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Abstract. Atmospheric aerosol particle formation is fre-
quently observed throughout the atmosphere, but despite var-
ious attempts of explanation, the processes behind it remain
unclear. In this study data mining techniques were used to
find the key parameters needed for atmospheric aerosol par-
ticle formation to occur. A dataset of 8 years of 80 vari-
ables collected at the boreal forest station (SMEAR II) in
Southern Finland was used, incorporating variables such as
radiation, humidity, SO2, ozone and present aerosol surface
area. This data was analyzed using clustering and classifica-
tion methods. The aim of this approach was to gain new pa-
rameters independent of any subjective interpretation. This
resulted in two key parameters, relative humidity and preex-
isting aerosol particle surface (condensation sink), capable
in explaining 88% of the nucleation events. The inclusion of
any further parameters did not improve the results notably.
Using these two variables it was possible to derive a nucle-
ation probability function. Interestingly, the two most im-
portant variables are related to mechanisms that prevent the
nucleation from starting and particles from growing, while
parameters related to initiation of particle formation seemed
to be less important. Nucleation occurs only with low relative
humidity and condensation sink values. One possible expla-
nation for the effect of high water content is that it prevents
biogenic hydrocarbon ozonolysis reactions from producing
sufficient amounts of low volatility compounds, which might
be able to nucleate. Unfortunately the most important bio-
genic hydrocarbon compound emissions were not available
for this study. Another effect of water vapour may be due
to its linkage to cloudiness which may prevent the forma-
tion of nucleating and/or condensing vapours. A high num-
ber of preexisting particles will act as a sink for condensable
vapours that otherwise would have been able to form suffi-
cient supersaturation and initiate the nucleation process.

Correspondence to:S. Hyvönen
(saara.hyvonen@cs.helsinki.fi)

1 Introduction

Atmospheric aerosol particle formation is observed in var-
ious environments: the upper atmosphere (Eichkorn et al.,
2002), marine environments (O’Dowd et al., 2002b), urban
air (Mönkkönen et al., 2005; Dunn et al., 2004), remote ar-
eas (Koponen et al., 2002) and boreal forests (Mäkel̈a et al.,
1997). A recent overview article discusses these observations
in detail (Kulmala et al., 2004a).

Despite the numerous observations, the fundamental cause
of atmospheric particle formation remains in many cases un-
known. Because of the physical and chemical complexity of
the atmosphere, it is often a difficult task to focus on the most
relevant process causing nucleation. But this focus is impor-
tant, since without prior knowledge it is difficult to identify
the key variables. However, if a wide range of measurements
is carried out for a long period of time in one location, it
may be possible to detect subtle, previously unknown factors
lying behind the atmospheric particle formation events. Cur-
rently, long-term atmospheric aerosol measurements are con-
ducted only at a few stations (Ruuskanen et al., 2003; Sioutas
et al., 2004; Aalto et al., 2001) or with a few measured pa-
rameters like CO2 (Keeling et al., 1982).

Even the few sets of long-term measurements have yielded
many significant advances in atmospheric sciences. Such a
recent finding is the occurrence of new atmospheric particle
formation taking place in boreal forest environments around
50–100 times a year. These newly formed particles affect the
Earth’s radiation budget directly by scattering and absorption
(IPCC, 2001) and indirectly by acting as cloud condensation
nuclei (Twomey, 1974).

Many studies have investigated the physical mechanisms,
meteorological conditions (Nilsson et al., 2001) and chem-
ical compounds related to particle formation (Weber et al.,
1995; Korhonen et al., 1999; Birmili and Wiedensohler,
2000; O’Dowd et al., 2002a; Bonn and Moortgat, 2003; Kul-
mala et al., 2004a). Earlier attempts have demonstrated that
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favorable conditions for particle formation bursts include low
atmospheric water content, low preexisting particle concen-
tration and high solar radiation (Boy and Kulmala, 2002).

However, many previous studies have been based on pre-
conceptions of which parameters are important, in which
case the role of other parameters may have been overlooked.
To avoid this, we have done a comprehensive study using
data mining techniques. We have collected from the SMEAR
II station a dataset of eight years with around 80 parameters,
which were averaged over 30 min. This dataset was stud-
ied using different classification and clustering methods. In
Sect.2 we describe our measurements and the quality con-
trol of our database. Due to the great number of previous
studies we do not describe everything exhaustively. Some
derived variables such as condensation sink are are discussed
in more detail. The data analysis methods used are described
in Sect.3. We present the main results obtained by the ap-
plication of these methods in Sect.4. Finally, in Sect.5 we
discuss our findings in the light of the physical and chemical
processes involved in new particle formation, and draw some
general conclusions.

2 Experimental

2.1 Sampling site

Measurements used in this study were performed during the
years 1996–2003 at the SMEAR II station, which is located
in the Hyytïalä Forestry Field Station of the University of
Helsinki between Tampere and Jyväskyl̈a in southern Finland
(61◦51′ N, 24◦17′ E, 180 m a.s.l.). The station was designed
to study mass and energy flows in atmosphere-vegetation-
soil continuum. Around the station, for about 200 m to all
directions, there is a homogeneous 40-year-old Scots pine
stand. The dominant stand height is about 14 m and the all-
sided needle area is 7 m2m−2. Rannik(1998) describes the
micrometeorology of the site.

2.2 Measurements

In this study we used the continuous measurements for con-
centrations of NO, NOx, SO2, O3, H2O, CO2 and CO, for
the number size distribution of aerosol particles (dry diame-
ter of 3–600 nm particles) and for meteorological data, such
as temperature, pressure, wind speed, wind direction, humid-
ity and radiation (UV-A, UV-B, PAR, global, net, reflected
global and reflected PAR). The measurements of gas concen-
trations and meteorological data were performed at different
heights: levels of 4.2, 8.4, 16.8, 33.6, 50.4 and 67.2 m on the
measurement tower. The number size distribution of aerosol
particles was measured at 2 m height.

Flux measurements (sensible heat, latent heat, momen-
tum, CO2, H2O, O3 and aerosol particles) were carried out
in a tower at the height of 23.3 m and partly at the height
of 46.0 m using eddy covariance (EC) technique (Suni et al.,

2003). Temporal gaps in the CO2 flux measurements were
filled using the same method asAubinet et al.(2001) and
Falge et al.(2001). The details of the measurements per-
formed continuously at the SMEAR II station can be found
in Vesala et al.(1998).

2.2.1 Condensation sink

The ambient aerosol population acts as a sink for other at-
mospheric constituents by serving as a condensation surface
for low-volatility vapours and by scavenging ultrafine aerosol
particles by coagulation. To quantify these processes, we can
calculate the condensation sink caused by the aerosol popu-
lation (see for examplePirjola and Kulmala, 1998):

CS = 2πD

∫
∞

0
Dpβm(Dp)n(Dp)dDp

= 2πD
∑

i

βiDpiNi .

HereDpi describes the diameter of the particle in the size
classi and Ni is the particle number concentration in the
respective size class.D is the diffusion coefficient of the
condensing vapour, andβm the correction factor for the tran-
sition and the free molecular regimes (Fuchs and Sutugin,
1970). The condensation sink serves as an approximation of
the coagulation sink, as it behaves identically, differing only
in magnitude. Because the ambient aerosol particle size dis-
tribution in Hyytiälä was measured using a Differential Mo-
bility Particle Sizer (DMPS) at low relative humidities and
thus in a dry state, the hygroscopic growth factor was taken
into account by using the parameterization byLaakso et al.
(2004), so that the calculated sink corresponds to ambient
RH conditions. Thus, the condensation sink depends mainly
on the ambient particle size distribution.

2.2.2 Event classification

To distinguish between days with new particle formation and
days with no particle formation we used a database created
by Dal Maso et al. (2005). The database was created by
visual inspection of the continuously measured aerosol size
distributions over a size range of 3–600 nm in Hyytiälä. Days
displaying a growing new mode in the nucleation size range
prevailing over several hours were classified as event days.
Days which were clear of all traces of particle formation
were classified as non-event days. Days which could not un-
ambiguously be classified as either event or non-event days
were termed “undefined” days, and removed from the data
pool used in this study.

3 Computational methods

The data mining methods that have been applied in this study
are widely used ones. In this section we briefly describe each
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method used, but for details we refer the reader to e.g.Hand
et al.(2001); Hastie et al.(2001).

The computations were done on Matlab (Moler, 2004). In
some cases the Statistics Toolbox was used.

3.1 Preprocessing of data

The raw datasets obtained display very fragmented time se-
ries, 8 years of measurements every 30 min, with a large
number of missing values. Using this large data set, we cal-
culated for each day the mean and standard deviation of each
variable in a chosen time window. The mean and standard
deviation were only calculated if there are more than 5 mea-
sured values in the appropriate window. Otherwise the values
on that day were declared as missing. We chose to exclude
each variable with more than 800 missing days (this includes
particle flux and CO measurements) and after that any day
with any missing variable. We also chose to exclude the la-
tent heat flux measurements, as their correlation with water
vapour flux measurements is one.

The above treetop mast measurements were averaged to
one variable (hi) and the below treetop measurements to an-
other (lo). As these correlate strongly, we have frequently
only included above treetop averages.

Before calculations the data was normalized so that each
variable has zero mean and unit variance. The purpose of
normalization is to make sure that all variables are of equal
weight. Otherwise, when comparing days, variables with
large numerical values will appear as more important.

After preprocessing and removal of undefined days we
have around 500 days, roughly half of which are event days,
and around 60 variables. The data set consists of the mea-
surements shown in Table1.

3.1.1 Selection of time window

It is not reasonable to calculate daily means and standard de-
viations of the variables for the whole 24 h, since in boreal
regions such as Hyytiälä at 61 deg North the day length de-
pends strongly on time of the year. Thus, for example, the
fixed time window from 04:00 a.m. to 04:00 p.m. includes
lots of non-daylight hours in the winter. The window of fixed
length of 6 h starting at sunrise includes the whole day in
midwinter and just the early morning hours (04:00–10:00) in
midsummer. These, among several other time windows have
been tested in the course of this work to obtain the most use-
ful parameters for nucleation. All time windows cover the
late morning hours, because this is the time nucleation usu-
ally occurs. Because of the variations in the length of the
day, the window from sunrise to sunset seems a reasonable
choice, and indeed it has the best classification performance
(data not shown). We thus present the results for this window
only. Selecting this window instead of one covering mainly
hours preceding the usual nucleation occurrence time means
our results are likely to reflect more on the conditions under

which aerosol particles keep growing rather than on factors
initiating nucleation.

3.2 Clustering

In trying to understand what causes nucleation events a rea-
sonable first approach is to cluster the days. In clustering one
aims to divide the data into a number of clusters in such a
way, that data points (here days) in the same cluster are sim-
ilar to each other, while data points in different clusters are
dissimilar. A widely used clustering method is the K-means
algorithm (MacQueen, 1967). In the basic version one starts
by picking randomly K cluster centers. One then repeatedly
assigns to each cluster all points closest to the cluster cen-
ter, and recomputes the new cluster center as the mean of all
points in that cluster. This is done until no changes in the
centers occur. The most commonly used distance measure
between points is the Euclidean distance.

When using K-means one first has to normalize the data
and remove colinearities, otherwise variables with large nu-
merical values or strong correlations will dominate the per-
formance of the clustering algorithm. Elimination of corre-
lations can be done using principal components analysis as
a preprocessing step. Principal components analysis (PCA)
uses singular value decomposition (SVD) on the centered
data matrix to find mutually orthogonal linear combinations
of the original variables in such a way that variance of the
original data is preserved as well as possible (Hotelling,
1933). In many cases the variance captured by the last prin-
cipal components is very small, and they can be left out. One
can project the data onto the first few principal components,
renormalize and do the clustering for this new data matrix.
For this data the clustering done using the first six principal
components, which capture 70% of the variance in the data,
resembles the clustering done on the original data matrix af-
ter a few strongly correlating variables are removed, so we
present the results for the original data only. From the data
used in clustering we have left out all radiation measurements
except global radiation, as all of these correlate strongly.

There are several methods for choosing the number of
clusters K. We have used the Davies-Bouldin index (Davies
and Bouldin, 1979). It is a function of the ratio of the sum
of within-cluster variation to between cluster separation, and
therefore favors compact and well separated clusters.

3.3 Classification methods

An alternative approach to understand the occurrence of
events is to consider the setting as a classification problem:
we want to use the data to classify each day as an event
day or a nonevent day. In fact, we are not really interested
in separating event days from nonevent days, but in under-
standing which variables one should use to separate the two
groups.

www.atmos-chem-phys.org/acp/5/3345/ Atmos. Chem. Phys., 5, 3345–3356, 2005
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Table 1. Variables, symbols and measurement devices used in this study.

Meteorological data

Temperature (4.2, 8.4, 16.8, 33.6, 50.4 and 67.2 m) T Ventilated and shielded sensor (Pt-100)
Wind speed (six heights; see above) WS Cup anemometer (Vector)
Wind direction (17, 34 and 50 m) WD Vane (Vector)
Relative humidity RH Calculated from H2O concentration
Ambient pressure (0 m) Pamb0 Druck DPI260 barometer
Potential temperature gradient PTG Calculated from temperature and pressure
Surface wetness sensor (18 m) SWS Raindetector (Vaisala)

Gas concentrations

O3 concentration (six heights) O3 Gas analyser (TEI 49C)
SO2 concentration (six heights) SO2 Gas analyser (TEI 43C)
NOx concentration (six heights) NOx Gas analyser (TEI 42 CTL)
NO concentration (six heights) NO Gas analyser (TEI 42 CTL)
H2O concentration (six heights) H2O Gas analyser (URAS 4)
CO2 concentration (six heights) CO2 Gas analyser (URAS 4)

Radiation

UV-A (18 m) UV-A Solar sensors
UV-B (18 m) UV-B Solar sensors
Global radiation (18 m) Glob Pyranometer (Reemann)
Reflected global radiation (70 m) RGlob Pyranometer (Reemann)
PAR (18 m) PAR Li-Cor sensor
Reflected PAR radiation (70 m) RPAR Li-Cor sensor
Net radiation (70 m) NET Net radiometer (Reemann)

Aerosol instrumentation (2 m)

Size distribution (3–10 nm) 10.9 cm Hauke-type DMA + CPC (TSI 3025)
Size distribution (10–500 nm) 28 cm Hauke-type DMA + CPC (TSI 3010)

Flux data

Sensible heat (eddy covariance (EC); 23 m) sensheat Ultrasonic anemometer (Solent 1012R2)
Latent heat (eddy covariance (EC); 23 m) latheat Ultrasonic anemometer (Solent 1012R2)
Momentum flux (eddy covariance (EC); 23 m) momentumflux Ultrasonic anemometer (Solent 1012R2)
Concentration fluctuations of CO2 (EC; 23 m) CO2flux High frequency gas analyser (Li-Cor 6262)
Concentration fluctuations of H2O (EC; 23 m) H2Oflux High frequency gas analyser (Li-Cor 6262)
Concentration fluctuations of aerosol particles (EC; 23 m) CPC TSI-3010

A standard approach in estimating the performance of
classification methods is to use cross-validation. The data
is repeatedly split into two independent sets, one of which is
used as the training set to fit the model in question, and the
other is used as the test set to to obtain an unbiased estimate
for the classification error.

We evaluate the performance of the methods by computing
the misclassification rate:

error=
Nmissed+ Nfalse

Ntotal
· 100%,

whereNmissedis the number of event days classified as non-
events,Nfalse is the number of nonevent days classified as
event days, andNtotal is the total number of days classified.
After cross-validation we report the average misclassification

rate together with 95% confidence intervals. We frequently
also list the proportion of missed events and false events:

missed=
Nmissed

Ntotal
· 100%, false=

Nfalse

Ntotal
· 100%.

Most classification methods require all classes to have ap-
proximately of the same number of cases.

3.3.1 Linear methods for classification

For an important class of classification methods the bound-
aries separating the objects to be classified are linear. There
are a number of methods to find a linear separating hyper-
plane. We briefly describe some of them. For more details
see e.g. the reference mentioned earlier.

Atmos. Chem. Phys., 5, 3345–3356, 2005 www.atmos-chem-phys.org/acp/5/3345/
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In Linear Discriminant Analysis (LDA) the goal is to find
a set of linear combinations of the original variables so that
when the data is projected onto the subspace spanned by
these vectors the within-class scatter is minimized and the
between-class scatter is maximized. Such linear combina-
tions are called linear discriminants. In a two-class case such
as ours we only look for one linear discriminant. The first
linear discriminant is the normal of the hyperplane separat-
ing the two classes. It therefore also tells how event days
are separated from nonevent days. LDA is closely related to
multivariate analysis of variance (MANOVA).

One can use LDA for fitting quadratic boundaries by
adding the second order terms to the data matrix. For ex-
ample, in the two variable case we add to the variablesx

and y the second order termsx2, y2 and xy. We then
do LDA in this five-dimensional space with coordinates
(x, y, x2, y2, xy) instead of the original two-dimensional
one with coordinates(x, y). We shall refer to this method as
LDAQ.

Linear regression in turn predicts the outputy via a linear
model

y = β0 +

n∑
j=1

βjxj ,

wherex=(xj )
n
j=1 is ourn−dimensional input data. This is

usually used to predict quantitative outputs, but it can be used
for classification tasks too. In the classification case we de-
fine y to be one for event days and zero for nonevent days,
and fit the regression model accordingly. Our input data con-
sists of the measurement vectors for each day.

Logistic regression belongs to generalized linear models.
Here we want to formulate a model for the probability that
the outputy is 1 given the inputx: p(y=1|x). We could use
a linear model for this, but this is not ideal. For example, a
linear model can take values outside the interval[0, 1], which
are not meaningful. Instead, we modify the model by trans-
forming the probability nonlinearly so that it can be modeled
by a linear combination. In logistic regression this nonlinear-
ity is the logistic function:

log
p(y = 1|x)

1 − p(y = 1|x)
,

which is modeled linearly, i.e.

log(p/(1 − p)) = β0 +

n∑
j=1

βjxj .

Support vector machines (SVM) belong to kernel meth-
ods, in which the idea is to map the original data (usually
nonlinearly) into a (higher dimensional) feature space and
do e.g. classification there (Shawe-Taylor and Christianini,
2004). When using a linear kernel this method falls into the
category of linear methods. In this case we lose some of the
potential of the method, but we are able to keep track of the

variables. Sacrificing linearity (which in any case is probably
too strict an assumption in our case) we have a choice of a
wide variety of kernels. Most commonly used ones include
polynomial kernels and RBF (radial basis function) kernels.
Polynomial kernels of degree two have been tried out in our
study, but since the results for a wide variety of parameter
choices were constantly worse than for linear kernels, the re-
sults for these are omitted. We have used the LS-SVM Tool-
box for Matlab (Pelckmans et al., 2003).

3.3.2 Other classification methods

With the SVMs we already moved out of the realm of linear
methods. Here we describe two other nonlinear classification
methods that have been used.

K-nearest neighbor classification takes a point in the test
set, compares it with all the points in the training set, and de-
cides the class by looking at the class of the K nearest neigh-
bors of the point. In our case, for K=10, the event status of
a day in the test set is decided by looking at the event status
of the 10 days most closely resembling the day under inspec-
tion. This gives us a feel for how close the event days are
to each other. However, we do not gain information about in
what aspects the event days are similar to eachother.

Classification trees (Breiman et al., 1984) partition the fea-
ture space into a set of rectangles, and then assign a constant
class in each one. We first split the space into two regions,
and assign a class to each one. The variable and the split-
point are selected to minimize classification error. Then both
regions are split into two more regions, and this process is
continued until some stopping criterion is applied. This can
be visualized as a tree, see Fig.1. The topmost variable (RH)
is the single variable with the best classification performance.
On the left branch of the tree we have the condensation sink.
This is the best variable (in terms of classification perfor-
mance) in distinguishing event days from nonevent ones in
the half planeRH<77. Compare this to Fig.4. The left-
most branch of the tree presented in Fig.1 corresponds to the
lower left corner of Fig.4.

3.3.3 Feature selection

A simple approach to gain insight on the importance of dif-
ferent variables in explaining events is to take all pairs of
variables and see how well the days are classified as event or
nonevent days on the basis of the values of each pair. The
same can be done for each triplet of variables, but beyond
that the complexity of the problem makes this approach im-
practical.

Of course, it is hardly likely to find a satisfactory expla-
nation for such a complex phenomenon by just using two or
three variables. An alternative is to use a stepwise approach
(Hand et al., 2001). In doing stepwise forward selection of
variables we start with the variable which gives the best clas-
sification result by itself, and on each step add the variable

www.atmos-chem-phys.org/acp/5/3345/ Atmos. Chem. Phys., 5, 3345–3356, 2005
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RH

logCS

RH>77

RH<77

logCS>-5.5
logCS<-5.5

1 0 0

Fig. 1. A simple decision tree. Take a test day and start from the
top of the tree. IfRH is larger than the value indicated, follow the
right branch and conclude that the test day is not an event day. In
the opposite case follow the left brach and come to the next variable:
the condensation sink. If it is larger than the indicated value, again
follow the right branch and conclude that the day is not an event
day; in the opposite case the day is classified as an event day.

Table 2. Number of different types of days in each cluster.

cluster 4 3 2 1

days 20 218 164 151
event days 1 22 93 140
nonevent days 19 196 71 11
percentage of event days 5 10 57 93

which results in the best classification. In doing stepwise
backward selection of variables, we start with all variables,
and on each step leave out one variable, chosen so that the
classification result is optimized. In forward selection there
is the risk that the combined effect of some set of variables is
missed. In backwards selection it is possible that we discard
a significant variable at an early stage. For our data back-
wards selection performed poorly, so the results are omitted.

A tempting approach is to look at the weights given by
linear regression for each variable, or the normal of the sepa-
rating hyperplane in the case of linear discriminant analysis.
One could argue that these tell about the relative importance
of the variables. This, however, is not true when there are
strongly correlating variables so one should only use this ap-
proach with extreme caution: for our data set it was not ap-
plicable.
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Fig. 2. The seasonal distribution of days in each cluster. Each color
represents a different cluster. The topmost row shows the days in the
cluster, below that extra marks denote the event days.

4 Results

4.1 Clustering

We used K-means clustering to cluster the days into four
clusters. The results are very good: the algorithm does not
use event information for clustering, yet it produces clusters
with very few event days, as well as one with over 90% event
days.

The temporal distribution of these days is presented in
Fig. 2. Note the temporal cohesion of the clusters, even
though the calendar time is not used in the clustering. Clus-
ter 1 consists almost solely of event days, whereas clusters 3
and 4 have almost no events. From top to bottom, the counts
for days and event days for each cluster are presented in Ta-
ble2.

We observe four robust clusters:spring&fall days(clus-
ter 1), summer days(cluster 2), low radiation days(clus-
ter 3) andpolluted days (cluster 4). The names describing
clusters 3 and 4 are derived by looking at the cluster centers
of these clusters. The cluster centers, describing the typi-
cal values of each variable in each cluster, are presented in
Fig. 3. One can see that the best parameters to separate the
event clusters (1 and 2) from non-event clusters (3 and 4) are
relative humidity, global radiation and sensible heat. Also
the mean of ozone and carbon dioxide concentrations have a
separation power. Most of the event days fall in to clusters 1
and 2. The main difference between these clusters is the time
of the year and the related physical parameters. The summer
days in cluster 2 have higher temperatures along with an el-
evated concentration of water and higher daily variability of
CO2, O3 and H2O concentrations. Also the CO2 and H2O
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Fig. 3. The center of each cluster can be thought of as a prototype
representative of the cluster. Here are the cluster centers. The data
is normalized, so the values of each variable for each cluster only
indicate whether the variable is above or below average. The colors
are as in Fig.2: from least to most eventful clusters blue, cyan,
magneta, red.

fluxes differ in clusters 1 and 2. The condensation sink has
low values in the cluster with most of the events.

4.2 Results using classification methods

The main result given by the wide range of classification
methods used is that the most important variables in explain-
ing the nucleation events are the means of the relative humid-
ity (RH) and the logarithm of the condensation sink. This is
supported by a number of different approaches.

– When fitting a decision tree to the data, these are the
top two variables selected in most cases. Moreover, on
the test set the tree involving only these variables (see
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Fig. 4. Best predicting pair of variables, when means are computed
for each day in the time window from sunrise to sunset. Nonevents
are blue, events are red and undefined days are green. Note, that the
distribution of undefined days is similar to that of the days defined as
either event or nonevent days. Also shown is the optimal separating
line as given by LDA.

Fig.1) performs frequently as well as more complicated
trees, which tend to overfit.

– These are also the two first variables selected when do-
ing forward stepwise selection of variables using any of
the linear methods.

– These two variables form the best pair of variables.
They also are almost always included among the best
three variables. The best pairs were sought after using
both linear regression and linear discriminant analysis.
For the best triplets, only linear regression was used.

The performance of a number of methods using onlyRH
and the logarithm of the condensation sink is summarized in
Table 3. Each method was run 1000 times using different
training and test sets, and the average percentage of errors
and 95% confidence intervals for the errors were computed.

In Table4 we have summarized the performance of a few
of the top ranking pairs using LDA. We see thatRH and
the condensation sink have the best performance. The other
methods yield similar results.

This can be compared to the performance of a few of the
top ranking triplets using linear regression, summarized in
Table 5. It is evident that there is no “best triplet” as the
95% confidence intervals of all of these overlap. In fact, for
127 triplets the 95% confidence intervals overlap with that
of the best ranked one, topmost in this table, and 80 of these
have confidence intervals which overlap that of the best pair;
not one triplet is clearly better than the best pair.
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Table 3. Average error rates over 1000 runs and 95% confidence intervals for different classification methods using means ofRH low and
the logarithm of the condensation sink. 10-NN refers to the 10 nearest neighbor method.

Method error rate (%) false events (%) missed events (%)

LDA 11.9±0.2 11.7±0.2 12.2±0.3
logistic regression 12.3±0.2 11.3±0.2 13.3±0.3
linear regression 12.2±0.2 14.8±0.2 9.2±0.2
SVM (linear kernel) 11.9±0.2 11.7±0.2 12.0±0.2
10-NN 13.8±0.2 14.6±0.3 12.8±0.3
LDAQ 12.7±0.2 10.6±0.3 15.0±0.3
decision trees 14.2±0.2 6.5±0.2 23.1±0.4

Table 4. Average error rates over 40 runs for top ranking pairs of
variables using LDA.

Variables error (%)

RH low mean, logCS mean 11.7±0.7
RH high mean, logCS mean 12.1±0.7
H2O low mean, RH high mean 13.4±0.9
H2O high mean, RH high mean 13.5±0.9
H2O high mean, RH low mean 13.8±0.9
RGlob std, logCS mean 13.8±0.7
H2O low mean, RH low mean 13.9±0.9
RGlob mean, logCS mean 13.9±0.8
Glob mean, logCS mean 14.0±0.9
sensheat mean, logCS mean 14.3±0.8

We have demonstrated above that relative humidity and
the condensation sink are the most significant variables ex-
plaining the nucleation events. All of the linear classification
methods had an error rate of approximately 12% when using
only these two variables. It seems reasonable to expect, that
adding variables to the model would improve classification
results. But here we run into the problem demonstrated by
the best triplets: there are too many choices of variables with
equal performance.

When using stepwise addition of variables together with
any of the classification methods, different runs (using dif-
ferent training sets) yield different sets of variables with ap-
proximately equal performance. The same is true for deci-
sion trees. It is not true that the two variable model could
not be improved by adding variables, but the set of variables
that can be added for improved performance is not unique.
This is in fact quite a typical situation in data mining ap-
plications whenever there are correlations between variables.
Table6 presents the results for two sets of forward addition
of variables using LDA. AfterRH and the logarithm of the
condensation sink are added the lists diverge. Yet the perfor-
mance of the methods after 10 variables are chosen are not
significantly different.

Table 5. Average error rates over 20 runs for some top ranking
triplets of variables using linear regression.

Variables error(%)

RH low mean, logCS mean, SO2 high std 11.6±1.3
RH low mean, logCS std, H2O low mean 11.6±1.5
RH low mean, logCS mean, SWS std 11.7±1.4
H2O high mean, logCS std, Glob mean 11.8±1.2
RH low mean, logCS mean, O3 low mean 11.9±1.5
RH high mean, logCS mean, NO low std 11.9±1.5

Finally, let us return to the two variables,RH and the con-
densation sink. We can project the data onto the first linear
discriminant. The first linear discriminant is the normal of
the line separating events from nonevents in Fig.4, so it is the
direction giving optimal separation for events and nonevents.
Points in one end of the linear discriminant are mainly event
days, and points in the other end are mainly nonevent days.
From this projected data we can compute the probability of
having an event day at each point. This is done by first com-
puting the proportion of events in each interval of a fixed
width, and then fitting a logistic model to this data. This is
illustrated in Fig.5. We get the following nucleation param-
eter describing the probability of nucleation:

Pnucl =
1

1 + exp(β1 log(CS) + β2(RH))
, (1)

β1 = 1.7 β2 = 0.13.

5 Discussion

5.1 Condensation sink

Low condensation sink values favour nucleation due to two
basic reasons (Kulmala et al., 2005):

– The existing aerosol population depletes the ambient air
of vapours by acting as a condensation surface; if the
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Table 6. Two sets of forward addition of variables using LDA.
The variables are listed in the order they are added to the model.
Each addition is done based on average error rate over 100 runs on
different training and test sets, given in the second column. The
95% confidence intervals are be about±0.6. After the first two
variables the lists diverge.

Set 1 Set 2

variable error variable error

RH high mean 17.8 RH high mean 17.5
logCS mean 12.1 logCS mean 12.4
T high std 12.3 SO2 high std 12.0
logCS std 11.8 momflux std 11.1
CO2 high mean 11.1 O3 high std 11.0
O3 high std 10.8 SWS std 10.7
RH high std 10.6 O3 high mean 10.7
WS high mean 10.5 SO2 high mean 10.8
SO2 high std 10.2 SWS mean 10.5
SinWD mean 9.9 CosWD std 10.7

sink is high, no vapour is available to grow the parti-
cles to larger sizes, and they are lost by coagulation and
deposition. It is also possible that these vapours partici-
pate in the nucleation process itself.

– A higher condensation sink signifies also a higher coag-
ulation rate of newborn particles, meaning a shorter life-
time of these particles. The loss rate due to coagulation
is higher the smaller the particle is. Thus, a lower sink
increases the likelihood of a nucleated particle growing
large enough to survive.

These two processes work the same direction.

5.2 Relative humidity

Besides the impact of relative humidity on the condensation
sink by forcing the present particles to grow by the uptake
of water molecules and thus increasing the available surface
area for condensable vapours,RH affects the solar radiation
reaching the atmospheric boundary layer. The effect ofRH
on solar radiation is due to its linkage to clouds, fog and rain,
since there is a strong correlation betweenRH and cloudi-
ness. Thus, at least part of the reducing effect of relative
humidity might be caused by the reduction of solar radiation.
Linked to this is the effect of relative humidity on the gas-
phase chemistry of compounds involved in the nucleation
and the subsequent growth. Note that these reaction mecha-
nisms can occur only during cloud free days, since the solar
radiation is one of the key elements in the reaction chain.

When assuming that the nucleation process is started by
the formation of clusters of either binary or ternary sulphuric
acid (H2SO4) reactions (Kulmala et al., 2004b), including
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Fig. 5. The proportion of events (light blue bars) along the first
linear discriminant (x-axis) and the logistic model Eq. (1) fitted to
this.

either water vapour or water vapour and ammonia, the for-
mation of sulphuric acid is directly linked to the formation
of OH. This depends on the amount of solar radiation and
the amount of water vapour present, both of which increase
the OH concentration. However, the higher the water vapour
concentration the lower the solar radiation reaching the atmo-
spheric boundary layer. Consequently there is a maximum
production level between low and high relative humidity: in-
creasing relative humidity will first result in an increase of
sulphuric acid formation, but this will decline after the ap-
pearance of clouds.

A second possibility is that secondary organics, formed by
gas-phase reactions of emitted reactive hydrocarbons, cause
the initiation of nucleation. These compounds can contribute
via two different processes: by condensation on the clusters
and thus activating them by growing to detectable sizes (ra-
dius of 3 nm) (Kerminen et al., 2004) or by forming new par-
ticles by themselves (Bonn and Moortgat, 2003). The most
important ones are the reactive mono- and sesquiterpenes re-
leased by the biosphere. Smog chamber studies indicate that
the reaction with ozone form the products of lowest volatil-
ity, among the three possible oxidation reactions, compet-
ing at ambient conditions.Bonn et al.(2002) andBonn and
Moortgat(2002, 2003) have found that only the ozonolysis
is affected by the presence of water vapour in nucleation and
subsequent growth. This is caused by the reaction of water
vapour with the so-called stabilized Criegee biradical (SCI),
formed during the first reaction steps of the terpene. The
former suppresses the formation of the nucleating agent by
competition.

Since the impact of both relative humidity and the con-
densational sink are linked to each other, and furthermore
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to chemical compounds, there is currently no way to sepa-
rate the contribution of possible nucleation mechanisms and
causes based on our study.

5.3 Other parameters

Previous work has indicated that nucleation events are
largely explained by three parameters: temperature, water
content and radiation (Boy and Kulmala, 2002). This study
supports these findings with the exception of radiation. This
might be due to the strong seasonal variation of the solar ra-
diation. In our study we found two clearly important param-
eters, relative humidity and the condensation sink. Radiation
has an effect, but it is no more important than O3, SO2 or
NO. These variables appear among the best variables after
relative humidity and condensation sink in different statisti-
cal methods and in repeated runs, but there is no clear way
to choose one over the others. One reason could be the in-
ternal correlations between the variables: selecting one of
them explains the latent variable behind all of them. Alterna-
tively, the variables are related to less important nucleation
processes.

The variables we found to be important are related to the
mechanisms that prevent nucleation from starting and parti-
cles from growing to detectable sizes. This finding supports
the hypothesis presented byKulmala et al.(2000) that there
exists a reservoir of thermodynamically stable clusters (TSC)
in the atmosphere, which act as initial nuclei for particle for-
mation. However, TSC grow to detectable sizes only under
certain conditions. The mechanisms for the growth of TSC
are either self-coagulation of TSC, condensation of vapours,
or both. High relative humidity and a high condensation sink
decrease concentrations of condensable gases in the atmo-
sphere and thus prevent nucleation from starting and parti-
cles from growing. Similarly the high amount of preexisting
particles act as a coagulation sink for the TSC and for freshly
formed, below 3 nm particles. By coagulating onto preexist-
ing particles the probability for self-coagulation of TSC will
decrease and the nucleation process will stop. Still, from the
result of this study it cannot be concluded whether the TSC
really act as initial nuclei for nucleation or whether some new
clusters are formed.

6 Conclusions

In this study we found that aerosol particle formation events
observed in boreal forests are connected with two variables,
the condensation sink and relative humidity. The unfavor-
able effect of the condensation sink is supposed to be due to
uptake of freshly-nucleated clusters and condensing vapours.

The variables found to be important in this study are re-
lated to the mechanisms that prevent nucleation from starting
and particles from growing to detectable sizes. The outcome
supports the idea of having processes that cause nucleation

and processes that prevent nucleation. The preventing mech-
anisms are the more important ones, and nucleation only oc-
curs when the preventing mechanisms fail.

One possible explanation for the adverse connection of
high relative humidity is due to its effect on terpene oxida-
tion products. In the presence of water vapour the stabilized
Criegee biradical (SCI) produce high volatility compounds,
whereas with lowRH chemical reactions lead to low volatil-
ity compounds. Such low-volatility compounds can con-
densate onto nucleated clusters or nucleate by themselves.
Also the effect of NOx and O3 support this chemical reaction
route. In addition to its effect on chemical reactions, high
relative humidities increase the condensation sink due to the
hygroscopic growth of aerosol particles. High relative hu-
midity can also affect particle formation due to its linkage to
clouds, fog and rain since reduced solar radiation may inhibit
photochemical reactions related to nucleating vapours in the
atmosphere.

Although we found a connection between the occurrence
of nucleation and two key variables, the detailed chemistry
still remains speculative. One missing link in our study is
the concentration of biogenic Volatile Organic Compounds
(VOC) emissions, which are expected to be of high impor-
tance even at the low concentrations. Unfortunately, we were
not able to measure VOCs since especially the more reactive
compounds are extremely hard to measure with the current
instrumentation.

One possible cause of confusion is the possibility of
two or even more different nucleation mechanisms acting
simultaneously in the atmosphere. One such combination
is clear-air nucleation vs. pollution nucleation, another pos-
sibility is combination of neutral and ion-induced nucleation.

Edited by: A. Laaksonen
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