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Abstract. A series of 7-week sampling campaigns were con-
ducted in urban background sites of six European cities as
follows: Duisburg (autumn), Prague (winter), Amsterdam
(winter), Helsinki (spring), Barcelona (spring) and Athens
(summer). The campaigns were scheduled to include sea-
sons of local public health concern due to high particulate
concentrations or findings in previously conducted epidemi-
ological studies. Aerosol samples were collected in paral-
lel with two identical virtual impactors that divide air par-
ticles into fine (PM2.5) and coarse (PM2.5−10) size ranges.
From the collected filter samples, elemental (EC) and or-
ganic (OC) carbon contents were analysed with a thermal-
optical carbon analyser (TOA); total Ca, Ti, Fe, Si, Al and
K by energy dispersive X-ray fluorescence (ED-XRF); As,
Cu, Ni, V, and Zn by inductively coupled plasma mass
spectrometry (ICP/MS); Ca2+, succinate, malonate and ox-
alate by ion chromatography (IC); and the sum of levoglu-
cosan+galactosan+mannosan (

∑
MA) by liquid chromatog-

raphy mass spectrometry (LC/MS). The campaign means
of PM2.5 and PM2.5−10 were 8.3–29.6µg m−3 and 5.4–
28.7µg m−3, respectively. The contribution of particulate or-
ganic matter (POM) to PM2.5 ranged from 21% in Barcelona
to 54% in Prague, while that to PM2.5−10 ranged from 10%
in Barcelona to 27% in Prague. The contribution of EC
was higher to PM2.5 (5–9%) than to PM2.5−10 (1–6%) in
all the six campaigns. Carbonate (C(CO3), that interferes
with the TOA analysis, was detected in PM2.5−10 of Athens
and Barcelona but not elsewhere. It was subtracted from the
OC by a simple integration method that was validated. The
CaCO3 accounted for 55% and 11% of PM2.5−10 in Athens
and Barcelona, respectively. It was anticipated that combus-
tion emissions from vehicle engines affected the POM con-
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tent in PM2.5 of all the six sampling campaigns, but a com-
parison of mass concentration ratios of the selected inorganic
and organic tracers of common sources of organic material to
POM suggested also interesting differences in source dom-
inance during the campaign periods: Prague (biomass and
coal combustion), Barcelona (fuel oil combustion, secondary
photochemical organics) and Athens (secondary photochem-
ical organics). The on-going toxicological studies will clarify
the health significance of these findings.

1 Introduction

Urban aerosol is a complex mixture of primary particulate
emissions (from industry, transportation, power generation
and natural sources) and secondary material formed by gas-
to-particle conversion mechanisms. Urban aerosol contains
a substantial amount of carbonaceous material (20–80%;
Rogge et al., 1993 and Nunes and Pio, 1993) that is com-
posed of two main fractions: 1) elemental carbon (EC; some-
times referred to as black carbon or graphitic carbon) is a pri-
mary pollutant formed in combustion processes, and 2) par-
ticulate organic matter (POM) is a complex mixture of dif-
ferent groups of compounds originating from a large variety
of processes (Seinfeld and Pandis, 1998).

Recent epidemiological studies have shown consistent as-
sociations of mass concentration of urban air thoracic parti-
cles (PM10 – 50% cutoff point at 10µm), and its subfrac-
tion fine particles (PM2.5 – 50% cutoff point at 2.5µm),
with mortality and morbidity among cardiorespiratory pa-
tients (WHO, 2003). There are still relatively few epidemio-
logical studies with detailed chemical speciation of the col-
lected particulate samples, but one recent US time-series
study (Metzger et al., 2004) has reported that the EC and
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POM concentrations in PM2.5 were significantly associated
with emergency department visits in hospitals due to cardio-
vascular diseases. It is known on the basis of experimental
studies that the EC causes tissue irritation and a release of
toxic chemical intermediates from scavenger cells in labo-
ratory studies as well as acts as a carrier of various organic
compounds. Moreover, volatile and semi-volatile organic,
particulate-bound compounds can act as irritants and aller-
gens. Many aromatic compounds are suspected mutagens
and carcinogens and some them may also cause acute health
effects (Lighty et al., 2000).

In this study, we report the mass concentrations of fine
(PM2.5) and coarse (PM2.5−10) particles as well as their EC
and POM contents from six geographically and seasonally
contrasting particulate sampling campaigns in Europe. The
campaigns were scheduled to include seasons of local pub-
lic health concern due to high particulate concentrations or
findings in previously conducted epidemiological studies. A
specific objective of our work was to characterise the dif-
ferences in concentration patterns as well as sources of the
EC and POM between the sampling campaigns. Moreover,
a new integration method was validated for subtraction of
carbonate (C(CO3)) from the thermograms of the thermal-
optical carbon analysis.

2 Experimental methods

2.1 Sampling sites

A series of 7-week sampling campaigns were conducted in
six European cities. The sampling sites were located in urban
background areas and were influenced by a variable contri-
bution of traffic depending on the density of short-haul motor
vehicles and the site topography. The sites are described in
detail including the additional local emission sources of par-
ticles:

Duisburg (51◦26′ N, 6◦45′ E). The sampling site was lo-
cated near the city centre at a distance of 280 m from the
nearest major street. The site was surrounded by three to
five-storey buildings. The major local emission sources were
road traffic (e.g. diesel trucks) and metal industry. The sam-
pling campaign was conducted between 4 October and 21
November 2002 (autumn) when the mean±SD ambient tem-
perature and total precipitation were 9±3◦C and 90 mm.

Prague(50◦5′ N, 14◦26′ E). The sampling site was located
in an open field of the Czech Hydrometeorological Institute
in an uptown residential area. The nearest road at a distance
of 150 m had a relatively low average traffic density of 5000
vehicles/day, while the nearest major road was at a distance
of 1 km. Road traffic, domestic heating with solid fuels and
energy production were considered as the main local emis-
sion sources. The particulate samplings were carried out be-
tween 29 November 2002 and 16 January 2003 (winter) with

prevailing ambient temperature of−2±5◦C and total precip-
itation of 50 mm.

Amsterdam(52◦21′ N, 4◦54′ E). The site was located near
the city centre at a distance of 50 m from the nearest major
street with an average traffic volume of 10 000 vehicles/day.
The site was surrounded by multi-storey buildings. Road
and ship traffic were considered as the main local emission
sources. The sampling campaign was conducted between 24
January and 13 March 2003 (winter) when the ambient tem-
perature and total precipitation were 4±4◦C and 60 mm.

Helsinki (60◦10′ N, 24◦58′ E). The site was located near
the city centre at a distance of 300 m from the nearest major
street with an average traffic volume of 30 700 vehicles/day.
The site had multi-storey buildings on one side but faced an
open sports field on the other side. Road traffic and ships in
the city harbour were considered as the main local emission
sources. The particulate samplings were carried out between
21 March and 12 May 2003 (spring) with prevailing ambient
temperature of 4±5◦C and total precipitation of 48 mm.

Barcelona(41◦23′ N, 2◦9′ E). The site was located on a
car park near the city centre. The nearest major road at a
distance of 100 m had an average traffic density of 17 000
vehicles/day. On one side, there was a multi-storey building
and the canopy of a railway station whilst on the other side
there was a park enclosing a zoo. Road traffic and ships in the
large harbour, and to some extent the zoo, were considered
as the main local emission sources. The sampling campaign
was conducted between 28 March and 19 May 2003 (spring)
when the ambient temperature and total precipitation were
15±2◦C and 10 mm.

Athens(37◦58′ N, 23◦43′ E). The site was located near the
city centre at a distance of 100 m from the nearest major road
with an average traffic density of 30 000 vehicles/day. The
site was spaciously enclosed by three- or four-storey build-
ings. Road traffic, and to some extent construction work,
were considered as the main local emission sources. The
particulate samplings were carried out between 2 June and
21 July 2003 (summer) with prevailing ambient temperature
of 29±4◦C and total precipitation of 0 mm.

The sampling duration was 3+4 days per week, with filter
exchange usually on Mondays and Thursdays between 10:00
and 12:00 a.m. The general protocol of the PAMCHAR field
campaign necessitated to choose these relatively long sam-
plings due to a parallel sampling of large, size-fractionated
particulate samples for toxicological cell and animal stud-
ies, using a high-volume cascade impactor (Sillanpää et al.,
2003). The total number of particulate samplings was 14
in each city. An automatic valve, that was programmed to
switch on and off in cycles of 15 min, was installed into the
pump line of virtual impactors (VI) in Barcelona and Athens
to avoid overloading of the filters.
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2.2 Aerosol sampling instruments

The aerosol particulate samples were collected in parallel
with two VIs that divide the particulate matter into two size
ranges: PM2.5 and PM2.5−10 (Loo and Cork, 1988). The
total sampling flow rates of the VIs were 16.7 l min−1 and
the upper cut-off of the coarse particles was made with a
low volume PM10-inlet similar to the design of Liu and Pui
(1981). The particles were collected on polytetrafluoroethy-
lene (PTFE) filters (diameter 47 mm, pore size 3µm, type
FS, Millipore, Ireland) for gravimetric and chemical analy-
sis, and on preheated quartz fibre filters (Pallflex Tissuquartz
2500QAT-UP) for carbon analysis. In the latter VI, a tan-
dem filter collection method (two quartz fibre filters from the
same lot in series) was applied for estimation and correction
of positive sampling artefacts, i.e. an adsorption of organic
gases. In practice, the OC value of backup filter was sub-
tracted from that of front filter. The positive artefact correc-
tion has been performed to all the POM results presented in
this study.

2.3 Gravimetric and chemical analysis

After sampling, the filters were placed on petrislides and
those containing the quartz fibre filters were wrapped inside
aluminium foil. All the samples were frozen and sent via ex-
press delivery service to the central laboratory of the project
at the Finnish Meteorological Institute for gravimetric mea-
surements and chemical analysis.

The PTFE filters were weighed with the same Mettler M3-
microbalance (Mettler Instrumente AG, Zurich, Switzerland)
before and after sampling. The samples were allowed to
stabilize in the weighing room for 15–60 min before weigh-
ing, which was shown in separate experiments to be suffi-
cient for both clean and loaded PTFE filters. A criterion
for valid weighing was that duplicate mass readings were
within 2µg from each other. The mean±SD relative humid-
ity (RH) and temperature in the weighing room were 22±7%
and 23±2◦C, respectively, with the exception of RH being
49±8% during weighing the Barcelona and Athens samples.
Regardless of different RH, the deliquescence points of the
abundant inorganic atmospheric salts were reached neither at
22% nor at 49% (Seinfeld and Pandis, 1998), because the
filter samples (stored as frozen) were first melted on closed
petrislides and subsequently stabilized at the prevailing con-
dition of the weighing room. The scale and reading of the
microbalance were checked daily with internal and standard
weights. The electrostatic charges of filters were eliminated
with a Po-210 radioactive source.

The quartz fibre filters were analysed using a thermal-
optical carbon analyser (TOA; Sunset Laboratory Inc., Ore-
gon). This analysis proceeded in two phases. In the first
phase, the OC and carbonate carbon were volatilized in pure
helium atmosphere at four temperature steps. During the sec-
ond phase of the analysis, the carbon remaining on the filter

Table 1. Experimental parameters of the thermal-optical carbon
analysis (TOA) method used in this study and those of two well-
known methods (NIOSH and IMPROVE).

Carrier gas This study NIOSHa IMPROVEa

He-1 (OC1) 310◦C, 60 s 310◦C, 60 s 250◦C, 150 s
He-2 (OC2) 480◦C, 60 s 475◦C, 60 s 450◦C, 150 s
He-3 (OC3) 615◦C, 60 s 615◦C, 60 s 615◦C, 250 s
He-4 (OC4) 900◦C, 90 s 870◦C, 90 s
He/O2

b 550◦C, 60 s 550◦C, 45 s 550◦C, 200 s
He/O2

b 625◦C, 60 s 625◦C, 45 s
He/O2

b 700◦C, 45 s 700◦C, 45 s 700◦C, 160 s
He/O2

b 775◦C, 45 s 775◦C, 45 s
He/O2

b 850◦C, 45 s 850◦C, 45 s 850◦C, 200 s
He/O2

b 920◦C, 60 s 890◦C, 120 s

a Sciare et al. (2003)
b A mixture of 2% oxygen in helium.

was heated in a mixture of oxygen and helium (1:49, V-%) by
using six temperature steps. The temperature program used
in this study followed the well-known NIOSH program with
minor modifications (Table 1). A part of the OC pyrolysed
into compounds resembling the EC during heating. An op-
tical correction, i.e. a measurement of the transmittance of
laser light through the filter, was applied for a separation of
the pyrolysed OC from the EC that was determined as the
fraction of carbon that comes out after the transmittance has
reached its initial value. The POM is obtained by summing
up the OC peaks and pyrolysed OC, and multiplying the sum
by a factor of 1.4 (Turpin et al., 2000 and Russell, 2003). An
analogous method has been described in detail by Viidanoja
et al. (2002).

The carbonaceous material was divided into six thermal
fractions labelled as follows: OC1 (310◦C), OC2 (480◦C),
OC3 (615◦C), OC4 (900◦C), OCP (pyrolysed OC) and EC
(sum of EC thermal fractions). C(CO3) refers to the carbon-
ate carbon.

The PTFE filters were analysed by energy dispersive
x-ray fluorescence (ED-XRF) for their total Ca content;
by ion chromatography (IC) for water-soluble Ca2+, suc-
cinate, malonate and oxalate; by liquid chromatography
mass spectrometry (LC/MS) for monosaccharide anhydrides
(
∑

MA=levoglucosan+galactosan+mannosan) and by induc-
tively coupled plasma mass spectrometry (ICP-MS) for As,
Cu, Ni, V and Zn. The techniques and their methodological
uncertainties have been described elsewhere by Sillanpää et
al. (2005).

The CaCO3 concentrations were converted from those of
CO2−

3 and Ca, analysed by the TOA and ED-XRF, respec-
tively, using the following equations:

[CaCO3]TOA=
M(CaCO3)

M(C(CO3))
[C(CO3)]=8.334× [C(CO3)] (1)

www.atmos-chem-phys.org/acp/5/2869/ Atmos. Chem. Phys., 5, 2869–2879, 2005
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Figure 1. 
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Fig. 1. The arithmetic mean, median and range as well as the 10th,
25th, 75th and 90th percentile values of the mass concentrations of
fine (PM2.5) and coarse (PM2.5−10) particulate matter in the six
sampling campaigns.

[CaCO3]XRF=
M(CaCO3)

M(Ca)
[Ca]=2.497× [Ca], (2)

where [C(CO3)] and [Ca] are the mass concentration of car-
bonate carbon and calcium. The area of the C(CO3) peak in
TOA thermograms was manually integrated with the integral
start at 210–225 s and end at 250–275 s. The C(CO3) peak
was initially localised by comparing the analysis results of
the original Athens sample to its duplicate that was decar-
bonated in HCl fumes as described by Cachier et al. (1989).

2.4 Tracers for assessment of POM sources in PM2.5

An assessment of five common sources of the fine partic-
ulate OC content was based on the mass concentration ra-
tio of selected inorganic and organic tracers to POM. The
EC is directly emitted from combustion of fossil fuels or/and
biomass. It is often regarded as a tracer of local traffic (Song
et al, 2001). Several studies have associated Cu and Zn emis-
sions with traffic and metal industries (Pakkanen et al., 2001;
Heal et al., 2005; Lim et al., 2005; Song et al., 2001). In the
absence of a strong metal industry influence, As can be used
as a tracer of coal combustion (NAEI, 2003), and Ni and V
as tracers of fuel oil combustion (Song et al., 2001; Kavouras
et al., 2001). The sum of three monosaccharide anhydrides
(
∑

MA; mainly levoglucosan) is known as a good tracer of
incomplete biomass combustion (Simoneit et al., 1999; Sil-
lanp̈aä et al., 2005). The small dicarboxylic acids (DA; sum
of oxalate, malonate and succinate) are mostly produced in
photochemical reactions of anthropogenic organic pollutants
in the urban atmosphere (Kawamura and Ikushima, 1993) but
they can be also primary emissions from motor vehicle en-
gines (Yao et al., 2004). Here the ratio of DA to POM was
used as an indicator of secondary organic compounds.

3 Results and discussion

3.1 PM2.5 and PM2.5−10 mass concentrations

The mass concentrations of PM2.5 and PM2.5−10 during the
7-week campaigns in the six European cities are shown in
Fig. 1. The arithmetic mean concentrations were 14.7 and
7.2µg m−3 in Duisburg, 29.6 and 5.4µg m−3 in Prague,
25.4 and 8.4µg m−3 in Amsterdam, 8.3 and 12.8µg m−3

in Helsinki, 20.0 and 26.3µg m−3 in Barcelona, and 25.3
and 28.7µg m−3 in Athens, respectively. The highest mean
PM2.5 concentration was measured in Prague during win-
ter and the highest mean PM2.5−10 concentration was mea-
sured in Athens during summer, whereas the corresponding
lowest values were in Helsinki during spring and in Prague
during winter. For comparison (data from local authori-
ties), the annual mean PM2.5 and PM2.5−10 mass concen-
trations in 2001 were, respectively, as follows: 23.0 and
6.8µg m−3 in Duisburg, 7.8 and 7.9µg m−3 in Helsinki, and
28.0 and 13.0µg m−3 in Barcelona. These two size fractions
were not measured in the other three cities but the annual
mean PM10 mass concentrations in 2001 were 24.5µg m−3

in Prague, 28.9µg m−3 in Amsterdam and 55.5µg m−3

in Athens. Our sampling campaign means were clearly
higher than the corresponding annual means for Prague-
PM10 (43%), Amsterdam-PM10 (17%), Helsinki-PM2.5−10
(62%) and Barcelona-PM2.5−10 (100%), suggesting special
source-related, episodic or seasonal impacts during the cam-
paigns in these cities. Marginal difference with the historical
annual mean value was found for Duisburg-PM2.5−10 (5.9%),
Helsinki-PM2.5 (6.4%) and Athens-PM10 (−2.7%), but our
campaign means were clearly lower than the annual means
of 2001 for Duisburg-PM2.5 (−36%) and Barcelona-PM2.5
(−29%).

The mean PM2.5−10 to PM2.5 ratios were clearly lower in
Duisburg (0.58), Prague (0.20) and Amsterdam (0.54) than in
Helsinki (1.57), Barcelona (1.36) and Athens (1.14). The dif-
ferences were most likely due to factors related to the season,
local emission sources and geographical location. The first
three sampling campaigns were carried out during the ‘wet’
and cool seasons favouring a low PM2.5−10 concentration
(due to low resuspension) and a high PM2.5 concentration
(additional local and regional energy production for heating).
The sampling campaigns in Barcelona and Athens were con-
ducted during warmer and drier seasons leading to a lower
PM2.5 concentration (semivolatiles in gas phase) and a high
PM2.5−10 concentration (resuspension). Road dust episodes,
typical phenomena of springtime in Northern Europe, were
the reason for elevated PM2.5−10 in Helsinki (Kukkonen et
al., 1999). More detailed data on the particulate mass con-
centrations, meteorology and air quality during the sampling
campaigns will be reported elsewhere.
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3.2 Mass concentrations of EC and POM in six cities

The POM and EC mass concentrations in PM2.5 and
PM2.5−10 of the six sampling campaigns are shown in Fig. 2.
The arithmetic mean POM concentrations in PM2.5 varied
profoundly between 3.8µg m−3 in Helsinki and 15.7µg m−3

in Prague, while the corresponding EC concentrations var-
ied much less, i.e. between 0.68µg m−3 in Helsinki and
1.6µg m−3 in Athens. The mean POM (corrected for
C(CO3), see Sect. 3.3.1) and EC mass concentrations in
PM2.5−10 varied in the range of 1.2–5.0µg m−3 and 0.18–
0.28µg m−3, respectively. The lowest mean POM and EC
in PM2.5−10 were observed in Amsterdam, while the corre-
sponding highest concentrations were in Athens. The mean
OC concentrations in PM2.5 and PM2.5−10 of the backup fil-
ters varied in the range of 0.32–1.31 and 0.12–0.33µg m−3,
corresponding to 5.7–19% and 5.8–14% of the OC on the
front filters, respectively. The EC contributions were about
one tenth of those of the OC, which was also anticipated be-
cause of the nonvolatile nature of elemental carbon.

In this study, the POM in both the PM2.5 and PM2.5−10
was obtained with multiplication of the OC concentration by
a factor of 1.4 in each city. This adjustment was made to
include a contribution of other elements than the carbona-
ceous material (OC) of organic compounds to POM (Turpin
et al., 2000 and Russell, 2003). The use of this conversion
factor should be regarded as a rough means to compensate
the limitations of present analytical instruments (e.g. FTIR
spectroscopy or GC/MS).

Querol et al. (2004) has reported in their European multi-
centre study that the annual mean mass concentration of total
carbon (TC; sum of OC and EC) in PM2.5 varied in the range
of 2–8µg m−3 at urban background sites. Our campaign-
mean TC concentrations in PM2.5 fell into this range in all
other campaigns than Prague (12.6µg m−3). In the study
of Querol et al. (2004), the annual mean TC mass concen-
trations in PM2.5−10 were in the range of 0–1µg m−3. Our
campaign-mean TCs were between 1.0 and 1.9µg m−3, ex-
cept for the high value of 3.9µg m−3 in Athens.

The relative contributions of carbonaceous material to
PM2.5 and PM2.5−10 are shown in Table 2. The POM
contributions to PM2.5 were very high, ranging from 21%
in Barcelona to 54% in Prague, while those to PM2.5−10
were generally lower, i.e. from 10% in Barcelona to 27% in
Prague. As expected, the EC contributions to PM2.5 (5–9%)
were higher than those to PM2.5−10 (1–6%) in all the six cam-
paigns. Putaud et al. (2004) have made a meta-analysis of
the annual mean black carbon (BC) and POM contributions
based on measurements at urban background sites of eight
European cities. The mean BC contributions to PM2.5 and
PM2.5−10 were 8% and 3%, respectively, which agrees well
with our present results. In contrast, their annual mean POM
contributions to PM2.5 and PM2.5−10 were only 22% and 8%,
i.e. values similar to our smallest campaign-means and about
one-third to one-half of our largest campaign-means. De-
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Fig. 2. The arithmetic mean, median and range as well as the 10th,
25th, 75th and 90th percentile values of the particulate organic mat-
ter (POM) and elemental carbon (EC) concentrations in PM2.5 and
PM2.5−10 of the six sampling campaigns.

spite the differences in sample collection and analysis tech-
niques between our study and the other European studies,
this finding suggests that the selected campaign periods of
public health concern in several cities (e.g., Prague, Athens,
Helsinki) were associated with a relatively high POM con-
tent.

It is worthwhile noting that the EC and OC results are de-
pendent on the method used in the thermal-optical carbon
analysis. Chow et al. (2001) have shown that the NIOSH
and IMPROVE methods (Table 1) are equivalent for total
carbon but the EC of NIOSH (usually a smaller fraction of
TC) is typically less than half of the value of the EC of
IMPROVE. A reasonable estimate for the EC probably lies
somewhere between the values given by these two methods
(Sciare et al., 2003). We used a slightly modified NIOSH
method (see Table 1) and, therefore, the EC concentrations
may be somewhat underestimated and the OC concentrations
slightly overestimated in the present study.

The mean PM2.5−10 to PM2.5 ratio of the EC ranged be-
tween 0.17 and 0.29. These low ratios indicate that the EC
existed mainly in PM2.5, which has been observed in many
European urban environments (Viidanoja et al., 2002; Salma
et al., 2004). The mean PM2.5−10 to PM2.5 ratio of POM
had a much larger range than that of the EC, being 0.094
for Prague, 0.24 for Amsterdam, 0.45 for Duisburg, 0.50 for
Helsinki, 0.56 for Barcelona and 0.59 for Athens. The ratios
were lower for sampling campaigns with a lower mean am-
bient temperature and a higher precipitation (see Sect. 2.1).

3.3 Assessment of POM and EC sources in PM2.5

The Pearson correlation coefficients between the total mass
concentration, POM and EC in PM2.5 and PM2.5−10 are
shown in Table 3. The fine POM concentration had a high

www.atmos-chem-phys.org/acp/5/2869/ Atmos. Chem. Phys., 5, 2869–2879, 2005
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Table 2. The relative contribution (%) of particulate organic matter (POM) and elemental carbon (EC) to the total mass (PM) in PM2.5 and
PM2.5−10 as well as the ratio of organic carbon (OC) to EC in the six sampling campaigns.

POM/PM (%) EC/PM (%) OC/EC BU/F-OCa (%)
Mean (SD) Min Max Mean (SD) Min Max Mean (SD) Min Max Mean±SD

PM2.5 Duisburg 31 (6) 21 38 9.0 (3.1) 4.7 15 2.7 (0.9) 1.7 5.2 16±7
Prague 54 (4) 48 60 5.7 (2.7) 1.3 11 8.7 (6.0) 3.6 27 6±2
Amsterdam 23 (4) 19 29 5.4 (3.4) 1.7 13 4.3 (2.6) 1.2 9.8 12±5
Helsinki 46 (6) 34 57 8.4 (1.8) 4.5 11 4.0 (0.9) 2.8 6.3 14±3
Barcelona 21 (11) 8.9 49 7.6 (4.5) 3.1 18 2.1 (0.5) 1.5 3.1 17±3
Athens 35 (4) 30 47 6.8 (1.4) 4.9 9.4 3.9 (0.9) 2.7 5.4 19±3

PM2.5−10 Duisburg 24 (8) 3.4 37 2.9 (1.2) 0.48 5.0 9.1 (9.8)) 0.7 39 14±19
Prague 27 (7) 16 41 5.5 (2.6) 2.2 11 3.9 (1.5) 2.0 7.3 10±5
Amsterdam 15 (8) 5.6 28 2.3 (1.5) 0.06 5.4 11 (21) 3.4 84 12±3
Helsinki 15 (4) 11 25 1.6 (0.6) 0.84 2.7 7.1 (2.3) 3.8 13.6 8±3
Barcelona 10 (6) 2.7 23 1.1 (0.9) 0.15 3.2 9.0 (5.5) 4.1 18.1 9±4
Athens 24 (3) 19 30 1.0 (0.4) 0.23 1.9 24 (17) 9.5 62 6±1

a BU/F-OC is the ratio of OC on backup filter to OC on front filter.

Table 3. The Pearson correlation coefficients (r) between the total particulate mass, POM, and EC in PM2.5 and PM2.5−10.

Duisburg Prague Amsterdam Helsinki Barcelona Athens

PM2.5 vs. PM2.5−10 0.280 0.554 −0.128 0.584 0.295 0.717
EC2.5 vs. EC2.5−10 0.524 0.379 0.875 0.810 0.884 0.348
POM2.5 vs. POM2.5−10 0.542 0.661 0.897 0.498 0.824 0.800
PM2.5 vs. EC2.5 0.553 0.360 0.664 0.722 0.341 0.405
PM2.5 vs. POM2.5 0.844 0.987 0.959 0.897 0.567 0.860
EC2.5 vs. POM2.5 0.672 0.436 0.762 0.790 0.945 0.517
PM2.5−10 vs. EC2.5−10 0.352 0.822 0.208 0.696 −0.087 0.470
PM2.5−10 vs. POM2.5−10 0.651 0.935 0.263 0.904 −0.073 0.831
EC2.5−10 vs. POM2.5−10 0.198 0.828 0.926 0.813 0.870 0.659

High correlations (r≥0.80) bolded.

correlation (r=0.84–0.99) with the PM2.5 concentration in all
cities except for Barcelona (r=0.57) where the POM had the
smallest contribution to PM2.5. However, the POM and EC
in PM2.5 of Barcelona were highly intercorrelated (r=0.95),
which together with the lowest OC to EC ratio (see next para-
graph) suggests that they had a common dominant source dif-
ferent from the other cities, e.g. fuel oil combustion in numer-
ous ship engines at the large harbour. The fine EC concen-
tration had a relatively low correlation (r=0.34–0.72) with
the PM2.5 concentration in all the six campaigns, but it cor-
related highly (r=0.81–0.88) with the coarse EC in Amster-
dam, Helsinki and Barcelona, suggesting impacts from local
combustion sources not only to PM2.5 but also to PM2.5−10.
Only in the winter campaign of Prague, the coarse EC con-
centration had a high correlation (r=0.82) with the PM2.5−10
concentration, which refers to local incomplete combustion
processes such as residential heating with solid fuels. The

coarse POM concentration correlated highly (r=0.83–0.94)
with the PM2.5−10 concentration in Prague, Helsinki and
Athens, which reflects its highly variable anthropogenic and
natural sources in different urban environments and seasons
(Table 3).

The OC to EC ratios in PM2.5 were in the range of 2.1–
4.3 in Barcelona, Duisburg, Athens, Helsinki and Amster-
dam, but it was much higher (8.7) in Prague (Table 2). Na
et al. (2004) have reviewed some of the reported OC to EC
ratios in relation to a variety of combustion sources. A low
OC to EC ratio has been associated with traffic sources (2.2
and 0.8 for light-duty gasoline and heavy-duty diesel vehi-
cles, respectively), whereas residential heating (wood com-
bustion 4.15 and natural gas home appliance 12.7), forest fire
(14.5) and dust from paved roads (13.1) have shown remark-
ably higher ratios.
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Figure 3 shows the mass concentration ratios in PM2.5 of
the selected inorganic and organic tracers (see Sect. 2.4.) of
five common sources of organic material to POM.

Traffic. Road traffic has certainly a substantial impact on
the POM concentration in PM2.5 of all the six urban back-
ground sites. As assessed from the ratio of EC, Cu and Zn to
POM, its relative impact was largest in Barcelona and Duis-
burg, and smallest in Prague (Fig. 3). However, the high ra-
tios of Cu and Zn to POM in Duisburg were likely to be at
least partially due to emissions from the large metal indus-
tries in the Ruhr area.

Coal combustion. According to the As to POM ratio in
PM2.5, the contribution of coal combustion emissions was
higher in Prague, Duisburg, Amsterdam and Barcelona than
in Helsinki and Athens (Fig. 3). The first three cities had
sampling campaigns during the cold and wet seasons, which
means that their findings can be explained by increased local
and regional residential heating, and larger-scale energy pro-
duction, with coal. In Barcelona, the impact may be derived
from the emissions from coal plants located nearby the city
(Rodŕıguez et al., 2002).

Fuel oil combustion. As assessed from the ratios of Ni
and V to POM, the contribution of fuel oil combustion was
clearly highest in Barcelona followed by Helsinki, Amster-
dam and Athens (Fig. 3). Ships in the harbours of these
cities can be regarded as the major source, because it seemed
to have a low impact in the inland cities of Duisburg and
Prague. The large metal industries in the Ruhr area probably
elevated the Ni contribution to PM2.5 of Duisburg to some
extent, but the V contribution remained low. The ratio of Ni
to V in PM2.5 is expected to be around 0.38 in relation to im-
pact from fuel oil combustion (Kavouras et al., 2001), which
was close in all other cities (0.27–0.45) than Duisburg (0.57)
(Fig. 3).

Biomass combustion. According to the
∑

MA to POM
ratio, the contribution of biomass combustion was clearly
higher in Prague, Amsterdam and Duisburg than in Helsinki,
Barcelona and Athens (Fig. 3). The differences can be ex-
plained by an impact from local or regional residential heat-
ing, since the three former campaigns were carried out dur-
ing the cold and wet seasons. In Prague, the very high mass
concentration of POM in PM2.5 (Fig. 2) as well as the above
described high correlations of both the coarse EC and POM
with the PM2.5−10 concentration (Table 3) suggest a larger
contribution from local biomass combustion than in Amster-
dam and Duisburg.

Secondary POM. The DA to POM ratios in the spring-
time and summertime campaigns of Helsinki, Barcelona and
Athens were 2–9 times higher than those in the autumn
and winter campaigns of Duisburg, Prague and Amsterdam
(Fig. 3). The likely reason for this difference is enhanced
photochemical oxidation of organic compounds in the spring
and summer (Kamamura and Ikushima, 1993).
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Figure 3. 
 Fig. 3. The mass concentration ratios of the selected tracers of com-
mon emission sources of organic material to POM in PM2.5. The
values are means± SD of 14 samples collected during a 7-week
sampling campaign in each city. See text for further explanation.

3.4 Analysis of thermal fractions

3.4.1 Carbonate in atmospheric particles

The carbonate-carbon (C(CO3)) can interfere with the TOA
analysis during the OC4 step (Fig. 4) and cause a positive
artefact to the OC concentration (Sciare et al., 2003). In
this study, C(CO3) could be quantified in the PM2.5−10 sam-
ples of Barcelona and Athens, but it was not detected either
in the PM2.5−10 samples of the other four cities or in the
PM2.5 samples of any city. The mean C(CO3) to OC ratio in
PM2.5−10 was 0.17 in Barcelona and 0.53 in Athens, which
indicates that the OC (and subsequently POM) concentration
in certain situations can be grossly overestimated without a
subtraction of the C(CO3). We subtracted the C(CO3) con-
centration from the OC4 and total OC concentration before
conversion of the OC results to POM shown in Sect. 3.2.

A time-series of the CaCO3 concentration in the PM2.5−10
samples from Athens and Barcelona is shown in Fig. 5. The
campaign mean (range), based on Eq. (1), was 15.9 (9.8–
29.2)µg m−3 for Athens, whereas the corresponding value
for Barcelona was 2.6 (0.3–6.3)µg m−3. These concentra-
tions accounted for 55(±8)% and 11(±9)% of the PM2.5−10
concentration in Athens and Barcelona, respectively. There
was a high linear correlation (r = 0.91) and the slope close
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Figure 4. 
 

Fig. 4. Example of the temperature program in the thermal-optical
carbon analysis (TOA) and a manually integrated carbonate C(CO3)

peak in the present study (PM2.5−10 sample #14 from Athens). See
text and Table 1 for other explanations.

to unity between the [CaCO3]TOA and [CaCO3]XRF concen-
trations (based on Eqs. (1) and (2)) in Athens, and a sig-
nificant trend in Barcelona (Pearson’sr=0.61) although the
molar equivalent concentration of CO2−

3 was lower than that
of Ca (Fig. 5). This indicates that the coarse Ca appeared
exclusively as CaCO3 in Athens, whereas the coarse Ca in
Barcelona existed partly in other forms (e.g. as oxide). A
similar conclusion has been drawn by Bardouki et al. (2003)
who discovered in ion balance calculation that the coarse Ca
was strongly associated with C(CO3) (a molar ratio close to
1) during summertime in the Eastern Mediterranean.

Figure 6 shows the portion of crustal elements in the
soil-derived coarse particles of the six sampling campaigns.
These data further support the view of CaCO3 appearance
in the PM2.5−10 samples of Athens and Barcelona. Calcium
had its largest contributions to the PM2.5−10 of Athens and
Barcelona, whereas Al and Si had major contributions in the
other four cities. In addition, the fine-to-coarse ratio of to-
tal Ca was lower in Barcelona (0.064) and Athens (0.068)
than in the other four cities (0.086–0.183), indicating a strong
coarse particle dominance in Ca distribution. The contribu-
tion of watersoluble Ca2+ to the total amount of Ca was de-
termined on the basis of results from the IC (soluble frac-
tion) and ED-XRF (total amount) analyses. A relatively low
contribution of total Ca to PM2.5−10, together with its high
water-solubility, in Duisburg, Prague and Amsterdam indi-
cates that Calcium appeared mainly as water-soluble salts
(e.g. oxide or sulphate) and not as poorly water-soluble salts
like CaCO3. On the contrary, a high contribution of insoluble
Ca, together with a low Si contribution, to PM2.5−10 agrees
well with the appearance of CaCO3 in Athens and Barcelona.
In Helsinki, the relatively high insoluble Ca (about 50%
of total), together with a high Si contribution, to PM2.5−10
suggests an appearance of other water-insoluble compounds
such as Calcium silicates in the absence of C(CO3) (Fig. 6).
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Figure 5. 
 Fig. 5. Time-series of the mass concentration of CaCO3 in
PM2.5−10 of Athens and Barcelona. The black dotted line is based

on the CO2−

3 content analysed by the TOA, and the grey continu-
ous line is based on the Ca content analysed by the ED-XRF. The
linear regressions for the molar equivalent concentrations of Ca (x-
axis) and CO2−

3 (y-axis) are shown in the right upper corners of the
panels for the two campaigns.

3.4.2 Thermal fractions of OC in PM2.5

The thermograms, i.e. the output from the TOA analysis of
the OC and EC in the six-city samples, are comparable with
each other, because the sampling devices, protocols and the
analytical method were identical. The mean mass portions of
the five OC thermal fractions in PM2.5 – labelled OC1, OC2,
OC3, OC4 and OCP – varied in the range of 26-33%, 6-10%,
7–10%, 9–22% and 29–50%, respectively (Fig. 7). The dif-
ferences in the mass portions were relatively small between
the cities. However, there was a trend that the pyrolysed OC
fraction was higher (OCP 50%) in Prague than in the other
cities (29–41%) and, vice versa, the OC peaks at temperature
steps of 480, 615 and 900◦C (i.e. OC2–OC4) were somewhat
smaller in Prague than in the other cities.

The OC concentration in PM2.5 correlated inversely with
the OC1 (r=−0.32 to−0.75), OC2 (r=−0.022 to−0.58),
OC3 (r=−0.51 to−0.69) and OC4 (r=−0.31 to−0.94) in
all the six-city data, whereas the OCP had a relatively high
positive correlation with the OC (r=0.70 to 0.93). This pat-
tern in results suggests a too short residence time at each
temperature step of the TOA method, which may be partly
a consequence of the 3- to 4-day sampling duration and rel-
atively large masses of PM2.5 particles on our filters. In any
case, the too short residence time at temperature steps in-
creases charring of the OC (Yu et al., 2002), irrespectively of
the organic composition of particulate samples. The trans-
mittance of laser light through the filter gradually decreases,
which suggests that a part of OC is pyrolysed during each
OC temperature step (OC1–OC4).

The dominating thermal fraction from the PM2.5 backup
filters was OC1 (56–62%), whereas the OC2–OC4 (10–16%)
and OCP (0–3%) were found only in minor quantities. The
thermogram profiles from the six-city samples were similar

Atmos. Chem. Phys., 5, 2869–2879, 2005 www.atmos-chem-phys.org/acp/5/2869/
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Figure 6. 
 Fig. 6. The relative contribution (%) of crustal elements (Ca, Ti, Fe,
Si, Al and K) to the soil particles in PM2.5−10. The value above the
bar indicates to the sum of mean concentrations (µg m−3) of the
crustal elements during the six sampling campaigns. The portion of
water-soluble Ca2+ from the total Ca is shown as a striped bar.

to each other, irrespective of the geographical location or sea-
son. In this study, the OC on the backup filter was anticipated
to be comprised of adsorbed organic gases, but some part of
it may have been formed via evaporation of semivolatile or-
ganics from particles collected on the front filter (Turpin et
al., 2000). Regardless of its origin (positive or negative arte-
fact), the OC on backup filter seemed to be easily volatile
(i.e. a large OC1).

Only very limited conclusions can be drawn from the
chemical content of thermal fractions, because the evolution
of organic components depends on several factors. First, the
presence of some catalytically active inorganic salts such as
Na+ and K+ (Novakov and Corrigan, 1996) or ammonium
sulphate and phosphate (Yu et al., 2002) can increase the
combustion rate of certain compounds (Novakov and Cor-
rigan, 1996) or the charring of insoluble organic materials
(Yu et al., 2002). Second, as mentioned above, the too short
steps of the temperature program cause overlapping of the
OC peaks and increase the charring. Third, organic gases can
be adsorbed on quartz filter with more than a single binding
energy (Kirchstetter et al., 2001), which results in an appear-
ance of a certain compound in more than one thermal frac-
tion.

4 Conclusions and implications

The advantages of this study were as follows: 1) all the sam-
ples were collected using the same sampling devices and fol-
lowing a uniform protocol, 2) the samples were analysed
with the same TOA method in one central laboratory, and
3) the long sampling duration and the use of filters from
one manufacturing lot improved the accuracy of the tandem
quartz filter subtraction method. All of these factors im-
proved the comparability of the EC, OC and POM results be-
tween the six contrasting sampling campaigns. However, we
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Figure 7. 

 1

Fig. 7. The mean± SD relative contributions (%) of the four OC
thermal fractions (OC1-OC4) and pyrolysed OC (OCP) to the total
OC in PM2.5 of the six sampling campaigns.

could not reliably separate the four thermal fractions (OC1–
OC4) and the pyrolysed OC from each other, because the
residence time in our modified NIOSH programme of TOA
was too short for the rather large amounts of particles on our
filters. Moreover, the long sampling duration may have in-
creased evaporative OC losses from collected particles.

Our present validation indicates that carbonate (C(CO3))

in PM2.5−10 can be reliably quantified from the TOA ther-
mograms and subtracted from the OC with the help of the
described integration. This simple method can be used as an
alternative for the more time-consuming HCl pre-treatment
method (Cachier et al., 1989). In a future study, it would
be worth while investigating, how C(CO3) behaves in the
IMPROVE thermal program. As CaCO3 decomposes at a
relatively high temperature of about 800◦C, its appearance in
particulate samples would probably lead to an overestimation
of the EC concentration compared to the NIOSH programme.

It is obvious that combustion emissions from vehicle en-
gines affected the POM content in PM2.5 of all the six sam-
pling campaigns. However, our analysis of the sources of
organic material in POM revealed some important differ-
ences. The PM2.5 of Prague (winter) had obviously large
impacts on POM from local residential heating with solid
fuels (biomass, coal), while the POM in PM2.5 of Amster-
dam (winter) and Duisburg (autumn) might be mainly im-
pacted by regional aerosols from the same origins. The POM
in PM2.5 of Barcelona (spring) seemed to have the largest
relative contribution of all the six campaigns from fuel oil
combustion, most likely in ships at the large harbour. Fi-
nally, the POM in PM2.5 of Barcelona (spring) and Athens
(summer) seemed to have a much larger contribution than the
other campaigns from secondary organic compounds formed
in photochemical oxidative reactions in the atmosphere. The
on-going toxicological studies will clarify the health signifi-
cance of these findings.

www.atmos-chem-phys.org/acp/5/2869/ Atmos. Chem. Phys., 5, 2869–2879, 2005
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