gradi-
ents of the concentration fields and should use less ideal test
distributions than Gaussian peaks, especially for the evalua-
tion of grid translation schemes.
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4T180◦
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3T180◦

3T90◦

2T180◦

2T90◦ Nearness RPI RTI
∑

j>rank(A) V
2
ij

Fig. 10.First, second and third column: Quality criteria as function of peak position for reconstruction of a single peak (σ=7 a.u.) on an 8×8
linear grid without grid shifting scheme for different geometries.First column: nearness.Second column: concentration integrated within
the peak (RPI). Third column: concentration integrated within the whole area (RTI). Fourth column: componentsi of the sumV 2

ij
over the

null space ofA mapped to the nodes of the 8×8 linear grid. Values in between the grid nodes are merely interpolated.
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Fig. 11. Degrees of freedom of the different geometries for an 8×8
linear grid and different levels of noise.(a) Uniform, diagonal a
priori covariance with elementsσa . (b) Diagonal a priori covariance
with σa non-vanishing on nine grid points only (corresponding to a
square area of 25×25 a.u.), located in the centre, lower right and
upper left corner, respectively. In all cases the measurement errors
were assumed to be uncorrelated and of the same sizeσε.
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