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Abstract. In the summer 2000 EXPORT aircraft campaign
(European eXport of Precursors and Ozone by long-Range
Transport), two comprehensively instrumented research air-
craft measuring a variety of chemical species flew wing tip
to wing tip for a period of one and a quarter hours. During
this interval a comparison was undertaken of the measure-
ments of nitrogen oxide (NO), odd nitrogen species (NOy),
carbon monoxide (CO) and ozone (O3). The comparison was
performed at two different flight levels, which provided a 10-
fold variation in the concentrations of both NO (10 to 1000
parts per trillion by volume (pptv)) and NOy (200 to over
2500 pptv). Large peaks of NO and NOy observed from the
Falcon 20, which were at first thought to be from the exhaust
of the C-130, were also detected on the 4 channel NOxy in-
strument aboard the C-130. These peaks were a good indica-
tion that both aircraft were in the same air mass and that the
Falcon 20 was not in the exhaust plume of the C-130. Corre-
lations and statistical analysis are presented between the in-
struments used on the two separate aircraft platforms. These
were found to be in good agreement giving a high degree of
correlation for the ambient air studied. Any deviations from
the correlations are accounted for in the estimated inaccura-
cies of the instruments. These results help to establish that
the instruments aboard the separate aircraft are reliably able
to measure the corresponding chemical species in the range
of conditions sampled and that data collected by both aircraft
can be co-ordinated for purposes of interpretation.

1 Introduction

Atmospheric chemistry instruments have improved in the last
ten years, moving towards better detection limits of single
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parts per trillion by volume (pptv) levels in measurements
of compounds such as nitrogen oxides (NO+NO2=NOx) and
the sum of reactive nitrogen compounds (NOy) (Ridley et
al., 2000). Aircraft platforms have added another dimen-
sion to the overall chemical picture of the atmosphere but
bring with them additional technical and chemical challenges
such as inlets, pressure, temperature effects, humidity and in-
strument warm up periods. Consequently, instrument perfor-
mance can often be downgraded on an aircraft platform and it
is therefore necessary to qualitatively assess the performance
of instruments on such platforms. One way of testing instru-
ment performance is by comparison with a similar instru-
ment whilst measuring the same air mass. Such comparisons
are necessary to establish reliability of instruments allowing
quantitative estimates of the accuracy and precision.

Various comparison exercises have been undertaken dur-
ing ground-based campaigns, involving a range of instru-
ments, (e.g. Williams et al., 1998; Fehsenfeld et al., 1990;
Zenker et al., 1998) at various sites throughout the world.
Aircraft comparisons on the other hand, have been performed
far less frequently (e.g. Ridley et al., 1988; Ziereis et al.,
1990) and have involved atmospheric instruments that mea-
sure NO, NOy, carbon monoxide (CO) and ozone (O3).
Although aircraft campaigns over the last 20 years have
increased in frequency, instrument performance especially
when considering a NOxy instrument, is found to be poorer
than similar ground based field deployment owing in the
main to the short period (4 h or less) of instrument warm-
up and therefore stabilisation. Many aircraft campaigns have
therefore taken place without knowing the true precision, ac-
curacy and capabilities of the instrument on the particular
flight. The more instruments involved in comparisons the
better the instrument integration, as can be clearly seen in
the ground-based study by Williams et al. (1998) in which
seven NOy instruments were compared.
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Fig. 1. Flight paths of the DLR Falcon 20 (light grey) and the MRF
C-130 (dark grey) on 10 August 2000. The intercomparison legs
were flown along a straight track between 47.97◦ N, 12.67◦ W and
47.63◦ N, 12.39◦ W.

To obtain a good instrument comparison it is advisable that
the mixing ratios of the compounds to be measured are not
consistently near to the detection limits of the instruments, as
this can result in erroneous statistical analysis. However, it is
important to test instrument behaviour through intercompar-
ison exercises at both high and low ambient mixing ratios.
A variety of structures within the air mass to be measured
are preferred to ensure that there is a high degree of dynamic
variability giving large changes in concentration on all instru-
ments. On the ground, changes in the wind direction help to
vary the air parcel concentrations and assist in obtaining a
large dynamic concentration range. In an aircraft, this can
usually be achieved by changing the aircraft altitude since
much of the troposphere is very stratified with narrow lay-
ers of different chemical composition, in particular the wa-
ter vapour concentration (Newell et al., 1996; Penkett et al.,
1995). The work in this paper describes the comparison of
five different instruments onboard two different aircraft dur-
ing the EXPORT campaign of August 2000.

2 Experimental

Aircraft measurements of important atmospheric con-
stituents namely, CO, NO, NOy and O3 were measured
in-situ and simultaneously onboard two separate aircraft
Deutsches Zentrum für Luft- und Raumfahrt (DLR) Falcon
20 and the Meteorological Research Flight (MRF) C-130).
The aircraft were based at the DLR, Oberpfaffenhofen air-
port in southern Germany during August 2000 and took part
in the EXPORT (European eXport of Precursors and Ozone
by long-Range Transport), project. The EXPORT program
consisted of a series of flights under a range of synoptic con-
ditions designed to characterise the chemical composition
of air over Europe and to quantify the potential of precur-

sors exported from Europe to produce O3 downwind. Stan-
dard instrumentation such as the meteorological parameters
(static pressure, wind direction and speed, air temperature,
dew point temperature, total water content, etc) were mea-
sured on the MRF C-130 as detailed by Hov et al. (2000).
The comparison flight took place on 10 August 2000 and the
flight details are shown in Fig. 1.

Most instruments were similar in their methods of detec-
tion. NO and NOy used detection by chemiluminescence
of NO and O3, CO by vacuum-UV resonance fluorescence
(Gerbig et al., 1996, 1999) and O3 was measured by UV ab-
sorption.

On the ground, pre-flight calibration comparisons were
performed for the two NO and NOy instruments. Calibra-
tions were first performed with individual compressed gas
NO standards and then these were cross-referenced with each
other’s standard. The calibration gases varied in concen-
tration and were described by the manufacturers (see later)
to be 1.01±0.01 parts per million by volume (ppmv) and
3.5±0.2 ppmv. It was found that the accuracy of the instru-
ments to the different calibration gases was within 3%, show-
ing that on the ground at least, the instruments were able to
measure the same mixing ratios. Since the C-130 NOxy can
only operate up to an altitude of 9000 m before sample flow
problems (Bauguitte, 2000) are encountered the intercom-
parison portion of the flight was therefore carried out at alti-
tudes of ca. 8000 and ca. 6000 m with the assumption that we
would obtain air of different compositions during this period.
Rendezvous of the two aircraft was at the higher altitude and
at a position over southern Germany (47◦ N, 12◦ E). The two
aircraft flew as close to each other as safety permitted. The
horizontal and vertical separation was estimated to be of the
order of 70 and 5 m respectively and was held for a period
of 1.25 h at an indicated aircraft speed (IAS) of 180 knots
moving through 410 km of air (dependent on wind speed and
direction). At the conclusion of the first leg at the pressure
altitude of 8000 m (40 min), the aircraft was manoeuvred into
a slow descent to an altitude of ca. 600 m. This lower flight
level was maintained for a further 30 min until both aircraft
broke from the formation. The intercomparison legs were
flown along a straight track between 47.97◦ N, 12.67◦ W and
47.63◦ N, 12.39◦ W with three turns and time was allowed
at specified periods throughout each leg for the relevant in-
strument zeros and calibrations. During the comparison no
clouds were encountered at the relevant flight levels; broken
stratocumulus was observed beneath the aircraft and the sky
was clear above. All instruments that were involved with the
intercomparison appeared to function correctly and there was
no verbal in-flight discussion of concentration profiles.

2.1 NO, NOy measurements by the University of East An-
glia (UEA) on the C-130

Measurements of the oxides of nitrogen on the C-130 were
obtained by chemiluminescence pioneered by Kley and Mc-
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Farland (1980) and the light produced measured by a cooled,
red sensitive photomultiplier tube (PMT) (Hübler et al.,
1992; Drummond et al., 1988). Detection of NO was
achieved by sampling air at 1 L min−1 at standard temper-
ature and pressure (STP) from a rear facing stainless steel
tube (to help exclude aerosols of radius>1µm) lined with
1/4′′ (6 mm outside diameter) PFA (Perfluoroalkoxy) which
was outside the pressure boundary of the aircraft layer and
forward of the propellers. The sampled air was mixed with
humidified O3 on entering the gold plated reaction vessel.
NOy detection was achieved by reducing it to NO using CO
as a catalyst (0.3% v/v) in gold tubes which were 35 cm in
length with an inner diameter of 5 mm and maintained at
300◦ C (Fahey et al., 1985). The sampling inlet used for
NOy measurements was made of perfluroalkoxy (PFA) teflon
and enclosed in a tear drop shaped assembly connected to
the aircraft skin situated perpendicular to the direction of
flight. The inlet and its orientation was specifically designed
to minimise NOy loss and consequently had a low-volume
permitting fast sampling (Ryerson et al., 1999). It was heated
to 75◦ C which also helped to reduce potential HNO3 wall
losses (Neuman et al., 1999) before the 1 L min−1 STP sam-
pled air reached the heated converter. The response speed
of the converters was faster than 1 cps (counts per second).
All overflow and calibration gases entering the NOy system
passed through the inlet.

Four calibrations of the two detectors were performed, one
each, pre and post flight as well as two in-flight using a stan-
dard concentration of NO in N2 (BOC specialty gases) of
1.01±0.01 ppmv. Stable air masses in which no clouds were
present and NO and NOy varied little were sought over the
calibration period (10–15 min) and were often found in free
tropospheric air above 4000 m. The NO standard was di-
luted into the 1 L min−1 STP sample air stream at a rate of
3 cm3 min−1 STP by means of a mass flow controller (Tylan)
yielding a resulting mixing ratio of 3.3 ppbv NO. Linear in-
terpolations between the in-flight calibrations were used to
provide minimal error. NO2 calibrations on the NOy con-
verter were made by photolysing zero grade air, producing
O3, which reacted with the NO calibration gas to obtain a
90% conversion to NO2. The sensitivity of the NO channel
was 6.1±0.1 cps pptv−1 and for the NO2 sensitivity on the
NOy channel was 3.4±0.2 cps pptv−1. The conversion effi-
ciency of HNO3 to NO in the gold converters occurs with
an efficiency greater than 90% in the UEA instrument, under
the same conditions there is no detectable conversion of N2O
to NO. Ammonia is converted with an efficiency of<5% in
this system and the conversion of HCN occurs with an effi-
ciency of 8% in totally dry air but these efficiencies decrease
substantially with relative humidity. The DLR group have
performed conversion efficiency tests on their NOy converter
for HCN, N2O, CH3CN and NH3. Of these only HCN was a
possible source of interference of around 2% under the con-
ditions of the intercomparison.

When zeroing, instead of the O3 being added directly into

Table 1. Detection limits (2σ ) and estimated accuracies of the UEA
NOxy system for 10 s data.

Channel Detection limit Estimated accuracies at
(2σ )/pptv ambient (pptv) level

NO 3–4 ±12% at 50
NOy 3–4 ±21% at 450

the reaction vessel as in the measurement mode, a relaxation
volume (Pyrex bottle of 250 ml volume) was used. In this
case, the O3 was added to the sample matrix prior to injec-
tion into the gold plated reaction chamber and NO2 chemilu-
minescence occurs away from the photomultiplier tube. The
resulting background or zero signal was a combination of
the photomultiplier dark counts and interference from stray
chemiluminescence of atmospheric species and catalysed re-
actions on the chamber walls (Drummond et al., 1985). The
background signal was found to be 400±7 cps for NO, and
280±9 cps for NOy and was performed at the beginning and
end of every flight level for a period dependant on the instru-
ment performance but usually between 90 and 120 s.

Artifacts, which are the difference between the measured
and zero signal mode when there is supposedly no nitro-
gen oxide present were performed during take-off and land-
ing by overflowing the sample lines with 2 L min−1 STP of
synthetic zero grade compressed air (BOC, British Oxygen
Company). These two measurements were averaged and
found to be of the order, 15±9 cps and 212±20 cps, for NO
and NOy respectively. Conversion efficiency of the NOy con-
verters using NO2 as a surrogate were found to be>90% for
both in-flight measurements.

Detection limits (LOD) were estimated using the 1σ

counting precision of the 1 cps zero background signal which
was assumed to represent the detection limit (see Ridley et
al., 1994) as there are no suitable invariant ambient data. Us-
ing the corresponding NO2 sensitivities (NO sensitivity×
conversion efficiency), the standard deviations of the zero
data for the other channels (cps) were transformed to pptv
and it can be assumed that when the data is averaged to 10 s
the LOD would improve by 1

√
10

. The 2σ detection limits are

shown in Table 1. Data were collected at 1ċps intervals for all
channels but were averaged to 10 s owing to other instrument
parameters.

The major contributor to the inaccuracy for each detector
was the instrument artifact signal. The sum of the inaccuracy
and imprecision of a single measurement gives the overall
uncertainty of the instrument. Estimated accuracies were ac-
counted for as: (1) Uncertainties in the flow meter calibra-
tions for the sample and calibration gas flows of 4% (a bub-
ble flow meter was used to calibrate pre and post campaign).
(2) Calibration of the gas standard uncertainty based upon
the intercomparison with the DLR standard (3 ppmv NO in
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Table 2. Detection limits (2σ ) and estimated accuracies of the DLR
NO and NOy system for 10 s data.

Channel Detection limit Estimated accuracies at
(2σ )/pptv ambient (pptv) level

NO 1–2 ±8% at 50
NOy 1–2 ±7% at 450

N2) of 3%. (3) Average measured artifact uncertainty for the
flight. The accuracy of the UEA instrument is comparable to
the reported inaccuracies in similar instruments, for example
Williams et al. (1997) quote estimated inaccuracies of 19%
in NO and 15% in NOy and Parrish et al. (1993) quote an
inaccuracy of 15% in their NOy data. Using a similar tech-
nique with a molybdenum catalyst Stehr et al. (2000) report
an inaccuracy in their NOy measurements of 30% and Kondo
et al. (1997) quote an error of 12% in NO at 50 pptv and 27%
in NOy at 100 pptv.

Variability of the sensitivities was shown on all UEA NOxy
channels during this flight and is known as the precision of
the instrument. The scatter (1σ ) that was exhibited between
the two in-flight sensitivities was 1.89% for NO (lower than
that expected on the basis of instrument diagnostics) and
14.1% for NO2 sensitivities on the NOy channel. These high
values for the NOy channel was mainly due to rapid changes
during calibration of the ambient NOy levels leading to over-
estimated calibration averages as well as systematic contam-
ination owing to large pollution episodes experienced by the
NOy converter leading to a reduced sensitivity post flight.

2.2 NO and NOy measurements by DLR instruments on the
Falcon 20

The technique for the measurement of NO and NOy on board
the Falcon 20 is quite similar to that one used on the C-130
as mentioned previously. A two-channel chemiluminescence
detector for NO was used allowing the simultaneous detec-
tion of NO and NOy. NOy was measured by the catalytic
conversion technique already mentioned above. There are
only a few differences between the NO and NOy measure-
ments on the two aircraft. The DLR chemiluminescence de-
tector is operated with a sample flow of 1.5 L min−1 at STP.
Sampling occurs through a rear-facing inlet to avoid sam-
pling of large aerosol particles onto the NOy converter. All
sampling lines are made of PFA and are heated to about 30–
40◦ C. The gold tube used on the NOy converter during EX-
PORT was 60 cm long with an inner diameter of 4 mm. A
CO reducing agent was added upstream of the converter at
3 cm3 min−1 STP.

Sensitivity checks of the two NO detectors were deter-
mined before and after each flight by adding a standard con-
centration of NO in N2. The NO-standard was diluted into

the NO-free zero air by means of a mass flow controller. Usu-
ally four different NO mixing ratios were used between 1 and
8 ppbv. The sensitivity of the two NO-channels was 21 and
18 cps pptv−1. The background signal of the two NO detec-
tors were determined in a similar way as described previously
on the C-130. The background signal was determined every
10 min for about 1 min. It was about 1000 cps in both chan-
nels.

The conversion efficiency of the gold converter was
checked before and after each flight by adding known
amounts of NO2 produced by gas phase reaction of NO with
O3. The conversion efficiency did not vary significantly dur-
ing the campaign and was close to 100%. Zero air artifacts
were also determined, in a similar way as described for the
UEA instrument, before and after each flight and also during
the flights itself. The zero air artifacts for NO and NOy were
of the order of 3±1 pptv and 28±6 pptv, respectively. Owing
to space limitations on the FALCON 20, which is a smaller
aircraft, no sensitivity checks could be performed during the
flights. The detection limits and estimated accuracies of the
instrument are shown in Table 2.

2.3 Ozone measurements by UKMO on the C-130

A commercial instrument was used to measure O3 (Thermo
Environmental Instruments Inc. model 49 U.V. Photomet-
ric Ozone Analyser) on the C-130. It has been modified
with the addition of a drier and separate pressure and tem-
perature sensors. The inlet from the port air sample pipe is
pumped via a buffer volume to maintain the inlet air at near
surface pressure. All surfaces in contact with the sample in-
cluding the pump are of Polytetrafluoroethylene (PTFE) or
PFA. The instrument has a range of 0–2000 ppbv, a detec-
tion limit of 1 ppbv and a linearity of 2% (as stated by the
manufacturer). The data are sampled with a frequency of 1
cps then smoothed over a 5 s period. The calibration is car-
ried out annually against a traceable standard from the Na-
tional Physics Laboratory (NPL). Biannual checks are car-
ried out locally against a transfer standard (DASIBI). The
calibrations have consistently shown the repeatability of the
instrumental method. No discernible drift (less than 2%)
was found between calibrations. Hence an accuracy of 2%
is expected from the calibration with an NPL guarantee of
less than 1% on the precision. Laboratory experiments have
shown no discernible loss of O3 on inlet lines (i.e. less than
1%).

After the EXPORT campaign it was discovered that there
was a problem with the recording of the temperature sensor
data on the C-130 O3 instrument. A total of 40 flights, pre-
EXPORT and post-EXPORT, where temperature data was
recorded, were analysed. The ozone temperature and pres-
sure are recorded, in order to normalise for changes in sam-
ple mass, as the sample is not kept at a constant pressure
and temperature. The temperature was found to vary by only
12 K (1): from 304 to 316 K. A whole range of flights were
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studied from winter to summer, from low level to high level,
from the Azores to the Arctic, via, Tenerife, Greece, Austria,
Germany and the UK. Most flight data taken as represen-
tative of European summer conditions varied between 306
and 312 K. Hence, 309 K was chosen to represent the sample
temperature for all of the EXPORT flights. With 309 K as the
mid-point, it is most likely that the temperature will only vary
by ±3 K during flight i.e. the O3 precision and accuracy will
vary by±1%. However, erring on the side of caution, if the
temperature variation is equal to the largest range found (304
to 316 K) the error on the O3 reading would be±2%. Even if
the temperature varied from 309 K by±12 K (i.e. from 297–
321 K), which is most unlikely, considering the existing good
data, the error would still only be±4%. Considering all pos-
sible sources of error the O3 data is good to within±5% or
better.

2.4 Ozone measurements by DLR on the Falcon 20

O3 was also measured using an UV absorption photometer
(Thermo-Environmental, Model 49). Sampling and detec-
tion of O3 occurs at ambient pressure through a rear-facing
inlet at a frequency of 0.25 cps. Inlet and inlet lines were
made of PFA. Separate pressure and temperature sensors
measured pressure and temperature inside the O3 analyser.
The data were sampled at 1 cps but smoothed over a 4 s pe-
riod.

The sensitivity of the UV absorption photometer was
checked several times during the EXPORT campaign with
an O3 standard source (Environment s.a. Model O3 41M).
No significant variation of the sensitivity of the O3 instru-
ment was found during these calibrations. The O3 standard
source was compared with O3 UV absorption measurements
at the global watch station at Hohenpeißenberg, Germany.
The analyser has a range of 0–1000 ppbv and a detection
limit of about 1 ppbv. The major contributor to the uncer-
tainty of the detector is the accuracy of the signal output of
the instrument. As the accuracy of the signal output remains
constant the uncertainty of the instrument increases with de-
creasing pressure in the absorption cell. During the compari-
son the overall uncertainty of the O3 analyser was between 4
and 5%.

2.5 Carbon monoxide measurements by UKMO on the C-
130

A detailed description of the CO instrument on the C-130 can
be found in Gerbig et al. (1999). It consists of three principle
components: a resonance excitation source, an optical filter,
and a sample fluorescence detection cell. The appropriate
wavelength interval for the excitation light around 150 nm is
selected in an N2 purged optical filter consisting of two di-
electric coated mirrors in combination with two CaF2 lenses,
which image the lamp into the fluorescence chamber. Fluo-

rescence of CO is detected with a PMT at right angles to the
excitation radiation.

The sample gas is taken from the starboard air-sampling
pipe (ASP) which is pressure regulated and allows operation
at ambient pressures between 1013 and 175 mbar. The con-
nection to the ASP is by a PFA tube with 1/8′′ OD and a
length of about 15 m. The sampled air is dried by passing it
over Drierite (CaSO4 with humidity indicator) to avoid inter-
ference of atmospheric water vapour owing to absorption of
the fluorescence radiation (a mixing ratio of 2% H2O causes
a decrease in the fluorescence signal of 10%).

In-situ calibration of the instrument is accomplished by
injecting a known standard (515 ppbv of CO in air), at flow
rates slightly higher than the sample flow rate, into the sam-
pling line close to the control valve. For determination of the
background signal, the calibration standard is passed through
a Hopcalite scrubber, which quantitatively removes the CO
to levels<1 ppbv. In-flight calibrations and zeros lasting
roughly 4 min were performed approximately every 30 min.
The sensitivity was found to be 31 cps ppbv−1, which is less
than half the sensitivity for this instrument quoted by Hol-
loway et al. (2000) (73 cps ppbv−1). The instrument back-
ground was found to be 55 ppbv (in equivalent CO ppbv
units). Hence, following the analysis of Gerbig et al. (1999),
the instrument detection limit is smaller than 6 ppbv and the
precision 1.5 ppbv. The instrument has also been shown to
give a linear response from 0 to 100 ppmv and has a time
resolution of 1 s. An aircraft instrument intercomparison has
been conducted previously by Holloway et al. (2000), show-
ing good agreement between the C-130 instrument and a
VUV fluorescence instrument on board the US NOAA WP-3
aircraft.

2.6 Carbon monoxide measurements by DLR on the Fal-
con 20

The DLR CO instrument operated on the Falcon 20 is nearly
identical to that one used on the C-130. There are only some
minor differences in the two instruments. In the DLR CO in-
strument the optical filter system is purged by argon instead
of nitrogen and the instrument can be operated to less than
100 mbar. The sample gas is taken from an air inlet at the top
of the fuselage and is passed through a sampling line made
of stainless steel with 1/8′′ OD and length of about 1 m. The
sampled air is dried by a Perma Pure MD Gas Dryer™. In-
flight calibration of the instrument is performed by injecting
a known standard (∼1 ppmv) into the sampling line. Detec-
tion limit, precision and time response is the same for both
instruments. The DLR CO instrument has a linear response
from 0 to 1000 ppmv.
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Fig. 2. The mixing ratios for NO and NOy observed at altitudes
between 6000 and 8000 m during the comparison on the 10 August
2000 over southern Germany. The data sets have been averaged to
10 s from 1 s raw data and any gaps in the data are due to instrument
zeroing or aircraft re-positioning.

3 Results and discussion

3.1 NO and NOy measurements

The data from the aircraft were placed on the databases at
British Atmospheric Data Centre (BADC) and DLR for the
UK and German contingents respectively. The C-130 and
Falcon data sets (Fig. 2) were averaged to 10 s from 1 s raw
data for both NO and NOy. The air mass encountered for
most of the time had little variation in the NO and NOy con-
centrations (less than 0.2% NOy mixing ratio values greater
than 1000 pptv) although large increases were observed in
the NO and NOy instruments aboard both aircraft. These
large increases in mixing ratios are referred to as spikes and
usually lasted from a second to tens of seconds.

Large changes in the NO and NOy mixing ratios were
recorded owing to the interception of polluted plumes almost
certainly originating from aircraft. These large rapid changes
were encountered four times and were observed on both the
DLR and UEA NO and NOy channels, two at each flight
level, giving half widths ranging from between 8 and 48 s.
At an indicated aircraft speed of 180 knots this would give
plumes widths of between 0.7 km and 4.3 km if flying into the
plume at 90◦ to the long axis of the plume. The sharp peaks
(labelled 1 to 4 in Fig. 2) were between 400 and 1000 pptv
(1 s data with background averages of 20 pptv) on the NO
instruments and between 1000 pptv and 2600 pptv (1 s data
with background averages of 500 pptv) on the NOy instru-
ments. Increases as large as 50 fold from the background
air-mass mixing ratios were observed. The total increase in
the NOy during these episodes cannot be fully accounted for
by the increase in the NO mixing ratios. As the spikes oc-
curred on both NOy instruments as well as the NO channels
it can be assumed that they are elevated concentrations of NO
as well as other NOy species and not an instrument irregular-

ity observed on one channel owing to either static discharge
or cosmic rays.

DLR measurements, on average, gave systematically
higher apparent values than those of UEA (26 pptv versus
20 pptv for NO and 555 pptv versus 467 pptv for NOy) for
10 s NO and NOy data. The scatterplots of NO and NOy
(Figs. 3.1 and 3.2) display the mixing ratios with and with-
out the spikes present in the data sets. This includes all the
prominent peaks labeled 1, 2, 3, 4 in Fig. 2 as well as other
sharp peaks greater than 100 pptv. Linear least squares fit-
ting was applied to the data using a weighted bivariate re-
gression routine (Neri et al., 1989). The inverse of the un-
certainty of each data point was used as the weighting factor
and 2σ confidence limits are given with the regression co-
efficients. Figures 3.1a and 3.2a show the scattergram plots
without the spikes of the NO and NOy respectively with a
one to one line. Without the spikes the data sets for the NO
instruments are highly correlated, a least squares fit corre-
lation (r2) of 0.91 was observed. The slope was close to
unity (1.10±0.10) signifying a 10% difference in the mixing
ratios of the two separate instruments. This observation is
because of the differing NO sensitivities between the instru-
ments and falls within the 12% uncertainty (12% at 50 pptv)
of the UEA NO instrument. An intercept on the y-axis of just
3.8±0.2 pptv suggests that there is a small systematic offset
on the UEA technique and is most likely due to an instrument
artifact problem. Examination of the NOy data sets with the
peaks removed showed a high correlation (r2) of 0.97 with a
slope of 1.17±0.06. This 17% difference is well within the
22% combined uncertainty of the two instruments obtained
by addition in quadrature. This suggests that no substantial
unknown sources of error exist in either measurement. The
intercept was again in the positive sector of the DLR data
at 18.8±0.3 pptv, corresponding to 3–7% since most mea-
surements were made in the 500–1000 pptv range. The tight
correlation shown in both the NO and NOy plots (Figs. 3.1a
and 3.2a) suggests that the instruments are in good agreement
over the comparison period.

When the peaks are present (Fig. 3.1b and 3.2b) there are
a few points that are scattered far from the line of best fit and
r2 was calculated as 0.81 for the NO data sets. A positive
slope somewhat greater than unity (1.29±0.03) with a small
positive systematic offset of 1.2±0.1 pptv was also found.
This positive slope was about 19% greater than the NO data
set with the peaks removed. Fitted slopes to the NOy data
were higher with the peaks present, 1.22±0.01 as compared
to 1.17±0.06, and an intercept of−5.9±0.2 pptv as shown
in Fig. 3.2b. The correlation of 0.96 was roughly the same as
the “spike-less” data (0.97) and was closer to one than pre-
viously obtained with the NO instruments indicating that the
NOy spikes were in better agreement. The positive intercepts
on Figs. 3.1b and 3.2b were relatively small, showing good
instrument correlations at low mixing ratios. This poorer
comparison of the data including the spikes is more likely
to be due to sampling slightly different air (aircraft spatial
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Fig. 3.1 Scattergram of all 10 second averaged NO mixing ratios, DLR versus UEA, (a) All spikes removed.

(b) All data. Solid black lines in each plot show the bivariate linear regression fit to the data. The dashed line

in each plot gives the one to one correspondence.

Fig. 3.1. Scattergram of all 10 s averaged NO mixing ratios, DLR versus UEA,(a) All spikes removed.(b) All data. Solid black lines in
each plot show the bivariate linear regression fit to the data. The dashed line in each plot gives the one to one correspondence.
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y

Fig. 3.2. Scattergram of all 10 s averaged NOy mixing ratios, DLR versus UEA,(a) All spikes removed.(b) All data. Solid black lines in
each plot show the bivariate linear regression fit to the data. The dashed line in each plot gives the one to one correspondence.

arrangement), or slightly different temporal resolution of the
two instruments than to instrument performance, which on
the ground has been shown to be in close agreement. The
spikes are clearly real plumes and are narrow; thus the ob-
served concentrations on the two aircraft are likely to be dif-
ferent given their spatial arrangements.

Although the NOy measurements of the two instruments
are in agreement within the uncertainties of the measure-
ments, the systematically higher values of the DLR instru-
ment (∼90 pptv at 500 pptv) are such that care will have to
be taken in using these measurements in the interpretation of
“missing NOy” especially in light of the recent report of Day
et al. (2003).

3.2 CO and O3 measurements

Only coincident data were used providing 433 points and
corresponding to 90% coverage for the CO and 455 points
and 89% coverage for the O3. The scattergram plot of the
CO instruments with a corresponding one to one line and a
weighted bivariate linear regression line fit is displayed in
Fig. 4a. As displayed most data points are clustered around
the two lines indicating that the data sets are in close agree-
ment. This close proximity of the data sets is further vali-
dated by the high squared root correlation coefficient of 0.95.
Although the CO data sets were in fairly close agreement
and within their respective accuracies for the whole com-

parison period the slightly higher bivariate linear regression
line at the lower concentration (50–70 ppbv) levels indicated
that there was a systematic difference between the two in-
struments. In particular, the MRF CO instrument revealed
a significant increase in CO from 68 to 75 ppbv just after
13:33 GMT that persisted for ca. 3 min (Fig. 6). It was clearly
not observed by the DLR instrument and would appear to in-
dicate real variations in ambient CO since good agreement
was obtained for the rest of the comparison period, although
short term instability in one or other of the instruments can-
not be fully ruled out during this period. Examination of the
data sets for the first 30 min period gave a low slope gradient
(0.68±0.01) and poor correlation;r2

=0.76. Air mass sam-
pling differences due to the spatial arrangement of the aircraft
is the most likely cause since in the latter half of the compar-
ison the data sets are in excellent agreement (r2

=0.97). Low
correlations (r2) over this initial 30 min period was also ob-
served with the O3 data sets, 0.44 as compared to 0.96, and
shall be discussed in more detail later. From the CO scatter-
gram plot of Fig. 4a, the systematic difference is evident in
the fitted line parameters, the associated uncertainties of the
slope was 0.95±1 ppbv, which is about 5% from unity. This
level of systematic difference was also found with the inter-
comparison by Holloway et al. (2000) of a CO VUV fluo-
rescence instruments and a TDLAS simultaneously operated
and intercompared for CO on the NOAA WP-3 and the one
used in this intercomparison aboard the MRF C-130 over the
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Fig. 4 Scattergram of DLR versus MRF CO mixing ratios shown in (a) and ratios of the two instruments against

the average CO concentrations in (b). Below 50 ppbv no COmixing ratios were found. Solid black lines in the

plot show the weighted bivariate linear least squares fit to the data. All data is averaged to 10 seconds. The

dashed line gives the one to one correspondence.

Fig. 4. Scattergram of DLR versus MRF CO mixing ratios shown in(a) and ratios of the two instruments against the average CO concentra-
tions in(b). Below 50 ppbv no CO mixing ratios were found. Solid black lines in the plot show the weighted bivariate linear least squares fit
to the data. All data is averaged to 10 s. The dashed line gives the one to one correspondence.

central Atlantic. Using bivariate linear regression analysis
a slope of 0.96±0.01 was obtained with a correlation (r2)
which was slightly higher and closer to unity than ours (0.96
as compared to 0.95). This reflects a small systematic differ-
ence in the accuracy of one or both of the instruments and
artifacts on either instrument cannot be ruled out. The sys-
tematic offset on the other hand was found to be fairly high
in comparison to the low mixing ratios encountered (roughly
5% of the average mixing ratio, 85 ppbv) with a positive in-
tercept of 4±1 ppbv on the DLR axis. This high intercept was
most likely caused in the first 30 min at the higher level run
in which poor agreement (r2

=0.76), small dynamic range
and large extrapolation from the main data set to the y-axis
occurred.

In an attempt to further clarify the quantitative estimates of
the precision and systematic differences another method is to
use normalised difference versus the average data or the ratio
of the two instruments against the overall average data. The
ratio of the two CO measurements as a function of the aver-
age CO are displayed in Fig. 4b. Most of the points are tightly
clustered around the 1.0 ratio line with 87% within±5% of
the line. The standard deviation of the ratios of the measure-
ments (1σ=2.2) is in close approximation to the square root
of the sum of the squares of the precision (1σ=2.12) for each
instrument suggesting that both instruments were measuring
the same air-masses. Statistical analysis obtained a maxi-
mum ratio of 1.09, a minimum of 0.92 and an average ratio
value of 1.01±0.02. The average ratio was found to be well
within the systematic difference of 5%, which was previously
obtained with the bivariate linear least squares fit indicating
that there are no long-term systematic variations between the
instruments. Although the two CO ratios are spread evenly
on either side of unity, the DLR data indicates higher CO
concentrations around 70 ppbv. This can be accounted for in
the first 30 min of the comparison when the two instruments
were sampling air with different CO mixing ratios owing to
the spatial arrangement of the aircraft.

The scattergram plot of the O3 instruments with a cor-
responding one to one and a weighted bivariate linear re-

gression fit line are displayed in Fig. 5a. A very tight cor-
relation of 0.96 was discovered between the data sets. A
slope of 0.96±0.01 was obtained from the weighted linear
least squares fit with a positive intercept on the DLR axis of
3±1 ppbv. Due to the small dynamic range (∼45 ppbv) and
fairly large extrapolation from the main data spread to the y-
axis, the systematic difference between the instruments we
believe can be deemed as insignificant. As with the CO in-
struments, O3 showed poor correlations over the first 30 min
of the comparison period (Fig. 6). The data sets for this early
period were poorly correlated (r2

=0.44) owing to the man-
ner in which the individual instruments collected the sampled
air. The signal in the DLR data set was noisier compared
to the MRF data owing to pressure variations which created
a reduction in the ozone mixing ratios. The statistical fit-
ted line parameters and associated uncertainties indicate that
there are no significant systematic differences between the
two O3 instruments. A further indication of this is implied
with the ratio of the two O3 measurements as a function of
the average O3 as shown in Fig. 5b. As with the CO instru-
ment most of the data points are clustered around the 1.0 ra-
tio line with 65% within±5% of the line. This is not as tight
a relationship as with the CO instruments, primarily owing
to the noisy O3 mixing ratio signals in the DLR instrument
(first 30 min of the comparison), but the ratios are evenly dis-
tributed around the one value line. The maximum ratio ob-
tained by statistical analysis was 1.19, the lowest 0.85, and
the average value was 0.99±0.05. This DLR/MRF O3 ratio
showed no significant trend with the average O3 mixing ra-
tios and was within the systematic difference of 4%, which
was indicated previously with the analysis by the bivariate
linear least squares fit.

Carbon monoxide is a long lived tracer of human activ-
ity with reasonably well quantified source relationships and
the covariance of O3 and CO has been used to constrain
the anthropogenic sources of O3 (Chin et al., 1994; Par-
rish et al., 1993). For example ozone and CO correlations
have been used to estimate the export of anthropogenically-
produced ozone in North America (Parrish et al., 1993)
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Fig. 5 Scattergram of DLR versus MRF O mixing ratios shown in (a) and ratios of the two instruments

against the average O concentrations in (b). Below 50 ppbv no O mixing ratios were found. Solid black

lines in the plot show the weighted bivariate linear least squares fit to the data. All data is averaged to 10

seconds. The dashed line gives the one to one correspondence.

3

3 3

Fig. 5. Scattergram of DLR versus MRF O3 mixing ratios shown in(a) and ratios of the two instruments against the average O3 concentra-
tions in(b). Below 50 ppbv no O3 mixing ratios were found. Solid black lines in the plot show the weighted bivariate linear least squares fit
to the data. All data is averaged to 10 s. The dashed line gives the one to one correspondence.

where1O3/1CO=0.3. Individual instrument comparisons
of the 10 s averaged CO and O3 mixing ratios are shown in
Fig. 6. Four distinct periods can be identified: (1) The flight
level at 8000 m until 13:40 GMT when the concentrations
of CO and O3 are reasonably constant with hardly any fluc-
tuations in the ambient mean mixing ratios of CO (C-130:
66±2, Falcon: 65±3 ppbv) and O3 (C-130: 70±3, Falcon:
71±2 ppbv). There appears to be no apparent correlation be-
tween these two chemical species on this level. (2) The end
of the flight level at 8000 m and the descent to 6000 m when
layers with markedly different composition are intersected
giving large, positively correlated, variations in the CO and
O3 concentrations (these lasted between 2 and 5.5 min cov-
ering a corresponding distance of between 6 and 30 km at an
IAS of 180 knots). The1O3/1CO ratio is greater than 1,
which is much larger than that found near the surface (0.30)
(Parrish et al., 1993, 1998). This is typical of the upper tropo-
sphere and is due in part to a greater O3 production efficiency
compared to near the ground (Zahn et al., 2000, 2002). Fur-
ther, the ratio is a function of air masses with differing origins
and histories rather than simply a measure of photochemical
O3 production in a single air mass. (3) The flight level at
6000 m until 14:13 shows a distinct negative correlation be-
tween O3 and CO, suggesting some stratospheric influence.
Also the O3 concentrations reach a maximum just above the
92 ppbv level (96.3 ppbv) defined, by Zahn et al. (2002), as
the chemical tropopause over central Europe for this time of
year. (4) The flight level at 6000 m from 14:13 onwards ex-
hibits a similar positive correlation between O3 and CO as
found for the second period. It is almost certain that these
layers of high CO and O3 are due to long-range transport of
pollution from North America.

3.3 Interpretation of short-lived changes (spikes)

During the four prominent spike episodes of NO and NOy
displayed in Fig. 2, no significant concentration changes of
CO were observed although a slight decrease in the O3 con-
centration occurred indicating a fresh pollution episode. Ta-
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Fig. 6. Mixing ratios of O3 and CO for the MRF and DLR instru-
ments between 6000 and 8000 m on the 10 August 2000 during the
intercomparison period from 13:10 to 14:36 GMT. The data is aver-
aged to 10 s and any gaps in the data are due to instrument zeroing
or aircraft re-positioning.

ble 3 below displays the mixing ratios of the 4 peaks of the
various data sets as well as the peak areas (in brackets) for the
NO and NOy measurements with neither instrument having
total peak precedence.

Comparison of the peak heights for the 1 s ratios gave the
first and fourth NO peak higher on the UEA instrument sug-
gesting that both instruments were measuring real concen-
tration changes. Using the linear least squares fit on the 1 s
ratios gave a slope of 1.03±0.08 for the NO and a slope of
0.76±0.11 for the NOy instruments. Most of the NOy peaks
measured gave the DLR NOy higher by about 12%, apart
from peak one, which favoured the UEA NOy by about 2%.
This 2% higher value on the UEA NOy was also observed on
the UEA NO and was probably due to the different spatial ar-
rangement of the aircraft, with the NO maximum occurring
closer to the UEA inlets. Apart from the 1 s peak ratios the
areas were integrated toy=0 (using a trapezoidal integration)
and calculated from the ambient background signal. The four
peak areas show closer agreement than the corresponding
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Table 3. Aircraft instrument mixing ratios for the chemical species observed in spikes 1, 2, 3, and 4 for single point 1 s data. The mixing
ratios correspond to the highest single point during the spike period with those in brackets showing the peak area. Any missing points in the
data were interpolated for the peak area integration.

Chemical species Background averages, ppbv Peak 1, ppbv Peak 2, ppbv Peak 3, ppbv Peak 4, ppbv

NO (C-130) 0.0198 0.662 (3103) 0.445 (10073) 0.506 (4889) 0.990 (5668)
NO (Falcon 20) 0.0284 0.463 (2863) 0.638 (9674) 0.525 (5254) 0.827 (5608)
NOy (C-130) 0.475 1.369 (9723) 1.093 (33 932) 1.583 (28 662) 2.267 (26 706)
NOy (Falcon 20) 0.567 1.197 (9531) 1.681 (39 420) 1.855 (32 732) 2.517 (29 781)
O3 (C-130) 66.1 61.8 65.5 92.1 77.2
O3 (Falcon 20) 64.6 61.0 65.6 92.3 86.7
CO (C-130) 69.9 65.1 70.8 75.4 75.5
CO (Falcon 20) 70.8 69.2 72.4 77.5 76.9

single peaks for the NO and NOy data sets. The NO peak
areas (C-130/Falcon 20) are all within 8% of each other indi-
cating a close correlation between the instruments, especially
at mixing ratios well above the detection limits of the instru-
ments. The NOy peak area ratios on the other hand, often
varied, ranging from 0.86 to 1.02, with an average of 0.91
compared to 1.02 for the NO peak area ratios. This could
either be due to individual instruments missing specific NOy
components such as HNO3 or particulate nitrates or changes
in the concentration of the NOy due to the aircraft spatial ar-
rangement. The latter is a more conceivable reason as the
least squares fit correlation coefficients shows close agree-
ment between the instruments over the comparison period.

The spikes of predominantly NO are presumably due to
exhaust plumes of commercial aircraft that have passed in the
last few hours, examples of which have been measured pre-
viously by Schlager et al. (1997) and Klemm et al. (1998).
Lightning could conceivably be another source (Tie et al.,
2001) of increased NO but there had been no positive indi-
cation of lightning episode occurring over the previous few
days. An estimation of the age of these spikes can usually be
obtained by the NO/NOy mixing ratios (Ridley et al., 1994).
Fresh aircraft emissions would be expected to have high NO
content, since jet engines emit odd nitrogen mostly in the
form of NOx (Schumann, 1997), giving a higher NO/NOy
ratio than normally expected for this altitude. Over New
Mexico (Ridley et al., 1994), and over the Northeast At-
lantic (Klemm et al., 1998), NO/NOy ratios greater than 0.6
were calculated in aircraft flight corridors. On this flight,
no strong evidence of fresh aircraft emissions was obtained.
The 4 major 1 s peak ratios after averaging were found to be
0.41±0.09 for the UEA instruments whilst the DLR ratios
were slightly lower at 0.34±0.06. Ratios of the NO/NOy
areas are a more accurate representation of the peaks and
produced even lower averaged values, namely, 0.25±0.07
and 0.21±0.06 for the UEA and DLR instruments, respec-
tively. It could well be that these peaks observed on both
independent instruments were due to aircraft emissions but
they have had considerable time to be diluted or age pho-

tochemically and give lower NO/NOy ratios than expected.
The NO/NOy ratios are 10-fold higher than the background
ratios of 0.04±0.02 for the UEA and 0.05±0.01 for the DLR
instruments, indicating that some pollution episode had oc-
curred.

4 Summary

In this paper we have shown that several of the chemical
tracer instruments used on board the C-130 and Falcon 20
appear to be functioning correctly and are in good agree-
ment with each other. Data for NO, NOy, O3, CO were ob-
tained from EXPORT aircraft measurements carried out over
southern Germany on 10 August 2000 and correlations be-
tween species on individual instruments were studied. The
differences in the correlations between instruments allow an
assessment of the measurement capabilities determined by
the accuracy, precision and the possibility of ambient inter-
ference on the instruments. The NO and NOy correlations,
without the spikes, give a very clear indication of the close
agreement, within statistical estimated instrument precision,
of the two instruments and that both appear to be operat-
ing satisfactory over a wide range of observed values (10–
1000 pptv). High mixing ratios well above the detection
limits and a large dynamic range of measurements on both
instruments helped to provide clear correlation coefficients
and the agreement over the air masses sampled demonstrates
that significant interferences in the measurements are absent.
Variations in mixing ratios between instruments appeared to
be random and reflect real differences in air masses sampled
and can be assumed to be due to spatial arrangements of the
aircraft. The degree of agreement lends confidence to the
accuracy of all observed measurements and indicates the ac-
curacy to be within the uncertainties quoted in Tables 1 and
2.

Statistical analysis of the CO data was found to give
tight correlation coefficients and low slope gradients with
the dynamic range that was observed. Although the mixing
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ratio differences during the first 30 min at the higher altitude
has not been fully solved, the instruments appear to be both
functioning correctly. It is very likely that the differences ob-
served on both instruments were due to air with different CO
mixing ratios being sampled than any instrument uncertain-
ties. This is confirmed by the consistent agreement between
the instruments within their estimated precision and indicates
the absence of any major interference. Qualitative estimates
of ambient CO concentrations can be derived from this inter-
comparison between the two instruments.

O3 was also found to give very close agreement through-
out the intercomparison period. The higher signal to noise ra-
tios over the first 30 min of the intercomparison for the DLR
O3 instrument can be explained by the sampling method em-
ployed. A significantly higher noise was observed for the
DLR O3 at a given O3 volume mixing ratio for pressures
lower than sea surface pressure resulting in a reduced num-
ber of O3 molecules in the cell compared to the C-130 O3
measurement. Statistical analyses indicated that the data sets
were closely correlated and well within the estimated preci-
sion of the instruments. Errors that were initially found on
the MRF instrument associated with the temperature sensor
were corrected before final data submission.

The NO, NOy, O3 and CO datasets, from the different
aircraft, used during EXPORT, can now be combined with
confidence. This provides greater coverage of data, for use
in computer simulation or transport studies etc, and gives
’added value’ to both experiments. This particular form of
comparison flight also lends credibility to composite stud-
ies of airborne observations, for example the type detailed
by Emmons et al. (2000). The discrepancies for the missing
NOy are not significant within the combined uncertainties of
the two instruments. Additionally, differences in the inlet de-
sign may result in different efficiencies of aerosol sampling
by the two instruments leading to the sampling of different
amounts of particulate nitrate, although slightly different air
mass sampling cannot be totally ruled out.
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