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Abstract. The formation and detailed composition of sec-
ondary organic aerosol (SOA) from the gas phase ozonoly-
sis of α- andβ-pinene has been simulated using the Mas-
ter Chemical Mechanism version 3 (MCM v3), coupled with
a representation of gas-to-aerosol transfer of semivolatile
and involatile oxygenated products. A kinetics represen-
tation, based on equilibrium absorptive partitioning of ca.
200 semivolatile products, was found to provide an accept-
able description of the final mass concentrations observed in
a number of reported laboratory and chamber experiments,
provided partitioning coefficients were increased by about
two orders of magnitude over those defined on the basis of
estimated vapour pressures. This adjustment is believed to
be due, at least partially, to the effect of condensed phase as-
sociation reactions of the partitioning products. Even with
this adjustment, the simulated initial formation of SOA was
delayed relative to that observed, implying the requirement
for the formation of species of much lower volatility to ini-
tiate SOA formation. The inclusion of a simplified repre-
sentation of the formation and gas-to-aerosol transfer of in-
volatile dimers of 22 bi- and multifunctional carboxylic acids
(in addition to the absorptive partitioning mechanism) al-
lowed a much improved description of SOA formation for
a wide range of conditions. The simulated SOA composi-
tion recreates certain features of the product distributions ob-
served in a number of experimental studies, but implies an
important role for multifunctional products containing hy-
droperoxy groups (i.e. hydroperoxides). This is particularly
the case for experiments in which 2-butanol is used to scav-
enge OH radicals, because [HO2]/[RO2] ratios are elevated
in such systems. The optimized mechanism is used to cal-
culate SOA yields fromα- andβ-pinene ozonolysis in the
presence and absence of OH scavengers, and as a function of
temperature.

Correspondence to:M. E. Jenkin
(m.jenkin@imperial.ac.uk)

1 Introduction

It is well documented that the oxidation of monoterpenes in
the troposphere plays an important role in the generation of
ozone, O3, and secondary organic aerosols, SOA (e.g. Went,
1960; Rasmussen, 1972; Trainer et al., 1987; Jacob and
Wofsy, 1988; Andreae and Crutzen, 1997), and particular
attention has therefore been given to elucidating the oxida-
tion mechanisms of monoterpenes known to be emitted into
the troposphere in substantial quantities (e.g. Calogirou et al.,
1999; Atkinson and Arey, 2003). Much emphasis has been
placed onα- andβ-pinene, since measurements of monoter-
pene speciation suggest that these make a particularly sig-
nificant contribution to global monoterpene emissions (e.g.
Guenther et al., 1994; Fuentes et al., 2000; Geron et al.,
2000), and also because they are representative of classes of
monoterpene having either an endocyclic double bond (in the
case ofα-pinene) or an exocyclic double bond (in the case of
β-pinene). As a result, particular progress has been made
in establishing the kinetics and products of the early stages
of the oxidation, initiated by the reactions with OH radicals,
NO3 radicals and O3 (e.g. Atkinson and Arey, 2003, and ref-
erences therein).

The ability ofα- andβ-pinene (and other monoterpenes)
to generate condensable material, and therefore SOA, has
received increasing attention in recent years, and there is a
growing body of information on SOA formation and com-
position, both in the laboratory and the troposphere. Labo-
ratory and chamber studies have demonstrated that aerosol
yields are very variable, depending on the identity and start-
ing concentration of the terpene, on the experimental condi-
tions, and on whether oxidation is initiated predominantly by
reaction with O3, OH or NO3 (e.g. Hoffmann et al., 1997;
BIOVOC, 1998; Hallquist et al., 1999; Griffin et al., 1999;
Koch et al., 1999; Bonn and Moortgat, 2002; Docherty and
Ziemann, 2003). In particular, the reported studies have in-
dicated that dark ozonolysis experiments tend to lead to the
largest aerosol yields, and that the fractional yields in all

© European Geosciences Union 2004



1742 M. E. Jenkin: Modelling SOA fromα- andβ-pinene ozonolysis using MCM v3

experiments generally depend on the organic aerosol mass
concentration. Studies of the composition of SOA generated
from the ozonolysis ofα- andβ-pinene (e.g. Yu et al., 1999a;
Jang and Kamens, 1999; Glasius et al., 2000; Kückelmann
et al., 2001; Warscheid and Hoffmann, 2001; 2002; Jaoui
and Kamens, 2003; Winterhalter et al., 2003) have estab-
lished that important contributions are made by bi- and mul-
tifunctional carboxylic acids, such as pinic acid and pinonic
acid, although a number of other oxidized products not con-
taining acid groups have also been detected in the aerosol
phase. The carboxylic acids have been suggested as key
species in the nucleation of new aerosols in chamber systems
(Christoffersen et al., 1998; Koch et al., 1999), and evidence
for mechanisms involving homomolecular and heteromolec-
ular acid dimers has been reported (Hoffmann et al., 1998;
Kückelmann et al., 2001).

A number ofα- andβ-pinene oxidation products have also
been detected and quantified in field studies of aerosol com-
position in forested locations, providing direct evidence for
SOA formation from monoterpene oxidation under tropo-
spheric conditions. Kavouras et al. (1998, 1999) and Yu et
al. (1999b) observed significant contributions to fine parti-
cles from pinic acid, pinonic acid, norpinonic acid (and iso-
mers), pinonaldehyde and nopinone at locations in Portugal,
Canada and the USA, and quantified the partitioning of these
species between the gaseous and condensed phases. More
recently, O’Dowd et al. (2002) reported evidence that newly
formed particles (3–5 nm diameter) over the boreal forest in
Finland were composed mainly of species such as pinonic
acid and pinic acid, and proposed that the nucleation of new
aerosols was driven by the generation of such products from
monoterpene oxidation.

The results of chamber investigations of SOA formation
from α- andβ-pinene ozonolysis have commonly been inter-
preted or modelled in terms of absorptive gas-aerosol parti-
tioning of semivolatile oxidation products. This has involved
either the assignment of empirically-derived yields and parti-
tioning coefficients to two notional products (e.g. Hoffmann
et al., 1997; Yu et al., 1999a; Cocker et al., 2001), or the con-
sideration of the partitioning of a series of known products,
with partitioning coefficients based on estimated properties
(Kamens et al., 1999) or on experimentally measured con-
centrations in the gaseous and condensed phases (Yu et al.,
1999a; Cocker et al., 2001). In the present paper, the de-
velopment, optimization and application of a highly detailed
chemical description of SOA formation from the ozonolysis
of α- andβ-pinene is described. The methodology is based
on the near-explicit Master Chemical Mechanism version
3 (MCM v3) to describe the gas phase chemistry, coupled
with a representation of gas-to-aerosol transfer of ca. 200
semivolatile and involatile oxygenated products. The sim-
ulated major components of SOA are compared with those
reported in a number of experimental studies, and the im-
pacts of different experimental conditions on SOA yields are
explored.

2 Mechanism construction

2.1 Gas phase degradation

The description of the degradation ofα- andβ-pinene was
taken from the Master Chemical Mechanism, version 3
(MCM v3). The entire mechanism treats the degradation of
125 VOC, and can be accessed from the MCM website at
http://mcm.leeds.ac.uk/MCM/.

The mechanism was constructed to represent the com-
plete gas-phase degradation of the VOC through to CO2 and
H2O. MCM v3 generally takes account of reported kinetic
and mechanistic information available up to the beginning of
2001. Although MCM v3 has recently been superseded by
v3.1, the chemistry forα- andβ-pinene remains unchanged.

The mechanism construction methodology forα- andβ-
pinene has been summarised by Saunders et al. (2003). In
each case, the degradation is initiated by reaction with OH,
O3 and NO3, and aims to represent reported experimental
information which was available for the kinetics and mech-
anisms of the early stages of the degradation (e.g. Hakola et
al., 1994; Glasius et al., 1997; Hallquist et al., 1997; Wang-
berg et al., 1997; Aschmann et al., 1998; Alvarado et al.,
1998a,b; Noziere et al., 1999a, b; Winterhalter et al., 2000;
Orlando et al., 2000). The remainder of the chemistry was
defined by analogy with the known chemistry for simpler
hydrocarbons, as described by Saunders et al. (2003) and
Jenkin et al. (1997). The complete scheme degradingα- and
β-pinene through to CO2 and H2O contains approximately
1550 reactions of 520 species, and can be obtained in its en-
tirety using the subset mechanism assembling facility, avail-
able as part of the MCM website.

The current paper is concerned primarily with the dark
chemistry initiated by the reactions with O3. The salient fea-
tures of aspects of the ozonolysis chemistry, as represented
in MCM v3, have been described in some detail by Jenkin
et al. (2000). Briefly, the mechanism proceeds in each case
via addition of O3 to the double bond, leading initially to
formation of energy rich ozonides. These ozonides each de-
compose rapidly by two possible channels to form Criegee
biradicals which also possess excess energy. The energy
rich Criegee biradicals are assumed to be either collision-
ally stabilized, or to decompose to yield OH and an addi-
tional organic radical, with the relative importance of these
reactions based, where possible, on literature data (Jenkin et
al., 2000; Saunders et al., 2003). The subsequent reactions
of the stabilized Criegee biradicals and the organic radicals
generated in conjunction with OH, lead to a variety of simple
and complex organic products. These may contain a number
of functionalities, including acid, peracid, carbonyl, hydroxy
and hydroperoxy groups, or combinations of two or more
of these. As indicated above, bi- or multifunctional organic
acids are of particular interest and relevance to SOA forma-
tion. Accordingly, Fig. 1 presents a partial schematic which
describes how the formation of the known first generation
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Fig. 1. Schematic representation of the formation routes of C9 and C10 acid products and the major carbonyl products (HCHO, pinonaldehyde
and nopinone), following the ozonolysis ofα- andβ-pinene, as applied in the present work. The stable products are shown in boxes.

ozonolysis products, pinonic acid, 10-hydroxypinonic acid,
pinalic-3-acid and pinic acid is represented in MCM v3. The
“permutation” reactions of intermediate peroxy radicals with
the available peroxy radical pool (RO2) play a key role in
the propagation of these mechanisms, and it is the variety
of competitive product channels for the various reactions of
these peroxy radicals (not all shown in the figure) which
largely accounts for the generation of the variety of product
classes indicated above. Figure 1 also shows the ozonolysis
formation routes for the major carbonyl products, pinonalde-
hyde, nopinone and formaldehyde. As described by Jenkin
et al. (2000), acetone is also produced as a first generation
ozonolysis product in this mechanism, via competitive reac-
tion channels not specifically illustrated in the figure.

The formation mechanism for pinic acid has previously
been the subject of some discussion (e.g. Jang and Kamens,
1999; Winterhalter et al., 2000; Jenkin et al., 2000). As il-
lustrated in Fig. 1, the primary formation route in MCM v3
follows that postulated by Jenkin et al. (2000), involving the
isomerisation of a C9 acyloxy radical intermediate (I), which
may be formed from the ozonolysis of bothα- andβ-pinene,
followed by reaction of the subsequently-formed acyl per-
oxy radical (II) with either RO2 or HO2. In the present work,
pinic acid formation was also supplemented by the closely
related mechanism suggested by Winterhalter (2000), involv-
ing the intramolecular rearrangement of perpinalic acid (III),
generated from the reaction of the corresponding C9 acylper-
oxy radical with HO2 (see Fig. 1). However, this route tends

www.atmos-chem-phys.org/acp/4/1741/ Atmos. Chem. Phys., 4, 1741–1757, 2004
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to make only minor contributions to the simulated formation
of pinic acid at the [HO2]/[RO2] ratios of the experiments
considered in the present study (see below) .

The ozonolysis ofα- and β-pinene leads to significant
generation of OH radicals. As described by Saunders et
al. (2003), the representations in MCM v3, based in part
on the structure-reactivity method proposed by Rickard et
al. (1999), lead to overall fractional yields of 80% and 35%,
respectively which are consistent with reported experimen-
tal studies (Atkinson et al., 1992; Chew and Atkinson, 1996;
Paulson et al., 1998, Rickard et al., 1999). In the absence of
an added scavenger, dominant reaction of OH with the par-
ent monoterpene occurs, and the main features of this chem-
istry under NOx-free conditions (as represented in MCM v3)
are shown in Fig. 2. This provides the possibility of for-
mation of a number of products which are not generated
directly from the ozonolysis chemistry (e.g. C10 diols). In
some of the experimental studies considered here (e.g. Yu et
al., 1999a; Winterhalter et al., 2000), either cyclohexane or
2-butanol was included in the reagent mixture at a sufficient
concentration to ensure minimal reaction of OH with the par-
ent monoterpene. The representation of this chemistry in the
present work was also based on that in MCM v3. In the case
of cyclohexane, this leads to the exclusive generation of cy-
clohexylperoxy radicals,

OH + c−C6H12 → c−C6H11 + H2O (R1)

c−C6H11 + O2(+M) → c−C6H11O2(+M), (R2)

which contribute to the pool of RO2 radicals in the system. In
the case of 2-butanol, the major oxidation route, accounting
for 64% of the reaction in MCM v3 (consistent with the ex-
perimental studies of Chew and Atkinson, 1996; and Baxley
and Wells, 1998), leads to the formation of HO2 radicals and
2-butanone,

OH + CH3CH(OH)C2H5 → CH3C(OH)C2H5 + H2O (R3)

CH3C(OH)C2H5 + O2 → CH3C(O)C2H5 + HO2 (R4)

with the balance of the reaction generating hydroxy-
substituted alkylperoxy radicals which contribute to the RO2
radical pool. As a result, cyclohexane and 2-butanol have
different influences on the peroxy radical population (in par-
ticular [HO2]/[RO2]) when used as OH radical scavengers,
which have a secondary influence on the product distribution
from the ozonolysis of the terpene, and therefore on SOA for-
mation (see also, Bonn et al., 2002; Docherty and Ziemann,
2003). However, the products of 2-butanol and cyclohexane
oxidation are themselves assumed to have no direct influence
on SOA formation.

2.2 Gas-to-aerosol conversion

Gas-aerosol partitioning reactions were incorporated into the
mechanism for ca. 280 products ofα- andβ-pinene oxida-
tion deemed to be potentially semi-volatile, using the crite-
rion that their boiling points are estimated to be>450 K (see

below). Of these, about 200 are potentially generated under
the NOx-free conditions relevant to the present study. The
primary mechanism by which gas-aerosol partitioning is rep-
resented is based on the Pankow absorption model (Pankow,
1994), which has been widely used to interpret yields of or-
ganic aerosol in chamber studies (e.g. Odum et al., 1996;
Hoffmann et al., 1997; Yu et al., 1999a; Cocker et al., 2001).
According to this theory, the partitioning of a given organic
species between the gaseous and condensed organic phases
may be described in terms of an equilibrium partitioning co-
efficient,Kp, which is defined as follows,

Kp =
7.501× 10−9RT

MWom ζ p◦

L

, (1)

whereR is the ideal gas constant (8.314 J K−1 mol−1), T is
temperature (K), MWom is the mean molecular weight of the
condensed organic material (g mol−1), ζ is the activity coef-
ficient of the given species in the condensed organic phase,
andp◦

L is its (probably sub-cooled) liquid vapour pressure
(Torr). The numerical constant in the numerator is consistent
with units of m3 µg−1 for Kp. As discussed by a number of
authors (e.g. Pankow, 1994; Kamens et al., 1999), it is not
unreasonable to assume thatζ is unity for a given oxidation
product in an aerosol droplet composed of a mixture of simi-
lar species, and this assumption is also adopted in the present
work.

A fundamental assumption in this approach is that
the aerosol possesses an amorphous, liquid-like character
(Pankow, 1994), even though many (if not all) the compo-
nents are likely to be solid at ambient temperatures in their
pure states. A key parameter in the calculation is therefore
the sub-cooled liquid vapour pressure. The applied values of
p◦

L were estimated from boiling points (Tb) and vaporisation
entropy changes atTb (1Svap(Tb)) for each of the products,
using an expanded, semi-empirical form of the Clausius-
Clapeyron equation (Baum, 1998), in a similar manner to
that described by Kamens et al. (1999):

ln
p◦

L

760
=

−1Svap(Tb)

R

[
1.8

(
Tb

T
− 1

)
− 0.8

(
ln

Tb

T

)]
.(2)

Tb values were estimated using the fragmentation method
of Joback and Reid (1987), as modified and extended by
Stein and Brown (1994). Values of1Svap(Tb) were deter-
mined from the Kistiakowsky equation with Vetere correc-
tion factors appropriate for polar hydrocarbons (e.g. Baum,
1998), although the resultant values were all within 10%
of the species-independent value of ca. 10.5R (≈87 J mol−1

K−1) as defined by Trouton’s rule. The values ofKp de-
termined in this way generally show a logical progression,
reflecting differences in molecular size and the abundance of
polar functionalities, as demonstrated for selectedα- andβ-
pinene products in Table 1. Although not required for the
above calculation ofKp, estimates were also made of solid
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Fig. 2. Schematic representation of the major features of the OH-initiated degradation ofα- andβ-pinene in the absence of NOx, as applied
in the present work. Boxed species are first generation products.

vapour pressure,p◦

S , using the well-established approxima-
tion (Prausnitz, 1969),

ln p◦

S = ln p◦

L −

(
1Sfus(Tm)

R

(
Tm

T
− 1

))
(3)

where Tm is the melting point of the given organic species,
and 1Sfus(Tm) is fusion entropy change at Tm. Values of
Tm were also estimated using the Joback-Reid fragmenta-
tion method (Joback and Reid, 1987), and a representative
average value of1Sfus(Tm)=56.5 J mol−1 K−1, was applied
for all species (Yalkowsky, 1979; Mackay et al., 1982). Al-
though it is recognised that this procedure only yields ap-
proximate results (particularly at temperatures well below

the melting point), the resultant 298 K values ofp◦

S for
pinonaldehyde and pinic acid (Table 1) are within a fac-
tor of ca. 5–10 of the respective reported measurements of
7.5×10−3 Torr (Hallquist et al., 1997) and 3.2×10−7 Torr
(Bilde and Pandis, 2001), providing some support for the
overall methodology adopted here.

The magnitude ofKp determines the extent of gas-aerosol
partitioning of a given species, in accordance with the fol-
lowing equation (Odum et al., 1996),

Ca

Cg

= Kp Com, (4)
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Table 1. Species-dependent properties calculated for selected oxidation products ofα- andβ-pinene by the methods described in Sect. 2.2.
p◦

L
, p◦

S
andKp values are quoted for 298 K.

MW Tm Tb 1Svap (Tb) p◦
L

p◦
S

Kp
a

g mol−1 K K J mol−1 K−1 Torr Torr m3µg−1

nopinone 136 311 468 89.4 6.0×10−1 4.5×10−1 2.4×10−7

pinonaldehyde 168 324 510 89.3 8.2×10−2 4.6×10−2 1.8×10−6

pinalic-3-acid 170 423 563 89.7 5.9×10−3 3.4×10−4 2.4×10−5

pinonic acid 184 442 569 89.8 4.3×10−3 1.6×10−4 3.4×10−5

pinic acid 186 542 612 90.2 4.7×10−4 1.8×10−6 3.1×10−4

10-hydroxypinonic acid 200 503 619 90.0 3.3×10−4 3.1×10−6 4.3×10−4

a PresentedKp values calculated using the reference MWom=130 g mol−1; MWom was varied during simulations on the basis of the
calculated organic aerosol composition (see text).

whereCg andCa are its concentrations in the gaseous and
aerosol phases, respectively, andCom is the total concen-
tration of condensed organic material (inµg m−3). In the
present work, the partitioning process was represented dy-
namically as a balance between absorption and desorption,
using a methodology similar to that described by Kamens et
al. (1999). Rate coefficients for absorption (kin) and desorp-
tion (kout) were assigned to the partitioning reactions for each
of the identified semivolatile species, such thatkin/kout=Kp.
The rate of absorption of a given species was therefore
given by the expressionkinCom, with the desorption rate be-
ing kout. A species and temperature-independent value of
6.2×10−3 m3gµg−1 s−1 was assigned tokin, which is based
on the estimated collision rate of gaseous molecules with a
monodisperse aerosol of ca. 50 nm diameter. At a reference
temperature of 298 K, species-dependent values ofkout were
therefore defined bykin and the species-dependent values of
Kp. Although it is possible to calculateKp as a function of
temperature from Eqs. (1) and (2), the temperature depen-
dence ofkout was represented in terms of classical evapora-
tion by the following equation:

kout = βout exp(−Ea/RT ). (5)

The pre-exponential factor,βout, was assumed to be equiv-
alent for all species, such that the variation ofkout from
one species to another was described in terms of species-
dependent desorption activation energies,Ea . To allow for
the variation ofKp with MWom (Eq. 1),βout was coded as
follows,

βout = β◦
out

MWom
MW◦

om
, (6)

where MW◦
om is a reference molecular weight (taken to be

130) for which the species-dependent values ofKp were de-
fined, andβ◦

out is the corresponding reference value ofβout.
In this way, the partitioning parameters responded to changes
in the calculated value of MWom during the course of a sim-
ulation. With the values ofKp and kin constrained as de-

scribed above, the value ofβ◦
out and the species dependent-

values ofEa were optimized on the basis of the observed evo-
lution of SOA mass in a number of reported experiments at
different temperatures. This is discussed further in Sect. 4.2.

The above representation of gas-aerosol partitioning was
found to provide a reasonable framework for the description
of SOA formation under conditions where at least several
tens ofµg m−3 were present. However, based on the species
generated in the chemical mechanism, and the optimized
partitioning parameters, the initial stages of SOA accumu-
lation were not well represented. As described further below
(Sect. 4.2), this could be significantly improved by consid-
ering the participation of involatile dimers of bi- and multi-
functional acids in the gas-to-particle conversion process. A
rigorous representation would require inclusion of gas phase
and aerosol phase equilibrium “permutation” reactions for
each monomer-dimer combination, and gas-to-aerosol trans-
fer reactions for each of the resultant dimers. In the present
study, however, this was achieved using a simplified mecha-
nism in which the transfer of a given acid to the aerosol phase
notionally occurs by a “chaperone” mechanism involving the
available “pool” of multifunctional acid species. This was
represented by inclusion of a pseudo-unimolecular reaction,

acid(gas) → acid(aerosol) (R5)

for each of the 22 C8-C10 bi- and multifunctional acids gen-
erated in the mechanism. Each reaction was assigned a rate
coefficientk5=k′

5.
∑

[acid(gas)], where
∑

[acid(gas)] is the gas
phase concentration sum of all the C8-C10 bi- and multi-
functional acids, andk′

5 is an effective bimolecular reaction
rate coefficient. Although representative of a complex se-
ries of reactions, the rate coefficient,k′

5, for the simplified
reaction was represented in conventional Arrhenius form for
convenience, and optimized using experimental data (see be-
low). It is recognised that this simplified approach may not
fully recreate all the subtleties of an explicit representation.
However, it does introduce a gas-to-aerosol transfer process
which displays an overall second order rate dependence on
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Table 2. Sources of data and conditions of experiments used to optimize and test theα- andβ-pinene mechanism.

Reference Experimenta [terpene]0 [ozone]0 OH scavenger T Seed aerosol Relative humidity SOA massb

α-pinene experiments ppb ppb K % µg m−3

OSOAc 04-10-00A 100 135 none 292–298 No 0d 64.4
OSOAc 05-10-00A 98 120 none 294–299 No 45 50.5
Yu et al. (1999a) 6/9/98a 59.2 237 2-butanol 308 Yes 5 54.2
Yu et al. (1999a) 6/9/98b 67.2 269 2-butanol 308 Yes 5 65.1
Yu et al. (1999a) 6/17/98a 107.1 74 2-butanol 306 Yes 5 38.8
Kamens et al. (1999) Run A 820 600 none 296–294 No 55–66 2190
Kamens et al. (1999) Run B 350 250 none 296–295 No 90–100 504
Kamens et al. (1999) Run C 600 650 none 288–279 No 62–92 1860
Kamens and Jaoui (2001) 12/9/96 880 470 none 271–268 No 32–25 2650
Kamens and Jaoui (2001) 8/12/99 115 57 none 303–299 No e 65

β-pinene experiments

Yu et al. (1999a) 6/11/98b 87.9 352 2-butanol 307 Yes 5 18.9
Yu et al. (1999a) 6/17/98b 104.6 56 2-butanol 306 Yes 5 11.2
Jaoui and Kamens (2003) April 10, 2000 1000 1000 none 285–290 No 40–50 750

a Experiment identified on the basis of assignment in original reference;
b Based on maximum or quoted final concentration.
c OSOA experiments as described by Winterhalter et al. (2003). Raw data supplied by OSOA consortium;
d Nominally dry experiment. H2O concentrations in the range 0.06–0.07 mBar. Simulations used actual data;
e 3.5 mBar H2O estimated by authors.

the concentration of multifunctional acid species, and which
is therefore at least notionally representative of the possible
effects of dimer formation.

3 Experimental datasets

The optimization and testing of theα- and β-pinene SOA
formation mechanisms was carried out using a number of
datasets, as summarized in Table 2. The primary optimiza-
tion was based on the results ofα-pinene ozonolysis experi-
ments carried out as part of the EU project Origin and Forma-
tion of Secondary Organic Aerosols, OSOA, as summarized
by Winterhalter et al. (2003), and on theα-pinene studies
of Yu et al. (1999a). The results of the remaining studies
in Table 2 forα-pinene (Kamens et al., 1999; Kamens and
Jaoui, 2001) andβ-pinene (Yu et al., 1999a; Jaoui and Ka-
mens, 2003) were used to examine the performance of the
mechanism for a wider range of reagent concentrations and
experimental conditions.

4 Results and discussion

4.1 Simulations of product yields

The general performance of theα- andβ-pinene ozonolysis
mechanisms was tested by calculating the molar yields of a

series of major products in the absence of an OH radical scav-
enger, and in the presence of either 2-butanol or cyclohexane
to scavenge OH. As with all simulations in the present study,
this was carried out using the FACSIMILE for Windows ki-
netics integration package, v3 (MCPA Software). The results
for a series of products, for which experimental yield data are
available, are presented in Table 3. For products which are
partitioned between the gaseous and condensed phases, the
presented values represent the total yield. The simulated mo-
lar yields are generally consistent with reported ranges for
products of bothα- andβ-pinene (e.g. Hakola et al., 1994;
Alvarado et al., 1998; Christoffersen et al., 1998; Glasius et
al., 1999; Yu et al., 1999a; Orlando et al., 2000), indicating
that the mechanism captures the salient features. In particu-
lar, the yields of the bi- and multifunctional carboxylic acids,
which are known major contributors to SOA, are broadly rep-
resentative of those concluded from experimental observa-
tions (Atkinson and Arey, 2003, and references therein). As
discussed above (Sect. 2.1), the absence of an OH scavenger
allows the formation of species such as C10 diols from the
OH-initiated oxidation of the terpenes, which are not gener-
ated directly from the ozonolysis chemistry. It also results
in modest changes in the overall distribution of species, de-
pending on the extent to which they are formed from ozone
and OH initiated oxidation.

There are also notable differences between the product dis-
tributions calculated with each of the two scavengers present.
A number of products show a lower yield with 2-butanol as
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Table 3. Simulated molar yields of selected products from the ozonolysis ofα- andβ-pinene using the MCM v3 mechanisma .

with OH scavenger without OH scavenger

α-pinene cyclohexane 2-butanol

pinonaldehyde 0.175 0.175 0.289
pinonic acid 0.025 0.025 0.016
pinalic-3-acid 0.058 0.054 0.032
pinic acid 0.032 0.031 0.019
10-hydroxypinonic acid 0.014 0.014 0.008
hydroxypinonaldehydesb 0.092 0.054 0.055
C10 diolsc – – 0.117
acetone 0.046 0.005 0.067
formaldehyde 0.198 0.180 0.120
[HO2]/[RO2] 8.3×10−4d 5.5×10−3d 5.0×10−4d

β-pinene

nopinone 0.502 0.502 0.486
pinalic-3-acid 0.077 0.055 0.058
pinic acid 0.044 0.037 0.033
C10 diolsc – – 0.049
acetone 0.001 0.000 0.005
formaldehyde 0.748 0.747 0.670
[HO2]/[RO2] 4.8×10−3d 4.3×10−2d 2.0×10−3d

a Yields based on simulations of mixture containing a large excess of terpene, at 298 K and 760 Torr and with sufficient H2O to scavenge
stabilized Criegee biradicals;
b Sum of 3 isomers;
c Sum of 2 isomers. Formed from OH attack onα- andβ-pinene (see Fig. 2);
d Concentration ratio.

the OH scavenger, compared with that calculated with cyclo-
hexane as the scavenger. This relates to the differences in the
relative concentrations of RO2 and HO2 in the two systems.
As indicated above (Sect. 2.1) and in Table 3, the use of 2-
butanol as the scavenger leads to higher [HO2]/[RO2] ratios,
which allow the reactions of peroxy radicals with HO2 to
compete more effectively with the peroxy radical permuta-
tion reactions involving the RO2 pool. Although this has an
effect on the system as a whole, it is particularly important
when the formation of a compound involves reactions of ter-
tiary peroxy radicals, because these are well known to dis-
play a generally low reactivity with respect to self- reactions
and cross reactions with other RO2 radicals (e.g. Lesclaux,
1997), and this is reflected in the assigned permutation reac-
tion rate coefficients in MCM v3 (Jenkin et al., 1997). One
such example is the formation mechanism for acetone, which
invariably involves tertiary peroxy radicals of generic for-
mula R(CH3)2CO2, as follows (Reactions R6 and R7):

R(CH3)2CO2 + RO2 → R(CH3)2CO+ RO+ O2 (R6)

R(CH3)2CO(+M) → R + CH3C(O)CH3(+M) (R7)

R(CH3)2CO2 + HO2 → R(CH3)2COOH+ O2. (R8)

As a result, the reaction with HO2 becomes competi-
tive for tertiary RO2 radicals, such as R(CH3)2CO2 (Reac-
tion R8), at lower [HO2]/[RO2] than it does for other RO2
classes, and inhibition of acetone formation is therefore more
pronounced than that observed for other products, the forma-
tion routes of which do not involve tertiary peroxy radicals
(Table 3).

The [HO2]/[RO2] ratios simulated for theβ-pinene
ozonolysis system are generally higher than those forα-
pinene. This is because the initiation reaction partially forms
the Criegee biradical [CH2OO]‡, the decomposition of which
leads to both OH and HO2 (e.g. Calvert et al., 2000):

[CH2OO]
‡

→ OH + HCO (R9)

HCO+ O2 → HO2 + CO. (R10)

As a result of this direct (albeit small) source of HO2,
[HO2]/[RO2] ratios are sufficiently elevated that reaction
with HO2 is competitive for an even wider range of peroxy
radicals classes. The further elevation of the ratio through
use of 2-butanol as an OH scavenger is therefore simulated
to have a notable influence on the yields of a wider array of
products fromβ-pinene ozonolysis, including species such
as pinic acid and pinalic-3-acid, (see Table 3).
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Fig. 3. Time dependence of ozone (circles),α-pinene (triangles)
and aerosol mass (squares) in OSOA experiment 04-10-00A. Lines
are results of simulations using present mechanism. Dotted line rep-
resents simulated SOA accumulation using absorptive partitioning
of multiple products only (scaled as described in the text). Solid
line includes additional gas-to-aerosol transfer by acid chaperone
mechanism.

4.2 Simulations of SOA formation

The mechanism was initially used to simulate the conditions
of the EU OSOA and Yu et al. (1999a)α-pinene ozonoly-
sis experiments (see Table 2), with gas-to-aerosol conversion
represented by the absorptive partitioning code described
above in Sect. 2.2. Because this approach requires trans-
fer of organic material into a pre-existing condensed organic
phase, the simulations were initialized with a very small con-
centration (1 ng m−3) of organic aerosol. However, using the
partitioning coefficients estimated by the procedure given in
Sect. 2.2 (as shown for selected species in Table 1), negli-
gible concentrations of organic aerosol were generated. A
species-independent scaling factor was therefore applied to
Kp for all the partitioning species, which was manifested as
a reduction in the desorption rate coefficient,kout. Using a
factor of ca. 120, it was possible to obtain a reasonable sim-
ulation of the final experimental concentrations, as shown in
Figs. 3 and 4.

The magnitude of this adjustment indicates that either the
key parameters involved in the estimation ofKp values (e.g.
p◦

L) are subject to significant systematic error, or that the
aerosol formation process is not well represented simply by
the absorptive partitioning of the species generated in the
mechanism. Previous studies (e.g. Cocker et al., 2001; Ka-
mens and Jaoui, 2001) have reported similar discrepancies
between theoretical partitioning coefficients (based on esti-
mated vapour pressures), and apparent partitioning coeffi-
cients (based on observed aerosol formation), and it is prob-
able that this is due, at least in part, to the occurrence of
association reactions of organics in the aerosol phase (e.g.
Tobias and Ziemann, 2000; Kamens and Jaoui, 2001). For
example, Tobias and Ziemann (2000) reported the formation
of stable peroxyhemiacetals from the reactions of carbonyls
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Fig. 4. Yield of organic aerosol as a function of organic aerosol
mass duringα-pinene ozonolysis for the experimental conditions of
Yu et al. (1999a). Points are results from two experiments of Yu
et al. (1999a), as presented in Fig. 12a of their paper. Lines are
results of simulations using present mechanism. Dotted line repre-
sents the optimized results of simulations using absorptive partition-
ing of multiple products only (scaled as described in the text). Solid
line includes additional gas-to-aerosol transfer by acid chaperone
mechanism.

and hydroperoxides during the ozonolysis of 1-tetradecene:

ROOH+ R′C(=O)R′′
→ ROOC(OH)R′R′′ (R11)

As discussed below (Sect. 4.3), the simulated compo-
sition of the organic aerosol includes important contribu-
tions from multifunctional products containing carbonyl and
hydroperoxy groups, and association reactions of this and
similar types to form higher molecular weight, lower volatil-
ity species would have the apparent effect of stabilising the
precursor species in the condensed phase.

However, the results in Figs. 3 and 4 demonstrate that,
even with such effects notionally accounted for by a scal-
ing factor, the early stages of aerosol accumulation cannot
be represented by the absorptive partitioning of the products
generated in the mechanism. A similar effect was reported by
Kamens and Jaoui (2001), in simulation of their lower con-
centration experiment “8/12/99” (see Table 2), using a kinet-
ics code based on product absorptive partitioning. This short-
coming may be explained if species of much lower volatility
are generated by the gas phase processes, which therefore
have a much greater propensity to transfer to the condensed
phase than those represented in the mechanism. A number
of gas phase association reactions, forming high molecular
weight products, have been suggested in the literature and
therefore require consideration. In particular, the reactions
of stabilized Criegee biradicals with carbonyls to form sec-
ondary ozonides or with acids to formα-acyloxyalkyl hy-
droperoxides have been reported (e.g. Neeb et al., 1998; To-
bias and Ziemann, 2001; Bonn et al., 2002), and these species
certainly play an important role initiating SOA formation in
some systems:

RCHOO+ R′C(=O)H → RCHO3CHR′ (R12)
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Fig. 5. Comparison of maximum or quoted final SOA mass formed
in a number of reported studies ofα- andβ-pinene ozonolysis with
that calculated using the present mechanism. Squares: OSOAα-
pinene; Black circles: Yu et al. (1999a)α-pinene; Triangles: Ka-
mens et al. (1999) and Kamens and Jaoui (2001)α-pinene; Open
circles: Yu et al. (1999a)β-pinene; Diamond: Jaoui and Kamens
(2003)β-pinene.

RCHOO+ R′C(=O)OH → RCH(OOH)OC(=O)R′. (R13)

However, the formation of these species occurs in compe-
tition with the reaction of the Criegee biradicals with H2O
(Bonn et al., 2002), which is likely to dominate under the
majority of conditions employed in chamber experiments.
Specifically, the results of the OSOA experiments 04-10-00A
and 05-10-00A (Table 2) under nominally “dry” conditions
(ca. 60 ppm H2O) and at 45% relative humidity, respectively,
demonstrated no significant difference in the rate of accu-
mulation of aerosol mass, suggesting that reaction with H2O
probably dominates in both experiments. Reactions of type
(R12) and (R13) are therefore unlikely to account for the ob-
served initial accumulation of aerosol in the present system.

A further possibility involves the participation of bi- and
multifunctional acid dimers in the aerosol formation process.
Support for this has been provided by Hoffmann et al. (1998)
and Kückelmann et al. (2000), who observed the prompt
formation of homomolecular and heteromolecular dimers of
pinic acid, pinonic acid and other multifunctional acids from
α-pinene ozonolysis. The potential role of such species was
therefore considered using the simplified “acid chaperone”
representation described above in Sect. 2.2. The results of
simulations using this mechanism, in addition to the ab-
sorptive partitioning mechanism, are also shown in Figs. 3
and 4. Because the acid chaperone mechanism does not re-
quire a pre-existing condensed organic phase, these simula-
tions were initialized with a zero concentration of organic
aerosol. The operation of both mechanisms was found to
allow an improved representation of the time dependence of
organic aerosol formation, and the associated kinetics param-
eters (see Sect. 2.2) were optimized by least squares fitting to
the results of the OSOA and Yu et al. (1999a) experiments.
Although the chaperone mechanism does not include an ex-

plicit representation of dimers in the condensed phase, their
presence is also notionally accounted for by the empirical
scaling factor applied tokout, as described above.

A summary of the generic optimized parameters and
species-specific parameters for selected products is given in
Table 4. A comparison of the apparent partitioning coeffi-
cients, based on simulated gas and aerosol phase concentra-
tions at the ends of the experiments, and reported partition-
ing coefficients, based on corresponding observations (Yu
et al., 1999a; Kamens and Jaoui, 2001), indicates that the
values generated by the optimized code are entirely reason-
able. Logically, the temperature dependence parameters are
consistent with a greater propensity for aerosol formation at
lower temperatures. However, the best fit to the data sets was
obtained with the absorptive partitioning mechanism pos-
sessing a comparatively weak temperature dependence, but
with the “acid chaperone” mechanism being strongly tem-
perature dependent (see Table 4, note “d”). The optimized
desorption activation energies,Ea (which describe the tem-
perature dependence of the absorptive partitioning mecha-
nism) are therefore substantially lower than those reported
elsewhere (e.g. Kamens et al., 1999). However, the overall
temperature dependence for the multifunctional acids is also
influenced by the acid chaperone mechanism, such that their
apparent partitioning coefficients at the ends of the experi-
ments increase by an order of magnitude with a ten degree
decrease in temperature, as shown in Table 4.

The performance of the optimized mechanism was exam-
ined for a wider range of reagent concentrations and con-
ditions using the results of the complete series of experi-
ments summarized in Table 2, which encompass the approx-
imate temperature range 270–308 K, and the formation of
SOA concentrations up to 2650µg m−3. In addition, this se-
ries includes experiments with and without OH scavengers,
with and without inorganic seed aerosol, and covering a wide
range of relative humidity. Despite these variations, the
present code was found to provide an acceptable description
of all the experiments. In each case, the simulated time de-
pendence of the initial production of SOA was found to be
well represented. As shown in Fig. 5, the quantity of SOA
formed also compared well for a wide range of conditions,
although the code tends to overestimate aerosol production
by about 30% at the high end of the range.

The optimized mechanism was also used to simulate SOA
formation fromβ-pinene ozonolysis, for a range of condi-
tions. For example, Fig. 6 shows the simulated mass concen-
trations of SOA generated fromβ-pinene ozonolysis, com-
pared with those generated fromα-pinene ozonolysis, in the
presence of 2-butanol as an OH radical scavenger at 298 K.
The simulations predict thatβ-pinene generates smaller
quantities of SOA thanα-pinene when precursor concentra-
tions greater than about 40 ppb are removed through reaction
with ozone, which is broadly consistent with reported ob-
servations (e.g. Yu et al., 1999a; Jaoui and Kamens, 2003).
Accordingly, simulations of the actual conditions in these
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Table 4. Summary of optimized partitioning parameters and comparison with the literature for selected products ofα-pinene ozonolysis.

Ea /kJ mol−1a Kp (apparent)b/m3 µg−1 Kp (observed)b/m3 µg−1

Present results Yu et al. (1999a) Kamens and Jaoui (2001)

298 Kc,d 308 Kd,e 306–308 K 307 K
pinonaldehyde 7.2 1.8×10−4 1.6×10−4 1.2×10−3 5.6×10−5

C10 diols 9.9–11.3 (2.8–5.1)×10−4 – – –
hydroxypinonaldehydes 12.3–14.8 (1.3–3.9)×10−3 (1.2–3.2)×10−3 1.9×10−2 –
pinalic-3-acid 13.8 2.6×10−2 2.2×10−3 1.3×10−2 2.4×10−3

pinonic acid 14.5 3.4×10−2 2.8×10−3 3.0×10−2 1.3×10−3

pinic acid 20.0 3.1×10−1 2.4×10−2 2.8×10−2 –
10-hydroxypinonic acid 20.8 4.4×10−1 3.4×10−2 4.0×10−2 –

a Species-independent bout optimized simultaneously. Average optimizedβout=1.2×103 s−1, with actual value varying slightly with MWom
(see Sect. 2.2);
b calculated from simulated or observed values of Ca, Cg and Com, according to Eq. (iv);
c based on simulated final concentrations under conditions of OSOA experiment 04-10-00A with absorptive partitioning and acid chaperone
mechanisms operating;
d acid chaperone mechanism described by optimized value ofk′

5=1.5×10−32exp(14770/T) cm3 molecule−1 s−1 (see Sect. 2.2)
e based on simulated final concentrations under conditions of Yu et al. (1999a) experiment 6/9/98b with absorptive partitioning and acid
chaperone mechanisms operating.

reported studies produce quantities of SOA which are in rea-
sonable agreement with observations, as presented in Fig. 5.
When terpene concentrations lower than about 40 ppb are
removed by reaction with ozone, the simulations indicate
thatα- andβ-pinene generate comparable quantities of SOA
(Fig. 6), withβ-pinene being the slightly more efficient SOA
producer.

4.3 Simulated composition of SOA

Figure 7 shows a comparison of the SOA compositions re-
ported forα-pinene ozonolysis by Winterhalter et al. (2003)
and Yu et al. (1999a), with those simulated for the same
conditions. In each case, the simulated and observed com-
ponents are broadly correlated, with important contributions
being made by the multifunctional acids, pinic acid, pinalic-
3-acid, pinonic acid and 10-hydroxypinonic acid in both the
observations and the simulations. However, where compari-
son is possible, the simulations tend to overestimate slightly
the abundance of the components observed in the OSOA ex-
periments (Winterhalter et al., 2003), but underestimate those
observed in the experiments of Yu et al. (1999a). It is there-
fore difficult to implement changes to the mechanism, within
the framework described above, which can fully reconcile
these discrepancies.

As indicated above, it is probable that association reac-
tions occur in the condensed phase. In addition to enhanc-
ing gas-to-aerosol transfer of semivolatile species, such reac-
tions also modify the SOA composition and therefore need
to be considered in a model-observation comparison. Ta-
ble 5 lists a series of other species which are simulated to
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Fig. 6. Simulated mass concentration of SOA as a function of con-
centration of terpene removed by ozonolysis, for bothα- andβ-
pinene. This illustration performed for 298 K with 2-butanol as
an OH scavenger, and with sufficient H2O to scavenge stabilized
Criegee biradicals.

make notable contributions to the SOA mass. These are all
C8-C10 multifunctional compounds containing subset com-
binations of carbonyl (aldehyde and ketone), hydroperoxy,
acid and hydroxyl functional groups. The differences in the
simulated distributions under the two sets of experimental
conditions mainly result from the absence of an OH scav-
enger in the OSOA studies, and the use of 2-butanol to scav-
enge OH in the studies of Yu et al. (1999a). However, un-
der both sets of experimental conditions, important simulated
contributions are made by species containing either carbonyl
groups or hydroperoxy groups, or both. Under the OSOA ex-
perimental conditions, ca. 75% and 30% of the aerosol mass
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Table 5. Identities and simulated contributions of other significant speciesa and species classes to SOA mass for the conditions of the OSOA
and Yu et al. (1999a) experiments.

Species name or product class MCM name MW Contribution to SOA (mass %)

OSOA Yu et al. (1999a)
conditionsb conditionsc

3-(1-Hydroperoxy-1-methyl-ethyl)-5,6-dioxo-heptanal C108OOH 216 8.8 17.0
5-Hydroperoxy-4-hydroxymethyl-5-methyl-2-oxo-hexanoic acid C813OOH 206 5.5 5.7
1-(1-Hydroperoxy-3-hydroxymethyl-2,2-dimethyl-cyclobutyl)-2-hydroxy-ethanone C921OOH 204 3.9 10.9
3-Hydroxymethyl-2,2-dimethyl-cyclobutanecarboxylic acid C811OH 158 3.8 1.1
3-Formyl-2,2-dimethyl-cyclobutanecarboxylic acid C721CHO 156 2.6 0.5
3-(1-Hydroxy-1-methyl-ethyl)-5,6-dioxo-heptanal C108OH 200 2.5 0.3
1-(1-Hydroperoxy-3-hydroxymethyl-2,2-dimethyl-cyclobutyl)-ethanone C97OOH 188 2.3 6.8
6-Hydroperoxy-1-hydroxy-5-hydroxymethyl-6-methyl-heptane-2,3-dione C922OOH 220 2.3 0.9
6-Hydroperoxy-5-hydroxymethyl-6-methyl-heptane-2,3-dione C98OOH 204 2.0 0.8
5-Hydroxy-4-hydroxymethyl-5-methyl-2-oxo-hexanoic acid C813OH 190 1.8 0.1
1-Hydroperoxy-3-hydroxymethyl-2,2-dimethyl-cyclobutanecarboxylic acid C812OOH 190 1.5 6.8
1-Hydroxy-3-hydroxymethyl-2,2-dimethyl-cyclobutanecarboxylic acid C812OH 174 1.5 1.6
2,6,6-Trimethyl-bicyclo[3.1.1]heptane-2,3-diol APINBOHd 170 1.3 0.0d

(3-Acetyl-3-hydroperoxy-2,2-dimethyl-cyclobutyl)-acetaldehyde C107OOH 200 0.9 11.5
[2,2-Dimethyl-3-(2-oxo-ethyl)-cyclobutyl]-oxo-acetaldehyde C109CO 182 0.4 0.7
[3-(2-Hydroperoxy-acetyl)-2,2-dimethyl-cyclobutyl]-acetaldehyde C109OOH 200 0.1 1.8

Species containing carboxylic acid groups – – 67.0 43.5
Species containing carbonyl groups – – 74.9 76.4
Species containing aldehyde groups – – 35.1 42.1
Species containing ketone groups – – 58.3 72.0
Species containing hydroxy groups – – 43.3 45.9
Species containing hydroperoxy groups – – 28.1 63.3

a Species are simulated to be in the top 20 contributors;
b Based on conditions of OSOA experiments 04-10-00 and 05-10-00. Listed species and those identified in Fig. 7 account for ca. 92.5% of
simulated SOA mass;
c Based on conditions of Yu et al. (1999a) experiments 6/9/98a and 6/9/98b. Listed species and those identified in Fig. 7 account for ca. 97.5%
of simulated SOA mass;
d APINBOH is a C10 diol generated only from the OH-initiated chemistry, and therefore not produced when OH scavenger used.

is calculated to be composed of species containing carbonyl
groups and hydroperoxy groups, respectively. For the Yu et
al. (1999a) conditions, the corresponding contributions are
calculated to be ca. 75% and 65%, the much higher hydroper-
oxide contribution resulting from the elevated [HO2]/[RO2]
when 2-butanol is used as an OH scavenger (see Table 3).
The carbonyl compounds may contain more than one car-
bonyl group, and respective contributions of ca. 35% and
40% to the aerosol mass, are calculated to be made by species
specifically containing aldehyde groups, under the OSOA
and Yu et al. (1999a) experimental conditions.

The reactions of carbonyls with hydroperoxides to form an
array of involatile, multifunctional peroxyhemiacetals (Re-
action 11) are therefore clearly of potential importance. Any
subsequent decomposition of the peroxyhemiacetals (within
the course of the experiments or during analysis of the
aerosol) may either regenerate the carbonyl and hydroperox-
ide precursors or possibly produce alternative products. By

analogy with the mechanism of the Baeyer-Villiger oxidation
of carbonyls by peracids, rearrangement and decomposition
of a peroxyhemiacetal intermediate may potentially produce
alcohol and ester products (from ketones), or alcohol and
acid products (from aldehydes):

ROOC(OH)R′R′′
→ ROH+ R′C(=O)OR′′. (R14)

The resultant oxidation of condensed phase carbonyl-
containing compounds by hydroperoxide-containing com-
pounds therefore provides possible additional mechanisms
by which some of the experimentally observed SOA com-
ponents (and other products) may be generated, and this may
partially explain the discrepancies between the observed and
simulated compositions, particularly for the conditions of the
Yu et al. (1999a) experiments at elevated [HO2]/[RO2]. For
example, this type of mechanism could result in the con-
densed phase oxidation of pinonaldehyde to pinonic acid,
hydroxypinonaldehydes to hydroxypinonic acid isomers, and
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Fig. 7. Comparison of abundance of simulated and observed aerosol
components:(a) Simulated abundances based on OSOA experi-
ments 04-10-00 and 05-10-00. Observed abundances based on av-
erage of the results of these experiments and one additional experi-
ment, as reported by Winterhalter et al. (2003);(b) Based on Yu et
al. (1999a) experiments 6/9/98a and 6/9/98b. N.B. Neither experi-
mental study distinguishes pinalic-3-acid from its isomers, pinalic-
4-acid and norpinonic acid. The present study only simulates no-
table formation of pinalic-3-acid, and this is therefore compared
with the isomer total reported in the experimental studies.

pinalic-3-acid (or pinalic-4-acid) to pinic acid, with the reac-
tion occurring at the aldehyde group in each case. Alterna-
tively, reaction at the ketone group in ketoacids could gener-
ate acidic ester products, of the type reported by Warscheid
and Hoffmann (2002).

Simulations were also performed with much higher ini-
tial α-pinene and ozone concentrations, in the absence of
an OH scavenger, to be more representative of the experi-
mental conditions mainly employed by Kamens et al. (1999)
and Kamens and Jaoui (2001). Important contributions from
the bi- and multifunctional acids, and many of the species in
Table 5, were once again apparent. However, a number of
the more volatile species, which are produced in reasonably
high yield by the gas phase chemistry (e.g. pinonaldehyde
and the C10 diols: Table 3), were found to make much more
significant contributions in the presence of the higher SOA
mass concentrations (i.e. ca. 2500µg m−3). This is fully in
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Fig. 8. Simulated variation of aerosol yield (mass concentration of
aerosol per unit mass concentration of terpene removed) with mass
concentration of organic aerosol at 298 K. Simulations performed
for no OH scavenger (solid black line), 2-butanol scavenger (broken
line) and cyclohexane scavenger (grey line). Simulations assume
sufficient H2O is present to scavenge stabilized Criegee biradicals.

accord with the expected effect of the absorptive partition-
ing mechanism under these conditions, and the results are in
broad agreement with the corresponding compositional ob-
servations of Jang and Kamens (1999).

The simulated composition of SOA from the ozonolysis
of β-pinene, for the conditions of the Yu et al. (1999a) ex-
periments (see Table 2), was found to have major contri-
butions from pinic acid and pinalic-3-acid, which collec-
tively accounted for ca. 60% of the simulated aerosol mass.
This is in reasonable agreement with that reported. Notable
simulated contributions were also made by hydroperoxy-
substituted carboxylic acids, such as 3-hydroperoxymethyl-
2,2-dimethyl-cyclobutane carboxylic acid, and the hydroxy-
substituted analogues (e.g. C811OH in Table 5). Jaoui and
Kamens (2003) also report significant contributions from
pinic acid and pinalic-3-acid at higher reagent concentra-
tions in the absence of an OH scavenger, and also from more
volatile products such as nopinone and hydroxynopinone iso-
mers. Calculations with the present mechanism under these
conditions also predict larger contributions from the more
volatile species in the presence of higher SOA mass concen-
trations.
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Fig. 9. Simulated variation of aerosol yield (mass concentration of
aerosol per unit mass concentration of terpene removed) with mass
concentration of organic aerosol, as a function of temperature. This
illustration performed with cyclohexane as an OH scavenger, and
with sufficient H2O to scavenge stabilized Criegee biradicals.

4.4 Simulated SOA yields

The above comparisons provide some support for the present
mechanism, and its ability to recreate the quantity and com-
position of SOA generated fromα- andβ-pinene ozonolysis
for a range of conditions. Figures 8 and 9 show correspond-
ing calculated yields of SOA as a function of organic aerosol
mass concentration. The results in Fig. 8 suggest that the
SOA yield depends on whether an OH scavenger is present,
and on its identity. In the case ofα-pinene, lower yields are
calculated in the absence of an OH scavenger, because more
than 40% of the terpene is removed by reaction with OH,
which generally produces higher volatility products than the
ozonolysis reaction. The calculated yields in the presence
of the scavengers are comparable, with the 2-butanol system
showing slightly reduced yields compared with cyclohex-
ane at aerosol mass concentrations below ca. 150µg m−3.
This difference relates to the influence of [HO2]/[RO2] on
the product distribution. Because the formation of the least
volatile products generally relies on mechanisms propagated
by the permutation reactions of RO2 radicals, the elevation
of [HO2]/[RO2] when 2-butanol is used as a scavenger leads
to a slight reduction in their yields (Table 3), and therefore a
modest reduction in the SOA yield.

The results calculated forβ-pinene (Fig. 8) may be ex-
plained by the same effects, although the magnitude of these
effects is different from theα-pinene system. Once again,
the absence of an OH scavenger has a lowering effect on the
yield, but this is not as great as forα-pinene because only
about 25% ofβ-pinene is removed by reaction with OH un-
der these conditions, owing to the smaller OH radical yield
from the ozonolysis reaction. In the presence of cyclohex-
ane, the calculated SOA yields are therefore greater than in
the absence of an OH scavenger. However, the use of 2-
butanol as an OH scavenger results in a lowering of the cal-
culated yields, such that the values are similar to or slightly
lower than those in the absence of a scavenger. This is a con-
sequence of increased [HO2]/[RO2] under conditions when
the system is more sensitive to the change (see Sect. 4.1).
As shown in Table 3, the use of 2-butanol as a scavenger,
compared with cyclohexane, has a much more marked ef-
fect on the yields of products such as pinic acid and pinalic-
3-acid fromβ-pinene, than it does in theα-pinene system.
The current simulations therefore recreate the general effects
of using different OH scavengers on SOA production from
β-pinene ozonolysis, as reported and discussed recently by
Docherty and Ziemann (2003).

Very recently, Keywood et al. (2004) have demonstrated
that SOA formation during the ozonolysis of cyclohexene is
also sensitive to whether cyclohexane or 2-butanol is used as
an OH radical scavenger. In contrast to the observations of
Docherty and Ziemann (2003) forβ-pinene, SOA formation
for cyclohexene was found to be greater in the presence of 2-
butanol, with the implication that larger [HO2]/[RO2] ratios
might generally increase SOA formation from endocyclic
alkenes, and decrease it from exocyclic alkenes. Although
the present calculations forα- andβ-pinene display distinct
differences in their responses to the identity of the OH radical
scavenger (Fig. 8), the insensitivity calculated forα-pinene
also differs notably from the increased SOA formation in the
presence of 2-butanol observed for cyclohexene (Keywood
et al., 2004). It is not clear in advance whether a mechanism
constructed for cyclohexene using the same MCM method-
ology as that used here forα-pinene would yield similar cal-
culated results. This is because there are key differences in
the structural features of the two endocyclic alkenes which
influence the degradation mechanism and, possibly, the re-
sponse to using different OH scavengers. As described in
more detail in the discussion paper comment (Jenkin, 2004),
these relate to the fact thatα-pinene is bicyclic and contains
an alkyl substitution on the double bond.

The results in Fig. 9 show the calculated temperature de-
pendence of the SOA yield, which reflects the optimized
dependences assigned to the acid chaperone and absorptive
partitioning mechanisms, as described in Sect. 4.2. In both
systems, therefore, the temperature dependence is strongest
at small mass concentrations of organic aerosol, when SOA
composition is dominated by multifunctional acids, and the
acid chaperone mechanism makes an important contribution
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to calculated SOA formation. The results may therefore be
compared and contrasted with the temperature-dependence
calculations of Sheehan and Bowman (2001), which were
carried out using purely absorptive partitioning theory.

5 Summary and conclusions

The formation and detailed composition of SOA from the
gas phase ozonolysis ofα- and β-pinene has been simu-
lated using MCM v3, coupled with a representation of gas-
to-aerosol transfer of semivolatile and involatile oxygenated
products. A kinetics representation, based on equilibrium
absorptive partitioning of ca. 200 semivolatile products, has
been found to provide a reasonable framework for the de-
scription of SOA accumulation under conditions where at
least several tens ofµg m−3 are present, provided partition-
ing coefficients are increased by about two orders of magni-
tude over those defined on the basis of estimated vapour pres-
sures. This may indicate a systematic overestimation of prod-
uct vapour pressures, but is also likely to result from the ef-
fect of condensed phase association reactions of the partition-
ing products which are not explicitly represented. These may
include the reactions of carbonyl-containing products with
hydroperoxide-containing products to form peroxyhemiac-
etals, and the association of acids in the form of dimers.

The inclusion of a simplified representation of the gas
phase formation of involatile homomolecular and hetero-
molecular dimers of 22 bi- and multifunctional carboxylic
acids, and their transfer to the condensed phase, also al-
lowed the initial stages of SOA formation to be well de-
scribed. Without this additional mechanism, the simulated
onset of SOA accumulation was significantly delayed, and
SOA yields at low mass concentrations were substantially
lower than those observed.

The composition of SOA, simulated with the optimized
mechanism, successfully recreates certain features of the
product distributions observed in experimental studies of
α- and β-pinene ozonolysis. This includes major contri-
butions from a number of multifunctional acid products,
and increasing contributions from more volatile species (e.g.
pinonaldehyde and nopinone) with increasing aerosol mass.
However, the simulations also imply an important role for
unobserved multifunctional products containing hydroper-
oxy groups, particularly under experimental conditions in
which 2-butanol is used to scavenge OH radicals (i.e. when
[HO2]/[RO2] is elevated). Such products potentially undergo
stabilizing association reactions with carbonyls to form per-
oxyhemiacetals. It is also possible that any subsequent de-
composition of the peroxyhemiacetals (within the course of
the experiments or during analysis of the aerosol) may mod-
ify SOA composition by producing alternative products such
as an acid and an alcohol (if the carbonyl is an aldehyde) or
an ester and an alcohol (if the carbonyl is a ketone).
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