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Abstract. From high latitude lidar observations, quite pre-
cise information is extracted about the temporal evolution
and vertical distribution of volcanic aerosol in the high lat-
itude lower stratosphere following the eruption of Mount
Pinatubo. Irreversible mixing of lower stratospheric aerosol,
to the arctic pole during early 1992, is demonstrated, as a
function of potential temperature and time. This work com-
plements previous studies, which either identify vortex intru-
sions – without demonstrating irreversible transport, or use
lower resolution satellite observations. The observed trans-
port is associated tentatively with the vortex disturbance dur-
ing late January, 1992. A very large number of high res-
olution lidar observations of Mount Pinatubo aerosol are
analysed, without any data averaging. Averaging in mea-
surement or analysis can cause tracer mixing to be over-
estimated. Averaging in the analysis can also require as-
sumptions about which quantity has the dominant error (in
this case, the equivalent latitude coordinate or the measure-
ment), and which part of the data contains real structure. The
method below attempts to avoid such assumptions.

1 Introduction

The environmental effects of anthropogenic emissions into
the atmosphere are strongly dependent on the transport of
photochemical constituents. For example, a crucial fac-
tor controlling the depletion of stratospheric ozone is the
strength of the winter polar vortex (e.g. Chipperfield and
Jones, 1999; Millard et al., 2002). Constituents act as dye-
like tracers of transport. Tracer transport timescales vary
greatly, eg. with rapid transport parallel to the vortex but very
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slow transport across it. The strength of the vortex as a trans-
port barrier varies with altitude (McIntyre, 1995), although
details of this variation are difficult to ascertain. The vortex
distorts continuously, exhibiting very fine scale features (e.g.
Plumb et al., 1994) and so its position and size cannot be pre-
cisely known. Also, at lower altitudes the vortex is weaker
and more difficult to identify. Ground-based or in-situ tracer
observations tend to be sporadic and inhomogeneous, while
satellite data averages over much larger atmospheric vol-
umes. Measuring significant tracer transport, by comparing
sets of measurements with themselves and with model re-
sults, then, is not straightforward. Convincing identifications
have been made of vortex intrusions occurring in the real at-
mosphere (particularly Plumb et al. (1994) and Manney et al.
(1998) who find agreement between high resolution model
and observational data), although these studies cannot show
the intrusions actually mixing down irreversibly into the vor-
tex centre. Plumb et al. (2000) presented tracer-tracer corre-
lation plots from satellite data, which indicate gradual mixing
of air into the 1992/93 Arctic vortex. Lee et al. (2001) use
satellite observations, at 480K, of a dehydrated 1992 Antarc-
tic vortex, maintained even after temperatures rose above the
frost point. Their data appears to show some mixing into the
vortex by November, prior to the vortex breakup. The results
below complement these satellite data studies, by analysing,
without averaging, a large number of high resolution aerosol
lidar observations of the early 1992 mid- and high northern
latitude stratosphere. Averaging in measurement or analysis
can cause tracer mixing to be overestimated. Averaging in
the analysis can also require assumptions about which quan-
tity has the dominant error, and which part of the data con-
tains real structure.
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The June 1991 eruption of Mount Pinatubo provided a use-
ful opportunity to study the arctic polar vortex transport bar-
rier. Russell et al. (1996) summarize the observations of the
resulting stratospheric aerosol. A tropical cloud of liquid bi-
nary H2SO4/H2O was formed (McCormick and Veiga, 1992;
Deshler et al., 1992) over a timescale of about one month
(Bluth et al., 1992; Read et al., 1993), which then spread
to midlatitudes (McCormick and Veiga, 1992; Trepte et al.,
1993). In northern midlatitudes, the aerosol loading peaked
around December 1991 and then decayed slowly – with a
timescale of about 300 days (Grant et al., 1996; Langford
et al., 1995). Thus, by early 1992, the northern midlatitude
stratosphere contained a relatively stable reservoir of aerosol.
The timing of the eruption meant that northern high lati-
tudes remained relatively free of volcanic aerosol throughout
the winter 1991–92 (Neuber et al., 1994). The vortex was,
however, rather disturbed during January 1992 (Plumb et al.,
1994). Plumb et al. (1994) identified, in both observed data
and model results, a filamentary vortex intrusion that may
have caused transport of midlatitude air into the vortex. The
aim of the analysis below is to try and identify irreversible
aerosol transport into the 1991–92 northern vortex, by re-
examining the available lidar data.

The analysis uses a diagnosed equivalent latitude co-
ordinate. Meridional coordinates based on the area en-
closed by contours of potential vorticity (PV) or other tracers
have been used (e.g. Butchart and Remsberg, 1986; Naka-
mura, 1996), since the area enclosed by a tracer contour
evolves much more slowly than reversible deformations in
its shape. Butchart and Remsberg (1986) defined the “equiv-
alent latitude” for PV, but it is expressed more generally as
φe = sin−1(1 − 2A(χ)), whereA(χ) is the area en-
closed by a tracer contour of valueχ , on a normalised sphere.
Nakamura (1996) showed that two dimensional transport can
be written in a contour area coordinate as a diffusion. Long
lived tracers tend to show relatively tight correlations, due
to the rapid local mixing processes (Plumb and Ko, 1992),
so it is reasonable to use equivalent latitude calculated from
a single long lived tracer as an approximate meridional co-
ordinate. In the text below, the “error” in diagnosed equiv-
alent latitude (φe) is referred to. By “error”, we mean the
degree to which the contours ofφe misalign with the con-
tours of the observed tracer (or more precisely, the tracer that
would be observed in the absence of any measurement error).
The quality of this equivalent latitude coordinate is assessed,
against vortex edge observations, in Good and Pyle (2004).

From the aerosol lidar data described below, an approxi-
mately conserved tracer mixing ratio (νR) may be inferred.
The target of this study is to estimate the quasi-vertical pro-
file of the quantityν(h)

R . ν
(h)
R is defined as a function of poten-

tial temperature (θ ), and is the true value ofνR at the highest
equivalent latitudes. By “true”, we mean in the absence of
any errors. The “highest equivalent latitudes” are deep within
the vortex (where it is present), and will tend to occur at high

geographic latitude although not in general directly over the
pole. The “highest equivalent latitudes” might be defined as
the air on an isentropic surface which is most strongly iso-
lated fluid dynamically from the mid-latitudes. This profile
is not physically vertical, since the location of the highest
equivalent latitude varies with potential temperature, espe-
cially in the northern hemisphere where the polar vortex is
strongly disturbed. An increase over time inν

(h)
R on a givenθ

surface must indicate irreversible transport of aerosol into the
vortex on thatθ surface, or descent from above. In estimating
ν

(h)
R , only weak assumptions are made about the errors inφe.

This is enabled by the large number of observations taken at
high latitude.

2 Measurements and Model

2.1 Observed data

This analysis uses ground-based 532 nm aerosol lidar obser-
vations taken at six sites at mid- and high northern latitudes
during the EASOE campaign of winter 1991–92. The mea-
surements are available on the EASOE CD-ROM. See Ta-
ble 1 for locations and references describing the measure-
ment data. The vertical resolution is mostly of 200 m or less,
or about 4K in the lower stratosphere. This is equivalent
(Haynes and Anglade, 1997) to about 50km in the horizontal.

From the aerosol backscatter ratio (R), the best estimate of
a conserved tracer mixing ratio (νR, or “lidar tracer”) is (see
Bohren and Huffman (1981) and the references in Table 1):

νR = R − 1 =
B(aer)

σ(mol)n(mol)

=
1

σ(mol)

B(aer)

n(mol)

(1)

where R is the backscatter ratio, B(aer) is the aerosol
backscatter,σ(mol) the molecular scattering cross-section and
n(mol) the air number density. Brock et al. (1993) and Jager
et al. (1995) used observed aerosol size distributions to show
that for the case of 532nm, lidar backscatter ratio is a good
predictor (to within 5%) of aerosol mass mixing ratio during
late 1991 through early 1992.

The only sulphate aerosol microphysical processes signif-
icantly modifying mass mixing ratio during early 1992 (Rus-
sell et al., 1993) were water vapour uptake, PSC formation
and gravitational sedimentation. The effects of water vapour
uptake on the lidar observations was estimated using stan-
dard thermodynamic data (Hanson et al. (1994) parameterise
the data of Steele and Hamill (1981)) and Mie backscatter
calculations (see Bohren and Huffman, 1981). This effect is
negligible for these specific observations, since the regions of
cold temperatures either had very low volcanic aerosol con-
tent or were not sampled by the observations. The northern
winter 1991–92 saw only a short period of low stratospheric
temperatures between late December 1991 and mid January
1992; this was too warm for PSC II (eg. Farman et al.,
1994). The observation of PSCs of any type during early
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Table 1. References for the EASOE lidar data.

Site Position Citation Author of
CD-ROM data

Haute-Provence 44.5◦N, 5.5◦E Chazette et al. (1995) S. Godin
Aberystwyth 52.4◦N, 355.9◦E Vaughan et al. (1994) G. Vaughan
Sodankyla 67.4◦N, 26.6◦E Stein et al. (1994) L. Stefanutti
Andoya 69.3◦N, 16.0◦E Schafer et al. (1994) K. H. Fricke
Thule 76.5◦N, 291.2◦E Digirolamo et al. (1994) G. Fiocco
Ny-Ålesund 78.9◦N, 11.9◦E Beyerle and Neuber (1994) R. Neuber

1992 was relatively infrequent, and PSC Ia are identified by
high depolarisation and return relatively low backscatter sig-
nals (Browell et al., 1990). Plots of backscatter ratio ver-
sus analysed temperature for the early 1992 lidar data show
PSC Ib only over Andoya on 9 January. This PSC was also
observed by the ISAMS satellite instrument (Massie et al.,
1997). These observations were removed before analysis.
Sedimentation rates may be estimated (G. Brasseur and Tyn-
dall, 1999) using observed size distributions (e.g. Deshler
et al., 1993; Deshler, 1994). Sedimentation is discussed later,
in the context of the specific results.

The random error in the lidar data was estimated empiri-
cally at about 10–20% in R. This estimate used the scatter of
values measured within the midlatitude surf-zone, with the
mean vertical gradient removed. Horizontal tracer gradients
are small within the surf-zone, so measurement error domi-
nates over equivalent latitude error. This is consistent with
reported theoretical error estimates (references in Table 1).

2.2 Equivalent latitude

Equivalent latitude fields are estimated from passive tracers,
initialised with Ertel PV and then transported by the SLIM-
CAT isentropic model [described by Chipperfield (1999)]
forced by United Kingdom Meteorological Office analyses
(described by Swinbank and O’Neill, 1994). SLIMCAT uses
the Prather advection scheme (Prather, 1986). Diabatic heat-
ing was set to zero, and horizontal transport calculated on
each of 10 isentropic levels in the lower stratosphere, from
350 K to 520 K, spaced by about 2 km. The horizontal res-
olution was 5.6◦in longitude and 2.5◦in latitude. For each
measurement location and time, equivalent latitude was cal-
culated from a PV tracer which had been initialised with PV
4–5 days earlier and then transported by SLIMCAT until the
time of the observation. The quality of this equivalent lati-
tude coordinate is assessed, against vortex edge observations,
in Good and Pyle (2004). Substantial errors are expected
in the diagnosed equivalent coordinate at the lower poten-
tial temperatures in particular due to diabatic transport in the
real atmosphere. Large errors also occur at high latitude as
the vortex becomes progressively weaker, more distorted and

hence more difficult to model below about 475 K. The anal-
ysis method is designed with these large errors in mind.

2.3 Scatter plots

Figures 1 and 2 show scatter plots ofνR, for the first 80 days
of 1992. The frequency of observations outside this period
was too low for the purposes of this analysis. Averaging or
other manipulation is avoided, in order to avoid making un-
warranted assumptions about the errors involved.

2.3.1 νR versusφe

Figure 1 plotsνR againstφe, for a stack of non-overlapping
potential temperature bins. Two time bins are used: days
0–40 and 41–80 of 1992 (1 January–10 February and 11
February–20 March 20). The greatest attention is on the
region below about 440 K, where high latitude structure is
significant and complex. Six 10 Kθ bins span the interval
between 350 K and 440 K. Note that for 96% of the obser-
vations, the vertical resolution of the measurements is better
than 4 K at these values ofθ . One 475–520 K bin represents
the region above 475 K. Two bins fill the gap between 440 K
and 475 K. Note the variable density of observations at dif-
ferent values ofφe. This is particularly significant for days
0–40. However, the sampling at large equivalent latitudes is
extremely good.

At the higher potential temperatures, these plots largely
show the high-intermediate-low values expected for an
equivalent latitude section cutting through the vortex edge
(since the volcanic eruption occurred at low latitudes). The
midlatitude profile is roughly the same for the two time bins.
The vortex above 475 K is largely clean of volcanic aerosol.
Note that the vortex edge step (aroundφe ≈ 75◦), for days
41–80 above 475 K, is broad: about 10◦wide, in φe. This
subset of the data was taken after the late January vortex dis-
turbance. This disturbance could have caused mixing within
the vortex edge region, broadening the vortex edge step sig-
nature inνR, even if significant transport into the vortex cen-
tre is not observed. Detailed time-resolved transport between
475–520 K is presented in Good and Pyle (2004).

www.atmos-chem-phys.org/acp/4/1837/ Atmos. Chem. Phys., 4, 1837–1848, 2004
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�R versus equivalent latitude Days 0 to 40

�R versus equivalent latitude Days 41 to 80

Fig. 1. �R versus equivalent latitude. Upper half: days 0–40; lower: days 41–80. Each plot represents a different potential temperature (�)
window. At high�, a clear separation is seen between dense aerosol at midlatitude and the clean vortex air.

www.atmos-chem-phys.org/0000/0001/ Atmos. Chem. Phys., 0000, 0001–15, 2004

Fig. 1. νR versus equivalent latitude. Upper half: days 0–40; lower: days 41–80. Each plot represents a different potential temperature (θ)
window. At highθ , a clear separation is seen between dense aerosol at midlatitude and the clean vortex air.

φe shows some success in separating mid- and high lati-
tude observations. In some plots, especially at lowθ , theφe

coordinate is also able to resolve a meridional gradient within
the midlatitudes. This is the case whereθ

<
∼ 420 K for days

0–40, andθ <
∼ 400 K for days 41–80. This positive gradient

of νR with φe can be explained by the fact that wintertime
diabatic descent is faster at higher latitudes, and thatνR is
increasing with altitude. Faster diabatic descent means that
larger tracer values are brought down at higher midlatitudes
than at lower midlatitudes.

As θ decreases below 520 K, the distinction between mid-
and high latitudes becomes less apparent. This is partly be-
cause the midlatitude tracer burden decreases strongly with
decreasing potential temperature. At the same time, elevated

νR values appear at highφe at lower levels, most clearly in
the day 41–80 bin and below about 440 K. At the lowest lev-
els, there are in fact higher values ofνR towards the polar
regions than in midlatitudes. These elevated tracer values at
high latitude were presumably caused by a combination of
rapid diabatic descent at high latitude and poleward mixing
becoming increasingly strong below 475 K.

Figures 1 and 2 show a large degree of scatter, due to the
combined errors inνR andφe andθ . If all three quantities
were known exactly, the plots would show compact curves.
θ error is not expected to be large. Particular care is required
when interpreting observations of elevatedνR at high equiv-
alent latitude, as they may represent midlatitude or vortex
edge air, misplaced by equivalent latitude error.

Atmos. Chem. Phys., 4, 1837–1848, 2004 www.atmos-chem-phys.org/acp/4/1837/
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�R versus equivalent latitude Days 0 to 40

�R versus equivalent latitude Days 41 to 80

Fig. 1. �R versus equivalent latitude. Upper half: days 0–40; lower: days 41–80. Each plot represents a different potential temperature (�)
window. At high�, a clear separation is seen between dense aerosol at midlatitude and the clean vortex air.

www.atmos-chem-phys.org/0000/0001/ Atmos. Chem. Phys., 0000, 0001–15, 2004

Fig. 1. Continued.

2.3.2 νR versus time

The νR versus time plots of Fig. 2 show only data for
70<φe≤90. Figure 1 shows thatφe≈70 largely bounds the
extent of characteristic high latitude observations (lowνR).
The potential temperature bins are the same as those in Fig. 2.

Above about 410 K, the time evolution at high latitude is
rather masked by the scatter. In particular, the minimum
νR values above 475 K remain at or below zero throughout.
However, in all the plots up to at least 430 K, and starting
from about day 40, an increase in minimumνR values is ev-
ident. There is a hint that this increase is roughly linear over
days 40 through 80, but the sampling is sparse after day 63.

This change in high latitudeνR after day 40 provided the
reason for binning the data into days 0–40 and 41–80 for

Fig. 1. Note that there are few observations between days
41–47 and between days 64–80.

3 Method for estimating ν
(h)
R

This section aims to specify an appropriate method for es-
timating ν

(h)
R : the true value ofνR at the highest equivalent

latitudes. This involves error minimisation, and so requires
knowledge of the errors involved. Forφe>70, the scatter of
νR measurements is particularly large near 430 K. The con-
tributing errors in this region are investigated, confirming that
φe error dominates, prior to specifying a method to estimate
ν

(h)
R .

www.atmos-chem-phys.org/acp/4/1837/ Atmos. Chem. Phys., 4, 1837–1848, 2004
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�R versus time for�e > 70

Fig. 2. �R versus time, for observations where�e > 70. Each plot is for a different potential temperature window (as in figure 1). These
plots should be compared with figure 1. For� > 380K, the attention is on the time evolution of theminimum values of�R, which show
an increase after day 40. For� < 380K, the attention is on the time evolution of themaximum values of�R, which show some signs of
increase after about day 30. The significance of the minimum and maximum values, and the horizontal lines are explained in detail later in
the text
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Fig. 2. νR versus time, for observations whereφe>70. Each plot is for a different potential temperature window (as in Fig. 1). These plots
should be compared with Fig. 1. Forθ>380 K, the attention is on the time evolution of theminimum values ofνR , which show an increase
after day 40. Forθ<380 K, the attention is on the time evolution of themaximum values ofνR , which show some signs of increase after
about day 30. The significance of the minimum and maximum values, and the horizontal lines are explained in detail later in the text.

3.1 Explaining the scatter at highφe near 430K

At high φe near 430 K, the scatter inνR is much larger than
the expected measurement error. Figure 3 is used to demon-
strate the importance of equivalent latitude error in causing
the large scatter inνR for φe>70 near 430 K. In this section
we study the properties of the complete lidar vertical sound-
ings. That is, we use the fact that all observations in a single
sounding form a vertical profile which is taken almost simul-
taneously. We aim to show that the profiles can be divided

very roughly into two clusters, with differing characteristics.
It is not possible to rigorously allocate specific profiles to
specific clusters. The aim is simply to show that there are
two statistically-distinct clusters, and to explain why. To start
with, each vertical profile ofνR was characterised by four
quantities: νR at 430 K;νR at 355 K; theνR profile maxi-
mum; and the potential temperature at which theνR profile
maximum occurs. The three plots in Fig. 3 use these values
as axes. The solid lines in Figs. 3b and 3e trace the mean,
maximum and minimum profiles ofνR at midlatitude. The

Atmos. Chem. Phys., 4, 1837–1848, 2004 www.atmos-chem-phys.org/acp/4/1837/
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a) b)

c)

d) e)

f)

Fig. 3. Classifying the days profiles that have�e > 70 at 430K. a)-c): days 0-40; d)-f): days 41-80. Profiles are characterised by:�R at
430K; the�R profile maximum; the potential temperature at which the�R profile maximum occurs; and�R at 355K. The three plots use
these values as axes. a) and d): potential temperature of the�R profile maximum versus�R at 430K. b) and e): potential temperature of the
�R profile maximum versus�R profile maximum value. c) and f):�R at 355K versus�R at 430K. In b) and e), the profiles of the midlatitude
mean, minima and maxima are plotted as solid lines. See text for details, including explanation of the dashed guide lines.
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Fig. 3. Classifying the days profiles that haveφe>70 at 430 K.(a–c): days 0–40;(d–f): days 41–80. Profiles are characterised by:νR at
430 K; theνR profile maximum; the potential temperature at which theνR profile maximum occurs; andνR at 355 K. The three plots use
these values as axes. (a) and (d): potential temperature of theνR profile maximum versusνR at 430 K. (b) and (e): potential temperature of
theνR profile maximum versusνR profile maximum value. (c) and (f):νR at 355K versusνR at 430 K. In (b) and (e), the profiles of the
midlatitude mean, minima and maxima are plotted as solid lines. See text for details, including explanation of the dashed guide lines.

www.atmos-chem-phys.org/acp/4/1837/ Atmos. Chem. Phys., 4, 1837–1848, 2004
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broad form ofνR versusφe, and the temporal evolution after
day 40 should be recalled from Figs. 1 and 2. To classify the
profiles into groups, empirical parametersθ (i) andν

(i)
R were

chosen for each time bin. These thresholds are marked in
Fig. 3 by dashed guide lines, and are explained below.

From the correlation plots, and remembering that the plots
show data only for those soundings for whichφe>70 at
430 K, the following summary can be made:

For soundings withνR at 430 K greater thanν(i)
R : νR at

355 K is not large (Figs. 3c and 3f); theνR peaks are above
θ (i) (Figs. 3a and 3d); and theνR peak values are almost all
consistent with midlatitude observations (Figs. 3b and 3e).

For soundings withνR at 430 K less thanν(i)
R : νR at 355 K

may be large (Figs. 3c and 3f); theνR peaks are mostly be-
low θ (i) (Figs. 3a and 3d); and a significant proportion of
these peak values are inconsistent with midlatitude observa-
tions (Figs. 3b and 3e).

In other words, those lidar soundings for whichφe>70 at
430 K may be divided into two groups, according to the value
of νR at 430 K. Those soundings with largeνR at 430 K show
air of midlatitude character at higherθ . They also tend to
show relatively low values ofνR at 355 K. It was shown ear-
lier that near 355 K the highest values ofνR are generally
found whereφe>70. (This is particularly clear for days 0–40
in Fig. 1. For days 41–80 the sampling of high equivalent
latitudes is rather sparse.) On the other hand, those sound-
ings with smallerνR at 430 K tend to not sample midlatitude-
type air at higherθ , and show relatively large values ofνR

at 355 K. Therefore, in our set of lidar soundings for which
φe>70 at 430 K, those profiles with largeνR at 430 K appear
to sample air of more midlatitude character at both higher
and lower altitudes – and therefore are probably sampling air
of more midlatitude character at 430 K also. That is, high
values ofνR at 430 K appear to be just signatures of air of
midlatitude or at least intermediate (between mid- and high
latitude) character. Therefore, our equivalent latitude tracer
is unsuccessful at separating mid-latitude or intermediate air
from high latitude air at 430 K. So, the large scatter inνR for
φe>70 near 430 K is down to error inφe.

The above characteristics are also apparent if the Ny-
Ålesund data is examined on its own, and the clustering in
Fig. 3f is clearer when just the Ny-Ålesund data is consid-
ered. Thus, systematic differences between stations are not
responsible for the above results.

3.2 Estimatingν(h)
R

It has been shown in the previous section that at high equiv-
alent latitudes,φe is unable to separate pure high latitude air
from intermediate or mid-latitude air. An average ofνR at
largeφe, then, will include intermediate or midlatitude air as
well as true high latitude air, and therefore be biased. It is
clear from Fig. 1 that at 430 K, thelowest νR values repre-
sent samples of thehighest true equivalent latitudes. There-

fore, near 430 K, theνR minimum may be used as a basis to
estimateν(h)

R . Since random measurement error is a factor,

ν
(h)
R may be estimated by theνR minimum plus a suitable

correction. At lower potential temperatures, thelargest νR

values represent samples of thehighest true equivalent lati-
tudes (e.g. see Fig. 1, below 380 K for days 41–80). There,
theνR maximum may be used, with a similar correction, to
estimateν(h)

R . The horizontal bars in Fig. 2 show where the
minimum or maximumνR is most appropriate for estimating
ν

(h)
R .

A reasonable approximate correction would be twice the
measurement error standard deviation. For Gaussian error
statistics, points outside two standard deviations are very ob-
vious outliers. There exist much more rigorous and com-
plex extreme-value theories for modelling minima or max-
ima of datasets; however in this case the measurement error
standard deviation is known only approximately, so a two-
standard deviation correction is sufficient for our purposes.
Measurement error is 10–20% in R (R beingνR +1), so the
correction (ιν) would be 20–40% in R.ιν can also be es-
timated directly from the ratio of maximum and minimum
νR at midlatitude. The values obtained are indeed between
20–40% in R, once any resolved midlatitude gradient ofνR

with φe is removed. The variability could be attributed to
unresolved midlatitude gradients, which would cause over-
estimates. The value of 40% in R then is used as an upper
bound for the correctionιν .

At higher potential temperatures, the value ofν
(h)
R may be

estimated fairly straightforwardly, because the observations
sampling the highest true equivalent latitudes form an obvi-
ous dense cluster aroundνR ≈ 0 (see Fig. 1). Figure 4 plots
frequency distributions ofνR, showing that this is true as low
as about 400 K for day 0–40, and about 480 K for days 41–
80. Thus, above these potential temperature levels,ν

(h)
R may

be conservatively estimated at between 0–0.1. This also of-
fers another opportunity to estimateιν , as bothν(h)

R and the
observed minimumνR are known in these regions. This gives
ιν≈15% in R as corresponding to lowerφe error.

Thus to estimateν(h)
R , the profiles can be divided into three

potential temperature intervals, each requiring a slightly dif-
ferent method for the estimation ofν

(h)
R . The higher potential

temperatures were dealt with above. At intermediate alti-
tudes theνR minimum is used, and at lowerθ theνR maxi-
mum is used – with a correction to the latter two. For each
day range there is an interval where two methods overlap –
asν

(h)
R approaches zero. Of the two possible error estimates,

the largest is used. Differences in the best estimate ofν
(h)
R

are negligible.
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Days 0–40

Days 41–80

Fig. 4. Frequency distribution of�R, for data selected where�e >
70. Bin size is uniform at 0.04 in�R.
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Fig. 4. Frequency distribution ofνR , for data selected where
φe>70. Bin size is uniform at 0.04 inνR .

4 Results: best estimates ofν(h)
R

Figures 5 and 6 show estimates forν
(h)
R , as curves drawn over

scatter plots of the high-φe data. The three methods of esti-
matingν

(h)
R , their parameters, and the potential temperature

regions in which they were applied, were described in the
previous section. The three lines correspond to zero, low and
high φe error (ιν=0, 15%, 40%). Note that the peak inν(h)

R

is at a somewhat lower potential temperature than might be
guessed from a quick look at the data. Even with a largeφe

error, the scatter plots forφe>80 would be expected to in-
clude a larger proportion of true high latitude observations
than those forφe>70, and indeed the panels forφe>80 show
relatively more observations falling within the estimatedν

(h)
R

bounds. This gives more confidence that theν
(h)
R estimates

are representative of true high latitude air.
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a) Days 0–40,�e > 70

b) Days 0–40,�e > 80

Fig. 5. Potential temperature versus�R, for days 0–40. The scatter plot is the raw data, from a)�e > 70 and b)�e > 80. Over-plotted
are estimates for�(h)

R
for zero, medium-low and high�e error. �(h)

R
is the value of�R at the highest true equivalent latitudes - the air most

isolated from midlatitude (i.e., deep inside the vortex, where it is present). Note the three lines below 360K at�R � 0:8; 1:3; 1:6. For
�e > 80, a larger proportion of the data falls within the error bounds of�

(h)
R

, giving some confidence in the assumptions used in estimating

�
(h)
R

.

www.atmos-chem-phys.org/0000/0001/ Atmos. Chem. Phys., 0000, 0001–15, 2004

Fig. 5. Potential temperature versusνR , for days 0–40. The scatter
plot is the raw data, from(a) φe>70 and(b) φe>80. Over-plotted

are estimates forν(h)
R

for zero, medium-low and highφe error.ν(h)
R

is the value ofνR at the highest true equivalent latitudes – the air
most isolated from midlatitude (i.e. deep inside the vortex, where
it is present). Note the three lines below 360K atνR∼0.8, 1.3, 1.6.
For φe>80, a larger proportion of the data falls within the error

bounds ofν(h)
R

, giving some confidence in the assumptions used in

estimatingν(h)
R

.

The ν
(h)
R results are quoted for two substantial time bins,

but the sporadic nature of the measurement dataset means
that we need to be careful about which time period the results
are appropriate for. Figure 2 reveals some information about
time evolution inν

(h)
R , and measurement frequency, within

these rather broad time bins. Note the horizontal bars above
and below the data, which indicate whether theνR maximum
or minimum is appropriate for estimatingν(h)

R . There is little
evolution for days 0–40. After day 40, between about 400–
475 K, there is a hint that the evolution inν(h)

R is approxi-
mately linear. After day 40, most measurements occurred
during days 48–62; there were also a few after day 70. The

www.atmos-chem-phys.org/acp/4/1837/ Atmos. Chem. Phys., 4, 1837–1848, 2004
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a) Days 41–80,�e > 70

b) Days 41–80,�e > 80

Fig. 6. As figure 5, but for days 41–80.
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Fig. 6. As Fig. 5, but for days 41–80.

ν
(h)
R results presented here, therefore, apply to days 0–40 and

to days 48–62 (1 January–10 February, and 18 February–2
March).

Figure 7 puts the profile and evolution ofν
(h)
R in perspec-

tive, alongside the mean midlatitude vertical profile (ν
(m)
R ).

Above 475 K, through days 0–80,ν
(h)
R is less than 0.1. Near

475 K, for days 0–62,ν(h)
R /ν(m)

R is less than 1/40. These indi-
cate a very well isolated vortex centre at this level and above.
Between about 475 K and 410 K, extreme high latitude air is
clean of aerosol for the first 40 days, but then sees significant
transport of aerosol tracer from lower latitude. This trans-
port increases strongly with decreasingθ . Lower down, there
appears to be little barrier between mid- and high latitudes
throughout the time studied. This presumably corresponds
to the sub-vortex (McIntyre, 1995).
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Fig. 7. Estimated mid- and high equivalent latitude vertical profiles
of �R. (Note the short lines between 350–360K). A very strongly
isolated vortex is demonstrated for potential temperatures above
about 475K, but rapidly increasing poleward transport is found be-
low this� level. At very low� the high latitude�R is larger than the
mid-latitude profile, due to stronger diabatic descent over the pole.
Above about 500K the apparent evolution in the midlatitude profile
is partly due to an inability to completely separate midlatitude from
tropical observations.
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Fig. 7. Estimated mid- and high equivalent latitude vertical profiles
of νR . (Note the short lines between 350–360 K). A very strongly
isolated vortex is demonstrated for potential temperatures above
about 475 K, but rapidly increasing poleward transport is found be-
low thisθ level. At very lowθ the high latitudeνR is larger than the
mid-latitude profile, due to stronger diabatic descent over the pole.
Above about 500 K the apparent evolution in the midlatitude profile
is partly due to an inability to completely separate midlatitude from
tropical observations.

5 Conclusions

The results show evidence for irreversible transport of
aerosol to the highest equivalent latitudes, resolved in po-
tential temperature and time. Note that the results apply just
to the hightest equivalent latitudes, but they are a new part of
the high latitude picture for this period. Theν(h)

R profiles do
not have high precision inνR, but better accuracy than if the
data had been averaged. Quite precise information has been
extracted about the temporal evolution and the vertical struc-
ture. The EASOE lidar data provided an excellent dataset
for this purpose, with a very large number of high resolution
observations.
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ν
(h)
R only increases where aerosol has mixed down to the

highest equivalent latitudes. Where the vortex is present,
this means that aerosol must mix down throughout the vor-
tex centre. Plumb et al. (1994) demonstrated a vortex in-
trusion event (in measurements and a model), which started
on about 19 January (day 18). They also found intrusions
in mid-December and mid- to late February. The February
event started on day 45, which seems too late to cause an
increase inν(h)

R by day 48. The increase inν(h)
R started be-

tween days 40–48: 22–30 days after the January intrusion
started. If wintertime surf-zone mixdown times (Thuburn
and Tan (1997) have 9 days for an order of magnitude re-
duction in scale) are used, the time taken to mix down from
scales the size of the vortex centre (about 6000 km) to the li-
dar resolution (150–200 m in the vertical: corresponding to
about 37.5–50 km horizontally, using the horizontal/vertical
scale ratio of 250 (Haynes and Anglade, 1997)) is about 20
days. Thus, it seems reasonable to make a tentative link be-
tween the January intrusion reported by Plumb et al. (1994)
and the subsequent increase inν

(h)
R diagnosed here.

Aerosol sedimentation must be borne in mind with regard
to these results. Over the estimated vortex mix-down pe-
riod of less than one month, below about 450 K the Pinatubo
aerosol would fall only of the order of 10 K (the lidar res-
olution is about 4 K). This is not important in terms of the
vertical precision of the quotedν(h)

R results. Sedimentation
through vertically sloping transport barriers, could enhance
the dispersal of aerosol in equivalent latitude. Pinatubo sedi-
mentation rates in this region are estimated at about 17 m per
day, which is similar to or less than the scale mixed by tur-
bulent dispersion per day. Thus, sedimentation could affect
the efficiency of the chaotic mixdown–turbulent dispersion
mechanism. Thus, theseν(h)

R results presumably overesti-
mate the transport that would have occurred for a gaseous
tracer.

For future work, Allen and Nakamura (2003) demonstrate
a new method for calculating a PV-like tracer which may
be smoother at high latitude, and potentially lead to lower
equivalent latitude errors in this region.

Edited by: K. Hamilton
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