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Abstract. At Hohenpeissenberg (47◦48′ N, 11◦07′ E, 988 m
asl), a rural site 200–300 m higher than the surrounding
terrain, sulphuric acid concentrations, particle size distribu-
tions, and other trace gas concentrations were measured over
a two and a half year period. Measured particle number con-
centrations and inferred particle surface area concentrations
were compared with box-model simulations for 12 carefully
selected data sets collected during the HAFEX experiment
(Birmili et al., 2003). The 12 cases were selected after me-
teorological and aerosol dynamical criteria in order to justify
the use of a box-model. The aerosol model included a binary
sulphuric acid water nucleation scheme. Calculated nucle-
ation rates were corrected with a factor to match measured
and calculated particle number concentrations. For the inves-
tigated 12 data sets, the correction factors were smallest for
measurements made under stable thermal stratification and
low wind conditions, i.e. conditions that are frequently en-
countered during winter. Correction factors were largest for
measurements made under strong convective conditions.

Our comparison of measured and simulated particle size
distributions suggests that the particle formation process
maybe strongly influenced by mixing processes driven by
thermal convection and/or wind sheer.

1 Introduction

Aerosols impact climate (e.g. Charlson and Heintzenberg,
1995) and human health (e.g. Dockery and Pope, 1994).
New particle formation from gas-phase precursors, i.e. nu-
cleation, is frequently observed in marine locations (e.g.
Weber et al., 1999; O’Dowd et al., 2002) and in continen-
tal locations, such as forests (Mäkel̈a et al., 1997), remote
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(e.g. Weber et al., 1997) and polluted sites (e.g. Birmili and
Wiedensohler, 2000; McMurry et al., 2000). However, the
fundamental processes that cause nucleation and subsequent
growth in the size-range of a few nanometers are still uncer-
tain.

Sulphuric acid and water are believed to be the important
constituents controlling atmospheric nucleation processes.
Calculated nucleation rates using classical binary H2SO4-
H2O theory substantially underestimate the observed nucle-
ation rates for mid-latitude ambient conditions (e.g. Weber
et al., 1998; O’Dowd et al., 1999). Observed H2SO4 concen-
trations are about 1 order of magnitude too low to explain the
ambient formation according to classical binary theory.

More complex nucleation mechanisms have been pro-
posed, such as ion-mediated nucleation and growth (Yu and
Turco, 2000) and the participation of a third molecule such
as ammonia (NH3) (Coffman and Hegg, 1995; Korhonen
et al., 1999), or the ubiquitous existence of thermodynami-
cally stable 1–3 nm clusters probably formed by nucleation
of H2SO4, H2O, and NH3 (Kulmala et al., 2000). In com-
parison to binary systems, for ternary nucleation of H2SO4,
H2O, and NH3, up to 2 orders of magnitude less gas-phase
H2SO4(g) is needed to achieve observed nucleation rates.
However, the observed growth in the nanometer range can
not be attributed to the subsequent condensation of H2SO4,
H2O, and NH3. Therefore, to explain observed condensa-
tional growth rates, additional unknown species must partic-
ipate in subsequent growth (Kulmala et al., 2000).

Other researchers noted that favourable atmospheric con-
ditions, such as turbulence due to breaking Kelvin-Helmholtz
waves (Bigg, 1997) or boundary layer mixing processes
(Easter and Peters, 1994; Nilsson and Kulmala, 1998), and
atmospheric waves (Nilsson et al., 2000) can enhance nu-
cleation rates by up to several orders of magnitude. Weber
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et al. (1999) suggested that nucleation mechanisms may vary
with altitude. By comparing observed new-particle forma-
tion rates against modelled nucleation rates using classical
binary nucleation, they concluded that at least for higher
elevations in remote marine regions, new particles can be
formed along cloud perimeters through H2SO4-H2O nucle-
ation.

This work focuses on the impact of meteorological condi-
tions on new particle formation and aerosol dynamics. Data
sets consisting of H2SO4(g), RH, T, and particle size dis-
tributions collected during the HAFEX (Hohenpeissenberg
Aerosol Formation Experiment) campaign (Birmili et al.,
2003) were used as direct input for aerosol dynamics sim-
ulations which included particle nucleation and growth due
to condensation and coagulation for the binary H2SO4-H2O
system. Instead of using computed H2SO4(g) concentrations,
measured time series of H2SO4(g) were used as direct model
input. Similar to many other studies, only ground-based mea-
surements were available. Because a simple box-model ap-
proach was used, no spatial distributions of precursors or
aerosol properties were needed to initialise the simulations.
Uncertainties of H2SO4(g) concentrations used in the model
were reduced to measurement errors.

The goal of this work was to relate differences between
measured and modelled particle number concentrations to
the occurrence of processes such as vertical exchange and
small-scale turbulence and transport. To achieve this, the
differences between measured and modelled particle num-
ber concentrations were quantified in terms of a correction
factor applied to the modelled nucleation rate. The correc-
tion factor was varied in the way that the differences between
measured and modelled particle number concentrations were
minimised. The determined correction factors were then
related to measured physical parameters such as the near-
surface temperature gradient, wind speed, trace gas concen-
trations, humidity and temperature profiles from which the
occurrence of processes like vertical exchange, small-scale
turbulence and transport can be inferred. From the 46 avail-
able data sets classified as Type “I” or “II” (strong or medium
events), 12 data sets were chosen which met meteorological
and aerosol dynamical criteria which justified the application
of a box-model.

As aerosol dynamical model, a box model version of
the lognormal MADMAcS model (Multicomponent Aerosol
Dynamics Modal Approach System) (Wilck and Stratmann,
1997; Wilck, 1998) was used. In this model, regarding parti-
cle nucleation and condensational growth, the binary H2SO4-
H2O system was applied. The more elaborate ternary, i.e. the
H2SO4-H2O-NH3, system was not considered because of the
following severe disadvantages:

– It is reported that the ternary nucleation scheme gener-
ates large numbers of nuclei below the detectable mini-
mum size. Kulmala et al. (2000) stated that in order to
grow these particles into the detectable size range, other

yet unidentified vapours “Xi(g)” then H2SO4(g) are re-
quired.

– As NH3 concentrations were not measured during
HAFEX, usage of a ternary nucleation parametrisation
would imply the assumption of particular NH3 concen-
tations, i.e. another additional and undesired free pa-
rameter.

– To make nucleation and growth consistent, the effects
of NH3 and substances “Xi(g)” on particle growth have
to be accounted for.

2 Field measurement data used for comparison

We give a brief description of the measured data that we used
for comparison with the simulation results. More detailed
information about the HAFEX measurements (1998–2000)
can be found in Birmili et al. (2003) and in the case study
by Birmili et al. (2000). For this comparison we used data
from the Meteorological Observatory at Hohenpeissenberg
(MOHp) located in South Germany, which is run by the Ger-
man Weather Service (DWD). Measurements were made on
top of the Hohenpeissenberg (988 m), a single hill 200–300
m higher than the surrounding terrain. This remote site is lo-
cated 60 km southwest of Munich and 30–40 km north of the
Bavarian Alps.

Available long-term measurement data used in this work
included dry, submicrometer particle size distributions rang-
ing from 3–700 nm measured with a differential mobility
particle sizer, gas-phase H2SO4 concentrations measured by
using atmospheric-pressure chemical ionisation mass spec-
tronomy (AP/CIMS, see Berresheim et al., 2000, for details),
NOx, and routinely measured meteorological data. Ammonia
measurements were not made. The time resolution was 15
min for the meteorological data and 5 min for the H2SO4(g)

data. Size distributions were measured every 15 min. A
CIMS measurement cycle consisted of H2SO4(g) and OH
concentration measurements. Therefore, there are gaps of
several minutes in the data for H2SO4(g), when OH concen-
trations were measured. Interpolated values for H2SO4(g)

were used for those periods. Hourly averaged NOx data were
used for interpretation of our results for particle growth.

Local characteristics that must be considered in the inter-
pretation of the data are inhomogeneities in heat flux, tem-
perature, humidity, and local wind systems originating from
the position of the site. The site is affected by lee effects
due to southerly airflows, in particular with foehn. Mountain
winds can evolve particularly in summer due to intense irra-
diation onto the southern slopes of the Bavarian Alps, which
creates a mesoscale circulation system that causes a compen-
sating sinking air motion and northerly winds at the Hohen-
peissenberg site (Fricke et al., 1997). Consequently, there
is a local air mass change due to changes in the local flow
pattern.

Atmos. Chem. Phys., 3, 347–359, 2003 www.atmos-chem-phys.org/acp/3/347/
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3 Modelling and comparison methodology

One of the goals of this study was to identify the atmospheric
processes that control particle formation and growth. For
the meteorological conditions corresponding to the measured
data we used to compare with our simulation results, the fol-
lowing new-particle formation scenarios are possible:

– Particle nucleation occurs inside the boundary layer,
where particle precursor concentrations are high. Nu-
cleation is controlled by gas-phase chemical reactions
(source of condensable material) and existing particles,
which act as condensational sink (e.g. Pirjola et al.,
1999).

– Particle nucleation occurs near inversion layers and new
particles are mixed downward during the break-up of
the inversion layer. Turbulent transport may control
new-particle formation by (a) initiating nucleation by
mixing air parcels with different chemical and ther-
modynamical properties (Nilsson and Kulmala, 1998;
Jaenisch et al., 1998) and by (b) mixing newly formed
particles down to the ground, where they can be de-
tected.

Depending on the meteorological conditions, both scenar-
ios are possible. Based on only point measurements of the
particle size distribution and measurement of only a limited
number of particle precursors, it is not possible to determine
which of these scenarios dominated particle nucleation in the
measured data sets. However, by combining measured size
distribution and particle precursor data, known meteorologi-
cal conditions at the time of such measurements, and by us-
ing a suitable aerosol dynamics model, it is possible to de-
termine which of the particle nucleation scenarios was dom-
inant. Therefore, based on the experimental data available
from the HAFEX experiments, we used a box model to sim-
ulate particle nucleation and the development of the particle
size distribution. The model is initialised by using measured
particle size distributions at the start of each model run and
the particle dynamics are driven by measured temperatures,
relative humidities, and H2SO4(g) concentrations. Simulat-
ing carefully selected particle nucleation events and relating
the differences between measured and calculated particle size
distributions to suitable meteorological parameters, the near-
surface temperature gradient and the local Richardson num-
ber can be used to indicate where nucleation occurs.

Using a box model is sufficient because the data was mea-
sured at a single point and is therefore 0-dimensional. Fur-
thermore, multidimensional simulations would involve un-
known boundary conditions, such as the 3-D distribution of
particle size distribution, gaseous precursor type, and emis-
sion rates, which would introduce an undesirable number of
free parameters in the model.

3.1 Aerosol dynamics model

The simulations were made with a box model version of
the lognormal MADMAcS model (Multicomponent Aerosol
Dynamics Modal Approach System) (Wilck and Stratmann,
1997; Wilck, 1998). The model accounts for nucleation, con-
densation, and coagulation. Atmospheric mixing, sedimen-
tation, and deposition were not considered. Nucleation rates
were calculated by using the binary nucleation theory for the
H2SO4-H2O system (Kulmala et al., 1998). The nucleation
rate,J [#/(m3s)] can be expressed as

J = Fnuc exp

(
−

1G∗

kb T

)
(1)

wherekb is the Boltzmann constant,T is temperature, and
1G∗ is the energy required to form a cluster sufficiently
large that it will not reevaporate (critical cluster). The ki-
netic pre-exponential factor,Fnuc, expresses the rate at which
vapour is transported to critical clusters. A detailed descrip-
tion of the formulation ofFnuc and1G∗ is given in Kulmala
et al. (1998). The critical cluster composition according to
Wilemski (1984) is solved numerically and the hydrate inter-
action (Jaecker-Voirol et al., 1987) is taken into account. The
water content of the clusters and particles is computed from
an equilibrium relationship with the relative humidity. Prog-
nostic variables are “dry” particle size distribution moments,
Mk,j , representing particle number concentration (k = 0),
surface area (k = 2), and mass (k = 3) for each modej .
Mk,j can be expressed as

Mk,j (t) = Nj

∫
∞

0
m̃k

p,jflnj dm̃p,j (2)

flnj =
1

√
2π m̃p,j ln σg,j

exp

(
−

ln2(m̃p,j/m̃gN,j )

2 ln2 σg,j

)
(3)

whereflnj represents the normalized lognormal frequency
function of modej , m̃p is the “dry” particle mass,̃mgN is the
“dry” geometric mean particle mass of the number-weighted
distribution, andσg is the geometric standard deviation. The
time evolution of the particle size distribution can be de-
scribed by the time evolution of the moments of the “dry”
distribution as

∂Mk,j

∂t
= δjnuc,1(m̃

∗
p)kJ (4)

+kNj

∫
∞

0
m̃k−1

p [C(mp,j ) − E(mp,j )]f
ln
j (m̃p)dm̃p

−

nm∑
i=1

NjNi

∫
∞

0

∫
∞

0
m̃k

pβ(mp, m′
p)f ln

j (m̃p)f ln
i (m̃′

p)dm̃′
pdm̃p

+

nm∑
i,ν=1

CiνjNiNν

·

∫
∞

0

∫
∞

0
(m̃p + m̃′

p)kβ(m′
p, mp)f ln

i (m̃p)f ln
ν (m̃′

p) dm̃′
pdm̃p
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where Nj represents the total number concentration in
mode j , C(mp) and E(mp) represent the condensation
and evaporation rates, respectively, andβ(mp, m′

p) rep-
resents the coagulation coefficient for particles of mass
mp and m′

p. The tensorCiνj expresses the coagulation
convention for the coagulation gain term as suggested by
Whitby and McMurry (1997). Ciνj = 1/2 if i = ν =

j (intramodal coagulation),Ciνj = 1 if i = j anddgNi >

dgNν, Ciνj = 1 if ν = j anddgNi ≤ dgNν , and Ciνj =

0 otherwise. The integrals must be evaluated numerically
because they involve a nonlinear dependence of the “wet”
particle massmp on the “dry” particle mass̃mp. The numer-
ical integrals were evaluated with an 8-point Gauss-Hermite
quadrature technique.

Up to four modes were used. The model was initialised by
using modal parameters for particle number concentrationN ,
geometric mean diameter dgN, and standard deviationσ for
each mode; H2SO4(g), RH, and temperature. The measured
time series of H2SO4(g), RH, and temperature were used as
the thermodynamic forcing parameters.

3.2 Data selection

In order to compare modelled results against measured re-
sults the appropriate use of a box model has to be justified.
Consequently due to the underlying assumption of horizontal
homogeneous conditions suitable cases must be carefully se-
lected in order to exclude strong effects of wind veering and
inhomogeneities due to the terrain on aerosol dynamical pro-
cesses. In the companion article (Birmili et al., 2003) 46 data
sets were classified as Type “I” or “II” (strong and medium
events) and comprised only a small fraction of the HAFEX
campaign (1998–2000). This classification was purely based
on the particle number concentration for particles sized be-
tween 3 and 11 nm. From these 46 data sets, cases were
selected that matched the following criteria:

– Data sets with strong veering of the wind prior to and
during nucleation were rejected, because local wind
systems such as upslope flows or mountain wind sys-
tems involve varying transport patterns and air mass
changes. Therefore, data sets were chosen with either
constant wind direction at wind speeds> 4 m/s or data
sets with moderate changes (< 90◦) in wind direction
for wind speeds< 4 m/s prior to and during particle nu-
cleation.

– Because the site is in close proximity to the Alps, which
reach an elevation of 2961 m to the south, data sets in-
fluenced by foehn conditions were rejected, such as data
sets with strong winds from the southeast–southwest
sector, low relative humidities, and relatively high tem-
peratures.

– Smooth time evolution of dgN for the nucleation mode
(consisting of the smallest particles in the size distribu-
tion, ranging from 3–11 nm).

– A significant particle number concentration of particles
smaller than 11 nm.

– availability of simultaneously measured temperature,
humidity, H2SO4(g), wind and size distribution data in
the period of interest.

12 data sets met these criteria, and these are summarized
in Table 1.

3.3 Comparison of measured and simulated particle size
distributions

The simulated and measured particle size distributions were
compared. To avoid artifacts due to the data-reduction pro-
cedure (e.g. fitting lognormal distributions to measured size
distributions) and to reduce the influence of model assump-
tions such as the multi-modal lognormal size distributions
used in MADMAcS, the integral moments of the measured
and simulated particle size distributions were compared. The
moments we compared were total number and surface area
concentrations. Because the simulated particle size distri-
butions start at the size of the critical cluster size of about
1 nm and because the measured particle size distributions
start at the lower detection limit of the measurement instru-
ments which was about 3 nm, the simulated particle size dis-
tribution moments for the nucleation mode were integrated
from 3 nm upwards:

Mk,1 =

∫
∞

3nm

d̃k
p n1(d̃p) dd̃p (5)

wheren1 represents the lognormal size distribution of mode
j = 1 andd̃p represents the dry particle diameter.

This integration limit affects only the zeroth and first mo-
ment when nucleation occurs, and the impact on higher mo-
ments is negligible. The zeroth moment that represents the
corrected particle number concentration is therefore repre-
sented by N> 3 nm . To determine from the experimental data
which of the two nucleation scenarios were active, the dif-
ference between the measured and modelled evolution of the
size distribution moments was evaluated. As an indicator for
these differences related to particle number concentration, a
linear correction factor for the nucleation rate,cf , is defined
as

Jc = cf · J

cf is the only free parameter in the model and was deter-
mined iteratively by varyingcf until the measured and sim-
ulated peak number concentrations matched within± 25%.
The result of this procedure is shown in Fig. 1 for data taken
on 19 May 1998 and 26 January 2000. Figure 1 shows mea-
sured and simulated total particle number concentration as a
function of time for two values ofcf for each data set.

Atmos. Chem. Phys., 3, 347–359, 2003 www.atmos-chem-phys.org/acp/3/347/
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Fig. 1. Effect of � � on the simulated particle formation rates for 19 May 1998 (left, � �������	�
) and 26 January 2000 (right � ���
�	� � ).

Figure 1 indicates that different values of � J were required
to match particle number concentration for each of the data
sets. For 19 May 1998 � J � K 6�
 , and for 26 January 2000
� J �B6 � 8 .

The data sets we used for comparison exclude strong ef-
fects of local air masses affected by veering winds. However,
days with clear-sky radiation exhibited a smooth, continuous
evolution in temperature, humidity, particle number concen-
tration, particle diameter, and other parameters, indicating
that they were affected by vertical exchange and turbulent
transport processes. These processes, which could not be ac-
counted for in our box-model, may increase nucleation rates
(see Easter and Peters, 1994; Nilsson and Kulmala 1998), re-
quiring a high value of � J to achieve acceptable comparison
between measured and simulated particle concentrations.

This suggests the use of regression analysis to relate the
correction factor to meteorological properties such as the
near-surface temperature gradient and the bulk Richardson
number, � � $ . These parameters are related to the meteo-
rological conditions controlling new-particle formation and
may indicate which nucleation scenario was active.

The model was initialised 2–4 h before the observed in-
crease in particle number concentration, at times where fluc-
tuations in particle surface area concentration were less pro-
nounced and therefore represented the background aerosol
before nucleation occurred 1. For data sets that displayed
strong fluctuations in particle surface area concentration the
model was initialised at times where the particle surface area

120 April 1998 featured a preceding ancillary maxima (9000���	� ������� ). Therefore, the model was initialised after the first par-
ticle number increase at a value corresponding to the minimum in
particle number concentration 1–1 1/2 hours before the second in-
crease

concentration was at approximately the mean value (e.g. see
Fig. 2p for 19 May 1998).

The input for the aerosol dynamics model were determined
from the measured particle size distributions by using a least-
squares fit for 2–4 modes, and yielded lognormal fit param-
eters N, 	 � � and

Q
. For details on this fitting procedure, see

Birmili et al. (2001).

4 Results

To illustrate the different types of aerosol dynamics observed
during HAFEX, four data sets with different characteristic
temperature, humidity,

�
�
���	��� ���
, particle number concen-

tration, and particle surface area concentration were chosen.
Then differences between measured and simulated results
were related by using regression analysis to additional me-
teorological information, such as near-surface temperature
gradients and wind speed.

4.1 Four data sets selected for detailed comparison:

Of the four data sets we selected for case studies, two were
in winter and two were in spring. The measured time series
of T and RH for these data sets are shown in Figs. 2a–d, for�	�
���	� � ���

in Fig. 2e–h. In the lower panels of Fig. 2 the
measured number concentration (Figs. 2i–l) and particle sur-
face area concentration (Fig. 2m–p) are shown for 26 Decem-
ber 1998, 26 January 2000, 20 April 1998, and 19 May 1998.
26 December 1998 and 26 January 2000: Both winter
cases are characterised by low temperatures, stable strati-
fication, relatively high relative humidities, and southwest-
erly winds prior to nucleation. On 26 December 1998 there
were occasional clouds, sustained winds from the southwest,

www.atmos-chem-phys.org/0000/0001/ Atmos. Chem. Phys., 0000, 0001–13, 2003

Fig. 1. Effect of cf on the simulated particle formation rates for 19 May 1998 (left,cf = 105) and 26 January 2000 (rightcf = 0.2).

Figure 1 indicates that different values ofcf were required
to match particle number concentration for each of the data
sets. For 19 May 1998cf = 105, and for 26 January 2000
cf = 0.2.

The data sets we used for comparison exclude strong ef-
fects of local air masses affected by veering winds. However,
days with clear-sky radiation exhibited a smooth, continuous
evolution in temperature, humidity, particle number concen-
tration, particle diameter, and other parameters, indicating
that they were affected by vertical exchange and turbulent
transport processes. These processes, which could not be ac-
counted for in our box-model, may increase nucleation rates
(see Easter and Peters, 1994; Nilsson and Kulmala 1998), re-
quiring a high value ofcf to achieve acceptable comparison
between measured and simulated particle concentrations.

This suggests the use of regression analysis to relate the
correction factor to meteorological properties such as the
near-surface temperature gradient and the bulk Richardson
number,RiB . These parameters are related to the meteo-
rological conditions controlling new-particle formation and
may indicate which nucleation scenario was active.

The model was initialised 2–4 h before the observed in-
crease in particle number concentration, at times where fluc-
tuations in particle surface area concentration were less pro-
nounced and therefore represented the background aerosol
before nucleation occurred1. For data sets that displayed

120 April 1998 featured a preceding ancillary maxima (9000
#/(cm3)). Therefore, the model was initialised after the first par-
ticle number increase at a value corresponding to the minimum in
particle number concentration 1–1 1/2 hours before the second in-
crease

strong fluctuations in particle surface area concentration the
model was initialised at times where the particle surface area
concentration was at approximately the mean value (e.g. see
Fig. 2p for 19 May 1998).

The input for the aerosol dynamics model were determined
from the measured particle size distributions by using a least-
squares fit for 2–4 modes, and yielded lognormal fit param-
etersN , dgn andσ . For details on this fitting procedure, see
Birmili et al. (2001).

4 Results

To illustrate the different types of aerosol dynamics observed
during HAFEX, four data sets with different characteristic
temperature, humidity, H2SO4(g), particle number concen-
tration, and particle surface area concentration were chosen.
Then differences between measured and simulated results
were related by using regression analysis to additional me-
teorological information, such as near-surface temperature
gradients and wind speed.

4.1 Four data sets selected for detailed comparison

Of the four data sets we selected for case studies, two were
in winter and two were in spring. The measured time se-
ries of T and RH for these data sets are shown in Figs. 2a–d,
for H2SO4(g) in Fig. 2e–h. In the lower panels of Fig. 2 the
measured number concentration (Figs. 2i–l) and particle sur-
face area concentration (Fig. 2m–p) are shown for 26 Decem-
ber 1998, 26 January 2000, 20 April 1998, and 19 May 1998.
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Fig. 2. Data sets (from left to right) for December 26, 1998, January 26, 2000, April 20, 1998, and May 19, 1998 (each panel). The panels
show measured surface temperature and relative humidity (figures a-d), measured ���������
	 �
� (e-h), measured and simulated time evolution
of ��� ����� (i-l), and measured and simulated time evolution of particle surface area concentration (m-p).
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Fig. 2. Data sets (from left to right) for 26 December 1998, 26 January 2000, 20 April 1998, and 19 May 1998 (each panel). The panels show
measured surface temperature and relative humidity(a-d), measured H2SO4(g) (e-h), measured and simulated time evolution of N> 3 nm
(i-l) , and measured and simulated time evolution of particle surface area concentration(m-p).

26 December 1998 and 26 January 2000:Both winter
cases are characterised by low temperatures, stable strati-
fication, relatively high relative humidities, and southwest-
erly winds prior to nucleation. On 26 December 1998 there
were occasional clouds, sustained winds from the southwest,
and a near-surface temperature gradient of about 0.3 Km−1

prior to increasing particle number concentration and about
0.7 Km−1 in the afternoon. 26 January 2000 had low, but
variable local winds during and after particle nucleation, a
near-surface temperature gradient of about 0.6 − 1.2 Km−1

prior to the main particle number increase, and neutral
shortly after the first maximum occurred in N> 3 nm . In par-

ticular, for winter cases, the measured N> 3 nm resembles the
evolution of H2SO4(g) with a time lag of about 1–2 h.
20 April 1998 and 19 May 1998:For 20 April 1998 typical
diurnal cycles for T and RH for a day with strong solar ra-
diation were measured. Winds were low and predominantly
from southerly directions. On this day two different max-
ima in N> 3 nm were observed, a relatively weak maximum
at 08:00 and the main peak between 12:00–13:00.
On 19 May 1998 there were scattered clouds and highly vari-
able H2SO4 concentrations. However, T and RH displayed
values typical of a day with strong solar radiation. The winds
were low and variable. Both spring days were characterised
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Fig. 3. Dew-point temperature taken at 1-min intervals and � � ����� 	 �
� concentrations measured at MOHp, 19 May 1998 (left) and 20 April
1998 (right). ������� is indicated in green and ��� � ��� is indicated in red.
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Fig. 4. Vertical profiles for specific humidity and temperature, Munich-Oberschleissheim, 19 May 1998 (left) and 20 April 1998 (right).

ature measurements at different heights and one wind-speed
measurement (with the boundary condition

� ��6 for �"�B6 )
are required. Although the wind-speed measurements should
be made at the same height as the temperature measurements,
at MOHp temperatures were only measured at 0.05 and 2 m,
and the wind speed (

�
) was measured at 40 m. We therefore

calculated a bulk value for an auxiliary G��� � as

G� � $ � �
	


 	 � 
 �
[


 � � 
 �
� � (6)

In Eq. (6) we set


�
[

= 2 m and


�
�

= 40 m. The resulting
values for G��� � are shown in Fig. 6.

The scatterplot shown in Fig. 6 indicates an inverse re-
lation between � J and G��� � for wind speeds higher than
3 m/s. For increasing G��� � (i.e. increasing atmospheric sta-
bility) � J decreased (i.e. lower � J ). These results may in-
dicate that low wind speeds and stable atmospheric condi-
tions produce large, positive G��� � . In this regime wind shear
is small and turbulence is suppressed by the stable atmo-
spheric conditions, yielding laminar flow conditions. With
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Fig. 3. Dew-point temperature taken at 1-min intervals and H2SO4(g) concentrations measured at MOHp, 19 May 1998 (left) and 20 April
1998 (right). Nobs is indicated in green and N> 3 nm is indicated in red.

by convective conditions. On both days there was a strong,
negative near-surface temperature gradient up to−4 Km−1

at the measurement site, and the profiles for temperature
and specific humidity indicated well-mixed boundary layers
reaching up to 1700 m (see Fig. 4).

On 19 May and 26 January the increases in H2SO4(g) and
N> 3 nm were rapid, in contrast to 20 April and 26 Decem-
ber for which H2SO4(g) and N> 3 nm showed smooth changes
and one major increase in particle number concentration oc-
curred (Figs. 2e–l).

Figure 2 indicates that an increase of N> 3 nm is accom-
panied by a drop in relative humidity, especially preceding
an increase in H2SO4(g) concentration and preceding a min-
imum in particle surface area concentration. The time series
for surface temperature are dominated by the diurnal cycle
and all four data sets exhibit only minor changes prior to the
observed nucleation burst.

The two lower panels of Fig. 2 show simulated results
(solid red lines) as well as measured results (dashed blue
lines) for particle number concentration (Figs. 2i–l) and par-
ticle surface area concentration (Figs. 2m–p). The increase
in N> 3 nm is reproduced well for 26 December 1998, which
is characterised by N> 3 nm increasing continuously over a
two-hour period (Fig. 2i). The onset of nucleation was well
predicted.

For 26 January 2000, the simulation reproduces the dis-
tinct increases of the measured N> 3 nm very well (Fig. 2j).
For 20 April and 19 May 1998, the simulated increase of
N> 3 nm is earlier and steeper than the measured increase of
N> 3 nm (Figs. 2k and l). Although the simulations seem to
reproduce the measured data for both spring data sets, the dif-
ferent structures of N> 3 nm indicate that for 19 May (Fig. 2l)
the simulated and observed maxima are out of phase. The
simulated burst in N> 3 nm coincides with the steep increase

in H2SO4(g) (Fig. 2h), whereas the observed burst in N> 3 nm
lags half an hour behind the simulated burst. For 20 April,
the simulated increase in N> 3 nm (Fig. 2k) coincides with the
small hump in RH at 10:00 (Fig. 2c) and the earlier increase
in H2SO4(g) (Fig. 2g), whereas the observed increase evolves
over a longer time period coinciding with falling humidity.

To achieve agreement between measured and modelled
particle number concentration, the nucleation rate was de-
creased for 26 January by a factor of 5, and increased by 104

for 26 December, 1013 for 20 April, and 105 for 19 May.
After 1 to 2 h of simulated increasing particle number con-

centration, N> 3 nm decreases due to coagulation. On aver-
age, for all 12 cases, the simulated decrease in particle num-
ber concentration diverges about 20% 3 h after the maxima
and about 40% 6 h after the maxima. We attribute these dif-
ferences to neglected aerosol sinks associated with mixing,
such as deposition.

The simulation results for particle surface area concentra-
tion are shown in Figs. 2m–p. For 26 December (Fig. 2m), 20
April (Fig. 2o), and 19 May (Fig. 2p), the model accurately
reproduces the overall tendency, but the simulated particle
surface area concentration is too low for 19 May. 26 January
2000 (Fig. 2n), shows large fluctuations and the measured
and simulated results do not agree, probably because of the
effect of advection and mixing of polluted air, which is not
represented in the model. Unfortunately, trace-gas measure-
ments are missing for the time period of 13:00–18:00. How-
ever, strongly increasing NO concentrations around noon and
enhanced levels of SO2 and NO2 after 18:00 indicate the im-
pact of polluted air. Any significant impact ofcf on discrep-
ancies between measured and calculated particle surface area
can be ruled out, because thecf affects noticeably only the
zero moment.

The evolution of simulated particle surface area concentra-
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Fig. 3. Dew-point temperature taken at 1-min intervals and � � ����� 	 �
� concentrations measured at MOHp, 19 May 1998 (left) and 20 April
1998 (right). ������� is indicated in green and ��� � ��� is indicated in red.
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Fig. 4. Vertical profiles for specific humidity and temperature, Munich-Oberschleissheim, 19 May 1998 (left) and 20 April 1998 (right).

ature measurements at different heights and one wind-speed
measurement (with the boundary condition

� ��6 for �"�B6 )
are required. Although the wind-speed measurements should
be made at the same height as the temperature measurements,
at MOHp temperatures were only measured at 0.05 and 2 m,
and the wind speed (

�
) was measured at 40 m. We therefore

calculated a bulk value for an auxiliary G��� � as

G� � $ � �
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� � (6)

In Eq. (6) we set


�
[

= 2 m and


�
�

= 40 m. The resulting
values for G��� � are shown in Fig. 6.

The scatterplot shown in Fig. 6 indicates an inverse re-
lation between � J and G��� � for wind speeds higher than
3 m/s. For increasing G��� � (i.e. increasing atmospheric sta-
bility) � J decreased (i.e. lower � J ). These results may in-
dicate that low wind speeds and stable atmospheric condi-
tions produce large, positive G��� � . In this regime wind shear
is small and turbulence is suppressed by the stable atmo-
spheric conditions, yielding laminar flow conditions. With
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Fig. 4. Vertical profiles for specific humidity and temperature, Munich-Oberschleissheim, 19 May 1998 (left) and 20 April 1998 (right).

tion is smooth in all four cases. The measurements for parti-
cle surface area concentration show distinct fluctuations. The
fluctuations in particle surface area can be caused by advec-
tion and mixing of either polluted or clean air.

4.2 Micrometeorological influence on 20 April and 19 May
1998

The simulations for 20 April 1998 and for 19 May 1998 are
characterised by simulated N> 3 nm profiles that are steeper
than the measured profiles and where the simulated onset of
increasing N> 3 nm occurs before the measured increase of
N> 3 nm . Dew-point temperature measurements taken at 1
min intervals were available for both days. As shown in
Fig. 3 these data provide further indications of microme-
teorological processes prior to the nucleation bursts. Both
dew-point temperature time series show strong fluctuations.
Strong vertical exchange processes can be inferred for both
cases because for 19 May 1998 the wind speed was lower
than 1 m/s from 10:00 to 12:00 and for 20 April the wind
speed was about 2 m/s from 10:00 to 13:00. In both cases
the main increase in observed N> 3 nm was accompanied
by a significant reduction in dew-point temperature. This
might indicate that drier air from aloft was entrained into
the boundary layer and mixed downwards by so-called top-
down diffusion. Specific humidity taken from radiosonde

profiles can be used as an indicator for vertical exchange if
there is a significant difference between the surface layer and
the entrainment layer. Unfortunately, the closest radiosonde
station was located 70 km northeast of the site at Munich-
Oberschleissheim. However, for 20 April and 19 May there
were well-developed boundary layers several hundred me-
ters higher than the MOHp site, and the existence of weak
zonal flows allows us to rule out strong orographic effects,
so that we can use the distant data 70 km away to interpret
the measurements at the MOHp site. Figure 4 shows the
temperature and specific humidity profiles taken at Munich-
Oberschleissheim. The elevation of the MOHp site is indi-
cated by the horizontal line at 988 m. The temperature lapse
rate was nearly adiabatic for both cases, indicating that well-
mixed boundary layers developed, reaching up to≈ 1600 m
for 19 May and up to≈ 1700 m for 20 April. Assuming hor-
izontally homogeneous conditions and a shallow superadia-
batic surface layer at the MOHp site, the temperature differ-
ence between the measurement site and the top of the bound-
ary layer would have been between 7 and 8◦C.

The dew-point temperature time series for 19 May 1998
indicates that marked variations occurred at frequencies from
30 to 60 min. These variations might indicate the existence of
turbulent eddies and plumes. H2SO4(g) fluctuations seemed
to correspond to fluctuations of dew-point temperatures. In
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Table 1. Measured parameters for the 12 data sets used in this work.
The values were taken at the begin of increasing simulated N> 3 nm

date ∂T/∂z T2m surface area wind |U|

Km−1 T in◦C nm2cm−3 direction ms−1

010498 -0.7 10.9 1.2e8 W 8.3

200498 -2.8 6.1 2.3e7 SW 2.1

150598 -3.6 13.6 5.2e7 ONO 7.1

160598 -4.4 11.6 3.1e7 NO 6.2

190598 -2.5 10.7 3.6e7 WSW 0.4

231298 1.7 -3.0 1.3e7 SSO 2.7

261298 0.3 4.1 6.0e6 WSW 5.3

030199 0.5 2.2 7.0e6 WSW 10.0

140499 -2.5 6.0 6.3e6 WSW 6.0

130100 0.6 -3.9 5.0e6 WSW 5.5

260100 1.0 -7.9 1.4e7 SW 2.0

270100 0.8 -3.3 7.1e6 WSW 7.3

contrast, the measuredN lagged about 1 to 1.5 h behind
the measured H2SO4(g). For 20 April 1998, until 10:30
H2SO4(g) fluctuations seemed to correspond to fluctuations
of dew-point temperature. The time lag between N> 3 nm and
H2SO4(g) was about 2 h in the morning, but thereafter it is
difficult to associateN to H2SO4(g). However, the variations
in dew-point temperatures might indicate the existence of tur-
bulent eddies and plumes that occurred at shorter cycles than
the time-lag betweenN and H2SO4(g).

These two spring data sets provide indications of the im-
pact of vertical exchange processes on the differing model
responses and of the complexity of interacting processes.

4.3 Comparisons of measured and simulated results

In the previous sections we compared aerosol dynamics sim-
ulations to four data sets that represent distinct atmospheric
conditions. In this section we use regression analysis to com-
pare simulation and measurement results for all 12 data sets,
and discuss the origin of the nucleation-rate correction,cf ,
for all simulations. To assess the degree to which vertical
exchange processes can explain the differences between the
measured and simulated particle size distributions, the best
available indicator of vertical exchange processes is the lo-
cal temperature gradient. Temperature measurements were
made at 0.05 and 2 m. Due to the complex terrain in the
vicinity of the measurements, calculating the temperature
gradient from radiosonde data taken 70 km away may not
represent local conditions. In particular, for winter days char-
acterised by stable stratification, temperature profiles from
Munich-Oberschleissheim do not represent the local condi-
tions at MOHp. Because it is difficult to determine from
measurements the time interval for the onset of particle for-
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Table 1. Measured parameters for the 12 data sets used in this work.
The values were taken at the begin of increasing simulated � � � ���
.

date �
	 � ��� 	 � � surface area wind 
 ��
����� � 	�� ����� � � ��� ��� � direction
����� �

010498 -0.7 10.9 1.2e8 W 8.3

200498 -2.8 6.1 2.3e7 SW 2.1

150598 -3.6 13.6 5.2e7 ONO 7.1

160598 -4.4 11.6 3.1e7 NO 6.2

190598 -2.5 10.7 3.6e7 WSW 0.4

231298 1.7 -3.0 1.3e7 SSO 2.7

261298 0.3 4.1 6.0e6 WSW 5.3

030199 0.5 2.2 7.0e6 WSW 10.0

140499 -2.5 6.0 6.3e6 WSW 6.0

130100 0.6 -3.9 5.0e6 WSW 5.5

260100 1.0 -7.9 1.4e7 SW 2.0

270100 0.8 -3.3 7.1e6 WSW 7.3

increasing wind speed, and therefore increasing wind shear,
laminar flow shifts to turbulent flow when Ri decreases to
about 0.25 (Stull, 1988). Because we calculated the tem-
perature gradient just for a height interval of 2 m, the crit-
ical value for G��� � should be greater than 0.25. Two of
the data sets that we considered may fall within this sta-
ble regime, and although four data sets had positive tem-
perature gradients, which should yield thermally stable at-

mospheric conditions ( K � 8 � G��� � � 6 � K � indicated by stars),
according to the criteria defined by Eq. (6), these four data
sets are classified as unstable and may indicate some influ-
ence of wind shear in this regime. With decreasing G��� � , for� G��� � � 6 
 buoyancy-driven turbulence dominates the turbu-
lent exchange processes, so that there is only 1 data set that
was noticeably affected by wind shear. There are also two
data sets that are characterised by calm winds and strong
negative

T! � T#" . For one of these data sets � J � K 6�
 and
� �,� �%$ �.: , which lay outside the range of Fig. 6, and there-
fore are not shown. The results shown in the scatterplot in
Fig. 6 indicate the complexity of interacting atmospheric pro-
cesses and the different flow regimes under which the mea-
surements were made.
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Fig. 6. Nucleation rate correction, � � , versus auxiliary bulk
Richardson number, &' � ( . �
	 � ��� and ��� � ��� are taken at differ-
ent altitudes.

Similar to the scatterplots shown in Fig. 5 and 6, Fig. 7
shows the relationship between � J and particle surface area
concentration. Figure 7 indicates a weak relation between � J
and particle surface area concentration. For entrainment of
aerosol with low preexisting particle surface area concentra-
tion, subsequent mixing and dilution could yield only a weak
signal in the time series measured at ground level.

Regression analysis confirmed that the evolution of parti-
cle number concentration was significantly affected by mi-
crometeorological processes, such as strong convection on
some days. The main problem with this analysis is that the at-
mospheric conditions affecting particle formation might have
been very different from the atmospheric conditions at the
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Fig. 5. log10 correction factor (cf ) versus∂T/∂z.

mation, the values for the near-surface temperature gradient,
wind speed and direction, and particle surface area concen-
tration were taken at the onset of the simulated increase of
N> 3 nm and are shown in Table 1.

For all 12 cases the gradient between the surface and
ground temperatures was related to the logarithm ofcf as
an indicator of the difference between measured and simu-
lated results (Fig. 5). The logarithm ofcf varied from−3 to
17.2.

Figure 5 shows a distinct relation betweencf and the near-
surface temperature gradient. For the 12 cases we consid-
ered, a strong correlation was obtained. With increasing at-
mospheric instability (increasing negative temperature gradi-
ent) and related increased forcing of buoyancy-driven mixing
processes,cf increased. For neutral conditions and stable
stratification (positive temperature gradient)cf decreased
with increasing atmospheric stability. In the stable regime
the effect of shear-driven turbulence on atmospheric mixing
decreases with increasing atmospheric stability. The inter-
action between wind shear and thermal stratification is de-
scribed below.

For five out of six winter data sets, our box model repro-
duced the onset of increasing N> 3 nm within a few min-
utes. In contrast, on average the spring data sets show about
a 1-h premature onset of increasing N> 3 nm . This bias
confirms that for convective conditions important time and
length scales are omitted in the model, which strongly affect
nucleation.
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Fig. 5. � ������� correction factor ( � � ) versus �
	 � ��� .

Table 1. Measured parameters for the 12 data sets used in this work.
The values were taken at the begin of increasing simulated � � � ���
.

date �
	 � ��� 	 � � surface area wind 
 ��
����� � 	�� ����� � � ��� ��� � direction
����� �

010498 -0.7 10.9 1.2e8 W 8.3

200498 -2.8 6.1 2.3e7 SW 2.1

150598 -3.6 13.6 5.2e7 ONO 7.1

160598 -4.4 11.6 3.1e7 NO 6.2

190598 -2.5 10.7 3.6e7 WSW 0.4

231298 1.7 -3.0 1.3e7 SSO 2.7

261298 0.3 4.1 6.0e6 WSW 5.3

030199 0.5 2.2 7.0e6 WSW 10.0

140499 -2.5 6.0 6.3e6 WSW 6.0

130100 0.6 -3.9 5.0e6 WSW 5.5

260100 1.0 -7.9 1.4e7 SW 2.0

270100 0.8 -3.3 7.1e6 WSW 7.3

increasing wind speed, and therefore increasing wind shear,
laminar flow shifts to turbulent flow when Ri decreases to
about 0.25 (Stull, 1988). Because we calculated the tem-
perature gradient just for a height interval of 2 m, the crit-
ical value for G��� � should be greater than 0.25. Two of
the data sets that we considered may fall within this sta-
ble regime, and although four data sets had positive tem-
perature gradients, which should yield thermally stable at-

mospheric conditions ( K � 8 � G��� � � 6 � K � indicated by stars),
according to the criteria defined by Eq. (6), these four data
sets are classified as unstable and may indicate some influ-
ence of wind shear in this regime. With decreasing G��� � , for� G��� � � 6 
 buoyancy-driven turbulence dominates the turbu-
lent exchange processes, so that there is only 1 data set that
was noticeably affected by wind shear. There are also two
data sets that are characterised by calm winds and strong
negative

T! � T#" . For one of these data sets � J � K 6�
 and
� �,� �%$ �.: , which lay outside the range of Fig. 6, and there-
fore are not shown. The results shown in the scatterplot in
Fig. 6 indicate the complexity of interacting atmospheric pro-
cesses and the different flow regimes under which the mea-
surements were made.
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Fig. 6. Nucleation rate correction, � � , versus auxiliary bulk
Richardson number, &' � ( . �
	 � ��� and ��� � ��� are taken at differ-
ent altitudes.

Similar to the scatterplots shown in Fig. 5 and 6, Fig. 7
shows the relationship between � J and particle surface area
concentration. Figure 7 indicates a weak relation between � J
and particle surface area concentration. For entrainment of
aerosol with low preexisting particle surface area concentra-
tion, subsequent mixing and dilution could yield only a weak
signal in the time series measured at ground level.

Regression analysis confirmed that the evolution of parti-
cle number concentration was significantly affected by mi-
crometeorological processes, such as strong convection on
some days. The main problem with this analysis is that the at-
mospheric conditions affecting particle formation might have
been very different from the atmospheric conditions at the
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Fig. 6. Nucleation rate correction,cf , versus auxiliary bulk
Richardson number,̃RiB. ∂T/∂z and∂U/∂z are taken at different
altitudes.

By analysing the atmospheric conditions that correspond
to each of the data sets, the comparison between the mea-
sured and simulated evolution of N> 3 nm is the best for data
sets corresponding to stable atmospheric conditions, and de-
grades for the data sets corresponding to progressively more
unstable atmospheric conditions. For data sets correspond-
ing to unstable atmospheric conditions, the simulated profile
of N> 3 nm is typically too steep and the onset of the sharp
increase of N> 3 nm occurs too soon.

Wind shear is another important atmospheric mixing pro-
cess that affects particle nucleation and could explain part
of the difference between our measured and simulated re-
sults. In particular, for stable, stratified atmospheric con-
ditions, vertical mixing is driven by wind shear. If wind
speed is related tocf , this would indicate that wind shear
strongly affects particle nucleation. However, no correlation
between wind speed andcf was found, which could mean
that buoyancy-driven turbulence is the dominant process.

Ri relates the effect of buoyancy-driven turbulence to
shear-driven turbulence. To calculate RiB, only two temper-
ature measurements at different heights and one wind-speed
measurement (with the boundary conditionU = 0 for z = 0)
are required. Although the wind-speed measurements should
be made at the same height as the temperature measurements,
at MOHp temperatures were only measured at 0.05 and 2 m,
and the wind speed (U ) was measured at 40 m. We therefore
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Fig. 7. Logarithm of nucleation rate correction, � ��� ��� ( � � ), versus
particle surface area concentration.

point of measurements. We therefore look in the data sets
for indicators of mixing from layers above the measurement
points down into the layers where measurements were made.
The near-surface temperature gradient and G��� � were good
indicators of the impact of atmospheric mixing on particle
nucleation. Near the top of the boundary layer the tempera-
ture, specific humidity, and particle size distributions might
be substantially different from those closer to the ground,
and could favour enhanced particle formation rates. Even
for stable atmospheric conditions, strong atmospheric inver-
sions below the site could also increase particle formation
rates. Particles may form at the discontinuity under the in-
version, below the MOHp, and could be transported upwards
by wind shear and by orographic lift.

4.4 Particle growth

The average of the difference between the measured and sim-
ulated particle surface area concentration was calculated for
all 12 cases by integrating the difference between the mea-
sured and simulated particle surface area concentration over
the six-hour measurement period, beginning with the simu-
lated increase of particle number concentration. Similar to
Fig. 5, Fig. 8 shows 6-h mean differences for particle surface
area concentrations. The differences shown in Fig. 8 are nor-
malized by the measured particle surface area concentration.
We define this normalized difference between the measured
and simulated particle surface area concentration as


��
.
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Fig. 8. Six-hour mean difference of the measured and simulated
particle surface area concentration normalized by the measured par-
ticle surface area concentration, versus �
	 � ��� .

For particle nucleation, � J was used to determine the dif-
ference between particle nucleation and the evolution of par-
ticle number concentration, and could be correlated to the
vertical exchange rate. However, for the behaviour of the par-
ticle surface area concentration, there is no identifiable rela-
tion between


��
and the vertical exchange processes. This

suggests that particle nucleation and growth are controlled
by different processes. The processes most likely controlling

��

are:

– Advection of polluted air

– Condensation and evaporation of unidentified species.
Likely species are ammonia, nitric acid (

� � � � ), oxy-
genated biogenic hydrocarbons, and other unidentified,
condensible, organic species

Because these processes may occur simultaneously, it is
difficult to determine their relative contributions to


��
.

Hourly � �
� and NO measurements were available for ten
out of the twelve selected cases for the periods of interest.
We used � ��� measurements as an indicator for the degree
of pollution of the air.

The data sets for measured particle surface area concen-
tration for 20 April (Fig. 2o), 19 May (Fig. 2p), and 26 De-
cember 1998 (Fig. 2m) show low values of


��
, and were

characterised by relatively low � � � concentrations, ranging
from 0.5 to 2 ppbv. For 26 January 2000 � � � measurements
are missing for the period of the most interest (see Fig. 9).
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Fig. 7. Logarithm of nucleation rate correction, log10 (cf ), versus
particle surface area concentration.

calculated a bulk value for an auxiliarỹRiB as

R̃iB =
g

θ

4θ/4z1

4U/4z2
. (6)

In Eq. (6) we set4z1 = 2 m and4z2 = 40 m. The resulting
values forR̃iB are shown in Fig. 6.

The scatterplot shown in Fig. 6 indicates an inverse re-
lation betweencf and R̃iB for wind speeds higher than
3 m/s. For increasing̃RiB (i.e. increasing atmospheric sta-
bility) cf decreased (i.e. lowercf ). These results may in-
dicate that low wind speeds and stable atmospheric condi-
tions produce large, positivẽRiB. In this regime wind shear
is small and turbulence is suppressed by the stable atmo-
spheric conditions, yielding laminar flow conditions. With
increasing wind speed, and therefore increasing wind shear,
laminar flow shifts to turbulent flow when Ri decreases to
about 0.25 (Stull, 1988). Because we calculated the tem-
perature gradient just for a height interval of 2 m, the crit-
ical value for R̃iB should be greater than 0.25. Two of
the data sets that we considered may fall within this sta-
ble regime, and although four data sets had positive tem-
perature gradients, which should yield thermally stable at-
mospheric conditions (1.2 > R̃iB > 0.15 indicated by stars),
according to the criteria defined by Eq. (6), these four data
sets are classified as unstable and may indicate some influ-
ence of wind shear in this regime. With decreasingR̃iB, for
(R̃iB < 0) buoyancy-driven turbulence dominates the turbu-
lent exchange processes, so that there is only 1 data set that
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was noticeably affected by wind shear. There are also two
data sets that are characterised by calm winds and strong
negative∂T/∂z. For one of these data setscf = 105 and
Ri = −853, which lay outside the range of Fig. 6, and there-
fore are not shown. The results shown in the scatterplot in
Fig. 6 indicate the complexity of interacting atmospheric pro-
cesses and the different flow regimes under which the mea-
surements were made.

Similar to the scatterplots shown in Fig. 5 and 6, Fig. 7
shows the relationship betweencf and particle surface area
concentration. Figure 7 indicates a weak relation between
cf and particle surface area concentration. For entrainment
of aerosol with low preexisting particle surface area concen-
tration, subsequent mixing and dilution could yield only a
weak signal in the time series measured at ground level.

Regression analysis confirmed that the evolution of parti-
cle number concentration was significantly affected by mi-
crometeorological processes, such as strong convection on
some days. The main problem with this analysis is that the at-
mospheric conditions affecting particle formation might have
been very different from the atmospheric conditions at the
point of measurements. We therefore look in the data sets
for indicators of mixing from layers above the measurement
points down into the layers where measurements were made.
The near-surface temperature gradient andR̃iB were good
indicators of the impact of atmospheric mixing on particle
nucleation. Near the top of the boundary layer the tempera-
ture, specific humidity, and particle size distributions might
be substantially different from those closer to the ground,
and could favour enhanced particle formation rates. Even
for stable atmospheric conditions, strong atmospheric inver-
sions below the site could also increase particle formation
rates. Particles may form at the discontinuity under the in-
version, below the MOHp, and could be transported upwards
by wind shear and by orographic lift.

4.4 Particle growth

The average of the difference between the measured and sim-
ulated particle surface area concentration was calculated for
all 12 cases by integrating the difference between the mea-
sured and simulated particle surface area concentration over
the six-hour measurement period, beginning with the simu-
lated increase of particle number concentration. Similar to
Fig. 5, Fig. 8 shows 6-h mean differences for particle surface
area concentrations. The differences shown in Fig. 8 are nor-
malized by the measured particle surface area concentration.
We define this normalized difference between the measured
and simulated particle surface area concentration as4S.

For particle nucleation,cf was used to determine the dif-
ference between particle nucleation and the evolution of par-
ticle number concentration, and could be correlated to the
vertical exchange rate. However, for the behaviour of the
particle surface area concentration, there is no identifiable re-
lation between4S and the vertical exchange processes. This
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Fig. 7. Logarithm of nucleation rate correction, � ��� ��� ( � � ), versus
particle surface area concentration.

point of measurements. We therefore look in the data sets
for indicators of mixing from layers above the measurement
points down into the layers where measurements were made.
The near-surface temperature gradient and G��� � were good
indicators of the impact of atmospheric mixing on particle
nucleation. Near the top of the boundary layer the tempera-
ture, specific humidity, and particle size distributions might
be substantially different from those closer to the ground,
and could favour enhanced particle formation rates. Even
for stable atmospheric conditions, strong atmospheric inver-
sions below the site could also increase particle formation
rates. Particles may form at the discontinuity under the in-
version, below the MOHp, and could be transported upwards
by wind shear and by orographic lift.

4.4 Particle growth

The average of the difference between the measured and sim-
ulated particle surface area concentration was calculated for
all 12 cases by integrating the difference between the mea-
sured and simulated particle surface area concentration over
the six-hour measurement period, beginning with the simu-
lated increase of particle number concentration. Similar to
Fig. 5, Fig. 8 shows 6-h mean differences for particle surface
area concentrations. The differences shown in Fig. 8 are nor-
malized by the measured particle surface area concentration.
We define this normalized difference between the measured
and simulated particle surface area concentration as


��
.
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Fig. 8. Six-hour mean difference of the measured and simulated
particle surface area concentration normalized by the measured par-
ticle surface area concentration, versus �
	 � ��� .

For particle nucleation, � J was used to determine the dif-
ference between particle nucleation and the evolution of par-
ticle number concentration, and could be correlated to the
vertical exchange rate. However, for the behaviour of the par-
ticle surface area concentration, there is no identifiable rela-
tion between


��
and the vertical exchange processes. This

suggests that particle nucleation and growth are controlled
by different processes. The processes most likely controlling

��

are:

– Advection of polluted air

– Condensation and evaporation of unidentified species.
Likely species are ammonia, nitric acid (

� � � � ), oxy-
genated biogenic hydrocarbons, and other unidentified,
condensible, organic species

Because these processes may occur simultaneously, it is
difficult to determine their relative contributions to


��
.

Hourly � �
� and NO measurements were available for ten
out of the twelve selected cases for the periods of interest.
We used � ��� measurements as an indicator for the degree
of pollution of the air.

The data sets for measured particle surface area concen-
tration for 20 April (Fig. 2o), 19 May (Fig. 2p), and 26 De-
cember 1998 (Fig. 2m) show low values of


��
, and were

characterised by relatively low � � � concentrations, ranging
from 0.5 to 2 ppbv. For 26 January 2000 � � � measurements
are missing for the period of the most interest (see Fig. 9).
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Fig. 8. Six-hour mean difference of the measured and simulated
particle surface area concentration normalized by the measured par-
ticle surface area concentration, versus∂T/∂z.

suggests that particle nucleation and growth are controlled
by different processes. The processes most likely controlling
4S are:

– Advection of polluted air

– Condensation and evaporation of unidentified species.
Likely species are ammonia, nitric acid (HNO3), oxy-
genated biogenic hydrocarbons, and other unidentified,
condensible, organic species

Because these processes may occur simultaneously, it is
difficult to determine their relative contributions to4S.

Hourly NO2 and NO measurements were available for ten
out of the twelve selected cases for the periods of interest.
We used NOx measurements as an indicator for the degree of
pollution of the air.

The data sets for measured particle surface area concen-
tration for 20 April (Fig. 2o), 19 May (Fig. 2p), and 26 De-
cember 1998 (Fig. 2m) show low values of4S, and were
characterised by relatively low NOx concentrations, ranging
from 0.5 to 2 ppbv. For 26 January 2000 NOx measurements
are missing for the period of the most interest (see Fig. 9).
However the remaining measurements for the late evening
indicate high NOx levels.

Two other data sets with large4S are also shown in Fig. 9.
For both cases enhanced NOx concentrations and enhanced
particle surface area concentrations were measured. More-
over, the time series for NOx indicates a time evolution sim-
ilar to the time series for measured particle surface area

www.atmos-chem-phys.org/acp/3/347/ Atmos. Chem. Phys., 3, 347–359, 2003
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Fig. 9. Particle surface area and � ��� concentration for the three data sets with the highest difference between measured and simulated
surface area concentration,

���
.

However the remaining measurements for the late evening
indicate high � � � levels.

Two other data sets with large

��

are also shown in
Fig. 9. For both cases enhanced � � � concentrations and en-
hanced particle surface area concentrations were measured.
Moreover, the time series for � � � indicates a time evolu-
tion similar to the time series for measured particle surface
area concentration. Using � � � as an indicator of combustion
sources, this suggests that the site was affected by emissions,
most likely from nearby roads and heating sources below the
Hohenpeissenberg measurement site.

5 Conclusions

Selected data sets from a long-term set of atmospheric field
measurements of particle size distributions, sulphuric acid
concentrations, and meteorological parameters were used for
comparisons with box model simulations of atmospheric par-
ticle nucleation and growth. The primary objective of this
work was to study differences between the measured and
simulated particle size distributions, and to identify atmo-
spheric processes responsible for these differences. The dif-
ferences for particle number concentration were evaluated by
determining for each case a correction factor for the nucle-
ation rate expression, which was the only free parameter in
the model. The benefit of the chosen approach was that we
are able to compare a closed set of measurements against
model results, and assumptions related to boundary condi-
tions, background concentrations, particle composition, etc.
were avoided.

Our results indicate that the measured and simulated parti-
cle number concentration compared well for data sets where
the atmosphere was stably stratified and when the wind speed
was relatively low. For wind speeds greater than 6 m/s and
for stable stratification, the comparison degrades. Larger dif-
ferences in particle number concentration were found for
days with convective conditions, as indicated by negative

near-surface temperature gradients and radiosonde profiles.
For particle number concentration profiles where the sim-
ulated particle number concentration either rose faster than
the measured increase, or where the onset of a sharp rise in
particle number concentration occurred before the measured
onset, the cause could be related to buoyancy-driven turbu-
lent exchange processes. This indicates that under convec-
tive conditions the initial particle nucleation process occurs
higher up in the atmosphere, where more favourable con-
ditions occur followed by downward mixing and growth to
detectable sizes. Therefore, a significant part of these dif-
ferences and their variability is attributed to non-local for-
mation of particles and micrometeorological processes that
cause them to be transported to the ground-based measure-
ment site. Our results suggest that buoyancy-driven turbu-
lence and wind shear are the micrometeorological processes
accounting for such transport.

In contrast to particle formation, micrometeorological pro-
cesses are not sufficient to explain the differences in simu-
lated particle surface area concentration. This indicates that
particle surface area concentration is affected by condensa-
tion and evaporation processes of additional species, which
are strongly affected by transport of emissions, such as � � � .

Our comparison of measured and simulated particle size
distribution parameters indicate the complexity of various in-
teracting processes, such as micrometeorology, particle nu-
cleation, growth, coagulation, transport, and deposition. To
gain further insight into these processes, measurements of,
e.g., vertical profiles of quantities characterizing turbulent
transport processes up to the entrainment layer and � ��� con-
centrations are desirable.
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Fig. 9. Particle surface area and NOx concentration for the three data sets with the highest difference between measured and simulated
surface area concentration,4S.

concentration. Using NOx as an indicator of combustion
sources, this suggests that the site was affected by emissions,
most likely from nearby roads and heating sources below the
Hohenpeissenberg measurement site.

5 Conclusions

Selected data sets from a long-term set of atmospheric field
measurements of particle size distributions, sulphuric acid
concentrations, and meteorological parameters were used for
comparisons with box model simulations of atmospheric par-
ticle nucleation and growth. The primary objective of this
work was to study differences between the measured and
simulated particle size distributions, and to identify atmo-
spheric processes responsible for these differences. The dif-
ferences for particle number concentration were evaluated by
determining for each case a correction factor for the nucle-
ation rate expression, which was the only free parameter in
the model. The benefit of the chosen approach was that we
are able to compare a closed set of measurements against
model results, and assumptions related to boundary condi-
tions, background concentrations, particle composition, etc.
were avoided.

Our results indicate that the measured and simulated parti-
cle number concentration compared well for data sets where
the atmosphere was stably stratified and when the wind speed
was relatively low. For wind speeds greater than 6 m/s and
for stable stratification, the comparison degrades. Larger dif-
ferences in particle number concentration were found for
days with convective conditions, as indicated by negative
near-surface temperature gradients and radiosonde profiles.
For particle number concentration profiles where the sim-
ulated particle number concentration either rose faster than
the measured increase, or where the onset of a sharp rise in
particle number concentration occurred before the measured
onset, the cause could be related to buoyancy-driven turbu-

lent exchange processes. This indicates that under convec-
tive conditions the initial particle nucleation process occurs
higher up in the atmosphere, where more favourable con-
ditions occur followed by downward mixing and growth to
detectable sizes. Therefore, a significant part of these dif-
ferences and their variability is attributed to non-local for-
mation of particles and micrometeorological processes that
cause them to be transported to the ground-based measure-
ment site. Our results suggest that buoyancy-driven turbu-
lence and wind shear are the micrometeorological processes
accounting for such transport.

In contrast to particle formation, micrometeorological pro-
cesses are not sufficient to explain the differences in simu-
lated particle surface area concentration. This indicates that
particle surface area concentration is affected by condensa-
tion and evaporation processes of additional species, which
are strongly affected by transport of emissions, such as NOx.

Our comparison of measured and simulated particle size
distribution parameters indicate the complexity of various in-
teracting processes, such as micrometeorology, particle nu-
cleation, growth, coagulation, transport, and deposition. To
gain further insight into these processes, measurements of,
e.g. vertical profiles of quantities characterizing turbulent
transport processes up to the entrainment layer and NH3 con-
centrations are desirable.
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