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Abstract. In a simple conceptual cloud-aerosol model the
mass of secondary organic aerosol (SOA) that may be formed
in multiphase reaction in an idealized scenario involving two
cloud cycles separated with a cloud-free period is evaluated.
The conditions are set to those typical of continental clouds,
and each parameter used in the model calculations is se-
lected as a mean of available observational data of individual
species for which the multiphase SOA formation route has
been established. In the idealized setting gas and aqueous-
phase reactions are both considered, but only the latter is ex-
pected to yield products of sufficiently low volatility to be re-
tained by aerosol particles after the cloud dissipates. The key
variable of the model is the Henry-constant which primarily
determines how important multiphase reactions are relative
to gas-phase photooxidation processes. The precursor con-
sidered in the model is assumed to already have some affin-
ity to water, i.e. it is a compound having oxygen-containing
functional group(s). As a principal model output an aerosol
yield parameter is calculated for the multiphase SOA for-
mation route as a function of the Henry-constant, and has
been found to be significant already above H∼103 M atm−1.
Among the potential precursors that may be eligible for this
mechanism based on their Henry constants, there are a suite
of oxygenated compounds such as primary oxidation prod-
ucts of biogenic and anthropogenic hydrocarbons, including,
for example, pinonaldehyde. Finally, the analogy of multi-
phase SOA formation to in-cloud sulfate production is ex-
ploited.

Correspondence to:A. Gelencśer
(gelencs@almos.vein.hu)

1 Introduction

Organic aerosol particles, in spite of their increasingly im-
portant role in key atmospheric processes such as radiative
transfer or cloud formation, still constitute a puzzle to the
atmospheric science community. Since their chemistry re-
mains largely unresolved on the level of individual organic
species, our understanding on their sources is still incom-
plete. To assess the role of human activities on these im-
portant atmospheric constituents with the help of more ro-
bust atmospheric models, much better insights into organic
aerosol sources are needed. The concept of atmospheric or-
ganic tracers has been widely used for source apportionment
of size-resolved aerosol in urban or metropolitan areas, es-
pecially in Los Angeles (Schauer et al., 1996). However,
outside the immediate source regions, with increasing con-
tribution from biogenic secondary aerosol sources for which
the tracer approach does not work, source apportionment be-
comes uncertain and organic aerosol sources remain largely
unknown. Therefore, over most of the troposphere, includ-
ing rural and remote areas in the boundary layer and in the
free troposphere where the contribution of organic aerosol to
aerosol mass concentrations has been shown to be significant
(Novakov et al., 1997) we know very little about the origin
of this constituent. On the other hand, it is these regions and
not the polluted boundary layer which determine a large part
of the global effects of atmospheric aerosol, therefore better
knowledge on sources of organic aerosol would be critically
needed.

The first step towards a better understanding of sources
which would also allow more thorough validation of global
atmospheric models would be a more reliable assessment
of the contributions of primary and secondary sources to
organic aerosol mass concentrations. In atmospheric sci-
ence, primary aerosol particles are those which are released
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directly from mostly surface sources, such as soot particles
from combustion or sea salt particles by bubble bursting
from the oceans. In contrast, secondary particles form in
the atmosphere by gas-to-particle transformations following
(or preceding) photochemical reactions of directly emitted
gaseous or volatile precursors. Among the major inorganic
constituents of tropospheric fine aerosol, such as sulfate, ni-
trate or ammonium, secondary processes are of utmost im-
portance. In contrast, on the global scale organic aerosol
mass concentrations have been thought to be dominated by
primary emissions, mostly from fossil fuel combustion and
biomass burning (Penner et al., 2001). Although it is not
straightforward to translate annual global emission invento-
ries to relative share of primary versus secondary organic
aerosol in the volume of the troposphere, a recent global
model based on our current understanding of emissions and
secondary organic aerosol (SOA) formation predicted that
over the entire troposphere primary organic aerosol predom-
inates (Chung and Seinfeld, 2002). On the other hand, re-
gional scale SOA estimates predicted more significant rela-
tive contributions of SOA for rural and background regions
(Castro et al., 1999; Brown et al., 2002). The most frequently
used method to estimate the extent of SOA formation is based
on the evolution of OC/EC ratio. In this concept SOA for-
mation is manifested in the increase in OC/EC ratio of fine
aerosol from source areas to rural and background regions
(Turpin and Huntzicker, 1991). The method assumes no
bias for the determination of elemental carbon (EC) which is
considered as a conservative tracer for primary combustion-
generated OC emissions. Although these statements are at
least questionable, uncertainties are generally understood to
arise in the estimation of a characteristic primary OC/EC ra-
tio (Strader et al., 1999; Lim and Turpin, 2002). Using this
approach, even urban areas showed relative high SOA con-
tributions in summer (mean 46% in Atlanta, but at times as
much as 88% of the 1-h average OC concentrations) (Lim
and Turpin, 2002). On an annual basis, at a receptor site in
the South Californian Air Basin under strong anthropogenic
influence, between 27% and 38% of the organic carbon was
assigned to be of secondary origin (Gray, 1986). Further-
more, recent studies in more pristine regions such as national
parks indicate an even higher share of SOA (between 42 and
98% for the period of July–October in Texas) (Brown et al.,
2002). In Portugal, SOA contribution to fine OC was esti-
mated to be 45% and 68–78% for winter and summer, re-
spectively (Castro et al., 1999).

The general understanding of atmospheric SOA forma-
tion is that it mainly occurs by the photochemical reactions
of volatile organic compounds (VOCs) and the subsequent
condensation of low volatility reaction products onto pre-
existing aerosol particles. Among the VOCs involved in
SOA formation biogenic unsaturated compounds predomi-
nate (Griffin et al., 1999), the primary mechanism of gas-
to-particle transformation is absorptive partitioning into the
organic phase (Odum et al., 1996).

Very recently there has been mounting evidence that other
processes such as heterogeneous and multiphase reactions in
the troposphere could induce significant SOA formation in
addition to the abovementioned mechanism. The distinction
between heterogeneous and multiphase reactions which are
constrained to the surface of solid particles and take place
in the bulk of hydrometeors, respectively, follows the rec-
ommendations by Ravishankara (1997). Heterogeneous re-
actions are expected to result in a drastic reduction in the
equilibrium vapor pressure of the SOA products thereby in-
creasing aerosol yield (Jang et al., 2002). Acid-catalyzed
carbonyl chemistry on aerosol particles, which are essen-
tially interactions between the organic and inorganic compo-
nents of tropospheric aerosol, includes hydration, hemiacetal
and acetal formation, aldol condensation, and polymerization
in the aerosol phase. Recent smog-chamber experiments in
combination with laser desorption/ionisation mass spectrom-
etry measurements have shown that semi-volatile photooxi-
dation products of 1,3,5-trimethylbenzene tend to polymer-
ize in the aerosol phase in reactions catalyzed only by the
semi-volatile acidic reaction products (Kalberer et al., 2004).
Another recent smog-chamber study on the effect of acidic
seeds onα-pinene ozonolysis has inferred that acidity pro-
motes SOA formation and increases aerosol yield by up to
40% (Iinuma et al., 2004). The first laboratory evidence for
the irreversible formation of polymeric species in heteroge-
neous reactions on sulfuric acid has been presented recently
for isoprene (Limbeck et al., 2003). The conclusions drawn
from these bulk experiments were that isoprene, whose SOA
formation has been thought previously to be negligible (Pan-
dis et al., 1991), may contribute to SOA formation through
this mechanism. On the molecular level, the possibility of
isoprene photooxidation in acid catalyzed reactions has been
supported by the identification of two diastereoisomers of a
polyol with a C5 isoprene skeleton, 2-methylthreitol and 2-
methylerythritol in forest aerosol (Claeys et al., 2004a).

Although it is well established that in the troposphere a
major part of sulfate is formed in reactions in cloud droplets
multiphase organic chemistry is still in its infancy. This
might be surprising because the possibility of VOC oxidation
in cloud and fog droplets was first raised more than 20 years
ago (Graedel and Goldberg, 1983). Aqueous-phase OH re-
actions in cloud and fog droplets were proposed as pathways
for the oxidation of aldehydes to their corresponding car-
boxylic acids (Chameides, 1984; Graedel et al., 1986; Cho
and Carmichael, 1986; Seinfeld and Pandis, 1989). The first
laboratory evidence for multiphase polymerization reactions
of lignin pyrolysis products in the troposphere has been pre-
sented very recently (Gelencsér et al., 2003; Hoffer et al.,
2004). The in-cloud formation of oxalic acid from acetylene
and ethene in the marine atmosphere has been quantitatively
evaluated in a simple model by Warneck (2003). The calcu-
lated production rate has been found to largely account for
available observations of oxalic acid mass concentrations in
the Central Pacific (Kawamura and Sakaguchi, 1999). The
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suggested oxidation scheme has received additional support
from the detection of intermediates glyoxal and glyoxylic
acid in marine precipitation (Sempere and Kawamura, 1996).
The proposed mechanism which includes gas-phase pho-
tooxidations, gas-to-particle transfer of intermediates driven
by further photooxidation reactions in the aqueous phase,
clearly represents a new route for SOA formation previously
not considered in atmospheric models. This is because parti-
tioning of semi-volatile intermediates into the aerosol phase
would be insignificant (therefore negligible SOA mass for-
mation would be inferred by the traditional SOA mecha-
nism) without the aqueous-phase reactions which consume
the hydrated species thereby maintaining a flux from the gas
phase to the droplet phase. Furthermore, upon the dissipa-
tion of the cloud the end-product oxalic acid is not expected
to return to the gas phase because of its very low volatility
(Clegg et al., 1996). However, recent studies have indicated
that significant fraction of oxalic acid can be found in the
gas phase contrary to what simple partitioning theory would
predict (Baboukas et al., 2000; Limbeck et al., 2005). The
in-cloud mass production of C2-C6 dicarboxylic acids and
pyruvic acid has also been calculated in a cloud parcel model
for clean and polluted continental conditions (Ervens et al.,
2004a). The volatile precursors considered were toluene,
ethylene, cyclohexene, and isoprene, and the model was run
for several cloud cycles. The organic mass additions for the
clean and polluted scenario were found to be∼150 ng m−3

and∼400 ng m−3, respectively. It should be noted, however,
that in this case the total liquid water content was not allowed
to fall below 1 mg kg−1 after any cloud cycle (i.e. the droplets
were not allowed to return to ambient aerosol state). This
inevitably means that a substantial fraction of semi-volatile
organic species were retained between cloud cycles which
would have otherwise evaporated, therefore the model may
not be the best quantitative approach for the abovementioned
new SOA formation mechanism.

In this paper we adopt a simple conceptual model for cloud
processing to evaluate the potential significance of the new
SOA formation mechanism in the global atmosphere and
to constrain the range of precursors that might be eligible
for this mechanism. This effort pursues the tempting anal-
ogy of sulfate production in clouds in the realm of organic
chemistry, i.e. whether multiphase processes could induce
significant SOA mass production in excess of the conven-
tional mechanism, perhaps even from organic precursors pre-
viously not considered to be significant in SOA formation.

2 Conceptual model for multiphase SOA formation

The conceptual model uses a fixed and idealized atmospheric
scenario to help follow the course of multiphase SOA for-
mation and evaluate its atmospheric significance. Being a
conceptual model, it does not rely on the specific physical-
chemical properties of any given organic photooxidation sys-

tem, including reaction rates, equilibrium constants, and
equilibrium vapor pressure of precursors and products. How-
ever, the selection of these key parameters is constrained
by observed properties of several reaction systems of atmo-
spheric relevance. This simple approach helps keep track
of the process itself without being lost in the extreme com-
plexity of atmospheric multiphase systems. Advanced mul-
tiphase chemistry models that have recently become avail-
able have just started to evaluate the in-cloud production of
low molecular weight dicarboxylic acids as abundant low
volatility aerosol constituents (Warneck, 2003; Ervens et al.,
2004a). In spite of the existence of such models, our ap-
proach may help assess the significance of this new formation
pathway relative to the conventional SOA formation mecha-
nism that has long been included in atmospheric models of
regional and global scale. Furthermore, it may allow us to
explore the analogy with the well-established in-cloud sul-
fate production in order to shed light on the potential global
importance of the process. And last but not least our model
may promote further studies on this field by constraining the
range of compounds that might be eligible for this new SOA
formation route.

The scheme of our conceptual model is depicted in Fig. 1.
The model starts from a semi-volatile organic precursor
(SVOC) that already has some affinity for water. Such com-
pounds may either be directly emitted by natural and anthro-
pogenic sources or formed as first generation products by the
photooxidation of VOCs. The list of potential precursors can
be found in the excellent review by Saxena and Hildemann
(1996). Although of the two source types the latter is clearly
predominant in most environments, it is outside the scope of
this paper to include gas-phase formation of the precursor.
The model starts with an air parcel containing the precursor
at a fixed overall mixing ratio of 10 ppt in which a cloud with
a total liquid water content (LWC) of 0.3 g m−3 consisting of
10µm droplets is allowed to form instantaneously at a tem-
perature of 288 K. The cloud is assumed to persist for 1 h
then dissipates and the compounds formed are either vented
to the gas-phase or remain in the aerosol phase depending
on their equilibrium vapor pressure through absorptive parti-
tioning. This cloudless period lasts for 8 h then a cloud with
the same parameters forms again for one additional hour. In
the model, aerosol formation is evaluated for the overall pro-
cess consisting of three elementary stages.

As regards mass balance, the system is considered to be
closed, i.e. the precursor is not replenished by photochemi-
cal reactions in the gas-phase. While this constraint may not
be suitable for precursors formed from long-lived gaseous
species such as acetylene or from those whose emission
sources are widely distributed, it may be reasonable for pho-
tooxidation products of highly reactive volatile organic com-
pounds. In any case, this approach places a lower limit
for the yield of cloud chemical processes. The upper limit
would be to assume an open system, i.e. steady-state gas-
phase mixing ratio of the precursor throughout the duration
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Fig. 1. Scheme of the conceptual model(1 h in cloud – 8 h cloudless – 1 h in cloud). Initial mixing ratio of SVOC is 10 ppt C. Global liquid
phase reaction rate term is from Ravinshankara (1997). Kp is the absorption partitioning constant defined by Pankow (1994).H is the Henrys
law constant.

of the entire cloud cycle. In the cloud the equilibrium of the
precursor between the gas and droplet phase is established
according to Henry’s law. This assumption is a simplifica-
tion since it has been shown that achievement of thermody-
namic equilibrium may take several minutes (if established
at all) in clouds due to transport processes (Winiwarter et
al., 1994; Audiffren et al., 1998). Therefore the yields of
aqueous-phase processes are likely overestimated. Neverthe-
less, Henry’s constant turns out to be the key variable in the
process which primarily determines the importance of mul-
tiphase SOA formation with respect to gas-phase photoox-
idation. At t=0 photooxidation is allowed to start both in
the gas and droplet phase assuming steady-state oxidant con-
centrations in both phases. For OH radical concentrations
steady-state values of 2.5×106 cm−3 and 5×10−13 M are set
for the gas and aqueous phase, respectively (Warneck, 2003;
Lelieveld and Crutzen, 1991).

Second-order gas-phase reaction rate for all species is
assumed to be 1×10−11 cm3 molecule−1 s−1, derived as a

mean from experimental rate constants of various oxy-
genated compounds (Calogirou et al., 1999; Glasius et
al., 2000; Hallquist et al., 1997; Atkinson, 1989). Sim-
ilarly, for aqueous-phase reaction rates a single value of
5×108 M−1 s−1 is assumed for all species (Dutot et al.,
2003). Mass transfer from the gas phase is accounted for
using “global reaction rate expression” by Ravishankara
(1997). It is defined as the overall first-order rate coefficient
for the loss of reactant in the liquid phase, which combines
the resistances of elementary steps such as gas-phase diffu-
sion, mass accommodation, diffusion in the droplet, and the
rates of chemical reactions. While the product of the gas-
phase photooxidation reaction is not considered any further
it is assumed that the equilibrium vapor pressure and Henry
constant of the first generation product of the aqueous-phase
reaction has decreased by a factor of 100 and increased by a
factor of 1000, respectively, relative to those of the precursor.
These assumptions are based on the properties of intermedi-
ates in relevant in-cloud reactions leading to the formation
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of dicarboxylic acids as reported by Ervens et al. (2004a)
and Warneck (2003). This first generation reaction prod-
uct (Prod1)as intermediate in the process is assumed to re-
act further in the aqueous phase yielding a second generation
product of low volatility. Gas-phase reaction of this interme-
diate is also considered as a sink but its product is deemed
too volatile to contribute to aerosol mass. For simplicity, the
rates of the reactions are assumed to be the same as those of
the precursor. The second generation product of the aqueous-
phase reaction (Prod2)is assumed to have an equilibrium va-
por pressure by a factor of 106 lower than that of the initial
precursor based on relevant references (Ervens et al., 2004a;
Warneck, 2003). The sensitivity of the system to the equilib-
rium vapor pressure of the intermediate and the end-product
is evaluated by varying the prescribed vapor pressure reduc-
tion by a factor of 10 and 100, respectively, upwards and
downwards.

The duration of the cloud event is set to 1 h, after which the
cloud dissipates and equilibrium between the gas and aerosol
phase is established for both the precursor and products. This
process releases the precursor and a large fraction of its first-
generation product back to the gas-phase. The equilibrium
between the gas and aerosol phase is evaluated by the ab-
sorptive partitioning theory by Pankow (1994). Here the
key parameter is the equilibrium vapor pressure which is as-
sumed to be 5 Pa at 288K for the precursor. The activity
coefficient (ξi), the mass concentration of total suspended
particulate matter, the average molecular weight and aerosol
mass fraction of the absorbing organic phase are assumed to
be unity, 1µg m−3, 300 g mol−3, and 0.3, respectively. It
should be noted that there have been more and more indica-
tions in the literature that this simple partitioning theory fails
to adequately describe gas-to-aerosol partitioning of many
semi-volatile compounds in the atmosphere. Although this
clearly adds to the uncertainties of our model, it is beyond
the scope of the paper to address this issue any further.

Then follows a cloud-free period of 8 h during which
only gas-phase reactions proceed. Then another cloud cy-
cle occurs which lasts for another 1 h, in-cloud equilibrium
is reestablished and aqueous-phase reactions resume. The
cloud parameters are the same as in the initial case. The
process ends with the dissipation of the cloud and the re-
establishment of equilibrium between the gas and aerosol
based on the principles above. The model is a simple nu-
merical model calculating incremental mass changes in both
the gas and aqueous phase then reestablishing equilibrium
between the phases after each elementary time-step.

As the principal model output the overall SOA formation
per unit volume of air is calculated as the sum of the carbon
mass concentrations of primary and secondary products that
remain in the aerosol phase at the end. The concentrations
of all species are expressed on a carbon mass basis. Fur-
thermore, it is important to stress that ambient aerosol state
is considered here, unlike the advanced model by Ervens et
al. (2004a) which does not allow liquid water content to fall
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Fig. 2. Aerosol mass production of multiphase reactions per unit
volume of air as a function of the logarithm of the Henry con-
stant of the precursor for the idealized scenario considered (1 h
in cloud – 8 h cloudless – 1 h in cloud). Initial mixing ratio of
the precursor is 10 ppt C. Middle curve: withkgas=2.5×10−5 cm3

molecule−1 s−1, kaqueous=2.5×10−4 M−1 s−1; upper curve: with
kgas=1.25×10−5 cm3 molecule−1 s−1, kaqueous=5×10−4 M−1

s−1; lower curve: with kgas=5×10−5 cm3 molecule−1 s−1,
kaqueous=1.25×10−4 M−1 s−1.

below 1 mg m−3 after any cloud cycle. Another key output of
the model is the aerosol yield (Y ) of the entire process, which
is defined as the ratio of the mass of aerosol formed to the
mass of the precursor reacted, exactly the same as for inter-
preting smog-chamber experiments (Hoffmann et al., 1997).
In addition, the model allows the calculation of the relative
contributions of gas- and aqueous phase reactions over the
entire process. The model outputs are expressed as a function
of Henry’s constant which is the only variable in this con-
ceptual model. This model helps evaluate the role of Henry’s
constant in multiphase SOA formation, assess the magnitude
of the process and compare it to in-cloud sulfate formation.
Furthermore, with the range of Henry’ constants constrained,
potential precursors can be selected from the compilation by
Saxena and Hildemann (1996) which, when combined with
the retrospective approach to gas-phase formation mecha-
nisms by Pun et al. (2000), may allow the identification of
primary VOCs that might contribute to SOA formation via
this mechanism.

3 Results and discussion

The total mass of aerosol carbon formed in unit volume of
air in the two 1-h cloud events separated with an 8-h cloud-
less period is shown in Fig. 2 as a function of the Henry-
constant of the precursor, with the set parameters detailed
in the model description. In the same figure, two limiting
cases are also depicted: the low bound (in terms of aerosol
mass production) when the rate of the gas-phase reaction
is increased and that of the aqueous-phase reaction is de-
creased by a factor of 2 each; and the high bound vice versa.
These constrain a range for the given scenario which could
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2828 A. Gelencśer and Z. Varga: Multiphase reactions in secondary organic aerosol formation

0

5

10

15

20

25

0 2 4 6 8

logH {M atm-1}

m
SO

A
 [n

g]

10

 Fig. 3. Aerosol mass production of multiphase reactions per unit
volume of air as a function of the logarithm of the Henry con-
stant of the precursor for the idealized scenario considered (1 h
in cloud – 8 h cloudless – 1 h in cloud). Initial mixing ratio
of the precursor is 10 ppt C.kgas=2.5×10−5 cm3 molecule−1 s−1,
kaqueous=2.5×10−4 M−1 s−1; Middle curve: ratios of equilibrium
vapour pressure of Prod1 and Prod2 to that of SVOC are 10−2 and
10−6, respectively; the same as the middle curcve in Fig. 2; upper
curve: ratios of equilibrium vapour pressure of Prod1 and Prod2 to
that of SVOC are 10−3 and 10−8, respectively. lower curve: ratios
of equilibrium vapour pressure of Prod1 and Prod2 to that of SVOC
are 10−1 and 10−4, respectively.

give reasonable estimates provided that the other assump-
tions (e.g. reduction of Henry-constants and equilibrium va-
por pressures from precursors to first- and second-generation
products) are valid.

All curves in Fig. 2 show a steep increase starting
above H∼103 M atm−1, and a plateau from less than
H∼106 M atm−1 which indicates that during the cloud events
virtually all species reside and are oxidized in the droplets.
It is also obvious that the production rate is very sensi-
tive to Henry constant in a relatively confined range be-
tween H∼103 and 5×104 M atm−1, but its magnitude is
also strongly dependent on the rates of the gas-phase and
aqueous-phase reactions. In other terms, it is primarily
the Henry-constant which determines whether multiphase
aerosol production is possible or not. If yes, the reaction
rates will determine its magnitude and significance relative
to gas-phase photooxidation processes. The sensitivity of the
system to the prescribed vapor pressure reduction is shown
in Fig. 3. As it can be seen in Fig. 3, the aerosol carbon
mass formed is not excessively sensitive to a 10- and 100-
fold change in the vapor pressure of the intermediate and
end-product, respectively, either upwards or downwards rel-
ative to the base case also shown in Fig. 2. However, combi-
nation of the sensitivities shown in Fig. 2 and Fig. 3. would
yield more than an order of magnitude difference between
the low and high estimates.

From the model it is also possible to calculate aerosol yield
(Y ) as a function of the logarithm of the Henry-constant. It
is shown in Fig. 4, together with the low and high bound es-
timates specified above. The aerosol yield of the precursor
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 Fig. 4. Aerosol yield of multiphase reactions as a function

of the logarithm of the Henry constant of the precursor for
the idealized scenario considered (1 h in cloud – 8 h cloud-
less – 1 h in cloud). Middle curve: withkgas=2.5×10−5 cm3

molecule−1 s−1, kaqueous=2.5×10−4 M−1 s−1; upper curve: with
kgas=1.25 ×10−5 cm3 molecule−1 s−1, kaqueous=5×10−4 M−1

s−1; lower curve: with kgas=5×10−5 cm3 molecule−1 s−1,
kaqueous=1.25×10−4 M−1 s−1.

shows a wide span from being negligible to very significant
in almost the same logH range as absolute aerosol mass con-
centrations in Fig. 2. Remember that the aerosol yield spec-
ifies how much aerosol is formed (on a carbon mass basis)
relative to the fraction of precursors reacted – it is therefore a
direct measure of the importance of aerosol formation versus
gas-phase loss processes. Additionally, it should be noted
that the value ofY refers to the actual atmospheric scenario
modeled; it may be substantially different if other scenarios
were set. With this in mind, aerosol yields can be used to
link cloud-processing to the much better known gas-phase
photooxidation mechanisms, since the precursors considered
here are first- or second order reaction products of gas phase
processes. Knowing the stoichiometry of gas-phase photoox-
idation of a parent VOC to its oxygenated product – which is
actually the precursor of cloud-processing –, and the aerosol
yield of the precursor, one should be able to assess the im-
portance of multiphase SOA formation from the given parent
compound, at least for the scenario considered.

The minimum value of Henry constant that is needed
to furnish non-negligible secondary organic aerosol for-
mation by cloud processes in the given scenario is about
H∼103 M atm−1. This constrains the range of potential pre-
cursors that might be eligible for this mechanism. One
should remember that the parameters of this conceptual
model are non-specific, therefore for any individual species
it can only be regarded as very rough indication for the like-
lihood that such multiphase processes might or might not be
important. Verification of potential pathways should involve
experimental evidence that consecutive aqueous-phase oxi-
dation reactions do occur under conditions relevant in tro-
pospheric cloud water, identification and determination of
the physico-chemical properties of the products formed and
the determination of the rates of the reactions. Preferably,
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potential pathways should be evaluated in more advanced
multiphase chemistry models such CAPRAM (Hermann et
al., 2000), or those developed by Ervens et al. (2004a, b) and
Warneck (2003).

Among potential candidates, glyoxal and glycolaldehyde,
formed by the gas-phase photooxidation of acetylene and
ethene, respectively, both turn out be important precursors
for multiphase secondary aerosol formation having effective
Henry-constants 3.4×105 and 4.14×104 M atm−1, respec-
tively (Betterton and Hoffmann, 1988). Alternatively, gly-
oxal may also be formed by the photooxidation of toluene
(Ervens et al., 2004a). In fact, the significance of these in-
cloud chemical processes has already been firmly established
in a recent model study on the formation of oxalic acid in
the marine atmosphere (Warneck, 2003). In general, mul-
tifunctional organic compounds may appear to be potential
precursors for multiphase aerosol production. For example,
hydroxyacetone which is produced by isoprene photooxida-
tion (Yu et al., 1995) may fall in this category based on its
Henry constant (2×104 M atm−1) (Klotz et al., 1999). The
aqueous-phase oxidation of hydroxyacetone has been inves-
tigated by Stefan and Bolton (1999). Similarly, pinonalde-
hyde, the primary product of the gas-phase reactions ofα-
pinene with ozone and OH also seems to be eligible for
this mechanism based on its estimated Henry constant of
H∼9×103 M atm−1 (Meylan and Howard, 1991). Other po-
tential bifunctional precursors include 3-hydroxypropanoic
acid (H∼3.7×107 M atm−1) which may be formed from
(Z)-3-hexen-1-ol (leaf alcohol) emitted by vegetation (Pun
et al., 2000). The photooxidation of unsaturated oxygen-
containing compounds (e.g. 2-methyl-3-buten-2-ol) emitted
in substantial amounts by plant species in Europe (König et
al., 1995) is expected to yield hydroxy carbonyls (Grosjean
et al., 1993) which might also be aerosol precursors through
the multiphase route.

On the contrary, methacrolein, a primary photooxida-
tion product of isoprene, whose aqueous phase transforma-
tion to 2,3-dihydroxymethacrylic acid by hydrogen perox-
ide has been successfully demonstrated in the laboratory
(Claeys et al., 2004b), has far too low effective Henry con-
stant (6.5 M atm−1) (Iraci et al., 1998) to support multi-
phase aerosol formation against gas-phase photooxidation
processes. However, a gas-phase photooxidation product of
methacrolein, methacrylic acid, which has also been shown
to yield 2,3-dihydroxymethacrylic acid upon reaction with
hydrogen peroxide in the aqueous phase (Claeys et al.,
2004b), may turn out to be a potential precursor for mul-
tiphase SOA formation based on its moderate Henry con-
stant of 2×103 M atm−1 (Meylan and Howard, 1991). It
should be added that under certain conditions low solubility
species may also contribute to mass formation, for example,
if their uptake is greatly enhanced by interaction with other
dissolved species.

Finally, one important issue remains, namely how multi-
phase SOA formation relates to sulfate formation in in-cloud

processes. Gas-phase SO2, on account of its acid-base prop-
erties and chemical interactions with other soluble species
such as formaldehyde (Klippel and Warneck, 1978), is a
highly soluble gas which has an effective Henry constant
well within the range that has been shown to be important
in multiphase oxidation processes. Secondly, gas-phase oxi-
dation rate of SO2 by OH is lower than those of most organic
compounds, while typical aqueous phase oxidation rates of
SO2 – though the mechanism of oxidation is rather complex
and pH-dependent – are about an order of magnitude higher
than that of most organic species at pH typical of cloud wa-
ter (Warneck, 1988; Dutot et al., 2003). But most impor-
tantly, SO2 oxidation produces the essentially non-volatile
sulphuric acid in asinglestep while SOA formation requires
at leasttwo consecutive reactionsto yield low-volatility mul-
tifunctional products that remain in the aerosol phase after
the dissipation of the cloud. Additionally, photooxidation
of organic compounds may also yield gaseous by-products
which also leads to reduced SOA formation efficiency com-
pared to that of SO2 oxidation. All these factors make multi-
phase SOA formation less effective per unit mass concentra-
tion of the precursor than in-cloud sulfate production. Nev-
ertheless, considering the vast amounts of VOCs that are
emitted by vegetation and oxidized in the troposphere this
process may still represent an important route for organic
aerosol mass production. Last but not least this mechanism
may bring into focus new volatile species that are not pri-
marily important in terms of mass emission relative to nat-
ural hydrocarbons but have high aerosol yields through the
multiphase route.

4 Conclusions

This study establishes multiphase photooxidation as a poten-
tially significant source of secondary organic aerosol (SOA)
with the help of a simple conceptual cloud-aerosol chem-
istry model using a fixed and idealized atmospheric sce-
nario. The model is based on the assumption that aque-
ous reactions of organic species with OH radicals yield an
essentially non-volatile product in two consecutive reaction
steps. In the model overall aerosol production is evaluated
as a function of the Henry constant of the precursor. The
results show that there is a limit in aqueous solubility of
organic photooxidation products or of directly emitted oxy-
genated compounds above which their contribution to SOA
formation via in-cloud oxidation processes needs to be criti-
cally evaluated. This limit corresponds to Henry constant of
about 103 M atm−1 which qualifies many bifunctional com-
pounds and carbonyls of larger molecular weight such as
pinonaldehyde as potential precursors for the process. For
compounds that has qualified the aerosol yield of an ideal-
ized scenario involving two cloud cycles separated with a
cloudless period varies from about 1% to over 70%, strongly
depending on the relative rates of gas-phase and aqueous
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phase photooxidation reactions. While ample data have been
available for the former, unfortunately very little is known
about the mechanisms and rates of aqueous-phase organic
oxidation reactions. Although multiphase SOA formation
is clearly a less efficient process than in-cloud sulfate pro-
duction per unit mass concentration of the precursor, it may
significantly contribute to atmospheric SOA production on a
global scale. However, much better understanding of cloud
organic chemistry is needed before the significance of this
process can be assessed with a tolerable level of certainty.
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