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Abstract. On 22 August 2001 a measurement flight was
performed with the German research aircraft FALCON from
Sardinia to Crete as part of the Mediterranean Oxidant Study
(MINOS). Cruising at 8.2 km, the aircraft was forced to
climb to 11.2 km over the southern tip of Italy to stay clear of
the anvil of a large cumulonimbus tower. During ascent into
the lowermost stratosphere in-situ measurements onboard the
FALCON indicated several sharp increases in the concentra-
tions of tropospheric trace gases, e.g. CO, acetone, methanol,
benzene and acetonitrile, above the anvil. During one par-
ticular event deep in the stratosphere, at O3 concentrations
exceeding 200 ppv, CO increased from about 60 to 90 ppv,
while the concentration of acetone and methanol increased
by more than a factor of 2 (0.7 to 1.8 ppv for acetone; 0.4
to 1.4 ppv for methanol). Enhancements for the short lived
species benzene are even higher, increasing from 20 pptv in
the stratosphere to approx. 130 pptv. The concentrations dur-
ing the event were higher than background concentrations
in the upper troposphere, indicating that polluted boundary
layer air was directly mixed into the lowermost stratosphere.

1 Introduction

Tropospheric ozone plays a key role for the oxidizing power
of the atmosphere, owing to its role as OH precursor. Sources
of tropospheric O3 are: downward transport from the strato-
sphere (e.g. Holton et al., 1995, and references therein);
and in-situ photochemical production involving volatile or-
ganic compounds, carbon monoxide and nitrogen oxide (e.g.
Crutzen, 1995). The majority of ozone precursors are emit-
ted close to the earth’s surface. Large scale mixing of pollu-
tion throughout the troposphere is accomplished by frontal
activity (e.g. Bethan et al., 1998; Fischer et al., 2002)
and deep convection, a particularly efficient process for fast
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transport of boundary layer air into the upper troposphere
(Dickerson et al., 1987; Pickering et al., 1988; Hauf et al.,
1995; Str̈om et al., 1999). Tropospheric air enters the strato-
sphere predominantely in the tropics as part of the large
scale Brewer-Dobson-circulation (Holton et al., 1995), with
a small contribution from deep convection penetrating the
tropical tropopause (Danielsen, 1982, 1993). In the extra-
tropics additional troposphere to stratosphere transport can
be related to either diabatic processes, e.g. via mid- or high
latitude convection, or adiabatic transport along isentropes
that cross the tropopause, e.g. in the vicinity of tropopause
breaks associated with the subtropical and the polar front
jet streams. First indications that deep convection associ-
ated with midlatitudinal thunderstorms can also contribute
to troposphere-to-stratosphere transport were obtained from
airborne infrared radiometric interference measurements in
the early 1970s (Kuhn et al., 1971; Kuhn and Stearns, 1973),
which demonstrated that convective systems can introduce
significant amounts of water vapour into the lower strato-
sphere (Reiter, 1975). Further evidence for troposphere-to-
stratosphere transport in midlatitude convective complexes
was obtained from airborne in-situ measurements of O3,
NOy, CO and H2O by Poulida et al. (1996). Convective
injection of biomass burning debris from large scale boreal
fires into the lowermost stratosphere was demonstrated by
Waibel et al. (1999), Fromm et al. (2000) and Siebert et
al. (2000). Although Hauf et al. (1995) and Ström et al.
(1999) demonstrated that deep convection can pump bound-
ary layer air without significant dilution to the tropopause
region, experimental verification that this air directly influ-
ences the lower stratosphere is still limited. Here we report
airborne in-situ observations made during the Mediterranean
INtensive Oxidant Study (MINOS) in August 2001 of cross-
tropopause transport of boundary layer air into the lowermost
stratosphere at midlatitudes, well above the local tropopause.
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Fig. 1. (a)Potential vorticity in units of 0.1 PVU (1 PVU is 10−6 K
m2 s−1 kg−1) at the 300 hPa level on 22 August 2001, 12:00 GMT.
Stratospheric air is characterized by PV levels in excess of 20 (2
PVU). Superimposed on the figure is the approximate aircraft tra-
jectory (pink line). (b) Potential vorticity cross section along the
pink line in (a). The tropopause region (1–3 PVU) is demarked by
colouring. The flight trajectory is shown in black. C1 to C3 mark
the positions of observed convective injection of tropospheric air
into the lower stratosphere.

2 Meteorological situation

On 22 August 2001 an upper level trough developed over
southern Italy associated with a surface low centred east of
Rome, causing a low tropopause over the Tyrrhenian sea and
the southern tip of Italy (Fig. 1). Cloud cover images in

Fig. 2. Meteosat IR images obtained at 13:30 and 14:00 GMT. The
lines indicate the approximate flight trajectory. Trace gas enhance-
ments at the tropopause due to convection were observed between
13:15 and 13:21 GMT in the outflow of the clouds west of Italy (C1)
and between 13:45 and 13:50 over the southern tip of Italy (C2 and
C3).

the infra-red spectral range taken by Meteosat satellites at
13:30 GMT and 14:00 GMT on 22 August 2001 are shown
in Figs. 2a and 2b, respectively. Both figures indicate the de-
velopment of strong convection in this area during noon. The
approximate flight track of the German research aircraft Fal-
con on its way from Sardinia to Crete is superimposed on the
pictures. Take-off from Alghero airport (Sardinia, 40.5◦ N,
8.5◦ E) took place on 12:46 GMT, landing at Heraklion air-
port (Crete, 35.3◦ N, 25.1◦ E) on 15:23 GMT. The aircraft
passed the area of strong convection above the Thyrrenian
and Ionian seas between 13:15 GMT and 13:55 GMT.

3 Measurements

Figure 3 shows the time series of trace gas concentrations
from a merged data set with a resolution of 15 s obtained
during the first hour of the flight from Sardinia to Crete be-
tween 12:53 GMT and 14:00 GMT extending from Alghero
to the east coast of the Italian peninsula at 40.5◦ N, 17.2◦ E,
while Fig. 4 shows altitude profiles of these tracers and po-
tential temperature. CH4 and CO were measured by in-
frared absorption spectroscopy using the Max Planck Insti-
tute for Chemistry tuneable diode laser spectrometer TRIS-
TAR (Wienhold et al., 1999) with a total uncertainty of 10%
and 12%, respectively. The DLR provided O3 measurement
based on fast response UV absorption (total uncertainty 5%),
NO measurements by chemoluminescence (total uncertainty
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Fig. 3. Time series of trace gases measured during the first half of the MINOS measurement flight on 22 August 2001. Flight segments
influenced by convection are highlighted in grey.

5%), and gas phase NOy measurements (total uncertainty
15%) via conversion of its single components to NO within
a heated gold tube in the presence of CO as reducing agent
(Ziereis et al., 2000). Methanol, acetonitrile, benzene, and
acetone were measured with proton-transfer-reaction mass
spectrometry (PTR-MS) (Lindinger et al., 1998) using two
instruments, operated by the University of Utrecht and the
Max Planck Institute for Chemistry. The instruments showed
good agreement (de Gouw et al., 2002). In the following
only data from the Utrecht PTR-MS are used because of the

higher temporal resolution and the higher data coverage of
this instrument. The total uncertainty of the PTR-MS mea-
surements is of the order of 35%. The particle number con-
centration was measured by two condensation particle coun-
ters with 50% counting efficiency at particle diameters of
5 nm (CN-5) and 14 nm (CN-14), respectively, operated by
the DLR. The difference between CN-5 and CN-14 repre-
sents the nucleation mode or ultrafine particle number (UCN)
concentration, with a diameter between 5 and 14 nm.

www.atmos-chem-phys.org/acp/3/739/ Atmos. Chem. Phys., 3, 739–745, 2003
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Fig. 4. Vertical profiles of measured trace gases and potential temperature during the first half of the MINOS flight on 22 August 2001. The
crosses at altitudes<500 m denote boundary layer measurements performed over the Iovian sea, east of Italy on 19 July 2001.

Previous studies have used a large variety of chemical and
physical tracers from in-situ measurements to infer the effect
of convection on the chemical composition. Most techniques
rely on detection of trace gas enhancements of species with
higher concentrations in the boundary layer than in the free
troposphere, e.g. CO, NOy, or NMHC (e.g. Dickerson et al.,
1987; Poulida et al., 1996). Since outflow of larger convec-
tive clouds has recently been suggested as a source for new
particles, UCN measurements have been widely used to de-
tect convective outflow (de Reus et al., 2001; Clarke et al.,
1999; Wang et al., 2000). Three events during which the
trace gas signatures indicate transport of boundary layer air
into or above the tropopause region are marked in grey in
Figs. 3 and 4. The first event, labelled C1, was observed be-
tween 13:15 and 13:21 GMT around 39.7◦ N, 12.5◦ E (north
of Sicily, approximately halfway between Sardinia and Italy)
at 8.2 km altitude (Fig. 2a). The event is characterized by si-
multaneous enhancements in CH4, CO, NO, NOy and UCN.
Ozone levels in excess of 100 ppbv and PV values of the or-
der of 2 PVU (Fig. 1b) indicate the close proximity of the
tropopause. As a consequence of the constant level flight
this event can not be unambiguously identified in the profiles
shown in Fig. 4. Shortly before this event (after 13:10 GMT)
strong spikes in both NO and NOy, that were not associ-
ated with simultaneous enhancements in CO, were observed.
These enhancements are therefore not ascribed to deep con-

vective pollution transport from the boundary layer. They
are more likely associated with NO production by lightning,
as they are too wide to be aircraft exhaust plumes. The
same argument applies to a second NO/NOy peak around
13:36 GMT. Backward trajectories for event C1 indicate that
the airmass origin 5 days prior to the measurements is in the
upper troposphere off the east coast of the North American
continent (note that trajectories before and after C1 show a
similar behaviour with respect to the airmass origin). Fig-
ure 5a shows the trajectories during their final approach over
Europe, indicating that the trajectories passed over the strong
convection over the Italian mainland shortly before encoun-
tering the aircraft (compare to Fig. 2a).

Approaching the Italian west coast the aircraft was forced
to climb to a higher flight level to stay clear of a large
cumulonimbus cloud. Between 13:44 and 13:46 GMT the
on-board operators reported close proximity to clouds and
strong turbulence during passage over the southern tip of
Italy (39◦ N, 16.1◦ E) at an altitude of 10.3 km. During this
event, labelled C2 in Figs. 2b, 3, 4 and 5b, CO, methanol,
acetonitrile, benzene, and acetone show strong and sharp in-
creases exceeding the stratospheric background by up to a
factor of two. The strongest enhancement is found for ben-
zene, whose mixing ratio increased by approx. a factor of 5
relative to the stratospheric background, which is close to the
detection limit of the instrument (20–50 pptv). Unfortunately
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Fig. 5. Backward trajectories and their respective altitude varia-
tion for the period of event C1(a) and C2 and C3(b), respectively.
Trajectories for C1 were calculated along the flight path at an in-
terval of 1min between 13:10 and 13:25 GMT on 22 August 2001,
while trajectories for C2 and C3 were calculated between 13:40 and
13:55 GMT.

the NO and NOy instrumentation provided no data during
this period due to an on-board calibration. For the same rea-
son, no O3 data are available between 13:45 and 13:46 GMT,
right at the time of maximum enhancements in the tropo-
spheric tracers.

The concentrations of acetone, methanol, benzene, and
acetonitrile are in fact substantially higher than free tropo-
spheric values during this particular flight (Fig. 4). They are,
however, comparable to data obtained on 19 August 2001
during a flight west of Italy in the boundary layer over the
Ionian sea at 36◦ N, 18◦ E, 116 m above sea level. This flight
was designed to characterize west European outflow. Stream-
lines and backward trajectory calculations indicate that these
airmasses were advected to the Ionian sea from southern
Italy. The convective event C2, and the subsequent event
C3 (∼13:50 GMT, 38.8◦ N, 16.8◦ E, 11 km altitude), were
observed in the stratosphere, as indicated by O3 concentra-
tions in excess of 200 ppv and PV values of the order of 7

PVU (Fig. 1b). Five day backward trajectories for C2 and
C3 indicate that the airmasses were advected from the North
Atlantic region in the lower stratosphere, passing over the
convective region over Italy shortly before encountering the
aircraft (Fig. 5b). Note that contrary to C1, neither C2 nor C3
are associated with significant new particle formation, i.e. an
enhancement in ultrafine particles. This could indicate, that
above the tropopause new particle formation is inhibited by
lack of gaseous precursors, or that for the same reason the
particles have not grown yet to measurable sizes.

Inspection of Figs. 2a and b reveals that all three events
were observed downwind (C1) or directly above (C2 and C3)
areas with large convective cloud cover. The close proxim-
ity to clouds and the strong enhancements of boundary layer
tracers indicate that convective injection of tropospheric air
through the tropopause region has caused the events C1 to
C3.

4 Amount of tropospheric air injected into the strato-
sphere

The amount of tropospheric air mixed into the lowermost
stratosphere during the convective events C2 and C3 can be
estimated from the budget of the insoluble trace gases CO,
methanol, acetone, benzene, and acetonitrile. Table 1 lists
average mixing ratios and 1σ -standard deviations of the mix-
ing ratios of these species in the boundary layer (BL), the up-
per troposphere (UT), the lowermost stratosphere (LMS) and
during the events C2 and C3. Concentrations in the bound-
ary layer are deduced from measurements on 19 August 2001
in airmasses advected from southern Italy to the Ionian sea.
The upper tropospheric background concentrations were de-
termined from in-situ measurements on 22 August between
13:00 and 13:08 GMT (Fig. 3). Trace gas levels in the low-
ermost stratosphere, unperturbed by convective injection of
tropospheric air, were determined by averaging data obtained
150 s before and after the events C2 and C3, respectively.
The concentrations in the convective events C2 and C3 are
calculated from data points exceeding the stratospheric back-
ground concentrations by 3σ .

The trace gas mixing ratios during the events C2 and C3
can be calculated according to

XCi
= (1 − a)XLMS

+ a
(
bXBL

+ (1 − b)XUT
)

i = 2, 3 (1)

where X is the mixing ratio of the species under investiga-
tion and superscripts denote the reservoir. The parameter a
gives the amount of tropospheric air mixed into the lower-
most stratosphere, which itself can be composed of bound-
ary layer air and/or upper tropospheric air. The mixture be-
tween these reservoirs is described by the parameter b. Since
we cannot determine b independently, we further consider
only the extreme cases were either purely boundary layer air

www.atmos-chem-phys.org/acp/3/739/ Atmos. Chem. Phys., 3, 739–745, 2003
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Table 1. Mean concentrations of boundary layer (BL), upper troposheric (UT), lowermost stratospheric (LMS) and convectively mixed
(C1–C3) airmasses (1σ -standard deviations are given in brackets). The percentages indicate the amount of boundary layer air or upper
tropospheric air mixed into the lowermost stratosphere

CO/ppbv Methanol/pptv Acetonitrile/pptv Benzene/pptv Acetone/pptv

BL 176 (2) 3157 (199) 189 (13) 150 (30 2845 (91)
UT 83 (7) 911 (261) 122 (14) 40 (40) 1304 (141)
LMS 58 (7) 384 (159) 135 (21) 20 (20) 708 (140)
C2 91 (15) 1406 (490) 194 (35) 130 (50) 1803 (603)
% BL air 28 37 >100 85 51
BL 176 (2) 3157 (199) 189 (13) 150 (30) 2845 (91)
UT 83 (7) 911 (261) 122 (14) 40 (40) 1304 (141)
LMS 51 (3) NA NA NA NA
C3 70 (8) NA NA NA NA
% BL air 15 NA NA NA NA
% UT air 59 NA NA NA NA

(b = 1) and purely upper tropospheric air (b = 0) are mixed
into the lowermost stratosphere. For these cases the amount
of tropospheric air (TR) mixed into the lowermost strato-
sphere was calculated from:

TR = (XCi
− XLMS)/(XBL, UT

− XLMS). (2)

As already noted during the discussion of Fig. 3 concen-
trations of CO, acetone, acetonitrile, benzene, and methanol
observed in C2 exceeded upper tropospheric mixing ratios,
so that local transport of upper tropospheric air into the low-
ermost stratosphere can be excluded for this event. Estimates
according to Eq. (2) for CO, methanol, and acetone indicate
that between 28 and 51% boundary layer air has been mixed
into the tropopause region during C2. Higher percentages
are calculated for acetonitrile and benzene. Note that the av-
erage concentration of acetonitrile during C2 is even higher
than in the boundary layer, indicating that the data obtained
on 19 August might not be representative for the inflow re-
gion on 22 August, at least for acetonitrile. One explanation
could be an underestimation of the acetonitrile concentration
owing to up-take by the ocean in the airmasses during their
∼24 h transport from Italy over the Ionian sea (Williams et
al., 2001). During C3 no PTR-MS data are available, there-
fore, estimates are restricted to CO only, indicating that ei-
ther 15% boundary layer or 59% upper tropospheric air are
injected into the stratosphere during this event.

It should be noted that these estimates suffer from a num-
ber of shortcomings, since direct measurements in the inflow
area on this particular day were not performed. Therefore,
it is hard to say how representative the measurements on 19
August, obtained in the marine boundary layer∼24 h down-
wind of the Italian mainland, are for the convective inflow
region on August 22. This uncertainty might at least partly
explain the strongly diverging budget calculations e.g. for
acetonitrile and CO.

To investigate the ultimate fate of the air in events C2 and
C3 clusters of 10-day forward-trajectories were calculated.
These trajectories indicate that the air in this blob will briefly
re-enter the troposphere (a minimum value of 1.5 PVU is
reached 48 hours after the measurements), before it finally
returns to the stratosphere (PV> 4). Therefore, it is likely,
that additional mixing of tropospheric and stratospheric air
masses will take place within the next two days after the mea-
surments.

5 Conclusions

Measurements during a strong convective event over south-
ern Italy in August 2001 indicate that boundary layer air can
be directly injected into the lowermost stratosphere. Ozone
levels exceeding 200 ppv suggest that convection signifi-
cantly overshoots the local tropopause. Budget estimates
suggest that lower stratospheric air can contain up to 50%
boundary layer air in such convective events. Close to the
tropopause the convective injection of boundary layer air is
associated with new particle formation due to gas-to-particle
conversion. Well above the tropopause convectively driven
particle formation was not observed, which could indicate
either inhibited particle formation or growth due to washout
or freeze-out of gaseous precursors or that the particles are
still too small to be detected by the instrument, which has a
cut-off diameter of 4–5 nm.

To our best knowledge, a similar in-situ observation of
troposphere-stratosphere exchange associated with deep con-
vection at midlatitudes that reaches into the lower strato-
sphere has been reported only once in the open literature
(Poulida et al., 1996). The fact that deep exchange associated
with convection has not been observed more often might in-
dicate that these events are rather rare and contribute only lit-
tle to troposphere-stratosphere-exchange in the extra-tropics.

Atmos. Chem. Phys., 3, 739–745, 2003 www.atmos-chem-phys.org/acp/3/739/
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Additional measurements are needed to quantify the role of
penetrating convection as compared to isentropic exchange
associated with synoptic disturbances at the jet streams.
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