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Abstract. A neural network algorithm inverting selected
channels from the Advance Microwave Sounding Unit in-
struments AMSU-A and AMSU-B was applied to retrieve
layer averaged relative humidity. The neural network was
trained with a global synthetic dataset representing clear-sky
conditions. A precision of around 6% was obtained when
retrieving global simulated radiances, the precision deterio-
rated less than 1% when real mid-latitude AMSU radiances
were inverted and compared with co-located data from a
radiosonde station. The 6% precision outperforms by 1%
the reported precision estimate from a linear single-channel
regression between radiance and weighting function aver-
aged relative humidity, the more traditional approach to ex-
ploit AMSU data. Added advantages are not only a better
precision; the AMSU-B humidity information is more opti-
mally exploited by including temperature information from
AMSU-A channels; and the layer averaged humidity is a
more physical quantity than the weighted humidity, for com-
parison with other datasets. The training dataset proved ade-
quate for inverting real radiances from a mid-latitude site, but
it is limited by not considering the impact of clouds or sur-
face emissivity changes, and further work is needed in this
direction for further validation of the precision estimates.

1 Introduction

Upper tropospheric humidity (UTH) is an essential compo-
nent of the Earth’s climate system. Apart from having clear
implications for the chemistry and dynamics of the upper
troposphere, it is also recognised as a main factor control-
ling the balance between incoming short-wave and outgoing
long-wave radiation (Held and Soden, 2000). Despite this
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importance, it is admitted that the global, regional and sea-
sonal distribution of UTH is still not sufficiently well known.
Especially for climate studies, there is a clear need for moni-
toring UTH with a view to establishing the present mean state
and variability, and to determining long-term trends (SPARC,
2000), which requires datasets of global and continuous mea-
surements of UTH.

Traditionally, global and continuous datasets of UTH have
been provided from meteorological radiosondes and polar or-
biting infrared sensors measuring the 6.7µm region. How-
ever, both sets suffer from problems: radiosondes are known
to have difficulties when measuring in the upper tropo-
sphere (Elliot and Gaffen, 1991), while the infrared mea-
surements cannot penetrate clouds, restricting the coverage
of the datasets to clear and partially cloudy conditions (Soden
and Lanzante, 1996). More recently, microwave sounders de-
tecting the water vapour transition at 183.3 GHz have started
to provide data with humidity information less degraded by
cloud biases. One of them is the Advance Microwave Sound-
ing Unit (AMSU) instrument series, on board the National
Oceanic and Atmospheric Administration (NOAA) satellites.
In the future, different versions of AMSU are expected to fly
also on MetOp satellites, Europe’s first polar-orbiting me-
teorological satellites, with a predicted dataset of measure-
ment from both missions spanning more than 20 years. This
makes AMSU a very attractive sensor for providing a global
and continuous dataset of UTH if the data can be adequately
exploited.

AMSU data are currently in use for numerical weather
prediction, with the radiances directly assimilated into the
forecast models. The data seems less exploited for a direct
estimation of UTH. Temperature and moisture profiles were
retrieved by an iterative minimum variance algorithm from
measured AMSU-A and AMSU-B radiances in Rosenkranz
(2001), but no derivation of UTH values is reported. Green-
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wald and Christopher (2002) studied the effect of clouds
in UTH derived from AMSU-B radiances, with the UTH
derived from a simplified relationship between UTH and
brightness temperature originally developed for infrared data
(Soden and Bretherton, 1996), but no precision estimates of
the retrieval were given. The same relationship was stud-
ied in detail by Buehler and John (2005) for AMSU-B radi-
ances, where precision estimates of UTH are reported by us-
ing synthetic AMSU-B radiances. However, an estimation of
the attainable UTH precision from a combination of AMSU-
A and AMSU-B channels has not been reported yet. The
importance of accurate temperature information to interpret
the water vapour channels is discussed in e.g. Rosenkranz
(1993). Therefore, it is expected that AMSU-A channels
bring temperature information helping the interpretation of
the humidity information from AMSU-B channels.

The objective of this paper is to give a first estimation
of retrieval precision for UTH values derived by inverting
radiances from a selected number of AMSU channels. A
non-linear regression approach implemented by neural net-
works was judged sufficient to model the inverse mapping
between AMSU radiances and UTH values. Neural networks
were already used in Cabrera-Mercader and Staelin (1995)
for retrievals of moisture profiles from synthetic radiances at
channels resembling the AMSU channels, with performance
comparable or superior to a complex physical and iterative
retrieval algorithm. Physical iterative inversions, such as
Rosenkranz (2001), are also valid inversion tools, but the
non-linearity of the mapping between radiances and UTH
makes them computationally expensive. The neural network
approach is very efficient as a whole set of measurements can
be retrieved at once. But, as in other regression tools, caution
has to be taken regarding the regression dataset employed, as
its quality will reflect on the quality of the regressions ob-
tained.

The neural networks are here trained with a dataset con-
sisting of atmospheric states from the assimilation-forecast
system of the European Centre for Medium-Range Weather
Forecasts (ECMWF) and corresponding simulated radiances
from a forward model. As mentioned before, the radiosonde
humidity data suffer from problems, so a regression dataset
based on co-locations of radiosondes and AMSU pixels will
clearly be suffering from biases. Nevertheless, some ra-
diosonde stations have made an effort to improve their hu-
midity data, allowing the data to be used for validation if
a reasonable co-location between radiosonde launches and
AMSU pixels can be achieved, as was the case in Buehler
et al. (2004b). Here we will follow the same approach and
use high quality data from the same radiosonde station to
check the precision when using measured AMSU radiances.

To make this work as general as possible, a simple aver-
age value of relative humidities in a fixed layer between 500
and 200 hPa will be retrieved. This is in contrast to Green-
wald and Christopher (2002) and Buehler and John (2005),
where the parameter retrieved is calculated by weighting the

relative humidity with the radiance weighting function with
respect to relative humidity. This results in measurements
with poor registration, as there is a significant uncertainty re-
garding the height range for the UTH values derived. For
instance, the drier the atmosphere the lower the altitudes that
are sampled, because the weighting function shape changes
with changes in the relative humidity. Despite these limi-
tations, regressions based on the simplified relationship of
Soden and Bretherton (1996) use weighted humidity as the
approximations involved work better than when using layer
averaged humidity. Here, we will use layer averaged humid-
ity as the precision reported will be related to a more physi-
cal quantity, in the sense of depending less on the instrument
performance, making it easier to compare with humidity re-
ported from other inversion approaches or instruments.

The paper is organised as follows: first, the AMSU instru-
ment and the sources of data are presented in Sect. 2. This
is followed by a description of the training sets and retrieval
algorithm in Sect. 3. Then retrieval precisions, inversion ap-
proaches and validation of the precision estimates are com-
mented in Sect. 4. Finally, Sect. 5 gives the main conclu-
sions.

2 Data

2.1 AMSU-A and AMSU-B

AMSU data from the instruments on board the satellite
NOAA-15 are used here. Details on AMSU-A and AMSU-
B instruments can be found in Mo (1996) and Saunders
et al. (1995), respectively. They are cross-track scanning
microwave sensors with a swath width of approximately
2300 km. These instruments measure microwave thermal
emission emitted by the atmosphere in the oxygen band
of 50–58 GHz (AMSU-A), the two water vapour lines at
22 GHz (AMSU-A) and 183 GHz (AMSU-B), and window
regions (both). AMSU has 20 channels, where channels 1–15
are part of AMSU-A and channels 16–20 are part of AMSU-
B. Temperature information of the atmosphere can be ob-
tained from the channels 4–14 of AMSU-A, where channels
6–8 give information on the upper troposphere as shown in
the left panel of Fig. 1. The three channels 18, 19, and 20
of AMSU-B which are centred around the 183.31 GHz wa-
ter vapour line can give humidity information on the upper,
middle, and lower troposphere, respectively as displayed in
the right panel of Fig. 1.

AMSU-A and AMSU-B scan the atmosphere with dif-
ferent footprints. AMSU-A samples the atmosphere in
30 scan positions across the track with a footprint size of
50×50 km2 for the innermost scan position. This size in-
creases to 150×80 km2 for the outermost position from nadir.
AMSU-B samples the atmosphere in 90 scan positions with
footprint size varying from 20×16 km2 to 64×52 km2.
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Fig. 1. Example of temperature and water vapour weighting func-
tions of selected AMSU channels for a mid-latitude summer sce-
nario (Anderson, 1986). Temperature weighting functions corre-
spond to the change in brightness temperature for a delta perturba-
tion of 1 K increase in temperature at one grid point (grid points
separated approximately 0.3 km). Water vapour weighting func-
tions are in fractional units, the change in brightness temperature
for a doubling of volume mixing ratio at one grid point.

2.2 ECMWF data

The ECMWF dataset consists of 13 495 atmospheric profiles
of temperature, water vapour and ozone. The dataset is de-
scribed in Chevalier (2001). The profiles are vertically sam-
pled in 60 pressure-levels, while globally the profiles are dis-
tributed in order to cover the atmospheric variability as much
as possible. This makes the dataset specially suitable for re-
gression applications. Examples of its application are given,
for instance, in Chevalier and Mahfouf (2001) and Buehler
and John (2005). Here the UTH from the dataset is calculated
from the corresponding humidity profiles in the dataset as the
layer averaged relative humidity between 500 and 200 hPa.

2.3 Radiosonde data

In this study we used radiosonde data measured at the Me-
teorological Observatory Lindenberg, located at 52◦ 22′ N,
14◦ 12′ E, obtained through the British Atmospheric Data
Centre (BADC). The humidity data from Lindenberg have
undergone several corrections and quality control (Leiterer
et al., 1997; Buehler et al., 2004b). Typical temperature and
relative humidity profiles are shown in Fig. 2. The UTH is
defined as in Sect. 2.2, this time calculated from each ra-
diosonde humidity profile measured at the station from the
year 2000 to 2004.
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Fig. 2. Typical temperature (solid) and relative humidity (dashed)
profiles from Lindenberg radiosonde data. Note the vertical struc-
tures in the relative humidity profile. The UTH considered here is
the layer averaged relative humidity between 500 and 200 hPa.

3 Methodology

UTH retrievals are produced here by a regression algorithm
based on feed-forward multi-layer perceptrons (MLPs), a
type of neural network broadly used for non-linear regres-
sions. The MLPs are used to construct a model of the distri-
bution underlined by a set of training data. The reader is re-
ferred to Bishop (1995) for a general introduction to MLPs.
An introduction to MLPs in the context of atmospheric in-
versions is given in Jiḿenez and Eriksson (2001). Here we
concentrate on the specific details of the practical implemen-
tation, first the construction of the training set is presented,
followed by a description of the topology of the MLPs and
the training algorithm.

3.1 Training sets

3.1.1 ECMWF dataset

AMSU radiances are simulated by running the forward
model Atmospheric Radiative Transfer Simulator (ARTS)
(Buehler et al., 2004a) on the atmospheric states of the
ECMWF dataset. These are clear sky simulations; only
gaseous absorption from water vapour, oxygen, and nitrogen
was included in the calculations, and no liquid absorption or
scattering effects are considered. The input to the forward
model was the humidity and temperature profiles from the
dataset. The surface emissivity was fixed at 0.95 over land
and 0.6 over sea. As can be seen in Fig. 1, the channels used
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in the study normally are not severely affected by the prop-
erties of the surface, but this is not the case under dry condi-
tions, especially for channel 20. Following Buehler and John
(2005), the cases where the brightness temperature of chan-
nel 20 was colder than that of channel 18 are discarded. This
was implemented as a rough filter against these conditions,
as this seemed to be the case when both channels saw the
surface, see Buehler and John (2005) for more details.

The monochromatic calculations were convolved with the
sensor bandpass, and random noise similar to the expected
noise of the sensor added to the radiances. The radiances
were calculated for different nadir angles, to include the ef-
fects of varying observation geometry. The same nadir angle
was assumed for the AMSU-A and AMSU-B instruments.

The training set is formed by the AMSU radiances and the
UTH values derived from the humidity profiles. The AMSU
data are the channels selected for the regression plus the in-
strument looking nadir angles. The later is needed to cor-
rect for the limb darkening or brightening at off-nadir radi-
ances. The dataset consist of 12 053 UTH values and the
corresponding ARTS radiances, once the filtering for trans-
mission to the surface is applied. The training set uses two
thirds of the data, randomly selected from the total dataset.
The remaining data are used to estimate the retrieval preci-
sion by applying the trained MLP to the radiances from this
validation set.

3.1.2 Lindenberg dataset

A validation dataset is built by matching radiosonde profiles
with measured radiances from a number of AMSU pixels.
A single AMSU pixel can not be matched to a given ra-
diosonde. The satellite over-pass time can be up to three
hours before or after the radiosonde launch. In addition, the
sonde drifts during its ascent, so the radiosonde data might
not be representative of the launch site. The issue of match-
ing radiosondes and AMSU-B pixels at Lindenberg was also
discussed by Buehler et al. (2004b), the selection of the train-
ing set follows some of the ideas presented there. The basic
idea is to select a set of pixels within 50 km of the radiosonde
launch based on considerations of atmospheric homogeneity
and time differences. We then average the radiances from
these pixels to obtain a one to one mapping between ra-
diosondes and UTH values.

The selection of pixels was done as follows:

1. To assure representative matchings in time and location,
an estimate of the displacement of the air mass mea-
sured by the sonde with respect to the satellite over-
pass time was compared with a threshold value. The
displacement was estimated by multiplying the average
wind speed from the sonde by the time difference be-
tween the satellite over-pass and the sonde launch. The
threshold was set to 50 km, as it was estimated that the
radiosonde can drift around 50 km during its ascent to

tropopause levels. Then AMSU-B pixels, where the
sonde estimated displacement was larger than 50 km,
were discarded to increase the likelihood of the AMSU-
B pixel measuring the same air mass as the radiosonde.

2. Atmospheric inhomogeneity was estimated by calculat-
ing the standard deviation of the channel-18 pixel radi-
ances. In situations of large atmospheric inhomogene-
ity, even the average of pixel radiances could be a poor
matching for the given radiosonde. This is because the
whole air mass measured by the satellite might be not
representative of the air masses measured by the ra-
diosonde. To filter out these poor matches, the standard
deviation was compared with a threshold limit. Set-
ting the threshold limit is somewhat arbitrary. On one
hand, a very small value will assure very representative
matches. On the other hand, it could discard matches
that could be of interest for representing the mapping.
A value of 1.6 K was used here, as a compromise to re-
move the worst cases of inhomogeneity, but leaving a
sufficiently large dataset.

3. For each AMSU-B pixel selected by the previous crite-
ria the closest AMSU-A pixel was selected. The foot-
prints of AMSU-A and AMSU-B are different, as com-
mented in Sect. 2, but no effort has been made to find
an optimal convolution of AMSU-A to AMSU-B pixels.
This approach is clearly non-optimal, but it was found
adequate for the purpose of this exercise.

4. The selected AMSU-B and AMSU-A pixels were
radiance-averaged for all channels and associated to the
UTH values derived from the corresponding radiosonde
profiles.

Once the filter criteria were applied to the radiosondes and
corresponding AMSU pixels, the dataset consisted of 895
cases.

3.2 Topology

The neural network algorithm is based on training a MLP
with one hidden layer. The number of input nodes is the num-
ber of inputs to the MLP: in this case the number of AMSU
channels used in the regression, plus the instrument look-
ing nadir angles. There is one hidden layer consisting of a
number of neurons with hyperbolic tangent activation func-
tions, followed by an output neuron with also a hyperbolic
tangent activation function. This was preferred to the most
commonly used linear activation function, as it allows us to
limit the output of the MLP to the output range given in the
training set. This is done by linearly transforming the train-
ing outputs of the MLP into the range [−1,1] before the data
is applied to the MLP. As the hyperbolic tangent function
returns values in the range [−1,1], the limitation to the orig-
inal output range of values is achieved. The weights of the
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C. Jiḿenez et al.: AMSU retrieval precision for mean UTH 455

MLP are initialised following the Nguyen-Widrow method
(Nguyen and Widrow, 1990). Before training, inputs to the
MLPs are also linearly transformed into the range [−1,1] to
make the initialisation of the weights more effective.

3.3 Training algorithm

As stated before, the MLP is trained to provide a model of the
probability distribution underlined by the training data. Here
this will be the a posteriori distribution of the retrieved state
given a measurement, and the MLP will be trained to pro-
vide the most probable solution of this a posteriori distribu-
tion. Previously, a distribution for the weights is set favour-
ing small values. This is done to improve the generalisation
capacity of the MLP, as small weights encourage smoother
mappings less likely to over-fit to the training set.

Finding the maximum a posteriori solution is equivalent to
minimising the error function

β

L∑
l=1

‖u(xl,w) − t l
‖

2
+ α ‖ w ‖

2
= βED + αEW , (1)

where{xl, t l
}l=1···L is the training set of radiances (x) and

corresponding humidity values (t), L is the number of cases
in the training set,w is a vector with the weights of the MLP,
u represents the output of the MLP,β andα are parameters
setting a trade-off between both terms of the error function,
and‖ · ‖ is the Euclidean norm (see e.g. Bishop (1995)).

The practical implementation follows the work of Fore-
see and Hagan (1997), where the parametersβ and α are
estimated to produce a MLP with good generalisation. Gen-
eralisation and model complexity are then regulated by the
training algorithm and no other methods such as structural
stabilisation or cross-validation are used here. This makes
the choice of the number of nodes in the hidden layer not too
critical, though a reasonable number has to be selected by
taking into account the number of MLP inputs. Here 2 to 6
nodes in the hidden layer are used, depending on the number
of MLP inputs.

4 Results and discussion

4.1 Retrieval precision

MLPs with different AMSU channels as inputs were trained
with the ECMWF training set and then used to invert the ra-
diances from the ECMWF validation set. The retrieval error
is the difference between the UTH from the dataset and the
UTH derived from the MLP, with the UTH expressed as rela-
tive humidity over water. The correlation coefficient between
both UTH values was also estimated.

During the training it was observed that the division of the
dataset into training and validation sets slightly affected the
results. This is unavoidable due to the limited number of
cases available, making the sets represent slightly different

Table 1. Statistics of the retrieval error for different combinations
of MLP inputs. The MLPs were trained with the ECMWF dataset
and inverted independent cases from the same dataset. Reported are
the bias and standard deviation of the retrieval error in % ( relative
humidity over water) and the correlation coefficient (r) between true
and retrieved UTH values. The MLP inputs also include the instru-
ment nadir angle. Reported also are the same statistics for a linear
regression (lin-reg), and the MLP statistics for the retrieval of the
Lindenberg validation dataset. See text for details.

AMSU channels bias std r

ECMWF dataset
MLP

18 0.2 11.8 0.81
18-19 0.2 9.3 0.89
18-19-20 0.2 8.6 0.90
7-8-18-19 0.1 6.5 0.94
6-7-18-19 0.1 6.0 0.95
6-7-8-18-19-20 0.1 5.8 0.96

lin-reg
18 1.0 12.8 0.77

Lindenberg dataset
MLP

6-7-18-19 -0.3 6.6 0.91

mappings due to the specific data included after each random
selection. In order to give representative results, for each
regression 10 independent trainings with different training
and validation sets were performed, and we report the results
as a mean of the results obtained for the individual trainings.

First, regressions with AMSU-B radiances were per-
formed for different combinations of channels. The results
are given in Table 1. Using channel 18 and 19 clearly out-
performs using only channel 18. This is not surprising. The
humidity weighting functions in Fig. 1 show that channel 19
can provide valuable information at the pressure levels where
the UTH is averaged. Adding channel 20 further improves
the retrievals, but channel 20 is likely to be influenced by the
surface. As no surface emissivity variability was introduced
in the training mapping, the results are likely to estimate a
retrieval precision that cannot be matched in real situations,
where the surface emissivity would contaminate the channel
20 radiances and affect the retrieval performance.

To further improve the retrieval performance, regressions
including AMSU-A channels were performed. Having tem-
perature information should help interpretation of the humid-
ity information. This is clearly shown in the regressions, also
shown in Table 1. Adding channels 6 and 7 brought the larger
improvements. Looking at the temperature weighting func-
tions in Fig. 1, it is clear that both channels, especially chan-
nel 6, contribute with temperature information in the pres-
sure range where the UTH was defined. As with channel 20,
channel 6 could be affected by the surface emission, so some
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Fig. 3. Scatter plot for the true (ECMWF dataset) and retrieved
(MLP with channels 6, 7, 18 and 19) UTH values. The solid line
plots the best linear fit to the data.

poorer results might be possible due to ground contamina-
tion.

The MLPs with the combination of all channels 6, 7, 8,
18, 19, and 20 only brought a very marginal improvement, so
the combination of channels 6, 7, 18 and 19 was judged suf-
ficient to exploit the data. A scatter plot showing the corre-
lation between true (ECMWF dataset) and estimated (MLP)
UTH values is plotted in Fig. 3. The points scatter around the
diagonal; the best linear fit is plotted, deviating only slightly
from the diagonal. The attainable retrieval precision of this
combination is approximately 6%. This figure corresponds
to regression with a global dataset, but no clouds were in-
cluded in the simulations. Although the microwave obser-
vations have an advantage over infrared measurements con-
cerning the impact of clouds, they are not completely free
from cloud effects, specially at tropical latitudes were strong
convective clouds and thick cirrus clouds produce observable
scattering of the AMSU radiance (Greenwald and Christo-
pher, 2002). A poorer precision might be expected for these
scenarios, as the mapping uncertainties due to clouds will
map into retrieval errors, but its impact on the error budget
remains to be quantified.

4.2 Retrieval approaches

The traditional way of exploiting these datasets is to do a
linear regression between the radiance from the most sensi-
tive channel and the logarithm of weighting function aver-
aged relative humidity (Soden and Bretherton, 1996). Here
we use channel 18 for the regression and the layer averaged
humidity from our dataset, not weighted humidity, in order
to compare with the MLP results. The regression takes the

form

ln

(
UTH

cosθ

)
= a + bTb, (2)

whereθ is the nadir angle of the instrument,a andb are the
regression coefficients, andTb is the channel 18 radiance.
The regression coefficients area=27.47 andb=−0.097K−1,
and the statistics of the retrieval error are given in Table 1.

Comparing with the MLP regression using channel 18 and
the nadir angle, the linear regression has a 1% poorer preci-
sion, with a larger bias. Even if the assumption of a logarithm
relation between radiances and humidity is a reasonable ap-
proximation, the MLP has the capacity of modelling a more
complex relation, which should bring it closer to the true
mapping between radiances and humidity. The differences in
precision get significantly larger when the MLP starts to use
more inputs, showing the advantage of the neural network
approach in combining the information from other channels
for a better exploitation of the data.

Regression with the same ECMWF dataset and weighted
humidity are reported in Buehler and John (2005). The ad-
vantage of using weighted humidity instead of layer averaged
humidity for the linear regression approach is demonstrated
there, as they report a precision of 7%, much smaller than the
13% obtained here. However, as commented in Sect. 1, we
prefer the layer averaged humidity as it gives a more physical
retrieval parameter, even at the cost of a poorer performance.
Nevertheless, the MLP regression with temperature channels
outperforms by 1% in precision the results of the linear re-
gression in Buehler and John (2005), with much smaller bias.
The advantage of the neural network approach is also clear
in this comparison, as the neural network can retrieve a hu-
midity parameter that is easier to interpret than the weighted
humidity of the linear regression, with a slightly better preci-
sion.

4.3 Retrieval validation

The AMSU radiances from the Lindenberg dataset were in-
verted by the MLP with channels 6, 7, 18 and 19 trained
with the ECMWF dataset. The statistics of the retrieval er-
ror, difference between UTH from the radiosonde and re-
trieved UTH from the MLP, are also given in Table 1. The
results are in good agreement with the precision given by
the ECMWF dataset. They have only 0.6% poorer precision,
and slightly higher bias. A higher error for the Lindenberg
data can be expected, considering the problem of co-locating
radiosonde and AMSU observations, possible instrumental
biases, and that the synthetic training set assumed a constant
surface emissivity and cloud-free conditions. The surface ef-
fects might have not had a large impact here, as the value of
surface emissivity used over land in the simulations seems to
agree well with an estimate of surface emissivity around Lin-
denberg (Buehler et al., 2004b). The cloud effects also seems
not too critical here, as the differences between precisions for
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Fig. 4. Histogram of the retrieval error, difference between true
(radiosonde) and retrieved (MLP) UTH values for the Lindenberg
dataset. The solid curve plots the Gaussian fit to the estimated dis-
tribution.
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Fig. 5. Scatter plot for the true (radiosonde) and retrieved (MLP)
UTH values from the Lindenberg dataset. The solid line plots the
best linear fit to the data.

simulated and validated datasets are small. But it should be
noted that scattering or liquid absorption from clouds at this
mid-latitude site are not as critical as if the validation were
done, for instance, for more tropical conditions.

Examples of the retrieval performance are given in
Figs. 4–6. The distribution of the retrieval error can be seen
in Fig. 4. The error distribution is not far from a Gaussian dis-
tribution, though some larger than expected underestimation
of values is observed in the left tail of the distribution. A scat-
ter plot showing the correlation between radiosonde and re-
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Fig. 6. Time series of individual UTH retrievals in the year 2001
from the Lindenberg dataset. The figure shows how the true (ra-
diosonde) values are tracked by the retrieved (MLP) values. The
true vales are plotted as a dotted line, the retrieved as a solid line.

trieved UTH values is plotted in Fig. 5. A simple least mean
square error fit shows that the regression is somehow over-
estimating low UTH values and underestimating high UTH
values, a tendency that was already observed in Buehler and
John (2005). As this tendency is not so marked for the syn-
thetic dataset (see Fig. 3), this behaviour should be related
to differences between both datasets. The radiosondes seem
to underestimate the UTH for very dry conditions, as shown
in Buehler et al. (2004b), so this partially explains the slope
of the linear fit. But there is no indication of the opposite
happening at very humid conditions, so the overestimation is
more difficult to explain. Finally, a time series showing the
individual retrieval errors for the validation data in the year
2001 in shown Fig. 6. The retrieved UTH values track rea-
sonably well the radiosonde UTH values, in accordance with
the estimated retrieval error.
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5 Conclusions

A practical demonstration of the precision for retrievals
of UTH from AMSU data when using a non-linear multi-
channel regression method has been presented. The retrieval
algorithm was based on neural networks trained with a global
dataset of atmospheric states and simulated radiances. For
a better exploitation of the data, inversions including both
AMSU-A and AMSU-B radiances from selected channels
were performed. The traditional way of exploiting this data
only considers a linear regression with an AMSU-B channel
sensitive to tropospheric humidity. Here AMSU-A channels
sensitive to temperature were also included as inputs to the
neural network, to help interpret the humidity information.
Also, the parameter to be retrieved was a layer averaged rela-
tive humidity, instead of the weighting function averaged hu-
midity of the traditional approach, in order to derive a more
physical parameter from the AMSU data.

The attainable precision derived from the simulated
dataset is approximately 6%. The retrieval bias is very small.
Compared with previous precision figures reported from the
traditional approach on the same dataset, the neural network
algorithm outperformed the linear regression approach by
1% in precision, with the large advantage of deriving a mea-
surement of UTH whose registration (altitude range where
the average or weighting is done) does not depend on the at-
mospheric conditions.

This precision estimate was validated by retrieving UTH
from a dataset of real AMSU radiances over the mid-latitude
radiosonde station of Lindenberg. The retrieved values were
compared with UTH values derived from radiosondes co-
located with the AMSU pixels. The agreement was good,
with the precision deteriorating by less than 1% with re-
spect to the synthetic data tests. This was expected, not only
because of the co-location errors, but because the synthetic
training dataset will always be a limited representation of the
real mapping between radiances and humidity.

The training dataset used was very suitable for regressions,
due to the global coverage and the consequent large atmo-
spheric variability, but the corresponding simulated radiances
were limited in the sense of not including liquid absorption
from clouds, scattering effects or surface emissivity varia-
tions. As the validation with Lindenberg data proved, these
are not severe limitations for mid-latitude scenarios, but for
more tropical conditions these factors cannot be neglected in
the simulations. The 6% precision is expected to deteriorate
due to the new sources of errors, but to what extent remains
to be seen. Future work is aiming in this direction, build-
ing a more realistic training dataset to allow the validation
of the precision estimates in other scenarios where scatter-
ing effects, absorption from liquid clouds, or more changing
surface conditions, could have a larger impact in the mea-
surements.
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