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Institute of Environmental Physics (iup), University of Bremen FB1, Bremen, Germany

Received: 18 March 2004 – Published in Atmos. Chem. Phys. Discuss.: 19 May 2004
Revised: 24 September 2004 – Accepted: 27 September 2004 – Published: 30 September 2004

Abstract. First results concerning the retrieval of tropo-
spheric carbon monoxide (CO) from satellite solar backscat-
ter radiance measurements in the near-infrared spectral
region (∼2.3µm) are presented. The Weighting Func-
tion Modified (WFM) DOAS retrieval algorithm has been
used to retrieve vertical columns of CO from SCIA-
MACHY/ENVISAT nadir spectra. We present detailed re-
sults for three days from the time periode January to Oc-
tober 2003 selected to have good overlap with the daytime
CO measurements of MOPITT onboard EOS Terra. Because
the WFM-DOAS Version 0.4 CO columns presented in this
paper are scaled by a constant factor of 0.5 to compensate
for an obvious overestimation we focus on the variability of
the retrieved columns rather than on their absolute values.
It is shown that plumes of CO resulting from, e.g. biomass
burning in Africa, are detectable with single overpass SCIA-
MACHY data. Globally, the SCIAMACHY CO columns are
in reasonable agreement with the Version 3 CO column data
product of MOPITT. For example, for measurements over
land, where the quality of the data is typically better than over
ocean due to higher surface reflectivity, the standard devia-
tion of the difference with respect to MOPITT is in the range
0.4–0.6×1018 molecules/cm2 and the linear correlation co-
efficient is between 0.4 and 0.7. The level of agreement be-
tween the data of both sensors depends on time and location
but is typically within 30% for most latitudes. In the southern
hemisphere outside Antarctica SCIAMACHY tends to give
systematically higher values than MOPITT. More studies are
needed to find out what the reasons for the observed differ-
ences with respect to MOPITT are and how the algorithm
can be modified to improve the quality of the CO columns as
retrieved from SCIAMACHY.

Correspondence to:M. Buchwitz
(michael.buchwitz@iup.physik.uni-bremen.de)

1 Introduction

Knowledge about the global distribution of CO is important
for many reasons, e.g., because of its central role in tropo-
spheric chemistry (Holloway et al., 2000): (i) CO is the lead-
ing sink of the hydroxyl (OH) radical which itself largely
determines the oxidizing capacity of the troposphere and,
therefore, its self-cleansing efficiency, (ii) given sufficient
NOx, CO has great air quality impact as a precurser to tro-
pospheric ozone, a secondary pollutant associated with res-
piratory problems and decreased crop yields, and (iii) as an
atmospheric tracer with a relatively long lifetime of approx-
imately two months it can be used as an indicator of how
transport redistributes pollutants on a global scale. CO also
plays an important role in our climate system as CO has a sig-
nificant indirect global warming potential, mainly due to its
impact on the atmospheric CH4 concentration but also due to
O3 and CO2 production (Bergamaschi et al., 2000). A quan-
tification of the CO distribution in the troposphere, including
the boundary layer, is therefore of primary importance.

Here we present first results from the near-infrared (NIR)
nadir measurements of SCIAMACHY onboard the European
Space Agencies (ESA) environmental satellite ENVISAT ob-
tained using the Weighting Function Modified Differential
Optical Absorption Spectroscopy (WFM-DOAS) retrieval al-
gorithm. WFM-DOAS is a scientific retrieval algorithm
which is independent of the official operational algorithm of
ESA. We show that reasonable CO columns can be retrieved
from SCIAMACHY despite a number of issues that need fur-
ther study and improvement.

Prior to the launch of SCIAMACHY only a small number
of instruments have measured or are currently measuring at-
mospheric CO on a global scale, e.g. MAPS (Measurement
of Air Pollution from Satellite) on space shuttles in 1981,
1984, and 1994 (Reichle et al., 1999), IMG (Interferometric
Monitor for Greenhouse gases) on ADEOS I from August
1996 to June 1997 (Kobayashi et al., 1999), and MOPITT
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Fig. 1. SCIAMACHY CO column averaging kernels for various
solar zenith angles.

on EOS Terra since 1999 (Deeter et al., 2003). From all
these nadir looking instruments CO concentrations have been
derived from CO absorption of the Earth’s thermal infrared
emission. These measurements can be performed during day
and night and also enable the retrieval of vertical profiles
(at low resolution). In general, thermal infrared (IR) nadir
measurements of CO have their sensitivity maximum in the
free troposphere. These measurements are very sensitive to
the middle atmosphere but have only low sensitivity to the
boundary layer (Deeter et al., 2003; Clerbaux et al., 2003;
Emmons et al., 2004). Comparisons of MOPITT CO profiles
(V3) with in situ measurements show biases up to about 40%
(for the medians) in the lower troposphere below approxi-
mately 700 hPa (Emmons et al., 2004). MOPITT has also
channels in the near-infrared but due low observed signal-
to-noise levels the currently released CO profile and column
data products are derived from the thermal IR channels only.

In contrast, the NIR measurements of SCIAMACHY are
nearly equally sensitive to all layers including the boundary
layer. This is depicted by the averaging kernels shown in
Fig. 1 (for details see Sect. 5). SCIAMACHY, therefore, has
the potential to enhance our knowledge of lower tropospheric
CO including its (surface) sources and sinks. Reaching this
goal is not trivial because the CO line intensities in the NIR
are much smaller then in the thermal IR (by about two orders
of magnitude). This study presents first results obtained to
achieve the goal of accurately measuring CO columns using
NIR nadir satellite observations.

The paper is organized as follows: In Sect.2 a short de-
scription of the SCIAMACHY instrument is given. Section
3 summarizes how the SCIAMACHY spectra have been pre-
processed before they are inverted by the WFM-DOAS re-
trieval algorithm, which is described in Sect.4. In Sect.5
the vertical sensitivity of the SCIAMACHY measurements
is discussed. The main part of this paper is Sect.6 where
the SCIAMACHY CO columns are presented and discussed.
This includes a comparison with CO from MOPITT. Sec-
tion 7 summarizes the initial results from the comparison
with ground based measurements. The conclusions are given
in Sect.8.

2 The SCIAMACHY instrument

The SCanning Imaging Absorption spectroMeter for At-
mospheric CHartographY (SCIAMACHY) instrument (Bur-
rows et al., 1995; Bovensmann et al., 1999) is part of the
atmospheric chemistry payload of the European Space Agen-
cies (ESA) environmental satellite ENVISAT launched in
March 2002. ENVISAT is in sun-synchronous low Earth
orbit crossing the equator at 10:00 a.m. local time. SCIA-
MACHY is a grating spectrometer that measures spectra of
scattered, reflected, and transmitted solar radiation in the
spectral region 240–2400 nm in nadir, limb, and solar and
lunar occultation viewing modes. The SCIAMACHY NIR
spectra contain information on many important atmospheric
trace gases such as CO, CH4, CO2, and N2O.

For this study mainly channel 8 of SCIAMACHY is rel-
evant. Channel 8 covers the spectral region 2260–2385 nm
with one linear detector array (1024 detector pixels). The
spectral resolution is∼0.2 nm. The spatial resolution, i.e. the
footprint size of a single nadir measurement, is 30×120 km2

corresponding to an integration time of 0.5 s, except at high
solar zenith angles (e.g. polar regions in summer hemi-
sphere), where the pixel size is twice as large (30×240 km2).
On the illuminated part of the Earth (dayside) SCIAMACHY
mainly performs alternating limb and nadir observations
(about one minute each). SCIAMACHY also performs di-
rect (extraterrestrial) sun observations mainly to obtain the
solar reference spectra needed for the retrieval.

The in-flight optical performance of SCIAMACHY is
overall as expected from the on-ground calibration and
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characterization activities (Bovensmann et al., 2004). One
exception is the time dependent optical throughput variation
in the SCIAMACHY NIR channels 7 and 8 due to ice build-
up. This effect is minimised by regular heating of the in-
strument (Bovensmann et al., 2004). For CO retrieval this
effect is expected to result in time dependent precision varia-
tions (for example, lower transmission result in lower signal
and signal-to-noise ratios and, therefore, lower retrieval pre-
cision) and might also introduce systematic errors, e.g., due
to variations of the instrument slit function (more details are
given in Sect.6.1). Time series are currently being analysed
to investigate how the ice-issue affects the CO retrieval.

3 Pre-processing of SCIAMACHY spectra

The SCIAMACHY spectra used for this study are the EN-
VISAT operational Level 1 data products. Because the cal-
ibration is currently not optimal (especially in the NIR) no
products have been officially released yet. During the com-
missioning phase of ENVISAT (the first six months of the
mission) it has been identified that the in-orbit dark sig-
nal measurement strategy of SCIAMACHY needs to be im-
proved for accurate calibration of the NIR channels. Better
dark signal measurements are being performed since end of
2002. They are included in the Level 1 data products but are
not used by the current version of the Level 0-1 processor.

For this study we have “patched” the binary Level 1 data
files, i.e. essentially replaced the standard dark signals used
for calibration by the improved ones, which resulted in sig-
nificantly better WFM-DOAS fits. This improvement is of
critical importance, as the CO absorption lines are weak. The
depth of a CO line as observed by SCIAMACHY is typically
only slightly above the instrument noise level. In order to
further improve the calibration we are using a correction for
analog to digital converter (ADC) non-linearities (Kleipool,
2003) not yet considered in operational Level 0-1 processing.

The channel 8 detector array is very inhomogeneous with
respect to detector pixel properties such as quantum effi-
ciency and dark signal which vary strongly from pixel to
pixel. Several pixels are not useful at all (“dead pixels”) and
have been excluded in the WFM-DOAS fits. We have ex-
tended the “dead pixel mask” of the Level 1 data product to
reject additional pixels which resulted in strong spikes in the
solar and/or nadir spectra obviously related to instrument ar-
tifacts. In addition, mainly over scenes having low surface
reflectivity, e.g. over ocean outside sun-glint conditions, the
nadir spectra may contain unphysical (negative) radiance val-
ues, especially in spectral regions of strong methane and wa-
ter vapour absorption bands. They have also been excluded
in the WFM-DOAS fits. In order to compensate for an ob-
vious wavelength shift of the SCIAMACHY nadir spectra in
the considered spectral range (Bovensmann et al., 2004) we
subtract 0.3 nm from the wavelength as given in the Level 1
data product.

The calibration of the solar reference spectra as contained
in the Level 1 data products is also preliminary. For this study
a solar reference spectrum with an improved calibration has
been used. This spectrum has been generated and made avail-
able by ESA (provided by Johannes Frerick, ESA/ESTEC).

4 The WFM-DOAS retrieval algorithm

The Weighting Function Modified Differential Optical Ab-
sorption Spectroscopy (WFM-DOAS) retrieval algorithm has
been developed mainly for the retrieval of total columns of
CO, CH4, CO2, H2O, and N2O, from the SCIAMACHY NIR
nadir spectra (Buchwitz et al., 2000a; Buchwitz and Bur-
rows, 2004; Buchwitz et al., 2004). WFM-DOAS, however,
is not limited to this application and has also been success-
fully applied to ozone total column retrieval using GOME
data (Coldewey-Egbers et al., 2004) and to water vapour re-
trieval using GOME and SCIAMACHY nadir spectra around
700 nm (Noël, 2004).

WFM-DOAS is based on fitting the logarithm of a lin-
earized radiative transfer modelImod plus a low-order poly-
nomial P to the logarithm of the ratio of a measured nadir
radiance and solar irradiance spectrum, i.e. observed sun-
normalized radianceI obs . The linear least-squares WFM-
DOAS equation can be written as follows (fit parameters are
underlined):∥∥∥ln I obs

i − ln Imod
i (V̂ )

∥∥∥2
≡ ‖RESi‖

2
→ min., (1)

where the linearized radiative transfer model is given by

ln Imod
i (V̂ ) = ln Imod

i (V̄ ) (2)

+ +

J∑
j=1

∂ ln Imod
i

∂Vj

∣∣∣∣∣
V̄j

× (V̂j − V̄j ) + Pi(am).

Index i refers to the center wavelengthλi of detector pixel
numberi. The components of vectorsV , denotedVj , are
the vertical columns of all trace gases which have absorption
lines in the selected spectral fitting window (here: CO, CH4,
and H2O). The fit parameters are the desired trace gas ver-
tical columnsV̂j and the polynomial coefficientsam. An
additional fit parameters also used (but omitted in Eqs. 1
and 2) is the shift (in Kelvin) of a pre-selected tempera-
ture profile. This fit parameter has been added in order to
take the temperature dependence of the trace gas absorption
cross-sections into account. The fit parameter values are de-
termined by minimizing (in linear least-squares sense) the
difference between observation (lnI obs

i ) and WFM-DOAS
model (lnImod

i ), i.e. fit residuumRESi , for all spectral
pointsλi simultaneously. A derivative, or weighting func-
tion, with respect to a vertical column refers to the change
of the top-of-atmosphere radiance caused by a change (here:
scaling) of a pre-selected trace gas vertical profile. The
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WFM-DOAS reference spectra are the logarithm of the sun-
normalized radiance and its derivatives. They are computed
with a radiative transfer model (Buchwitz et al., 2000b) for
assumed (e.g. climatological) “mean” columnsV̄ . Multiple
scattering is fully taken into account. The least-squares prob-
lem (Eqs. 1 and 2) can also be expressed in the following
vector/matrix notation: Minimize‖y−A x‖

2 with respect
to x. The solution isx̂ = Cx AT y whereCx ≡ (AT A)−1 is
the covariance matrix of solution̂x. The errors of the re-
trieved columns are estimated as follows (Press et al., 1992):

σ
V̂j

=

√
(Cx)jj×

∑
i RES2

i /(m − n), where(Cx)jj is thej -
th diagonal element of the covariance matrix,m is the num-
ber of spectral points in the fitting window andn is the num-
ber of linear fit parameters (RESi is the spectral fit residuum,
see Eq. 1).

In order to avoid time consuming on-line radiative transfer
simulations, a look-up table approach has been implemented
(see Buchwitz and Burrows, 2004, for details). The WFM-
DOAS reference spectra (radiance and derivatives) have been
computed for cloud free conditions assuming a US Standard
Atmosphere, a tropospheric maritime and stratospheric back-
ground aerosol scenario and a surface albedo of 0.1. They
depend on solar zenith angle, surface elevation, and water
vapour column. For each trace gas including CO all refer-
ence spectra have been computed using a single profile (the
profile of the US Standard Atmosphere) in order to make
sure that any retrieved variability only results from the mea-
surement and not from a-priori information used in the re-
trieval process (this approach is also used for MOPITT V3
retrievals for the same reason (Deeter et al., 2003; Emmons et
al., 2004)). The only exception is water vapour. The look-up
table has been generated for different water vapour columns
(more precisely: for differently scaled US Standard Atmo-
sphere profiles) to better consider non-linearities introduced
by the high variability of water vapour in combination with
its strong absorption lines covering most of the NIR spectral
region.

An error analysis has been performed by applying WFM-
DOAS to simulated nadir spectra (Buchwitz and Burrows,
2004; Buchwitz et al., 2000a). The CO column retrieval ran-
dom error (precision) due to instrument noise is∼20% (1-
sigma) for the CO spectral fitting window used for this study
(solar zenith angle 50◦, albedo 0.1). The more systematic
errors introduced by, e.g. the currently implemented look-
up table scheme, are typically below 10% for all cases in-
vestigated, covering error sources such as the variability of
temperature and water vapour profiles, aerosols, sub-visual
cirrus clouds, and albedo effects (Buchwitz and Burrows,
2004).

It is important to point out that no a priori information is
used to constrain the retrieved columns. A priori information
on the atmosphere is only used to get a reasonable lineariza-
tion point for the unconstrained linear least-squares WFM-
DOAS fit.

5 Sensitivity to boundary layer CO

The advantage of the near-IR spectral region, in contrast to,
e.g. the thermal IR region, is that the radiation detected by
a nadir viewing satellite instrument is sensitive also to trace
gas concentration changes in the boundary layer. In order
to verify this and to characterize the altitude sensitivity of
SCIAMACHY WFM-DOAS retrievals, so called CO ver-
tical column averaging kernels (AK) have been computed.
As described in e.g.Rodgers and Connor(2003), averaging
kernels are defined asAK=

∂x̂
∂x

, i.e. characterize the sensi-
tivity of the retrieved statêx (here: the retrieved CO col-
umn) with respect to the true statex. The averaging ker-
nels for SCIAMACHY are shown in Fig.1. They have
been computed by applying WFM-DOAS to simulated nadir
spectra generated for an unperturbed profile as well as for
perturbed CO profiles. A perturbed CO profile has been
generated from the unperturbed profile by adding a certain
(constant) number of CO molecules at given altitude lev-
els. They have been computed numerically using the formula
AK(z)=(V rp

−V tu)/(V tp
−V tu), whereV tu is the true CO

column for the unperturbed (standard) CO profile, andV tp

andV rp are the true and retrieved CO columns of the per-
turbed CO profiles (having an enhanced CO concentration at
altitudez), respectively.

To illustrate the interpretation of the column averaging
kernels: A values of the averaging kernel of 1.1 at 1 km
(∼900 hPa) means that if, for example, 100 molecules (per
volume element) are added at 1 km to the standard profile,
110 additional molecules are retrieved, which is an overesti-
mation of 10% (not of the total column but) of the column
difference between the two profiles. This does not imply,
however, that there is an intrinsic overestimation of the re-
trieval. If the observed profile has lower values than the
standard profile (which defines the linearization point for
the retrieval) the retrieved column will be underestimated
(for example, ifV tp

−V tu equals−100 and AK is 1.1 than
V rp

−V tu is −110). An overestimation resulting from cer-
tain layers might be compensated by underestimations re-
sulting from other layers. The error introduced by “imper-
fect” averaging kernels, i.e. averaging kernels that deviate
from unity, is called “smoothing error” (see, e.g.Rodgers
and Connor(2003)).

In order not to introduce any errors when calculating the
averaging kernels, WFM-DOAS has also been applied to
spectra computed for the standard (i.e. unperturbed) model
atmosphere and it has been verified that the retrieved column
agrees (within better than 0.05%) with the true column of the
unperturbed model atmosphere, i.e.V tu.

Figure1 indicates that the altitude sensitivity of the SCIA-
MACHY nadir measurements for solar zenith angles less
than ∼70◦ is nearly equally high at all altitudes below
∼100 hPa (∼16 km), including the boundary layer.
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6 Retrieval results

WFM-DOAS has been applied to several days of SCIA-
MACHY data covering the time periode January 2003 to
October 2003. The days have been selected based on the
following criteria: (i) availability of nearly all 14 daily EN-
VISAT orbits as SCIAMACHY Level 1 consolidated orbit
product files (i.e. full operational products which cover entire
orbits and include all auxillary data) and (ii) good overlap of
ENVISAT with Terra orbits to enable an accurate compari-
son with MOPITT. The CO columns derived from MOPITT
have been extensively validated. For example,Emmons et
al. (2004) show that the agreement with independently mea-
sured columns is typically better than about 20%. In the fol-
lowing results for three days are discussed in detail, one at
the beginning of the analysed time periode (30 January), one
in the middle (27 May), and one at the end (27 October).

Our initial analysis revealed that the depth of the fitted CO
absorption lines as determined by WFM-DOAS is about a
factor of two deeper than expected resulting in systemati-
cally too high CO columns. This is most probably related
to the difficulty of accurately fitting the weak CO absorp-
tion lines. As will be shown, the fit residuals are dominated
by systematic spectral artifacts on the order of the weak CO
lines. The artifacts are most pronounced in spectral regions
of strong overlapping methane and water vapour absorption
bands. This indicates that they might result from uncertain-
ties related to the spectrometer slit function (more details are
given below) or spectroscopic line parameters used for the ra-
diative transfer simulations (i.e. HITRAN (Rothmann et al.,
2003)).

In order to roughly compensate for this, all WFM-DOAS
Version 0.4 CO columns presented in this paper have been
multiplied by a constant (scene independent) scaling factor of
0.5. This factor has been chosen to roughly scale the SCIA-
MACHY data to MOPITT. A single constant scaling factor
has been used rather than a single constant (additive) offset
because a scaling factor results in better agreement with MO-
PITT than an offset (for example an offset selected to match
the high columns (e.g.−2×1018molecules/cm2) would re-
sult in low column being close to zero or even negative).

To illustrate how the SCIAMACHY data compare with
MOPITT after the scaling factor has been applied to the
SCIAMACHY data Figures2–4 show a comparison between
the SCIAMACHY (WFM-DOAS Version 0.4) and the MO-
PITT (Version 3) CO columns for three days.

As can be concluded from Figs.2–4, the scaling factor re-
moves a large bias (without scaling factor the SCIAMACHY
columns would be a factor of two larger) but cannot account
for all differences with respect to MOPITT. On the other
hand, perfect agreement cannot be expected as the sensors
do not observe the same ground pixels (the horizontal res-
olution of the SCIAMACHY CO measurements is typically
30×120 km2, the MOPITT resolution is 22×22 km2) at iden-
tical times (the local time of the equator overpass on the

Fig. 2. Comparison of CO columns retrieved from SCIAMACHY
(black) by WFM-DOAS Version 0.4 and MOPITT (red) using Ver-
sion 3. Compared are the daily data products of both sensors for 30
January 2003, for three conditions: top: all co-located data points
(i.e. including cloud contaminated SCIAMACHY pixels), middle:
only data over land, bottom: only cloud free data over land. The
dots correspond to the individual data points and the horizontal lines
indicate their average values within 10 degree latitude bands (the
vertical lines denote their standard deviation). To eliminate differ-
ences resulting from the different spatial sampling of both sensors
the data have been mapped onto a common latitude/longitude grid
and only values for those grid boxes are shown which contain data
of both sensors. SCIAMACHY pixels with a CO fiterror larger than
60% have been excluded from the comparison.

dayside is 10:00 a.m. for SCIAMACHY and 10:30 a.m. for
MOPITT) and because of the differences with respect to the
altitude sensitivity.

www.atmos-chem-phys.org/acp/4/1945/ Atmos. Chem. Phys., 4, 1945–1960, 2004
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Fig. 3. As Figure2 but for 27 May 2003.

Despite the differences between the SCIAMACHY and
the MOPITT data Figs.2–4 suggest a significant correlation
between the two data sets (this will be quantified in Sect.6.3).
The magnitude and the sign of the difference between the
latitudinal averages computed for both sensors (horizontal
lines) differs from latitude band to latitude band but agree-
ment is typically within 30%. For certain latitude bands,
most notably over the southern hemisphere outside Antarc-
tica (where SCIAMACHY tends to systematically overesti-
mate MOPITT), the differences might be larger than 50%.
The data shown in Figs.2–4 will be discussed in more detail
in the following sections.

Fig. 4. As Figure2 but for 27 October 2003.

6.1 Spectral WFM-DOAS fits

A typical WFM-DOAS CO fit is shown in Fig.5. In addition
to CO, methane and water vapour spectral absorption fea-
tures (i.e. radiance derivatives or weighting functions) have
been included in the fit. As can be seen, the methane and wa-
ter absorption features are much stronger than the weak CO
absorption lines, which modulate the upwelling radiance by
only a few percent in certain spectral intervals. The top panel
shows the measured (square symbols) and modelled (solid
line) sun-normalized radiances. The CO absorption lines are
difficult to identify in the top panel because they are weak
compared to the overlapping methane and water vapour ab-
sorption structures. The spectral positions and the strength of

Atmos. Chem. Phys., 4, 1945–1960, 2004 www.atmos-chem-phys.org/acp/4/1945/
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Orbit 4714 / 24-Jan-2003 / Px:583/Lat:28.91/Lon:3.66
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Fig. 5. Typical WFM-DOAS CO fit for a cloud free scene over
North Africa (Sahara) measured on 24 January 2003. The retrieved
CO column is 2.19×1018molecules/cm2±30%. The root mean
square relative difference between measurement (square symbols
in top panel) and WFM-DOAS model (solid line in top panel) is
0.028.

the fitted CO lines are shown separately in the second panel
(solid line) along with the “CO fit residuum” (symbols). The
CO fit residuum is the sum of the (overall) residuum, which
is the difference between the WFM-DOAS model and the
measurement after the fit, and the fitted CO absorption struc-
tures (i.e. the term in Eq. (2) with the derivative with respect
to CO). As already explained, a temperature shift parameter
and a low order polynomial (not shown) are also included in
the WFM-DOAS fit.

Figure6 shows WFM-DOAS fit results for the eight con-
secutive nadir measurements of one east to west scan. As
can be seen (most clearly in the middle panel), the fit resid-
uals for the different ground pixels are nearly identical. This
means that the fit residuals are currently not signal-to-noise
limited but dominated by systematic spectral artifacts on the
order of the weak CO absorption lines. Further investiga-
tion is needed in order to find out what the reason for these
artifacts is (e.g. by analysing time series). They are clearly
related to the strong methane and water vapour absorption

Fig. 6. Similar WFM-DOAS fit results as shown in Fig.5 but for
the eight consecutive ground pixels of one east to west scan. The
top panel shows (individual and average) fitted CO absorption lines
and the CO fit residuals, defined as the fitted CO absorption plus fit
residuum which is the difference between measurement and model
after the fit. The eight fit residuals are shown in the middle panel.
The bottom panel shows the retrieved CO columns including error
bars.

features (see Fig.5) and, therefore, might be caused by inac-
curate knowledge of the instrument slit function and/or un-
certainties of the spectroscopic line parameters (Rothmann
et al., 2003). The error bars of the retrieved CO columns of
approximately±30% for single measurements as shown in
the bottom panel of Fig.6 have been calculated as described
in Sect. 4, i.e. they are proportional to the root-sum-square
of the spectral fit residuum and, therefore, not only reflect
noise but also systematic components. In this sense they are
a rather conservative estimate of the CO column retrieval pre-
cision.

Initial information on the SCIAMACHY slit function has
been derived from various studies performed during the
on ground calibration of SCIAMACHY. As each absorp-
tion line is only sampled by a small number of detec-
tor pixels (typically two per full width of half maximum
(FWHM)) it is not trivial to accurately determine the slit
function (i.e. its type and corresponding parameters). Be-
cause of this, the recommendations given by the different
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SCIAMACHY/PMD1 2003−10−27

Fig. 7. SCIAMACHY Polarization Measurement Device (PMD)
number 1 (320–380 nm) nadir reflectivity for 27 October 2003
(color code: white=high signal (mainly clouds but also ice and snow
covered surfaces), blue=low signal (cloudfree)). For this day only 9
of the 14 daily orbits were available. Each nearly rectangular block
of measurements corresponds to one nadir state which is a sequence
of individual nadir measurements with identical instrument param-
eters (e.g. horizontal resolution). Each nadir state lasts about one
minute. The gaps in between the nadir nadir states are due to the
limb measurements.

studies were not necessarily identical. Furthermore, anal-
ysis of the SCIAMACHY in-flight data by SRON (Hans
Schrijver, personal communication) indicates that the slit
function in channel 8 is different from the one measured
pre-flight (most probably due to the ice issue mentioned in
Sect. 2). Therefore, various slit functions have been in-
vestigated using WFM-DOAS retrievals. The slit function
that has been used for this study is the one that resulted in
best fits, i.e. smallest fit residuals. The one finally selected
is: f (λ−λ◦)=(1+ (2(λ−λ◦)/FWHM)EXP )−1, with pa-
rametersFWHM=0.24 nm andEXP=2.7. When using this
function for the convolution of the high resolution reference
spectra, it is numerically integrated and normalized to an area
equal to 1.

6.2 Cloud identification

An error is introduced for the retrieved columns if WFM-
DOAS is applied to cloud contaminated pixels as the WFM-
DOAS algorithm as described in Sect. 4 is strictly speaking
only appropriate for cloud free scenes. A cloud mask is gen-
erated to flag the cloud contaminated pixels.

Currently, this cloud mask is generated using the sub-pixel
information provided by SCIAMACHY’s Polarisation Mea-
surement Device (PMD) number 1 covering approximately
the spectral region 320–380 nm (Bovensmann et al., 1999).
A simple single threshold algorithm is used. The algorithm
works as follows: First, each interpolated PMD 1 readout as

Fig. 8. MODIS/Terra daily reflectance data product for 27 October
2003, with daily active fire detection data product overlayed (red
dots) (Source:http://landqa2.nascom.nasa.gov/).

contained in the Level 1 file (32 values per one second in-
tegration time) that corresponds to a given (main channel)
ground pixel is divided by the cosine of the solar zenith an-
gle to obtain a quantity approximately proportional to top-of-
atmosphere reflectivity. If this “PMD 1 reflectivity” is higher
than a pre-defined threshold the corresponding sub-pixel is
assumed to be cloud contaminated. A (main channel) ground
pixel is flagged cloud contaminated if one or more of its PMD
sub-pixels is cloud contaminated.

PMD 1 has been selected for the cloud mask generation
because the scattered and reflected solar ultra violet (UV) ra-
diation detected by SCIAMACHY’s nadir mode penetrates
deep into the atmosphere but the fraction that is reflected at
the Earth surface (i.e. the sensitivity to the Earth surface) is
significantly lower than for the other PMD channels cover-
ing parts of the visible and NIR spectral regions (because
scattering in the atmosphere decreases with increasing wave-
length resulting in relatively more photons being reflected at
the Earth surface). This effect can be visualized by com-
paring global maps showing the signal of the various PMDs.
For example, a land to sea contrast is (nearly) not visible for
PMD 1 but clearly visible for the other PMDs (not shown
here).

The optimum threshold has been determined empirically
by visual inspection of global maps of PMD 1 reflectiv-
ities with overlayed cloud masks generated using various
thresholds. Fine tuning of the threshold has been performed
by analysing the retrieved columns of the well-mixed gases
methane and carbon dioxide (Buchwitz et al., 2004). Cur-
rently the same threshold, i.e., cloud mask, is used for all
trace gas retrievals, i.e. for CO and for the well-mixed gases.
Because of the low variability of the (mixing ratios of the)
well-mixed gases the accuracy and precision requirements
for these gases are much higher than for CO. Therefore, a
very strict cloud identification is needed for methane and car-
bon dioxide to avoid even small cloud contamination. For
CO it should be possible to relax this requirement and to se-
lect a threshold optimized for CO in order to increase the
number of useful (i.e. “sufficiently” cloud free) pixels. This
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however requires further study. In this study we show the
results for the two extreme cases, namely “all data” and
“strictly cloud free data”.

As an example, Fig.7 shows a PMD 1 map for 27 Oc-
tober 2003. For comparison, the MODIS/Terra reflectance
data product for the same day is shown in Fig.8 which shows
cloud structures at much higher spatial resolution. The agree-
ment between both data sets is good. They show, for exam-
ple, extended regions with nearly no clouds over northern
Africa and central and southern Asia and large cloud cover-
age over Europe, northern Asia and along the east coast of
North America.

Enhanced UV backscatter results from clouds but might
also result from high aerosol load, e.g. heavy smoke result-
ing from strong biomass burning events. Also highly reflect-
ing surfaces result in higher than average UV backscatter.
Therefore, pixels over ice or snow covered surfaces might
be wrongly classified as cloud contaminated. We aim at im-
proving this in the near future, e.g. by using a combination
of the various PMDs including the PMDs that cover the NIR
region.

6.3 Global CO column retrieval results

In the following results for three days will be presented. We
start with 27 October 2003. As already shown in Fig.7 for
this day only 9 of the 14 daily orbits of ENVISAT were avail-
able for this study with nearly no coverage of America and
no coverage of Australia. For this day we focus on eastern
Africa where a large plume of CO due to biomass burning has
been detected by SCIAMACHY. For the two other days (30
January and 27 May 2003) better coverage has been achieved
including North and South America and Australia (only for
27 May 2003). For these two days we focus on a discussion
of the global results.

Figure8 shows the positions of heavy fires (red dots) on
27 October 2003, for nearly the entire Earth. An extended
region of fires due to biomass burning is indicated near the
east coast of southern Africa around Mozambique. Biomass
burning typically results in enhanced concentrations of CO.
Figure 9 shows the MOPITT CO (Version 3) column data
product for the same day. The MOPITT data product con-
tains only measurements for those pixels that have been clas-
sified cloud free by the MOPITT cloud detection algorithm
(Deeter et al., 2003; Emmons et al., 2004). MOPITT shows
an extended region of enhanced CO in the Mozambique area
where the fires are. Figure10shows the same MOPITT data
as in Figure9 but focussing on the Mozambique area.

Figures11and12show the same region displaying the CO
columns as retrieved from SCIAMACHY by WFM-DOAS.
Figure11 shows the retrieved columns for all pixels. Fig-
ure12shows the same data but here cloud contaminated pix-
els, as determined by the SCIAMACHY PMD threshold al-
gorithm, are plotted in grey.

Fig. 9. CO columns as measured by MOPITT on 27 October 2003
(Source: http://www.eos.ucar.edu/mopitt/data/plots/mapsv3.html).
The MOPITT Version 3 daily data product shown here includes
measurements from the dayside (orbital track from “top right to
bottom left”) and from the nightside (orbital track from “bottom
right to top left”). Measurements from cloud contaminated pixels
as identified with the MOPITT cloud detection algorithm are not
included in the Version 3 data product.

As can be seen, the CO columns as retrieved from MO-
PITT and SCIAMACHY agree reasonably well. For ex-
ample, both sensors show the large plume of enhanced CO
concentrations in the area of Mozambique with CO columns
being approximately 50% higher (shown in red) than local
background concentrations (green). Both sensors also show
relatively low columns (blue) north of this region around
Ethiopia where the columns are approximately 30% lower
than the background concentrations.

However, there are also differences. To a certain extent,
differences are to be expected for reasons already mentioned
(e.g. differences in ground pixel size, overpass time, and
altitude sensitivity). When comparing Fig.10 with Fig. 11
one sees that the plume as observed by MOPITT is larger
than the plume detected by SCIAMACHY. This is partially
because the area observed by MOPITT is larger (because of
the gaps of the SCIAMACHY measurements and because
the MOPITT nightside measurements are included in Fig.10
whereas SCIAMACHY only measures on the dayside) but
also because of clouds. This can be concluded from the com-
parison of Figs.11 and12. One can see from Fig.12 that
there are a number of cloud contaminated pixels in the area
of the CO plume. This is consistent with the white and grey
areas shown in Fig.13 which is a zoom into Fig.8. The
comparison of Figs.11and12shows that the columns of the
cloud contaminated pixels in the area of the plume are typ-
ically lower (green) than the columns of the cloud free pix-
els (red). This is as expected for cloudy pixels as for these
pixels only the column above the clouds is visible for SCIA-
MACHY.
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Fig. 10. The same MOPITT data as shown in Fig.9 but mapped
on a 0.5◦×0.5◦ latitude/longitude grid. Shown is a region in Africa
where a large plume of CO due to biomass burning has been de-
tected by MOPITT near Mozambique. Shown is the latitude range
−30◦ to +30◦ and the longitude range +20◦ to +50◦.
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Fig. 11. The same CO plume as shown in Fig.10 as seen by
SCIAMACHY/WFM-DOAS.
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Fig. 12. As Fig. 11 but with cloud contaminated pixels shown in
grey.

Fig. 13. Zoom into Figure8, i.e. MODIS image from 27 October
2003, with fires shown as red dots, but restricted to the region also
shown in Figs.10–12. The image is not at full MODIS resolution.

Apart from the area around Mozambique Fig.8 indicates
a number of other locations where heavy fires are, for exam-
ple in southern California, where extended regions have been
burning in the time periode end of October to beginning of
November 2003. As can be seen from Fig.7 no consolidated
orbits covering California were available for this study for 27
October 2003. Enhanced CO concentration (of up to about
100% higher columns compared to the local background)
due to these fires, however, are visible in the SCIAMACHY
measurements from 26 October and 29 October 2003 (not
shown here). Similar results have also been found by another
group (at SRON, The Netherland) using an independently de-
veloped scientific retrieval algorithm (H. Schrijver, personal
communication; see alsoGloudemans et al.(2004)).

In the following results from two other days of SCIA-
MACHY data are compared with MOPITT, namely 30 Jan-
uary 2003 and 27 May 2003. In order to facilitate a quan-
titative comparison with MOPITT, all data available for a
given day have been mapped onto a common 0.5◦ by 0.5◦

latitude/longitude grid.
Figure14shows the MOPITT V3 column data product for

30 January 2003. Figure15 shows the SCIAMACHY CO
columns for the same day (10 of the 14 daily orbits were
available for this day). Shown are “all” pixels, i.e. also pixels
which are cloud contaminated. It can be seen that especially
over the oceans many data are missing. This is related to
the low signals and corresponding low signal-to-noise ratios
for measurements over the ocean caused by the low ocean
reflectivity outside sun-glint conditions: (i) only those mea-
surements have been included in Fig.15 where a relatively
good WFM-DOAS fit has been achieved (criterion: CO col-
umn fit error less than 60%; especially over water the fit error
can be larger than 60% due to low signal-to-noise ratios) and
(ii) because some spectra contain unphysical (negative) ra-
diances for certain detector pixels and these spectra are not
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Fig. 14.CO columns as measured by MOPITT on 30 January 2003.
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Fig. 15. CO columns as measured by SCIAMACHY/WFM-DOAS
on 30 January 2003. Shown are all pixels where the CO fit error
is less than 60%. For this day only 10 of the 14 daily orbits were
available.
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Fig. 16. As Fig.15but only for strictly cloud free pixels.

Fig. 17. Correlation between SCIAMACHY and MOPITT CO
columns for 30 January 2003.

Fig. 18. As Fig.17but restricted to pixels over land.

Fig. 19. As Fig.17but restricted to cloud free pixels over land.
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Fig. 20. CO columns as measured by MOPITT on 27 May 2003.
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Fig. 21. CO columns as measured by SCIAMACHY/WFM-DOAS
on 27 May 2003. Shown are all pixels where the CO fit error is less
than 60%. For this day only 13 of the 14 daily orbits were available.
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Fig. 22. As Fig.21but only for strictly cloud free pixels.

Fig. 23. Correlation between SCIAMACHY and MOPITT CO
columns for 27 May 2003.

Fig. 24. As Fig.23but restricted to pixels over land.

Fig. 25. As Fig.23but restricted to cloud free pixels over land.
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processed by WFM-DOAS (an average dark signal which is
dominate by thermal emission of the instrument is subtracted
from the uncalibrated total signal; especially over water the
dark signal is on the order of the total signal and might ex-
ceed it under certain conditions for certain detector pixels).

Figure16 shows the same data as Fig.15 but restricted to
cloud free SCIAMACHY pixels. As can be seen when com-
paring Fig.16 with Fig. 14 the fraction of the Earth covered
by cloud free MOPITT pixels (as determined by the MO-
PITT cloud detection algorithm) is significantly higher for
the daily data than for SCIAMACHY (as determined by the
SCIAMACHY cloud detection algorithm). There are a num-
ber of reasons for this: (i) Not all daily SCIAMACHY or-
bits were available, (ii) only those SCIAMACHY data are
shown where a good fit has been achieved, (iii) MOPITT
also measures during the night, (iv) the ground pixels size
of the MOPITT measurements is significantly smaller which
increases the number of cloud free pixels, (v) SCIAMACHY
uses only half of the time on the dayside for nadir observa-
tions (because of the limb measurements) and (vi) (as already
explained) the currently used SCIAMACHY cloud detection
algorithm is very conservative (probably too conservative for
CO) and cannot discriminate between clouds and highly re-
flecting surfaces such as ice and snow.

The MOPITT and the SCIAMACHY data show similari-
ties but also differences. For example, MOPITT shows high
CO mainly in mid Africa in a belt north of the equator and
a slightly lower but still elevated CO patch in Texas near
the Gulf of Mexico. SCIAMACHY (Fig.16) also shows
enhanced CO columns in mid Africa similar as MOPITT.
The enhanced values as seen by MOPITT over Texas are not
visible in the SCIAMACHY data, except for a few pixels
close to the Gulf of Mexico, because of insufficient overlap
of the SCIAMACHY measurements with the CO plume de-
tected by MOPITT. Along the west coast of South Amercia
both sensors measure similar columns but over Argentina the
SCIAMACHY CO columns are in certain regions more than
50% higher than the columns measured by MOPITT.

The columns shown in Figs.14–16are displayed in Fig.2
as a function of latitude. Figure2 shows that in the northern
hemisphere the SCIAMACHY and the MOPITT data are on
average in good agreement (within about 20%) but that in the
southern hemisphere the SCIAMACHY columns are on av-
erage significantly higher than measured by MOPITT. There
is one exception, namely the measurements over Antarctica,
where the agreement with MOPITT is good. Note that the
measurements over Antarctica are classified as cloud con-
taminated by the SCIAMACHY PMD1 cloud detection al-
gorithm (therefore these measurements do not show up in the
bottom panel of Fig.2 and in Fig.16). This is most probably
not correct for many of the pixels and is due to the simple
cloud detection algorithm which cannot distinguish between
clouds and highly reflecting surfaces covered by ice or snow.

The correlation between the 30 January data of both sen-
sors are shown in Fig.17 for all common data points, in

Fig. 18 only for the data over land, and in Fig.19 for the
cloud free measurements over land. The quantitive results
obtained from this comparison (correlation coefficient, stan-
dard deviation of the difference, etc.) are given in the an-
notation of each Figure but also in Table1 which includes
the results for the other days. Pearsons linear correlation
coefficient r is 0.44 for “all” data, 0.67 for the data over
land, and 0.41 for the cloud free data over land. The cor-
relation between the cloud free data over land is less than
the correlation for all land data which is somewhat unex-
pected and not observed for the other two days investigated
(see Table1). Figures17–19 suggest that SCIAMACHY
typically overestimates the low columns (which are mainly
over the southern hemisphere) and underestimates the high
columns. The standard deviation of the difference with re-
spect to MOPITT is 0.6×1018 molecules/cm2 for the cloud
free measurements over land. For “all” pixels the standard
deviation of the difference is 0.8×1018 molecules/cm2. This
improves to 0.5×1018 molecules/cm2 if the comparison is re-
stricted to land. A better quality of the SCIAMACHY mea-
surements over land is expected due to higher signal-to-noise
ratios compared to measurements over the ocean where re-
flectivity is low outside sun-glint conditions.

Figure 20 (MOPITT, 27 May 2003) shows widespread
elevated CO in the boreal regions and relatively low val-
ues in the Sahara. The SCIAMACHY data for the same
day are shown in Figs.21 (all data) and22 (cloud free
data). Figure22 shows similar values as MOPITT in the
western and eastern Sahara (∼2.0×1018 molecules/cm2) but
somewhat higher values in the central Sahara (∼2.6×1018

molecules/cm2). SCIAMACHY sees enhanced CO over
southern Finland also seen by MOPITT (the MOPITT
columns are somewhat lower). The enhanced CO plumes in
the boreal region seen by MOPITT, e.g. the plume in western
Russia, are not visible in the SCIAMACHY data.

The correlation between the 27 May 2003, data of both
sensors are shown in Fig.23 for all common data points, in
Fig. 24 for the data over land only, and in Fig.25 for the
cloud free measurements over land. The linear correlation
coefficientr is 0.25 for all data, 0.40 for the data over land,
and 0.64 for the cloud free data over land. The standard devi-
ation of the difference with respect to MOPITT is 0.4×1018

molecules/cm2 for the cloud free measurements over land.
Table1 summarizes the quantitative results from the com-

parison of the three days of SCIAMACHY and MOPITT
data. The correlation between MOPITT and SCIAMACHY
CO columns for cloud free pixels over land is typically in the
ranger=0.4–0.7. The standard deviation of the difference
is in the range 0.4–0.6×1018 molecules/cm2 (corresponding
to about 20–50%). Table1 shows that for all three days the
agreement with MOPITT (as quantified by a higher correla-
tion coefficient and a smaller standard deviation of the differ-
ence) improves if the comparison is limited to measurements
over land. This is in line with signal-to-noise considerations:
over ocean the reflectivity is typically very low resulting in
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Table 1. Overview about the quantitative results from the comparison of the SCIAMACHY and MOPITT CO columns for the three days
discussed in this paper. “Number of pixel” is the number of (0.5◦

×0.5◦ latitude/longitude) gridboxes with coincident SCIAMACHY and
MOPITT measurements (for the three different selection criteria listed in column “Pixel type”). The percentage values given in brackets
denote the fraction of pixels used (100% refers to the total number of gridboxes covered by SCIAMACHY data). The mean difference is
defined as SCIAMACHY minus MOPITT, i.e., positive values indicate overestimation of SCIAMACHY relative to MOPITT.

Day Number Pixel type Number Pearsonsr Mean difference Mean difference Std. deviation (1σ )
of orbits of pixels [-] [%] [1018molec./cm2] [1018molec./cm2]

20030130 10 All 9023 (22.6%) 0.44 +25.4 +0.3 0.8
Land 5516 (13.8%) 0.67 +13.5 +0.1 0.5
Land+cloudfree 1609 (4.0%) 0.41 +10.3 +0.1 0.6

20030527 13 All 11878 (23.7%) 0.25 +4.4 0.0 0.7
Land 6580 (13.0%) 0.40 +3.5 0.0 0.6
Land+cloudfree 3265 (6.5%) 0.64 +0.1 +0.1 0.4

20031027 9 All 6643 (19.7%) 0.33 +4.4 0.0 0.6
Land 3713 (11.0%) 0.50 −4.2 −0.1 0.5
Land+cloudfree 1610 (4.8%) 0.59 +7.8 +0.1 0.4

low signal and signal-to-noise ratios. The mean difference
between the two data sets is also given in Table1 (although
the SCIAMACHY columns are scaled to MOPITT) to given
an indication for the variability of the difference as a func-
tion of time. The mean difference for the cloud free mea-
surements over land is, for example, significantly different
for each of the three days but less than 11% for all cases.

7 Initial comparisons with ground based measurements

The systematic validation of the WFM-DOAS Version 0.4
data products by ground based measurements has recently
started. First comparisons have been performed with Fourier
Transform InfraRed (FTIR) measurements (Warneke et al.,
2004; de Maziere et al., 2004; Sussmann and Buchwitz,
20041). The initial findings, which are shortly summarized
in this section, are roughly consistent with what is reported
in this study based on the comparison with MOPITT.

Warneke et al. (2004)2 show a comparison of the SCIA-
MACHY CO measurements over Africa and over the At-
lantic ocean near Africa with ship-borne solar occultation
FTIR CO column measurements obtained during a cruise of
the German research vessel Polarstern in January/February
2003. Both data sets show agreement within typically 30%.
Enhanced CO concentrations resulting from biomass burning

1Sussmann, R. and Buchwitz, M.: Validation of EN-
VISAT/SCIAMACHY columnar CO by FTIR profile retrievals at
the ground truthing station Zugspitze, Atmos. Chem. Phys. Dis-
cus., submitted, 2004.

2Warneke, T., de Beek, R., Buchwitz, M., Notholt, J., Schulz,
A., Velazco, V., and Schrems, O.: Shipborne solar absorption mea-
surements of CO2, CH4, N2O, and CO and comparison the SCIA-
MACHY WFM-DOAS retrievals, Atmos. Chem. Phys. Discuss.,
submitted, 2004.

in mid Africa, as detected by SCIAMACHY, are also visible
in the FTIR data.

de Maziere et al.(2004) present preliminary results from
a comparision with the ground based network of FTIR spec-
trometers (all available orbits from 33 days have been com-
pared with 12 stations). In that study agreement within
typically 40% has been reported with SCIAMACHY typi-
cally overestimating the ground based measurements. Larger
differences have been found at mainly two station, namely
Lauder (probably due to a number of SCIAMACHY mea-
surements over the sea which are less reliable due to low
ocean reflectivity) and Wollongong (probably related to the
large natural variability observed by this station).de Maziere
et al. (2004) also compare SCIAMACHY CO columns re-
trieved by other groups using algorithms different from
WFM-DOAS (see, e.g.Gloudemans et al.(2004)) with the
ground based measurements. The results obtained from the
different groups are similar but not identical. At present it
is difficult to draw firm conclusions with respect to the qual-
ity of the CO columns retrieved from SCIAMACHY using
different approaches. This requires more data to be inter-
compared and a detailed characterization and error analysis
of the different algorithms.

Sussmann and Buchwitz (2004)1 aimed at finding out
to what extent atmospheric variability has been retrieved
with WFM-DOAS V0.4. They compared 33 days of
SCIAMACHY CO data (January–October 2003) with FTIR
measurements at the Permanent Ground Truthing Station
Zugspitze in southern Germany and found that it is possi-
ble (even with the limited amount of data available for that
study) to retrieve statistically significant information on the
CO annual cycle (amplitude∼10%).
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8 Conclusions

Global CO columns have been retrieved from SCIAMACHY
nadir spectra using the WFM-DOAS retrieval algorithm. To
accomplish this, the calibration of the SCIAMACHY oper-
ational Level 1 data products (nadir spectra) had to be im-
proved mainly with respect to a better dark signal correction.

The SCIAMACHY CO columns show reasonable agree-
ment with the CO column data product (V3) of the MO-
PITT instrument onboard EOS Terra. Elevated atmospheric
CO concentrations due to, e.g. biomass burning events,
which are observed by MOPITT, are also detectable with
SCIAMACHY. The standard deviation of the difference
with respect to MOPITT is in the range 0.4–0.6×1018

molecules/cm2 and the linear correlation coefficient is be-
tween 0.4 and 0.7. The differences of the columns measured
by both sensors depend on time and location. They are typ-
ically less than about 30% for most latitudes but might ex-
ceed 50% especially over the southern hemisphere outside
Antarctica, where SCIAMACHY tends to give systemati-
cally higher values than MOPITT.

Validation with correlative ground based measurements
has recently started. The initial results from intercompar-
isons with ground based Fourier Transform InfraRed (FTIR)
measurements are consistent with the results of this study.

Despite the encouraging initial results obtained with
WFM-DOAS Version 0.4 further investigations and improve-
ments are needed, e.g. to clarify the meaning of the currently
used scaling factor for the CO columns. This includes to de-
termine if and how this scaling factor is influenced by SCIA-
MACHYs relatively high sensitivity to the lower troposphere
and boundary layer CO and/or by the currently not perfect
spectral fitting. The cloud detection algorithm also needs
improvement. Currenly a rather simple and most probably
too conservative scheme is used which is not appropriate for
all conditions, e.g. for pixels over ice and snow covered sur-
faces. In order to improve WFM-DOAS more data need to be
processed and carefully analysed using independent satellite
data (e.g. MOPITT) and ground based measurements (e.g.
FTIR).

The SCIAMACHY WFM-DOAS Version 0.4 CO column
data products presented and discussed in this paper are avail-
able fromhttp://www.iup.physik.uni-bremen.de/sciamachy/
NIR NADIR WFM DOAS/.
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