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Abstract. In May 2003, severe forest fires in southeast Rus-
sia resulted in smoke plumes extending widely across the
Northern Hemisphere. This study combines satellite data
from a variety of platforms (Moderate Resolution Imaging
Spectroradiometer (MODIS), Sea-viewing Wide Field-of-
view Sensor (SeaWiFS), Earth Probe Total Ozone Mapping
Spectrometer (TOMS) and Global Ozone Monitoring Exper-
iment (GOME)) and vertical aerosol profiles derived with
Raman lidar measurements with results from a Lagrangian
particle dispersion model to understand the transport pro-
cesses that led to the large haze plumes observed over North
America and Europe. The satellite images provided a unique
opportunity for validating model simulations of tropospheric
transport on a truly hemispheric scale. Transport of the
smoke occurred in two directions: Smoke travelling north-
westwards towards Scandinavia was lifted over the Urals and
arrived over the Norwegian Sea. Smoke travelling eastwards
to the Okhotsk Sea was also lifted, it then crossed the Bering
Sea to Alaska from where it proceeded to Canada and was
later even observed over Scandinavia and Eastern Europe on
its way back to Russia. Not many events of this kind, if any,
have been observed, documented and simulated with a trans-
port model comprehensively. The total transport time was
about 17 days. We compared transport model simulations
using meteorological analysis data from both the European
Centre for Medium-Range Weather Forecast (ECMWF) and
the National Center for Environmental Prediction (NCEP) in
order to find out how well this event could be simulated us-
ing these two datasets. Although differences between the two
simulations are found on small scales, both agree remark-
ably well with each other and with the observations on large
scales. On the basis of the available observations, it cannot
be decided which simulation was more realistic.

Correspondence to:R. Damoah
(damoah@forst.tu-muenchen.de)

1 Introduction

About 85% of biomass burning takes place in the tropics
(Andreae, 1991) and causes pollutant emissions that have
a strong impact on the tropospheric chemistry (Galanter et
al., 2000). Aerosols and trace gases such as carbon monox-
ide, nitrogen oxides and non-methane hydrocarbons from
biomass burning play an important role for atmospheric
chemistry and radiative properties of the atmosphere. Carbon
monoxide, for instance, is involved in tropospheric ozone
chemistry (Crutzen, 1973) and aerosols can be transported
into the stratosphere (Fromm et al., 2000) where they may
influence concentrations of stratospheric ozone through cat-
alytic chemical reactions. Therefore changes in the concen-
trations of aerosols and carbon monoxide also affect ozone,
which plays an important role in the global climate system
(Daniel and Solomon, 1998; Logan et al., 1981). Further-
more, aerosols by themselves can strongly influence the ra-
diation in the atmosphere (Christopher et al., 2000; Hsu et
al., 1999) and represent the largest source of uncertainty in
current climate model simulations (IPCC, 2001).

In addition to biomass burning in the tropics, fires in the
boreal forest are a further strong emission source. Recently it
was found that through long-range transport, emissions from
boreal forest fires can affect the concentrations of many trace
substances in distant regions. Wotawa and Trainer (2000)
found that the high CO and O3concentrations over south-
eastern United States in 1995 over a period of 2 weeks were
caused by the transport of a pollution plume from Canadian
fires and photochemical ozone formation in this plume, while
long-range transport events of aerosols (Hsu et al., 1999;
Formenti et al., 2002; Fiebig et al., 2002; Wandinger et al.,
2002), CO and O3 (Forster et al., 2001) and NOx (Spichtinger
et al., 2001) from Canadian forest fires have also been ob-
served over Europe. According to model simulations, the
time scale of intercontinental transport of pollutant emissions
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is on the order of 3–30 days (Stohl et al., 2002). The upper
range of this estimate may be a typical time scale for the mix-
ing of pollutants in the northern hemisphere middle latitudes.
In case studies, Wotawa and Trainer (2000) reported a dura-
tion of about 2 weeks for the transport of Canadian fire emis-
sions to the southeastern United States, Forster et al. (2001)
quoted a period of about 1 week for the transport of Canadian
fire emissions to Europe. Emissions from the fires can be
transported upward in warm conveyor belts (WCBs) (Stohl,
2001) or by – sometimes extreme – convection (Fromm and
Servranckx, 2003) into the upper troposphere where fast in-
tercontinental transport may occur (Stohl and Trickl, 1999;
Yienger et al., 2000; Stohl et al., 2002).

Fires in Canada have received much attention recently,
whereas fires in Russia are much less well studied. The
world’s total closed boreal forest covers about 1 billion ha
(29% of the world’s forest area), of which Russian boreal
forests contribute about two thirds (Kasischke et al., 2000).
Fire is a major natural disturbance in Russian forests be-
cause: (1) Boreal forests are dominated by coniferous stands
of high fire hazard; (2) Considerable part of the forest terri-
tory is unmanaged and unprotected; (3) The forests contain
large amounts of accumulated organic matter due to slow de-
composition of plant material; and (4) most of the boreal re-
gions have limited amounts of precipitation and long periods
of drought in the fire season. Despite the large areas burning
in Russian forests almost every year, until recently relatively
little attention has been paid to fires there compared to Cana-
dian fires. However, recently Siberian forest fires have been
the subject of several studies (e.g. Yoshizumi et al., 2002;
Conard et al., 2002; Kasischke and Bruhwiler, 2003, Shvi-
denko and Goldammer, 2001, Shvidenko and Nilsson, 2000).

A long-period (1970–1999) average estimate of burned
areas for all Russian forests and tundra is 5.1×106 ha yr−1

(Shvidenko and Goldammer, 2001), Lavoue et al. (2000)
gave an annual average of 4×106 ha yr−1 (1960–1997), but
some other estimates are as high as 10–12×106 ha yr−1

(Conard and Ivanova, 1998; Valendik, 1996). In fact, recent
estimates of the annual area burned in Russia vary consider-
ably. Partly this is due to the large interannual variability and
a strong increase in fire activity since the late 1990s. In 1987,
when 14.5×106 ha of forest and other lands were destroyed
was an extreme year. Assuming typical emission factors
(Andreae and Merlet, 2001), this contributed about 20% of
CO2, 36% of CO and 69% of total CH4 produced by savanna
burning during an average year (Cahoon et al., 1994). 1998
was another severe year when about 12×106 ha were de-
stroyed according to recent estimates (Kasischke and Bruh-
wiler, 2003). It was even worse in the year 2003. The first
fires were detected as early as April within the Trans-Baikal
region. In May the situation in the south of Russia escalated.
By the end of May, tens of thousands of fires had destroyed
more than 15×106 ha of land in the Russian Federation. The
most affected regions were Chitinskaya Oblast (55–56◦ N,
114–120◦ E), Buryatiya Repulic (55–59◦ N, 107–114◦ E) and

Amurskaya Oblast (52–56◦ N, 120–132◦ E) (GFMC, 2003).
At the end of the 2003 fire season, more than 19×106 ha of
land had been destroyed in Russia (Slightly less than the size
of Iraq).

In this paper, we study a hemispheric-scale transport event
in May 2003. Over a period of about 17 days, satellite im-
ages in several regions of the northern hemisphere show the
transport around the world of smoke from the Siberian fires.
Lidars in eastern Asia, North America and Europe (Mattis et
al., 2003) took vertical profiles of the smoke. The transport
model and data used in this paper are described in the follow-
ing section. Results from the smoke transport simulations are
presented in Sect. 3, together with discussions about the rele-
vant meteorological aspects of the event, and conclusions are
drawn in Sect. 4.

2 Tools and methodology

The GOME instrument has been operational aboard the
ERS-2 satellite since April 1995. With a spectral range
from 240 nm to 790 nm, GOME measures the scattered and
reflected sunlight from the surface using the nadir view-
ing mode. Operational data products of GOME result
from radiance and solar irradiance spectra which are taken
through several processing steps to obtain global distribu-
tions of total column amounts of NO2 and other species using
the DOAS approach (Differential Optical Absorption Spec-
troscopy) (Platt, 1994). Tropospheric NO2 columns used in
this study are derived from a stratosphere/troposphere sepa-
ration algorithm (Beirle et al., 2003).

NASA’s Moderate Resolution Imaging Spectroradiometer
(MODIS) aboard the Terra and Aqua satellites measures ra-
diances in 36 spectral bands, from which a large number
of different products are derived. Of importance for this
study are the locations of active fires (hot spots), burn scars
and aerosols (including smoke from forest fires) (Chu et al.,
2002; Remer et al., 2002; Kaufman et al., 1998a; Justice
et al., 1996). Its main fire detection channels saturate at
high brightness temperatures of 500 K at 4µm and 400 K at
11µm.

Other platforms that observed the smoke were Total Ozone
Mapping Spectrometer (TOMS) aboard the Earth Probe
satellite which provides data on UV-absorbing tropospheric
aerosols including smoke from biomass burning (Hsu et al.,
1999). And the Sea-viewing Wide Field Sensor (Sea WiFS)
(Hook et al., 1993) aboard the Sea Star spacecraft, which op-
erates in 8 wavelength channels ranging from 403–887 nm
but uses channels 765 and 865 nm for the estimation of
aerosol radiance (Gordon and Wang, 1994).

The Raman lidar at Leipzig, Germany (Mattis et al., 2003)
measured vertical smoke profiles in terms of volume extinc-
tion coefficients of aerosols at 355 and 532 nm, and backscat-
ter coefficients at 355, 532 and 1064 nm wavelengths.

Atmos. Chem. Phys., 4, 1311–1321, 2004 www.atmos-chem-phys.org/acp/4/1311/
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Fig. 1. MODIS fire product for 13, 14, 16 and 31 May, 2003, respectively (left column) and corresponding daily GOME tropospheric NO2
(right column).

In order to determine the origin and the transport of these
plumes, we used the Lagrangian particle dispersion model
FLEXPART (Stohl et al., 1998; Stohl and Thomson, 1999) to
simulate the transport of a CO tracer. A CO tracer was used
because CO has a relatively long life time that ranges from
1 month (in the tropics) to 4 months (in the mid-latitudes)
(Seinfeld and Pandis, 1998). As the emphasis in this paper is
on the transport, we used a passive tracer (CO) not undergo-
ing removal processes so that observed structures will always
be present in the model results for qualitative comparison.

FLEXPART simulates the long-range transport, diffusion,
dry and wet deposition and radioactive decay of air pollu-
tants released from point, line or volume sources. It treats ad-
vection and turbulent diffusion by calculating the trajectories
of a multitude of particles. Stochastic fluctuations, obtained
by solving Langevin equations (Stohl and Thomson, 1999),
are superimposed on the grid-scale winds from global me-
teorological datasets to represent transport by turbulent ed-
dies, which are not resolved. Global data sets also do not
resolve individual convective cells, although they reproduce

the large-scale effects of convection (e.g. the strong ascent
within WCBs ). Therefore, FLEXPART has recently been
equipped with a convection scheme (Emanuel and Zivkovic-
Rothman, 1999) to account for sub-grid scale transport.
FLEXPART can be driven by meteorological analysis data
either from the European Centre for Medium-Range Weather
Forecasts (ECMWF, 1995) or from the Global Forecast Sys-
tem (GFS) of the National Center for Environmental Predic-
tion (NCEP). Simulations using data from both sources were
made in order to possibly find out which dataset provided a
more accurate simulation of the transport event.

The ECMWF model version used here has 60 hybrid
model levels in the vertical, while the GFS output is avail-
able on 26 pressure levels. In the horizontal, both datasets
are global with a 1◦×1◦ regular grid. 6-hourly analyses are
supplemented by 3-hour forecast step data to provide a 3-
hourly temporal resolution in both cases. An output grid
with a 1◦

×2◦ latitude/longitude resolution, a vertical spacing
of 1000 m and an output interval of 3 h was employed. Due
to the significantly higher vertical resolution of the ECMWF

www.atmos-chem-phys.org/acp/4/1311/ Atmos. Chem. Phys., 4, 1311–1321, 2004
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Fig. 2. Total CO tracer columns from simulations using ECMWF data (left column) and GFS data (right columns) on(a) 18 May 2003 at
00 UTC,(b) 21 May at 00 UTC,(c) 22 May at 06 UTC,(d) 26 May at 06 UTC and(e)31 May at 00 UTC, respectively.

data grid and the higher intrinsic horizontal resolution of the
operational ECMWF forecast model, compared to the GFS
model, the simulation based on ECMWF data is our primary
simulation of the smoke transport and will be used to high-
light specific transport phenomena. However, the GFS sim-
ulation is very useful as a control run to indicate how differ-
ences in the meteorological analyses might affect the accu-
racy of the transport and its comparison with satellite data.

In the tracer simulations, 5×106 particles were released to
calculate the transport of CO emissions from fires in Russia.
For our simulation we considered the 3-week period from 10
to 31 May 2003, when the most spectacular long-range trans-
port event occurred. Between 10 and 31 May, with approx-
imately 0.26×106 ha burning per day, a total area of about
5.5×106 ha was burned in Chitinskaya Oblast, Buryatiya Re-
pulic and Amurskaya Oblast, according to weekly estimates
of the Global Fire Monitoring Center (GFMC, 2003). In or-
der to describe the regional and daily variations of the fires,
the MODIS hot spot data (MOD14 product) were used to
spatially and temporally disaggregate the total burned area
taken from GFMC (2003), assuming that the 10 310 hot
spots detected during that period (Fig. 1) all burned an equal
area. CO emissions were taken to be proportional to the area
burned. Assuming a CO release of 4500 kg per hectare of
forest burned, which is similar to recent estimates based on
emissions from the Canadian Northwest Territories (Cofer et
al., 1998), we estimate that 24.75 Tg of CO were released

into the atmosphere due to the burning during May 10 to
May 31 2003. The altitudes at which the emissions were ef-
fectively released into the atmosphere vary from day to day
and are actually not known. Lacking this information, we
released the CO tracer into the lowest 3 km of the model
atmosphere. Sensitivity studies performed on this event by
varying the upper release level from 0.5 km to 4 km altitude
did not change the results much (less than 4% of the global
mean concentration).

3 Results

The left column of Fig. 1 shows Moderate-Resolution Imag-
ing Spectroradiometer (MODIS) fire products (MOD14) for
13, 14, 16 and 31 May, 2003, respectively. At the example
of these four days it can be seen that there is a relatively high
day-to-day variability, which to some extent may be real, but
partly may also be due to the presence or non-presence of
clouds and/or smoke over the fires. Because we have used the
hot spot data to estimate the emissions in our model this may
also introduce artificial variability into the transport model
simulations. At the locations of these fires, distinct maxima
of GOME’s NO2 tropospheric columns are found (right col-
umn). Despite the general agreement between fire locations
and NO2 maxima, the number of the fires does not correlate
well to the strength of the NO2 signal. For instance, on 14
May, the hot spots show a strong burning east of Lake Baikal

Atmos. Chem. Phys., 4, 1311–1321, 2004 www.atmos-chem-phys.org/acp/4/1311/
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Fig. 3. (a–c)FLEXPART ECMWF CO tracer columns over the Bering Sea and adjacent regions with superimposed contours of the 500 hPa
geopotential surface, based on GFS analyses, contour interval 5 dam, at (a) 19 May 00 UTC, (b) 20 May 12 UTC and (c) 22 May 00 UTC; The
hatched area represents the topography. Green areas represent land surface, oceans are white. The red rectangle in c) shows approximately
the area shown in panel d);(d) SeaWiFS image showing smoke over Alaska at 23 UTC on 21 May; Whitish colors are snow, ice and clouds,
whereas the blue-grey indicate smoke.(e) vertical section through the FLEXPART CO tracer at 64◦ latitude on 22 May at 00 UTC using
ECMWF data.

but relatively low NO2columns were observed over the fires
by GOME. On the other hand, fewer hot spots were detected
east of Lake Baikal on 13 and 31 May, but the GOME NO2
enhancements over the fires were much larger. This may be
due to the presence of clouds which hamper both the detec-
tion of hot spots and NO2 beneath the clouds, differences in
the temporal coverage of the two intstruments, or may reflect

true variability of the NO2 emissions (for instance, different
emissions strengths during flaming versus smoldering burn-
ing condition) and their transport away from their sources.

Before considering the specific meteorological events
which were significant for the intercontinental transport of
aerosols from the Russian fires, it is worthwhile looking at
the spread of the pollution with time over the hemisphere.

www.atmos-chem-phys.org/acp/4/1311/ Atmos. Chem. Phys., 4, 1311–1321, 2004
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Figure 2 shows total columns of the CO tracer simulated by
FLEXPART using ECMWF (left column) and GFS (right
column) data as input. At around 18 May (Fig. 2a), there
were two main modes of transport, one northwestwards
towards Northern Europe and the other eastwards to the
Okhotsk Sea. The CO tracer travelling towards Europe
was lifted over the Urals and was heading to Scandinavia
(Fig. 2a). Four days later it split up over the Norwegian
Sea with one part reversing to Asia (Fig. 2c). The more
interesting to us is the other mode of the transport, which
took the fire emissions around the globe. The CO tracer
was lifted over the Okhotsk Sea, where it travelled rapidly
through Alaska (Fig. 2b) to Canada (Fig. 2c), then crossed
the Atlantic to Europe (Fig. 2d) where it began to merge
with the tracer which had been advected directly out of Rus-
sia from the east. On 31 May, 2003 the CO tracer could
be seen over much of the northern hemisphere (Fig. 2e).
By this time the plume that had travelled across the Pacific
and Atlantic oceans had also indeed crossed Eurasia, taking
about 17 days to circle the entire globe. A closer look at
the two data sets reveals regional differences between sim-
ulations using ECMWF and GFS data, respectively. Gener-
ally, however, the two simulations were remarkably similar
to each other. Both showed the two modes of transport and
the hemispheric-scale transport event.

3.1 Smoke over Alaska (8th day)

During the period 19–22 May, the north Pacific jet was split
into two components: a southern component near 40◦ N as-
sociated with the north Pacific storm track, not relevant to
this discussion, and a zonally elongated polar jet component
stretching from north-east Siberia across the Bering Sea into
Alaska; the latter is shown at 500 hPa in Figs. 3a–c. A large
body of tracer was advected out of Siberia by this strong
westerly flow which was further intensified by the growth of
two synoptic waves on the jet, which cross the Bering Strait
within 36 h of each other (Figs. 3b and c). The first of these
waves cuts off the leading edge of the plume which is then
advected quickly into northwestern Canada. The main body
of the plume is pushed by the second wave over Alaska and
has been very well simulated by the FLEXPART CO tracer
using both ECMWF (Fig. 3c) and GFS data (not shown). On
21 May 2003, Sea WiFS captured an aerosol plume (Fig. 3d)
over Alaska that was presumably transported from the in-
tense forest fire burning in Russia. Images from the MOPITT
(Measurement Of Pollution In The Troposphere) instrument
(not shown) studied within this period also shows forest fire
emissions (Edwards et al., 2003) over Alaska. When com-
paring this available satellite image. In particular, the sharp
edges of the plume in the image over the Gulf of Alaska,
westwards to the Aleutians and then northwards over the
Bering Sea, coincide well with the edges of the CO tracer
plume. A vertical section through the FLEXPART-ECMWF
CO tracer at 64◦ N indicates that the main plume over Alaska

is concentrated between 2 and 5 km altitude while the ad-
vanced plume over northwestern Canada is somewhat higher,
primarily lying between 4 and 7 km. Clouds in Fig. 3d are
mostly at lower altitudes, partly lying underneath the smoke.

3.2 Smoke over Canada (11th day)

On 21 May a smoke plume which arrived first over
north-western Canada (see description above) was advected
quickly south-eastwards before arriving and becoming slow-
moving near the Great Lakes in a diffluent mid-tropospheric
flow on 23 May. On 24 May 2003 (Fig. 4c) simulated
FLEXPART CO tracer showed elongated plumes which
stretches from the north-western edge of Lake Superior up
towards James Bay and reaches across to Quebec and the
St. Lawrence River. The plume coincides well with the im-
age of MODIS instrument aboard the Terra satellite which
also showed elongated smoke plumes (Figs. 4a and b) on 23
and 24 May. An anticyclonic ridge builds between the po-
lar cylconic vortex and a small new cut-off low which de-
velops quickly to the south of the Great Lakes. As a result,
the plume is stretched out and its western flank is advected
around the developing low south- and eastwards into the east-
ern United States. Meanwhile its eastern flank is pulled out
by strong westerly winds past the southern tip of Greenland
and reaches Iceland by 24 May (Figs. 4c and d).

Another smoke maximum is indicated over part of Mani-
toba on 23 May in the upper left corner of Fig. 4a. This is the
edge of the main plume body which was seen over Alaska on
22 May (Fig. 3c) and moved into Canada about 48 h behind
the leading plume above. This large main plume is advected
in the strong westerly flow and arrives over the Hudson Bay
on 25 May, where much of it slows down as it comes under
the influence of diffluent flow ahead of a developing ridge.
The leading edge of this plume, however, is pulled away from
the rest in two bursts by strong flow on the edge of a trough
centred over Baffin Island. One part is advected northwards
to western Greenland on 24 May (Fig. 4d) and another over
the Labrador Sea on 25 May (Fig. 4e).

Figure 4f shows the TOMS aerosol index on 24 May. It
also shows a maximum over Hudson Bay and a filament
stretching from south-east of James Bay to the St. Lawrence
river, in fairly good agreement with the FLEXPART tracer
simulation. However, no significant aerosols registered in
TOMS near Lake Superior. This can be partly attributed to
the dissipation of the smoke in this region later on 24 May
(note that local midday, significant for TOMS measurements,
was after 18 UTC) or the possible presence of clouds.

3.3 Smoke over Scandinavia (14th day)

The rapid advection of the plume across the Atlantic was
caused by the development of a small but intense and mo-
bile synoptic wave and associated strong winds near Iceland
on 25 May (Fig. 5a). This wave moves quickly eastwards

Atmos. Chem. Phys., 4, 1311–1321, 2004 www.atmos-chem-phys.org/acp/4/1311/
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Fig. 4. MODIS Terra satellite images over(a) central Canada at 16:30 UTC, 23 May and(b) eastern Canada at 15:35 UTC, 24 May;(c–
e) FLEXPART ECMWF CO tracer columns over Canada with superimposed contours of the 500 hPa geopotential surface, based on GFS
analyses, contour interval 5 dam, at (c) 23 May 18 UTC, (d) 24 May 18 UTC and (e) 25 May 18 UTC; (f) TOMS aerosol index over eastern
Canada on 24 May, 2003.

and is followed by an increasingly zonal flow which advects
the remains of the plumes which had been over south-eastern
Canada in streams across the Atlantic. FLEXPART simula-
tions with both ECMWF (Fig. 5c) and GFS data (not shown),
both of which showed CO tracer over parts of the North At-
lantic, Scandinavia and the Baltic Sea. It also show tracer
maxima at altitudes of about 5 km (Fig. 5e) The haze plume
formed a curve from just to the south of Iceland down across
to southern Norway and south-central Sweden and back up
across western and central Finland. Further filaments are in

evidence across the Skagerrak Strait near Denmark and over
parts of the Baltic Sea, while further regions of haze plume
are over parts of the European mainland, notably over Latvia,
Lithuania and Poland.

The primary plume curve has been very well captured by
the SeaWiFS sensor On 27 May 2003 (Fig. 5a). The po-
sitions of the maxima over southern Norway and western
Finland have been well captured, although the leading edge
of the smoke appears in the satellite image to have reached
slightly further east over Finland than in the simulation. The

www.atmos-chem-phys.org/acp/4/1311/ Atmos. Chem. Phys., 4, 1311–1321, 2004
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Fig. 5. (a–c)FLEXPART ECMWF CO tracer columns over the north-east Atlantic, Europe and Greenland with superimposed contours of
the 500 hPa geopotential surface, based on GFS analyses, contour interval 5 dam, at (a) 25 May 15 UTC, (b) 26 May 15 UTC and (c) 27 May
15 UTC;(d) Image of SeaWiFS sensor showing smoke over Scandinavia on 27 May, 2003 at 12:54 UTC.(e)and(f) vertical section through
the FLEXPART CO tracer at 61◦ latitude on 27 May at 15 UTC and 51◦ latitude on 29 May at 21 UTC, respectively, using ECMWF data.

maximum over southern Norway corresponds to the compo-
nent which had been advected over Labrador Sea on 25 May
(Fig. 4e) while the maximum over western Finland contains
smoke which had been the first to reach the Iceland region on
24 May (Fig. 4d).

The smoke thus arriving over Europe on 27 May had al-
most completed a loop around the globe and was heading
back towards the source region in Russia. It also began in-
evitably to merge with smoke plumes which had been ad-

vected directly from the east out of Russia. The large max-
imum near Jan Mayen, north-east of Iceland, on 25 May
(Fig. 5a) had been advected slowly across northern Scandi-
navia during the previous days and became stagnant in a re-
gion of light mid-tropospheric winds in an anticyclonic ridge.
Similarly, the CO tracer plume over Eastern Europe (Fig. 5a–
c) was advected slowly from the east in anticyclonic condi-
tions and corresponds well with the observed haze plumes in
this region.

Atmos. Chem. Phys., 4, 1311–1321, 2004 www.atmos-chem-phys.org/acp/4/1311/
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Fig. 6. (a)Lidar time-height plot of particle backscatter ratio at 1064 nm over Leipzig, Germany on 29 May, 2003 from 20 UTC to 21 UTC.
The vertical and temporal resolutions are 60 m and 30 s, respectively.(b) ECMWF (dotted line) and GFS (solid line) FLEXPART simulation
profiles over Leipzig averaged between 18 and 21 UTC of 29 May, 2003.(c) Total column residence time of 50 000 particles from a 20 days
FLEXPART backward simulation starting at Leipzig on 29 May, 2003 at 21 UTC. The scale is in percentage of the maximum residence time
given below the panel.

3.4 Smoke over Germany (16th day)

During the two days following 27 May, the smoke maximum
over southern Norway was dissipated by diffluent flow on
the edge of a strong ridge building to the south-west. Parts
of the plume encroached on eastern Germany and continued
to merge with the remnants of the eastern European plume
which had been advected directly out of Russia. Observa-
tions from the Raman lidar at Leipzig, Germany on 29 May
(51.35◦ N, 12.43◦ E, 92 m) recorded particle extinction coef-
ficients of 5–30 Mm−1 and particle optical depths of 0.03–
0.12 at UV and visible wavelengths in the free troposphere
from May to July 2003. Such unusually high aerosol lev-
els had never been observed previously since the start of the
measurements in 1997 (Mattis et al., 2003) as part of the Eu-
ropean Aerosol Research Lidar Network (EARLINET). Li-
dar measurements from the German aerosol lidar network
has been used to observe Canadian forest fire emissions over
Germany (Forster et al., 2001). Figure 6a shows a strong
lidar backscatter ratio of aerosol at 1064 nm without any sep-
aration between the boundary layer and the free tropospheric
aerosol layers. Nevertheless, according to radiosonde pro-
files of potential temperature the boundary layer height was
below 2 km (Mattis et al., 2003). One can easily see two
maxima, one below 4 km and the other above 5 km. This
enhanced aerosol could be observed up to a height of about
6 km.

These lidar results are in good agreement with the FLEX-
PART forest fire CO simulations with ECMWF (dotted line)
and GFS (solid line) data (Fig. 6b), which also show dou-
ble maxima at similar altitudes over Leipzig between 18–
21 UTC on 29 May 2003. Figure 6c shows FLEXPART
backward simulation beginning at Leipzig, Germany. It rep-
resents the sum of the residence time of the air arriving at
the receptor determine on a uniform grid. Further backward
calculations suggest that the lower and larger maximum cor-
responds to parts of the smoke plume which had been over
southern Norway two days earlier. The upper and smaller
maximum is associated with the remnants of a thin filament
which was stretched southwards across Ireland and western
France on 25 May (Fig. 5a) and was subsequently advected
eastwards, reaching western Germany on 27 May (Fig. 5c).
It is also probable that these plumes will have begun to merge
by this time with smoke which had been continuing to spread
out of Russia directly from the east. The simulated CO tracer
concentrations at Leipzig are relatively low but extend over a
large altitude range. In the FLEXPART vertical cross section
through the latitude at Leipzig (Fig. 5f), Leipzig is close to
the edges of the two simulated smoke plumes. The large ob-
served lidar backscatter ratios suggest that in reality Leipzig
may have been closer to the center of at least one of the two
plumes.
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4 Conclusions

In this paper, we investigated the transport of smoke from
Russian boreal forest fires from 10 to 31 May, 2003 using the
Lagrangian dispersion model, FLEXPART, comparing simu-
lations based on ECMWF and GFS meteorological data.

The transport of the smoke plumes was unique in the sense
that, within 17 days, smoke had circumnavigated the globe:
perhaps the first time this has been so clearly documented.
From the source, smoke crossed the Bering Sea to Alaska,
where it was visible in SeaWiFS imagery and then quickly
crossed to eastern Canada, where the MODIS Terra satellite
witnessed it. It proceeded across the Atlantic to Europe, as
captured in a further SeaWiFS image, on its way back to Rus-
sia and began to merge over Europe with smoke which had
been advected directly out of Russia westwards. By the end
of May 2003 the plume had engulfed much of the Northern
Hemisphere. The fact that haze plumes from boreal forest
fires can circumnavigate the globe and can persist for longer
than two weeks has large implications for the radiative heat-
ing of the atmosphere (Fiebig et al., 2002). Not accounting
for such plumes in climate model simulations or numerical
weather predictions may possibly lead to large errors.

FLEXPART simulations based on both ECMWF and GFS
data could reproduce much of the fine-scale structure seen
in the satellite images with remarkable accuracy, even after
the smoke plume had travelled almost around the northern
hemisphere. It is not clear from our results which of the two
simulations is in better agreement with the observations.
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