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Abstract. This paper presents a procedure for performing
and optimizing inversions for DOAS tomography and its ap-
plication to measurement data. DOAS tomography is a new
technique to determine 2- and 3-dimensional concentration
fields of air pollutants or other trace gases by combining dif-
ferential optical absorption spectroscopy (DOAS) with tomo-
graphic inversion techniques. Due to the limited amount of
measured data, the resulting concentration fields are sensitive
to the inversion process. Therefore detailed error estimations
are needed to determine the quality of the reconstruction. In
this paper we compare different row acting methods for the
inversion, present a procedure for optimizing the parameters
of the reconstruction process and propose a way to estimate
the error-fields by numerical studies. The procedure was ap-
plied to data from the motorway emission campaign BAB II.
Two dimensional NO2 cross sections at right angles to the
motorway could be reconstructed qualitatively well at differ-
ent meteorological situations. Additionally we present error
fields for the reconstructions which show the problems and
skills of the used measurement setup. Numerical studies on
an improved setup for future motorway campaigns show, that
DOAS tomography is able to produce high quality concentra-
tion maps.

1 Introduction

The measurement of trace gas concentration distributions in
the atmosphere is an important tool for quantifying atmo-
spheric emissions, chemistry and transport. It can contribute
to the validation of chemical transport models (CTM), the
improvement of emission inventories or for emission moni-
toring (e.g. leakages in industrial installations).

Correspondence to:T. Laepple
(thomas.laepple@iup.uni-heidelberg.de)

1.1 Tomography for mapping trace gas distributions

Two and three dimensional concentration distributions of
trace gases can be obtained by combining path-integrating
measurement techniques along a large number of light paths
with tomographical inversion techniques. In comparison
point sampling techniques can only give local details of the
concentration maps and conclusions to larger scales may
be falsified by small scale fluctuations. Tomographic line-
integrating measurement techniques for trace gases were pro-
posed by Wolfe (1980) and first indoor measurements were
realized by Yost et al. (1994) using open-path Fourier in-
frared absorption spectroscopy. Since then there have been
improvements in speed and spatial resolution (e.g. Drescher
et al., 1996; Fischer et al., 2001), but to our knowledge all ex-
periments have been restricted to the laboratory environment
so far.

1.2 DOAS tomography

Differential optical absorption spectroscopy (DOAS) (e.g.
Platt, 1994; Perner et al., 1976) is a path-integrating mea-
surement technique for trace gases like ozone, nitrogen ox-
ides, SO2, halogen oxides (BrO, IO, OClO) and many hydro-
carbons. In a typical so-called long-path (LP) setup a beam
of white light, emitted by a telescope, travels through the at-
mosphere to a retro-reflector and back to the telescope. Ab-
sorption patterns in the recaptured light allow to determine
the column density (the integrated concentration) of the trace
gases along the light path. One advantage of DOAS is the
simultaneous measurement of several trace gases (e.g. NO2,
SO2, HCHO, HONO, and ozone in the UV region between
280 and 380 nm) which allows detailed direct conclusions
on the air chemistry. LP-DOAS was already used to produce
one-dimensional trace gas profiles by placing retroreflectors
on balloons (e.g. Veitel et al., 2002) or on a mountain at dif-
ferent heights (Platt, 1978). First outdoor DOAS tomography
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experiments were carried out during the motorway campaign
BAB II in 2001, which was organised by Fiedler et al. (2001).
More details are given by Pundt et al. (2004), Knab (2003)
and in Sect. 2.

In comparison to other tomographic applications like in
medicine, DOAS-tomography has only a very limited num-
ber (10–100) of well known light paths. Therefore the recon-
struction technique is not time critical but attention has to be
paid on the a-priori information added to the ill-posed prob-
lem, implicitly by the algorithm or explicitly by the selected
parameters. This requires extensive studies on the reliability
of the reconstructed concentration fields. These studies are a
main subject of this paper.

1.3 Overview over inversion techniques

Due to the limited amount of data in DOAS-tomography a
discretization is needed which describes the concentration
field by a finite number of parameters accepting losses in ac-
curacy.

Drescher et al. (1996) proposed an inversion algo-
rithm called smooth basis function minimization technique
(SBFM) for the reconstruction of indoor trace gas measure-
ments. The concentration field is parameterized nonlinearly
as a sum of several Gaussians with some free parameters. A
global optimization algorithm is used to determine the set of
parameters fitting the measurement data best. While SBFM
is reported to be suitable for indoor measurements examining
the mixing of trace gas from located sources (Fischer et al.,
2001), it could not be applied successfully in our case of a
motorway exhaust plume. The plume shapes for the motor-
way campaign estimated by a chemical transport model (D.
Bäumer, personal communication) could not be described by
Gaussians with a number of parameters determinable by the
measurement data. Sharp concentration slopes are appear-
ing near emission sources, if the wind is blowing from one
specific direction. This is not the case in indoor situations.
Other parameterizations for the use at the motorway situation
involved an unquantifiable amount of a priori information.
One main problem is the difficulty to determine the quality
of the reconstruction due to the nonlinearity of the inversion
and the long computation time for the global optimization (in
the order of hours for our problem size) which does not allow
extensive numerical sensitivity studies.

The more common approach is to discretize the contin-
uous concentration field by a linear combination of a finite
number of basis functions. The advantage of this linear ap-
proach is that the resulting discrete linear inversion problem
is better to handle and does not require the knowledge of
the algebraic form of the concentration field. (The nonlinear
approach SBFM only works well if the concentration field
can be described by superposition of few Gaussians). There-
fore we use the linear approach. In the literature many meth-
ods can be found to solve this linear inversion problem (e.g.
Groetsch, 1993).

In environmental science a popular class of methods are
iterative row-acting-methods (RAM). They were often used
to deal with large size problems because they only act on
the rows of a matrix and save memory space. Their simplic-
ity and their good regularization and smoothing characteris-
tics still makes them interesting and they are successfully ap-
plied on tomographic problems (e.g. Kak and Slanley, 1988).
In environmental sciences, Ziemann et al. (2001) use the si-
multaneous iterative reconstruction technique (SIRT) a mem-
ber of this algorithm class in acoustic tomography for deter-
mining small scale land surface characteristics. Todd and
Ramachandran (1994) use row acting methods for numeri-
cal studies on FTIR-tomography. The disadvantage of these
techniques is that the a priori information which is always
needed to solve the ill-posed inversion problem is not added
explicitly but is included in the nature of the algorithm, the
first guess and the number of iterations.

There are inversion techniques which include the a pri-
ori information explicitly. Application of a statistical ap-
proach to atmospheric remote sensing can be found in
Rodgers (2000). A constrained optimization method – where
a smoothness function is used as quadratic constraint – is
used successfully by Fehmers et al. (1998) in the field of the
tomography of the ionosphere. If good a priori information
is available these inversion techniques are useful to include
such information. Further work has to be done to investigate
these techniques and to investigate which a priori informa-
tion can be integrated depending on the problem.

Due to their regular use in tomographic problems similar
to our problem we decided to use row acting methods as a
starting point for the new tomographic DOAS technique and
the study described here. First we describe the discretiza-
tion process and discuss different basis functions and differ-
ent row acting methods in Sect. 3. In contrast to other studies
we try to investigate the complete characteristics of the cho-
sen RAM’s by numerical studies in Sect. 5 and choose the
best parameter set for our reconstruction. In Sect. 6 we apply
this optimized algorithm on the motorway data.

Independent of the inversion technique it is important to
quantify the quality of reconstructions. To our knowledge the
absolute reconstruction error has not yet been estimated in to-
mographic applications in atmospheric sciences. Drescher et
al. (1997) compared reconstructed concentration fields with
real point measurements. Todd and Ramachandran (1994)
performed numerical experiments judging the reconstruction
quality by some quality criteria, but only considering concen-
tration fields constructed as sum of several randomly located
Gaussians and ignoring the errors caused by the discretiza-
tion. Price et al. (2001) mentioned errors due to measuring
the light paths sequentially but did not quantify them.

In Sect. 4 we analyse the types of occuring errors and es-
timate them in Sect. 6 for the motorway campaign. For fur-
ther reduction of uncertainties in the results of the motorway
campaign we propose in Sect. 6.6 an improved measurement
setup for future campaigns.
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Fig. 1. DOAS tomography setups for the measurements of cross sections of vehicle exhaust gas plumes at right angles to the motorway.
Setup(a) was used during the motorway campaign BAB II. Two DOAS telescopes were placed on opposite sides of the motorway. 4 retro-
reflectors were mounted on two cranes in about 800 m distance. With the stepping technique 16 lightbeams were realized, 8 crossing and 8
going parallel to the carriageway. The enhanced setup(b), desribed in Sect. 6.7, consists of 4 telescopes and 9 retroreflectors. It is able to
measure the cross sections with much better accuracy. For better clarity only the lightbeams of the telescopes on the left hand side are drawn
in completely.

2 DOAS tomography measurements at a motorway

During the field campaign BAB II (Experimental determina-
tion of emissions from motor vehicle traffic on motorways
and comparison to calculated emissions) at the motorway
A 656 in Germany , organized by the Institute for Meteo-
rology and Climate Research (IMK) of the Forschungszen-
trum Karlsruhe, first Longpath DOAS tomography measure-
ments took place in April, May 2001. It was the first path-
integrating tomographic 2-D outdoor measurement of trace
gases. For details on the campaign please refer to Fiedler
et al. (2001). The DOAS tomography measurements are de-
scribed by Knab (2003) and Pundt et al. (2004).

A setup of 16 light paths was realized by using two con-
ventional long-path DOAS systems and directing them suc-
cessively towards eight retro-reflector arrays. The environ-
mental conditions for the time period studied here were cho-
sen deliberately: During that time there were both, a rela-
tively continuous vehicle flux and undisturbed air crossing
the motorway. Thus the situation was assumed to be homo-
geneous in the direction of the carriageway and a concentra-
tion cross section at right angles to the motorway could be
derived. The measurement setup is shown on the left part of
Fig. 1.

The motorway induced turbulences and chemical transfor-
mations at the measurement site which had been examined
by Vogel et al. (2000) and B̈aumer (2003) with the mesoscale
chemistry transport model system KAMM/ DRAIS. A NO2
concentration field generated with this model (D. Bäumer,
personal communication) was used for numerical experi-
ments in this study and will, in the following, just be referred
to as CTM BAB II plume (see Fig. 4a).

3 Tomography

The distribution of a trace gas in the atmosphere is usually
described as a continuous concentration fieldc(r). Assum-
ing the concentration field is known, a DOAS measurement
along a light path LPi gives the data (slant column density)

di =

∫
LPi

drc(r). (1)

This is the forward model and is well known in our case.
The unit of the data used here is ppb∗m which corresponds
to the integrated concentration over the light path.

3.1 Discretization

A model is needed which describes the continuous concen-
tration field with a finite number of parameters. We will
call this a discrete state model. If there are m lightbeams
resulting in m values of measurement datad1 to dm, they are
assembled to a data vectord and the n parameterss1 to sn de-
scribing the state model concentration field in a state vector
s.

Data vectord = (d1, d2, ..., dm)t ∈ D (2)

State vectors = (s1, s2, ..., sn)
t
∈ S (3)

The according vector spaces are called data (vector) space
D and state (vector) spaceS. A discrete state model can be
realized by a family of n basis functions(bj )j∈{1..n}. Then
the model concentration fieldc(s, r) is a linear combination
of the basis functionsbj (r) with the state vector components
sj as coefficients.

c(s, r) =
∑

sjbj (r) = s · b(r) (4)

www.atmos-chem-phys.org/acp/4/1323/ Atmos. Chem. Phys., 4, 1323–1342, 2004
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Fig. 2. Discretization models. The upper two subfigures show a 1-dimensional cross section of a concentration field. In the case of the box
model(a) the real concentration field (blue) is approximated by a step function (green), which is constant within each box. For the bilinear
interpolation model(b) the basis functions (red) are pyramid shaped. They have a peak of height one above the affiliated lattice point and
reach zero at the neighboring lattice points. The resulting model function (green) is continuous and interpolates the values at the lattice points
linearly. In subfigures(c), (d) and(e) the discrete modeling of a continuous 2-D function is visualized in color contour plots: A continuous
concentration field (c), its best approximation with the 5×4 box model (d) and the 5×4 bilinear interpolation model (e).

The basis functions have to be linearly independent. Then
for each continuous concentration fieldc(r) a unique state
vector s exists that minimizes the misfit‖c(r)−s · r ‖. In
the following we assume the concentration to be invariant of
the z-axis. This refers to the reconstruction of 2-dimensional
cross sections of 3-dimensional trace gas fields. We investi-
gate two kinds of discrete state models: the box model and
the bilinear interpolation model.

3.1.1 Box model

For the box or pixel model (e.g. Kak and Slanley, 1988) the
area of interest is divided into (usually rectangular) boxes.
Each box corresponds to a basis function

bj (r) =
{

1 if r ∈ box j
0 else

(5)

The model concentration fields thus are step functions which
are constant within the boxes.

c(s, r) =


s1 if r in box 1
s2 if r in box 2
.

.

(6)

Here the state vector components are the model concentra-
tions of the different boxes. Figure 2a shows a representation
of a one-dimensional model field by such box functions. The
concentration fieldc(r) is approximated best, if the height of
the stepsj is the average concentration in the referring box:
sj=〈c(r)〉boxj

.

3.1.2 Bilinear interpolation model

For the bilinear interpolation model (e.g. Ingesson et al.,
1998) a point lattice is laid over the area of interest. Each

Atmos. Chem. Phys., 4, 1323–1342, 2004 www.atmos-chem-phys.org/acp/4/1323/
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lattice pointr j =(xj ,yj ) refers to a bilinear basis functionbj :

bj = txj (x)tyj (y)

txj =

{
1− 1

1x

∣∣x − xj

∣∣ if
∣∣x − xj

∣∣ ≤ 1x

0 else

tyj = analog,

(7)

where1x is the lattice width in x-direction. The basis func-
tions are pyramid-shaped and have a peak of height 1 above
the affiliated lattice point. The value of the modeled concen-
tration field at the lattice points is given by the components
of the state vector

c(s, r j ) = sj for all lattice points r j . (8)

At the other points the model field is determined by bilin-
ear interpolation of the values at the four neighboring lat-
tice points. Figure 2b shows a representation of a one-
dimensional model field by such bilinear basis functions.

Due to the continuity of the bilinear basis function they
can describe a continuous concentration field better than the
discontinuous box-basis functions. Therefore they are more
appropriate in our case. In Fig. 2c and e, this is demonstrated
by modeling a test concentration field using the two types
of basis functions. The advantage of bilinear basis functions
will also be confirmed in Sect. 5, where we compare the re-
construction quality, using the box and the bilinear represen-
tation in turns.

3.1.3 Resolution of the discretization

The state model has to describe the real concentration field as
accurately as possible with a small number of basis functions
n.

If the chosen resolution is not fine enough (too small di-
mension of the state vector) the difference between the con-
tinuous concentration field and the best discrete approxima-
tion leads to errors due to the discretization, so-called “dis-
cretization errors” in the reconstruction. If the resolution is
too fine, the problem gets highly underdetermined and more
a priori information is needed to solve the inversion problem.
(A further discussion of these errors can be found in Sect. 4.)
The best resolution is dependent on the information content
of the measurements and the a-priori information available
and will be determined in numerical studies in Sect. 5.

3.2 Discrete linear inverse problem

Approximating the real concentration field by the model
field, the forward model (1) becomesd=Fs with forward
matrix:

fij=

∫
LPi

drbj (r) (9)

In the case of the box model the entryfij of the forward
matrix corresponds to the length of light path i through box
j. The problem of solving Eq. (9) for a given data vectord is
a discrete linear inverse problem.

This problem is in general ill-posed: If Eq. (9) is over- or
mixed-determined no exact solution exists, but only an ap-
proximate solution. If Eq. (9) is mixed- or under-determined
the solution is not unique. If the condition number (e.g. the
ratio of largest to smallest singular value of the matrix) of F
is large, the solution is not stable, i.e. it is sensitive to small
errors in the data.

The first problem can be overcome by using the approx-
imate minimum misfit solution (least squares solution) as
physical solution. The latter two problems can only be reme-
died by adding additional a priori information, e.g. the infor-
mation, that the concentration field either is positive allover
or that it fulfills certain smoothness conditions. Often the
minimum norm solution is demanded, but the a priori infor-
mation to favor the state with the smallest norm is physi-
cally not reasonable in our case. The approximate minimum
norm minimum misfit solution is also known as generalized
inverse, and can be calculated by singular value composition
(SVD) (e.g. Groetsch, 1993).

To take the measurement error on the data into account,
a weighting matrixW can be introduced which is the in-
verse of the covariance matrix. If the noise on the data can
be assumed to be uncorrelatedW is given by the elements
Wii=1/ε2

i . The weighting is applied by the substitution:

∼

d←→W1/2d,
∼

F←→W1/2F and
∼
s←→ s (10)

This is assumed to be already done in the following discus-
sion.

3.3 Row acting methods

As mentioned in the introduction we use row acting meth-
ods (RAM) in this study to solve the discrete linear inverse
problem.

RAM are a class of iterative algorithms to solve linear sys-
tems of equations – especially tomographic discrete linear in-
verse problems. The common names of row acting methods
like Algebraic Reconstruction Technique (ART) (Herman et
al., 1973) combine an inversion technique (i.e. the technique
for solving the system of Eq. 9) with a special discretization
model (e.g. box, bilinear). As we want to use the algorithm
independently from the discretization model, we use the sep-
arate names “ClassicalName-like” to allow a better compari-
son. (Our “ART-like” algorithm for example is the algorithm
ART from the literature but independent of the discretization
model.)

3.3.1 The ART-like method

The sequential iterative projection method or Kaczmarz
method (Kaczmarz, 1937) was firstly used in tomography

www.atmos-chem-phys.org/acp/4/1323/ Atmos. Chem. Phys., 4, 1323–1342, 2004
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Fig. 3. Row acting methods (RAM) graphically. Each data point di refers to a hyperplane in state space (red lines). If an exact solution
exists, it must lie on all these hyperplanes. Here the inverse problem is over-determined, and there is no exact solution (there is no intersection
for all three hyperplanes). Starting point is the initial guess s(0). For the sequential RAM(a) the actual guess is iteratively projected onto
one hyperplane after another. Because of the over-determination the iteration sequence (s(j)) (green) oscillates cyclically convergent in the
neighborhood of the intersections of the hyperplanes. For the simultaneous RAM(b) the hypothetical changes due to projections onto all
hyperplanes (pink vectors) are gathered first. Then their average (green vector) is added to the actual guess. Here the state vector sequence
(s(j)) approaches the real state slowly but consequently.

in combination with box basis functions under the name al-
gebraic reconstruction technique. It is based on the follow-
ing idea: Each rowfi · s=di of matrix Eq. (9) refers to one
data-point and fixes a (n-1) dimensional hyperplane in a n-
dimensional state space, on which any existing solution must
lie. This is shown graphically in Fig. 3a for one dimensional
hyperplanes in a two dimensional space. If a solution exists,
it is thus situated on the intersection of all n hyperplanes.
The algorithm starts with an initial guesss(0). The solution
is determined by iteratively projecting the actual guess onto
a hyperplane and taking the result as new actual guess.

s(k+1)
= s(k)

+ α(
di

‖ fi‖
− s(k) fi

‖ fi‖
)

fi
‖ fi‖

, (11)

where i=(k mod m)+1.
Here k is the iteration number and i is the number of the

hyperplane onto whichs(k) is projected in the actual iteration
step. The damping parameterα is 1 for the basis algorithm.
The optimal termination of the iteration can be determined in
numerical experiments.

If a unique solution exists, the iteration sequence
(
s(k)

)
k∈N

converges to this solution. If the system of equations is un-
derdetermined,

(
s(k)

)
converges to the solution closest to the

initial guess in the sense of the Euclidian vector norm. If
the system of equations is mixed- or over-determined and
the data vector is “noisy”, generally no solution exists. Then
ART is cyclically convergent, i.e. after a lot of iteration the
sequence

(
s(k)

)
follows to a fixed closed trajectory of period

m (e.g. Censor et al., 1983). In Fig. 3a this is the case be-
cause this example is overdetermined and has no exact so-
lution (three hyperplanes in a two dimensional state space).

In such cases a better convergence can be obtained by us-
ing a damping parameterα decreasing from 1 to 0 in the
course of the iteration. If the concentration field is zero at
some locations, the convergence can be ameliorated, by set-
ting negative values back to zero in each pass. For the mo-
torway situation it would not have made any sense to use this
technique . The row acting methods looked at here are im-
plicitly smoothing the solution if the iteration is terminated
prematurely. An optimum iteration number can be found by
surveying the Iteration process by eye, by guessing roughly
or as done in this study by numerical experiments.

3.3.2 The SIRT-like method

The combination of the simultaneous iterative projection
method and a box discretization model is known as simul-
taneous iterative reconstruction technique (SIRT) (Kak and
Slanley, 1988).

This method differs from the sequential iterative projec-
tion method, by the fact that the correction of a state due to
the projection is not immediately applied. Instead, before
making any changes to s all m equations are gone through
calculating the hypothetical change due to the projection onto
the hyperplane. At the end of one pass the average over all
these hypothetical changes is taken and applied to the state
vector:

s(k+1)
= s(k)

+
α

m

∑m

i=1
(

di

‖fi‖
− s(k)

·
fi
‖fi‖

)
fi
‖fi‖

(12)

Increasing the iteration number k by 1 in this case signifies a
whole pass through all equations. The state vector sequence
converges to a minimum-misfit-solution closest to the initial

Atmos. Chem. Phys., 4, 1323–1342, 2004 www.atmos-chem-phys.org/acp/4/1323/
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guess (Van der Sluis and van der Vorst, 1987). This is shown
in Fig. 3b which is based on the same equation system as in
Fig. 3a but with the SIRT algorithm. The three hypothetical
changes for the first step are explicitly plotted. For the other
steps only the applied change to the state vector are shown. In
contrast to Fig. 3a, the state vector converges to the minimum
misfit solution.

3.3.3 The SART-like inversion method

Another modification is an algorithm known – in combina-
tion with bilinear basis functions – as simultaneous algebraic
reconstruction projection method (SART)(Kak and Slanley,
1988).

The projections applied simultaneously as in the simul-
taneous iterative projection method, but the weights of the
corrections are different.

s(k+1)
j = s(k)

j +
1∑m

i=1 fij

m∑
i=1

(di − s(k)
· fi)fij∑n

α=1 fiα

(13)

Here the iteration sequence converges to a minimizer of a
weighted least square functional from any initial guess (Jiang
and Wang, 2001). The convergence is faster than that of the
SIRT-like inversion method. In DOAS-tomography applica-
tions (state vector size 10–100) the computation time for the
row acting methods is about 1000–10 000 iterations per sec-
ond on a 1 GHZ Pentium processor. Therefore the conver-
gence speed is not important for our applications.

4 Error estimation

The reconstruction error field1c(r) is the difference be-
tween the concentration field reconstructed by a DOAS-
tomography measurementcrec(r) and the real concentration
field creal(r).

1c(r) = creal(r)− crec(r) (14)

For simplicity we will also call continuous test-fieldscreal(r)
which are used in numerical studies.

In this section we describe the sources of the reconstruc-
tion error and a way to estimate them. The practical pro-
cedures for optimizing the reconstruction process with re-
spect to a low reconstruction error and for estimating the er-
ror for the motorway campaign are presented in the referring
Sects. 5 and 6.

4.1 Sources of the reconstruction error

The reconstruction error has four causes:

1. the measurement error,

2. the discretization error in the data,

3. the discretization error in the state,

4. the inversion error.

For a better understanding we introduce the following oper-
ator notation:

– D Discretization operator; maps a concentration field
c(r) to the best approximation state vectors=Dc(r).

– D† Continuization’ operator; leads from the state vector
s to the affiliated concentration fieldc(s, r)=D†s.

– F Forward operator; forward models data from the dis-
crete state vectord=Fs (see Eq. 9) .

– G Continuous forward operator; forward models data
from a continuous concentration fieldd=Gc(r) (see
Eq. 1).

– F† Inversion Operator; describes the application of the
inversion method to the datas=F†d.

The “continuization” operatorD† is a pseudo-inverse to the
discretization operatorD. The inversion operatorF† is
pseudo-inverse to the discrete forward modeling operatorF .

In this notation the reconstruction and the simulation of a
measurement and reconstruction are:

Reconstruction crec(r) = D†F†d (15)

Simulation crec(r) = D†F†G c(r) (16)

The measurement error1dmeas is the difference between the
measured data and the data that would be obtained from an
ideal experiment (i.e. data forward modeled from the real,
continuous field).1dmeasconsists of the error in the indi-
vidual measurement devices and the so called stepping er-
ror, which occurs if the different light paths are not measured
simultaneously. It is propagated through the inversion the
same way as the data (because of the linearity of the two op-
erators) yielding the propagated measurement error:

1cmeas(r) = D†F†1dmeas (17)

The discretization leads to errors in two ways: Firstly, an
arbitrary continuous concentration field generally cannot be
exactly approximated by the discretized field:D†D 6=1.

Secondly, the forward modeling of measurement data from
the discretized field differs from the data obtained from the
real, continuous field:FD 6=G.

If the inverse problem (9) does not have a unique solu-
tion, i.e. because it is ill-posed, a priori information has to
be employed to select a solution. The inversion error arises,
because normally the a priori information is not completely
correct.F†F 6=1.

We get the sum of discretization errors and the inversion
error in the concentration as

1cdi(r) = (1−D†F†G)creal(r) (18)
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which corresponds to simulating a perfect measurement on a
concentration field, reconstructing the field and comparing it
to the original concentration field.

If all operators are linear – as it is the case for linear dis-
cretization models and row acting methods (each projection
step is linear and thus also the whole inversion), then the total
reconstruction error is the sum of Eqs. (17) and (18):

1c(r) = 1cmeas(r)+1cdi(r) (19)

Therefore the two parts can be treated separately which en-
hances the computational speed of the error estimation and
the knowledge about the error causes.

Usually the resolution matrixR=F†F is introduced to in-
vestigate the reconstruction quality. Using this matrix the in-
version error can be determined as(1−R)sreal neglecting the
discretization error. As we work with a moderate resolution,
this disregarding is not acceptable in our case.

4.2 Estimation of the error fields

For the error estimation the error fields1cmeas(r) and
1cdi(r) are considered as random functions and the aim is to
determine their random distribution (for simplicity, we use
the same notation for the random function and it’s realiza-
tion). In order to get the total reconstruction error1c(r) we
have to convolute the two random distributions at the end.

The measurement error1dmeas is assumed to be a Gaus-
sian distributed random vector of mean zero. This means
the propagated measurement error1cmeas(r) is also Gaus-
sian distributed and of mean zero. Assumedcovdmeas is the
covariance of the1dmeas and the continuous fields are dis-
cretized on a finite grid, then the covariance of the propagated
measurement error is

covcmeas = (D†F†)(covdmeas)(D†F†)†. (20)

The operatorD†F† can be determined by applying the inver-
sion method on the m data basis vectors.

The discretization and inversion error1cdi(r) depends on
the shape of the field to be reconstructed. Consequently, a
priori information is needed for determining1cdi(r). With-
out any a priori information on the concentration field, the re-
construction error would be infinitely high. Imagine a DOAS
tomography setup and a concentration field with a very steep
and high peak in the gap between some light paths. Such
peak is not detectable with the given setup. Only with infor-
mation about smoothness such a field can be excluded. The
concentration field to be reconstructed is a random function
creal(r) and the prior information is represented by its proba-
bility distribution. Applying Eq. (18) on it leads to the proba-
bility distribution of the derived random function1cdi(r). In
practice the probability distribution ofcreal(r) was realized
by generating a set of test fields(ck(r))k∈N all of which are
assumed to have the same probability. Applying Eq. (18) to
all of these test fields produces a set of reconstruction error
fields(1cdik (r))k∈Nwhich can be evaluated statistically.

4.3 Reconstruction quality criteria

In simulations and validation experiments the reconstructed
concentration field can be compared with a “real” field.
Quality criteria are needed, which summarize the overall re-
construction quality in a single figure. They can be used in
numerical simulations to determine optimum reconstruction
techniques and parameters. Apart from the criterion “near-
ness”, which has been used in former studies (e.g. Todd and
Ramachandran, 1994), we suggest here two further criteria,
the “normalized maximum difference” and the “normalized
average difference”. The choice of the criterion depends on
the further use of the reconstruction result. All of the pro-
posed criteria are calculated from the reconstruction error
1c(r)=creal(r)−crec(r) and the “real” fieldcreal(r).

4.3.1 Nearness

The quality criterion nearness is a normalized 2-norm (Eu-
clidian norm) of the reconstruction error:

Nearness= 1
N
‖1c‖2

=
1
N

√∫
dr2(crec(r)− creal(r))2

where N =
√∫

dr2(creal(r)− creal(r))
2
.

(21)

Normalization makes the nearness invariant to the multipli-
cation of the concentration field by a scalar factor and to the
addition of a constant function. If reconstruction techniques
are compared for a whole set of test fields, the normalization
is necessary, because it makes the nearness comparable for
plumes of different sizes. The nearness has the following
meaning:

NEARNESS = 0 – ideal agreement

NEARNESS = 1 – same agreement as
constant average field

The quality criteria nearness should be used, if the
overall shape of the concentration field is of interest. Our
definition of nearness is based on a similar definition used
by Todd (e.g. Todd and Ramachandran, 1994) with reference
to Herman et al. (1973) and Herman and Rowland (1973).
Todd calculated the nearness on the discrete state vector and
thus ignored the discretization error. Drescher et al. (1997)
used a very similar discrete quality criterion called “figure of
merit” by setting the normalization factor to N=‖sreal‖ and
thus renouncing the compensation of shifting.
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Fig. 4. CTM BAB II plume and examples of derived test fields.(a) The NO2 concentration field, produced by D. Bäumer (personal
communication, see Sect. 1.5), for the BAB II situation with a chemistry transport model. It was used in this study for numerical experiments:
(b) A set of test fields was generated by squeezing the model plume in intensity, squeezing and shifting it in space and adding small scale
random field. Four realizations of this modification procedure are shown in (b).
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error). After 40 iterations, the average nearness values still decrease slightly with the iteration number, whereas the scattering of the nearness
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4.3.2 Normalized maximum difference (NMD)

The normalized maximum difference (NMD) is the normal-
ized maximum absolute value of the reconstruction error.

NMD = 1
N

max
r∈F

1c(r)

with N = 1
2

(
max
r∈F

creal(r)−min
r∈F

creal(r)
) (22)

The normalization factor N is half of the range between the
lowest and the highest concentration of the real field. The
NMD is invariant to multiplication of the field by a scalar
factor and to the addition of a constant function. It is a mea-
sure for the maximum error which occurs.
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4.3.3 Normalized average difference (NAD)

The normalized average difference (NAD) is the average of
the reconstruction error in the area of interest – normalized
by the average concentration of the real concentration field.

NAD =
〈1c(r)〉
〈creal(r)〉

=

∫
dr21c(r)∫
dr2creal(r)

(23)

The NAD is invariant to the multiplication of fields by a
scalar factor. This quality criterion is a measure how well
the average concentration in the area of interest (and also the
total amount of the trace gas species) is reproduced by the
reconstruction.

5 Reconstruction optimization

Many parameters are involved in a reconstruction process
based on linear discretization and row acting methods:

– dicretization model type (box/bilinear)

– discretization grid size

– first guess of the concentration field

– iteration number of the RAM

All these parameters implicitly add some sort of a priori in-
formation. Due to the limited amount of measurement data,
the parameters have to be chosen very carefully. Depend-
ing on the choice of the discretization model, for example,
special kinds of concentration fields are favored.

The optimal set of reconstruction parameters is derived
from another kind of a priori information: the assumed prob-
ability distribution of the measurement error1dmeas and the
assumed distribution of the random function real concentra-
tion field creal(r). The parameters will be optimized so that
the real field will be reconstructed best in average. “Recon-
structed best” means, that certain reconstruction quality cri-
teria, e.g. the nearness, become minimal. The choice of qual-
ity criteria described in the previous section depends on the
further use of the reconstructed trace gas map.

5.1 Generation of the set of test plumes

The probability distribution of the random function “real
concentration field”creal(r) is realized by a set of test con-
centration fields(ck(r))k∈N . This set is used for optimiz-
ing the reconstruction parameters and estimating the error.
The aim is to generate random fields in physically reason-
able boundaries. It is a compromise between covering all
cases and not being too general without need. For this study
one hundred test fields were generated by randomly modify-
ing the CTM BAB II concentration field (see Fig. 4).

The following modifications which are a coarse represen-
tation of physical processes where chosen:

– log-normal distributed random squeeze in intensity (dif-
ferent source strength).

– log-normal distributed random squeeze in position
space (different meteorological situations).

– normal distributed random shift in position (different
meteorological situations and chemistry) .

– addition of a small scale random field (local fluctuations
and emissions from other sources).

5.2 Parameter optimization procedure

To find an optimum set of parameters the following numeri-
cal experiment was used:

FOR ALL sets of parameters DO {LOOP C}
{

FOR ALL test fields ck DO {LOOP B}
{

simulate measurement by forward modeling the data
from the continuous field;
FOR n random meas. errors DO {LOOP A}
{

add measurement error to data;
reconstruct state vector s and related concentration
field c(s, r);
evaluate reconstruction quality criteria;
}

evaluateφ+1σ

}

evaluate〈φ+1σ 〉;
}

choose set of parameters minimizing〈φ+1σ 〉;

As we will see from the numerical experiments, the
optimum parameters depend on the size of the measurement
errors. For illustrating the optimization procedure we use
quality criterion “nearness” (Sect. 4.3.1.).

LOOP A:

First the algorithm for a fixed test field with random
measurement error (inner loop) is studied: Due to the simu-
lated noise on the measurements, the simulated data scatter.
Then also the nearness of the reconstructed fields scatter
around the average nearness value. In Fig. 5 the nearness
is plotted against the iteration number using one fixed test
field and different realizations of the normal distributed
measurement error. As can be seen in Fig. 5 the average
nearness still decreases slightly with increasing iteration
number, when the scattering of the nearness values increases
strongly. Striving for a compromise between low average
nearness and low scattering of the nearness values, we store
the averageφ plus one standard deviationσ of the nearness
values. (φ+1σ). If we optimized the iteration number with
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Fig. 6. Parameter optimization. The simulation of a measurement and the SIRT reconstruction are applied on 100 test-fields. The average
nearness and its standard deviation averaged over all test-fields are plotted against the iteration number. The standard deviation shows
the effect of the propagated measurement error on the nearness. In(a) different state models are compared for fix measurement error
σ=100 ppb∗m. For all resolutions the bilinear discretization model is superior to the box model. The 4×3 grid leads to better results than the
3×2/5×4 grids which correspond to strongly over/under determined problems.(b) For the fixed 4×3 bilinear state model the measurement
errors are varied from 0–1000 ppb∗m (around 0–10% relative error). The optimum iteration number is determined by minimizing<φ+1σ>.
It is highly dependant on the measurement error and decreases when the simulated measurement error increases.

only one test field the optimum iteration number would be
the one which minimizes (φ+1σ). In Fig. 5, for example 40
iterations are optimal.

LOOP B:

Averaging over the set of test fields is done by storing the
average of (φ+1σ)over all fields:〈φ+1σ 〉.

LOOP C:

Finally, the optimum set of parameters is the one which min-
imizes〈φ+1σ 〉.
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Table 1. Results of the procedure for comparing reconstruction methods and inversion parameters. The optimization procedure was applied
to the motorway setup used during the BAB II campaign. For different discretization models and inversion techniques the optimum iteration
number i is given with respect to the three quality criteria nearness, normalized average difference (NAD), and normalized maximum
difference (NMD). We took the optimum iteration number i for a minimum average plus one standard deviation of the quality criteria, thus
making a compromise between the value of a quality criteria and its scattering of a quality criteria. The upper part of the table compares
different discretization models for the fixed SIRT algorithm. The lower part compares different inversion techniques and their ideal iteration
number depended on the assumed measurement error. In this part of the table the discretization model is fixed to be “4×3 bilinear”.

Meas. Err. RAM. Disc. Grid- Nearness NAD NMD
σmeas mod. size < 8+ 1σ>min 1σ i < 8+ 1σ>min 1σ i < 8+ 1σ>min 1σ i

100 SIRT box 3×2 0.71 4.84E-03 20 0.0103 0.0064 40 0.64 7.66E-03 150
100 SIRT Bil 3×2 0.57 4.30E-03 40 0.0114 0.0063 40 0.53 7.86E-03 2000
100 SIRT box 4×3 0.69 4.85E-03 30 0.0206 0.0157 1000 0.60 8.04E-03 40
100 SIRT Bil 4×3 0.53 8.83E-03 100 0.0130 0.0091 400 0.47 1.36E-02 500
100 SIRT box 5×4 0.67 6.02E-03 100 0.0309 0.0073 2000 0.58 1.13E-02 200

SIRT Bil 5×4 0.56 1.43E-02 500 0.0218 0.0076 250 0.45 1.86E-02 1000

100 ART Bil 4×3 0.56 1.58E-02 10 0.0174 0.0136 30 0.49 1.24E-02 4
1000 ART Bil 4×3 0.84 0.1102404 1 0.1029 0.0778 6 0.60 8.51E-02 2
100 SART Bil 4×3 0.54 1.51E-02 40 0.0093 0.0063 6 0.47 1.54E-02 100
1000 SART Bil 4×3 0.75 6.26E-02 4 0.0626 0.0614 6 0.62 0.070997 10
100 SIRT Bil 4×3 0.53 8.83E-03 100 0.0130 0.0091 400 0.47 1.36E-02 500
1000 SIRT Bil 4×3 0.70 6.47E-02 25 0.0716 0.0597 80 0.58 7.78E-02 50

5.3 Parameter optimization for the motorway setup

The numerical optimization procedure was applied to the
measurement setup used during the BAB II campaign
(Fig. 1a). As first guess a constant field with the average
concentration of the measured light-paths was used which
proved to be suitable in preliminary examinations. Some op-
timization results for different quality criteria are presented
in Table 1. For different discretization models and types of
row acting methods the optimum iteration number is given.
As we were interested in the overall shape of the plume, we
decided to employ the quality criterion “nearness” for the
rest of this study. The optimization is graphically illustrated
in Fig. 6. In Fig. 6a the Nearness is plotted against the it-
eration number for different state models using the SIRT-
algorithm. The bilinear discretization model is superior to
the box model because of the smaller discretization error.
The combination of a simultaneous row acting method and a
bilinear discretization model on a 4×3 grid seems to be best.
In Fig. 6b the dependence of the optimal iteration number
on the measurement error is demonstrated. If the measure-
ment error increases, the ideal iteration number decreases.
The optimum iteration number in our case is about 100 for
a measurement error of 100–400 ppb∗m which is about 2%
relative error and corresponds to the measurement error dur-
ing the motorway campaign. In spite of the optimization,
all nearness values are relatively high, as the source region
above the carriageway where large concentration gradients
occur is poorly covered by the light paths. This problem can
be seen more clearly in the 2-D error fields and reconstructed
concentration fields of the next sections.

5.4 General observations

Applying the optimization procedure to different measure-
ment setups (motorway campaign and other atmospheric se-
tups) the following general observations were made:

– As discretization model the bilinear interpolation model
is superior to the box model.

– Comparing the reconstruction quality of different row
acting methods, the SIRT-like inversion method was
best in the presence of noise on the data, closely fol-
lowed by SART. The ART-like method yielded dis-
tinctly worse results.

– The convergence is much faster for SART than for SIRT,
but in our case this is not of interest because both algo-
rithms are very fast for our problem size.

– If the grid size is optimal the inverse problem is only
just or just not anymore well determined. In other words
the resolution matrixR=F†F which should be close to
unity is nearly of full rank. If the grid size is smaller the
discretization error gets large and the result gets worse.

6 Reconstruction results

The meteorological situation of the day of the study was a
weak anticyclonal circulation, clear sky conditions and light
to moderate winds. After a nightly inversion due to radiative
cooling, a shallow convective layer developed in the diurnal
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Table 2. Optimized reconstruction parameters for the motorway
campaign.

Discretization model 4×3 bilinear
RAM type simult. iterative projection method
First guess constant average
Iteration Number 100

cycle which reached 1500 m–2000 m altitude. On synaptic
scales the pressure differences were small; therefore the ad-
vective processes were not dominating.

For reducing the stepping error the NO2 data from the
BAB II-campaign had to be averaged over several hours. Be-
cause of the linearity of the reconstruction process (in the
inversion process each projection of the row acting method
is linear and the state model is linear), this averaging of the
data equals averaging the 2-D-concentration fields. There-
fore the reconstructed fields are time-average concentration
fields over the selected periods. The problem of temporal
changes of the concentration field during one stepping cycle
which result in stepping errors is discussed in the next sec-
tion.

Searching time periods in which the wind direction is
approximately perpendicular to the motorway and taking
into account the measurement periods of the IMK-Karlsruhe
we chose three time periods.

Period 1 10 May 2002 06:00–10 May 2002 13:00 CET

Period 2 10 May 2002 13:00–10 May 2002 19:00 CET

Period 3 10 May 2002 20:00–11 May 2002 01:00 CET

Figure 7 shows the reconstructed NO2 concentration
fields for the three time periods. We used the recon-
struction parameters optimized for this setup, as listed in
Table 2. The shape of the exhaust gas plume depends on
the strength of the source (vehicle flux), the chemistry,
the wind-speed, the wind-direction and the atmospheric
stratification. During situations with stable stratification the
exhaust gas concentrations increase strongly – especially if
the wind speed orthogonal to the motorway is low. Because
the main sources of NO2 at the motorway are chemical
reactions and not direct emission, the concentration maxi-
mum is on the downwind side of the motorway. The IMK
Karlsruhe performed measurements of the vertical wind
and temperature profiles during the campaign (M. Kohler,
personal communication). The wind vectors measured at
two different altitudes are shown in Fig. 8. The shape of
the reconstructed plumes agrees with expectations based
on vehicle fluxes (B. Vogel, personal communication) and
meteorological conditions. Time period 1 (Fig. 7a) includes
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Fig. 7. Reconstruction results for the BAB II campaign. The re-
construction was performed using the simultaneous row acting in-
version method and a 4×3 bilinear interpolation model (SIRT-like).
The reconstructed concentration fields are in good agreement with
the meteorological situation. During day time the exhaust gases
were driven away from the carriageway by a soft breeze. Due to the
morning rush hour the plume is stronger in period 1. At nighttime
the wind-speed at ground-level was almost zero and the temperature
gradient showed an inversion situation which leads to high concen-
trations (also in the background air).

the morning rushhour around 6 a.m. CET which coincides
with a stable stratification. Around 11 a.m. a convective
layer develops and dominates time period 2 (Fig. 7b).
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Consequently, the NO2 concentrations are distinctly lower.
In both periods (1 and 2) the plume is driven away to the
right of the carriageway by a soft breeze.

During time period 3 (Fig. 7c) the ground wind speed gets
very slow. Together with a stable stratification and thus a
very low boundary layer this leads to a strong accumulation
of NO2. In this time period, at around 40 m altitude, concen-
trations 5–10 ppb higher than the background concentration
were reconstructed. Because no lightpath is crossing this up-
per area (see Fig. 4a) this feature is likely to be an artifact of

the reconstruction. By considering the reconstruction error
which is quantified in the following section the lack of sig-
nificance of this feature is confirmed. Also the exact position
of the plume maximum cannot be determined well with this
measurement setup as one can see in the error maps Fig. 10a,
b, Fig. 11a and Fig. 12a, c. which are described in Sect. 7.
For instance it is possible that the real maximum in period 1
and 2 is located closer to the motorway.

It is interesting to note that the plume shapes and con-
centration values correspond well to the simulated NO2 pro-
files of Bäumer (2003). In his simulations for the same mo-
torway situation, emission data and wind data from a for-
mer campaign were used. The results of his simulations
for 13:00 CET (unstable stratification) show similar features
(plume height, absolute concentration) as our reconstructions
from period 1/2, the ones for 21:00 CET (stable stratification)
as period 3.

7 Estimated reconstruction error

After sketching the determination of the measurement error
on the data, our procedure for estimating the measurement
error and the discretization + inversion error are described.
Resulting 1-D cross sections and 2-D error maps are pre-
sented for the real data and the CTM BAB II plume, also
with an improved motorway measurement setup.

7.1 Stepping error

In our case, the stepping error is the dominating part of the
measurement error. It arises when the stepping technique is
used, i.e. different light paths are not measured simultane-
ously but successively. Then the data from different light
paths refer to different times. Hence the measured data has
to be taken for an estimate of the average value along the

Atmos. Chem. Phys., 4, 1323–1342, 2004 www.atmos-chem-phys.org/acp/4/1323/



T. Laepple et al.: Longpath DOAS tomography on a motorway exhaust gas plume 1337

25

20

15

10

5

0

N
O

 2 
[p

pb
]

160140120100806040200

 CTM BABII plume
 reconstruction
 reconstruction + bias
 1σ reconstruction error
 2σ reconstruction error

northeast
 

cross section 
altitude = 5m

southwest

25

20

15

10

5

0

N
O

 2 
[p

pb
]

160140120100806040200

25

20

15

10

5

0

N
O

 2 
[p

pb
]

160140120100806040200
x-axis distance from DOAS 1 [m]

motorway

motorway

motorway
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Fig. 10. 1-D cross sections of concen-
tration fields and error estimations at
5 m altitude.(a) Measurements are sim-
ulated on the CTM BABII plume us-
ing the BABII setup. The inversion is
performed on the simulated data. The
reconstructed plume (red) differs from
the original (blue), but remains every-
where within estimated 1σ error lim-
its (green). In the middle area 1σ is
around 5 ppb which allows only qual-
itative statements about the shape of
the plume. (b) The inversion is per-
formed on the measured data from pe-
riod 1. Again only qualitative state-
ments about the shape of the plume are
possible. The discretization and inver-
sion part of the error is the same as
in (a) but the measurement error part
differs from (a) because the estimated
measurement error from the measure-
ment data is used (Sect. 7.1).(c) Mea-
surements are simulated on the CTM
BABII plume using the enhanced setup.
(Fig. 1b, Sect. 7.6). Again the orig-
inal and reconstructed concentrations
are shown. Here the shape of the plume
can be grasped with much better accu-
racy. The position of the concentration
peak can be determined well.
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(a) std. dev. map                , original setup (b) std. dev. map                 , enhanced setup

Fig. 11. Measurement error. Subfigure(a) shows the propagated measurement error for the BAB II setup at time period 1. The error is the
largest close to the carriageway. This is due to the poor coverage of this region with light beams. The shifting to the right results from higher
fluctuations of the concentrations and thus a higher absolute measurement error on the right hand side of the motorway in this wind situation.
Subfigure(b) shows the measurement error map for the enhanced motorway setup. The error on the data was assumed to be the same for all
light paths and of average size of the errors in subfigure (a). One must be careful in comparing (a) and (b) as the choice of taking the same
error for all light paths in (b) already results in a smoother and more symmetric field. Independent of the spatial distribution the average
resulting error is smaller than in (a) because more light paths are in the area.

light paths. If the observed concentration field shows tempo-
ral fluctuations, e.g. if vehicles are passing the measurement
site, then the measurement data scatters around the average.
This scattering produces the stepping error. The stepping
error can be reduced by averaging the data over a time pe-
riod, smoothing or interpolating the data. We averaged the
data to get data valuesd. The stepping error was estimated
in the following way: The measurement data as a function
of time is interpolated with a smoothing spline (IGOR Pro,
Wave Metrics, Inc., with reference to Reinsch, 1967) where
for each measurement point its measurement error derived
from the DOAS analysis is taken into account. The smooth-
ness parameter of the interpolation method was chosen by
eye. The distance of the measurement data from the inter-
polating spline is taken as the stepping error of a single data
point. From this the standard error of the mean is calculated:

d =
1

K

K∑
k=1

dtk; 1d =

√∑K
k=1 (dtk − f (tk))2

(K − 1)K
, (24)

wheredtk are the data points at timetk, f (t) is the interpolat-
ing spline curve andK is the sample size of the period to be
averaged. The stepping error was estimated separately for all
light paths. In Fig. 9 this estimation is shown for one light-
path. The measured slant column densities, the interpolated
spline and the resulting estimated errors for each single point
are plotted. The resulting relative error for the lightpaths was
about 2% of the average column densities.

7.2 Propagated measurement error

We assume that the measurement error on the data, which
in our case is the stepping error described in the previous

section, is independent and Gaussian distributed. Then we
can calculate the measurement error in the reconstruction
1cmeas(r) from the covariance of the measurement error on
the datacovdmeas with Eq. (18) from Sect. 4.2. The diago-
nal elements ofcovdmeas correspond to the stepping errors.
From covcmeas a standard deviation map is obtained which
gives an impression about the insecurity of the reconstruction
at different points due to the measurement error on the data.

7.3 Discretization and inversion error

As described in Sect. 4.2. we estimate the discretization
+ inversion error by a numerical experiment which corre-
sponds to Eq. (17). We simulate the measurement and the
reconstruction on a set of test fields(ck(r))k∈N which are
described in Sect. 5.1. They are based on the CTM-BABII
plume (B̈aumer pers. comm.) which is shown in Fig. 4a. The
difference between the resulting concentration fields and the
test fields,1ck(r), is evaluated statistically to get the error
fields:

〈1cdi〉 (r) =
1

k

K∑
k=1

1ck(r) (25)

σ(1cdi)(r) =

√√√√ 1

K

K∑
k=1

(1ck(r)2− 〈1cdi〉 (r)) (26)

The distribution of the discretization and inversion error
1cdi(r) is not symmetric around zero. Therefore we always
show the average map〈1cdi〉 (r) and the standard deviation
mapσ(1cdi)(r) to get an impression about the quality of the
reconstruction at each point.
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(a) average map <Dcdi>, original setup

northeast southwest

0 50 100 150
0

10

20

30

40

x-axis, distance from DOAS1 [m]

northeast southwest

0 50 100 150
0

10

20

30

40

x-axis, distance from DOAS1 [m]

al
tit

ud
e 

[m
]

(d) std. dev. map            , enhanced setup

(b) average map <Dcdi>, enhanced setup

Fig. 12. Discretization and inversion error. The combination of discretization and inversion error was determined by a numeric experiment
with a set of test plumes based on the CTM BAB II plume for the north-east wind situation. This error is not symmetric around zero,
therefore we plot the average(a, b) and the std. dev.(c, d) of the error distribution. Subfigure (a) and (c) refer to the original setup. (a) The
concentration is underestimated where high concentration values are likely, but overestimated in the other regions: The plume is smoothed,
because the discretization model is too low resolved and cannot represent the steep concentration gradient which is likely to occur over the
motorway. (c) The standard deviation is the highest above the road, because the coverage with light beams is insufficient, and smallest on
the sides of the road where a lot of light beams are available. For the enhanced setup the average deviation (b) is generally low (ignoring
the area high above the road, which is not of scientific interest). The standard deviation (d) exceeds 2 ppb only in the lowest 2 m above the
carriageway. Because of the traffic no light beams could be located here.

7.4 1-D cross-sections of concentration fields

Before discussing the 2-D-error maps we present 1-D cross
sections of these maps. The plots in Fig. 10 show hori-
zontal NO2 concentration cross-sections perpendicular to the
carriageway, 5 m above ground. Additionally the 1σ and
2σ reconstruction error limits are plotted. They are de-
rived by adding the average and the standard deviation of
the estimated error1c(r) to the reconstruction result. It was
tested in a numerical experiment that in the given situation
adding up the standard deviations of1cmeas(r) and1cdi(r)
quadratically is a good approximation for folding the distri-
butions.

For Fig. 10a a theoretical measurement was simulated on
the CTM BAB II plume and the concentration distribution
reconstructed from the column densities. The uncertainty of
the concentration in the middle area and therefore the differ-

ence between the original and its reconstruction is high. This
is due to the missing coverage of lightbeams directly above
the carriageway on the one hand and the high concentration
gradients near the source on the other hand. The a priori in-
formation which is implicitly used in the underdetermined
region smoothes the result. Another reason for the differ-
ence is that the 4×3 bilinear interpolation model, which can
be recognized by the four sharp bends of the reconstructed
curve, cannot grasp the CTM BAB II plume.

In Fig. 10b we show the cross section of the NO2 concen-
tration at time period 1 (taken out of the 2-D field Fig. 7a).
The estimated reconstruction error consists of the same dis-
cretization and inversion error part1cdi(r) as in Fig. 10a
and a different propagated measurement error part derived
from the measured data. In the center area the 1σ uncer-
tainty is around 5 ppb. Near the borders, where we have
good light beam coverage, it diminishes to 1 ppb. The
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reconstruction quality is good enough to determine qual-
itatively a “plume type” like “evening inversion plume”
or “strong wind plume”. For quantitative statements this
measurement setup works only in the areas of the verti-
cal profiles on both sides. One might have the idea, that
(crec(r)+〈1c(r)〉) (the fine red curve) is a better estimation
for the real field thancrec(r). This was true, if the a priori
information represented by the set of model plumes was ex-
actly right. As we don’t know the reliability of this informa-
tion and don’t want to force the reconstruction result towards
the CTM BAB II plume which was used to generate the test
fields, we don’t pursue this idea.

7.5 2-D error maps

In the error maps Figs. 11 and 12, respectively, the propa-
gated measurement error field1cmeas(r), and the discretiza-
tion and inversion error field1cdi(r) are shown separately.
With these maps, the uncertainty can be estimated for each
point of the field by adding the two standard deviation error
fields statistically and taking the average map<1cdi(r)>
into account.

Additionally to the effects explained in Sect. 7.4 the recon-
struction is less accurate directly above the motorway, and
more accurate at higher altitude than at five meter (Fig. 10).
The standard deviation due to the measurement error (see
Fig. 11) – shown for time period 1 – is relatively small com-
pared to the other errors. The average maps of1cdi(r) show
that generally the concentrations are underestimated at the lo-
cation of the plumes, and overestimated in the other regions.
This “watering down” is caused by the discretization error
(the state model is not fine enough to describe the plume po-
sition accurately) and due to a general smoothing of SIRT
at low iteration numbers in underdetermined regions. In our
setup the inversion + discretization error due to the few mea-
surements is of the order of ten times higher than the propa-
gated measurement error.

7.6 Reduced errors with an improved measurement setup

The uncertainties of the reconstructions require an improved
measurement setup which is able to quantify the plume shape
and concentration accurately over the entire field and which
can be used for possible future campaigns.

In numerical experiments we added two more DOAS tele-
scopes between the existing telescopes and one additional
retro reflector on a bridge at 5 m altitude above the motor-
way (see Fig. 1b). Instead of conventional telescopes, four
multibeam telescopes (a new type of telescope which is able
to measure several light paths simultaneously) are used for
measuring six light paths simultaneously. These telescopes
measure four light paths which are stepping between two
retroreflectors, respectively, one fix light path to the bridge
retroreflector (passing the most fluctuating part) and one light
path for intercalibration purposes. The averaging time, and

hence the time resolution are therefore reduced by a factor of
five preserving the actual stepping errors size. The 36 light
paths enable us to choose a higher resolved state model. A
6×4 bilinear interpolation model yielded the best reconstruc-
tion results with SIRT in the optimization process.

For the error studies the data errors were assumed to be
identical for all light paths and of average size of the errors
of the campaign time period 1. In Fig. 10c the 1-D cross
section of the CTM BAB II plume and its reconstruction are
shown for the new measurement setup. The difference be-
tween the original plume and the reconstruction is smaller
than 1 ppb, and the 1σ limits are lower than 2 ppb (even in
the problematic central area).

In Fig. 11b and Fig. 12b, c the two types of errors are
shown separately on 2-D maps. The asymmetry in the mea-
surement error map is due to the slightly asymmetric posi-
tion of the retro-reflector towers. Only the lowest two me-
ters above the motorway cannot be reconstructed very well
as DOAS- light beams cannot be used at this altitude because
of the cars. Also the top middle region can’t be well deter-
mined by this setup but this area is not so important from the
scientific point of view.

8 Conclusions

We have presented a procedure for comparing different re-
construction techniques and optimizing the reconstruction
parameters for DOAS tomography measurements. The sim-
ulations of the measurement and the reconstruction were ap-
plied to a set of test plumes for different combinations of
reconstruction techniques and parameters to find the opti-
mal reconstruction algorithm and set of parameters. The
set of test plumes represent all concentration fields which
are physically reasonable according to our a priori informa-
tion. For judging the reconstruction quality the quality cri-
terion “nearness” was used in this study. For other purposes
we suggested the criteria “normalized maximum difference”
(NMD) and “normalized average difference” (NAD).

We used the procedure for comparing different row acting
methods (ART-, SIRT-, and SART-like) and two types of dis-
cretization models (box, bilinear interpolation). The proce-
dure can also be employed to optimize measurement setups.
In the presence of noise on the data, an extension of the si-
multaneous iterative projection method SIRT with a bilinear
discretization model yielded the best reconstruction results.
The SART algorithm was slightly inferior and the ART-like
inversion method, came off distinctly worse.

We applied the optimization, reconstruction and error esti-
mation procedure to the data of the first tomographic DOAS-
measurements carried out during a motorway emission cam-
paign. For this setup with 16 light beams the extension of
SIRT with a 4×3 bilinear interpolation model worked best.
The optimum iteration number depends strongly on the mea-
surement error. For the BAB II setup it is about 100 iterations
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for a relative average measurement error of 2%. The mea-
surement data had to be averaged over several hours because
of the stepping error. The reconstructed NO2 fields for three
time periods agreed well with the prevailing meteorological
conditions. The estimated reconstruction error ofσ=5 ppb
(around 30% relative error) above the carriageway is still
quite large however, so that the exact location and the ex-
act value of the concentration maximum can’t be determined
from our measurements. This can be seen quite clearly in
the presented horizontal 1-D cross sections, on which the 1σ

error limits are marked.
For the error estimation we devided the reconstruction er-

ror into propagated measurement error on one side and dis-
cretization and inversion error on the other. This helps mak-
ing suggestions to improve the measurements. If the propa-
gated measurement error is too high, one should try to reduce
the error on the data (e.g. by averaging the data over a longer
period of time). If the discretization and inversion error is
too high, one should rather modify the measurement setup.
In our field-campaign setup the discretization and inversion
error was one magnitude higher than the propagated inver-
sion error.

As a consequence, an improved hypothetical motorway
setup with 36 light beams was proposed. Assuming the same
average measurement error as during the BAB II campaign,
the concentration several meters above the carriageway can
be reconstructed within 1–2 ppb. Using the new multibeam
telescopes (a new type of DOAS-telescopes which can mea-
sure several light paths simultaneously) such a setup could
be realized with a time resolution of 10 to 60 min.

Summing up, the first DOAS tomography measurement
and the applied reconstruction and error estimation proce-
dures worked out successfully. Measurement and expecta-
tion seem to agree well within the given error limits. With
the new measurement devices it is now possible to produce
high quality 2-D trace gas maps by DOAS tomography.
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